Tolerance Intervals for Twice-censored

Data Based on the Censored Rate Approach



TP RV B R ERATHLFLER

YAkl R AW K

SRR . F §53

BPE

&
EI1ETRAERE ERFORY o FLETLBL AT REK
ZFH B2 - c bFERT P o AAITAR ST REREK L
LETHEEFIL s FTREEL 82 222 AmFaE gy P
2 REFRAFTHEZFAFR AL HFAL AP g drim g
RAFTAZLFLFHEDAH V52 2 Bt T Aoz S

PR AR - A A Bk B A e B 15 AT 2

MaEP: 5 %R ~OUFH - REF RV



Tolerance Intervals for T'wice-censored Data
Based on the Censored Rate Approach

Student: Shihjie Lin
Advisor: Hsiuying Wang
Institute of Statistics National Chiao
Tung University Hsinchu, Taiwan

Abstract

Tolerance intervals are useful:tools to capture characteristics of the un-
derlying distribution of collected datarinsindustrial, clinical trials and phar-
maceutical applications...In_real applications; especially in reliability test-
ing and clinical trial, it"is common-that the collected data with censored
outcomes. Although there are'existing methods for constructing tolerance
interval for specific distributions or models; there lacks a unified approach
for constructing tolerance intervals with censored data for any distribution.
In this study, we consider the problem of constructing tolerance intervals for
parametric distributions with censored data. A censored rate approach is
proposed to estimate the parameters. Algorithms based on the estimation
to construct tolerance intervals for the normal and other distributions are
provided in this study. A simulation study and a real data example study

show the superiority of the proposed methods.

Key words: Tolerance Interval, censored data,coverage probability, censored rate

approach
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1 Introduction

Tolerance intervals are useful tools to capture characteristics of the underlying
distribution of collected data in industrial, clinical trials, pharmaceutical and life
insurance applications (Hahn and Chandra 1981; Hahn and Meeker 1991;Zaslavsky
2007; Wang 2007; Gebizlioglu and Yagci 2008; Cummings, Zhou and Dive 2011).

A tolerance interval is a statistical interval within which, with some probability, a
specified proportion of a population falls.

There are two kinds of tolerance intervals proposed in the literature, the f—content
and S—expectation tolerance intervals; More specifically, let X be a random vari-
able with cumulative distribution function F. An interval (L(X),U(X)) is said
to be a B-content, (1 — «)-confidence tolerance interval for F' (called a (5,1 — «)

tolerance interval for short) if

PUFUX)) = FILED])=Z 5} =1 -« (1)

On the other hand, an interval (L(X), U (X)) is said to be a -expection toler-
ance interval if

E{FUX)) = F(L(X))]} = 6. (2)

The approaches of constructing the tolerance interval for the normal distribu-
tion and exponential family are widely discussed in Wang and Tsung (2009), Cai
and Wang (2009) etc. In real applications such as the reliability and clinical trial
problems, the tolerance interval approach is widely used. It is common that the
collected data are censored in these applications. There has been discussions on
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TI for the censored data (Krishnamoorthy,Mallic and Mathew 2011, Emura and
Wang 2010, Hahn and Meeker 1991). Tt is worth noting that the results are mainly
for some specific models such as the weibull, exponential and lognormal distribu-
tions. Compared with these models, the approaches for TI with censored data
for the normal distribution and exponential distribution has not been studied as
depth as them. In this study, we propose a general method to construct TIs with
censored data for parametric distribution, which mainly based on a censored rate
estimation approach.

In this study, we consider parametric distribution and twice-censored data.
Let X;,2 = 1,...,n be a random sample following a parametric distribution with
a distribution function Fy(z) and a probability or density function py(x), where
0 is vector of unknown parameters. Let L and U be the left censoring and right
censoring times. We consider independent identically distributed random vectors
X; = (Z;,0;) i =1,...,n, where Z; are the variables of interest and ¢; is an indicator
variable with §; = 1 if the data X; is not censored and X; = Z;, §; = 2 if the data
X, is right censored and Z; = U, §; = 3 if the data X is left censored and Z; = L.

Then the likelihood function can be expressed as
L(0,x) = T] Fola) o= fola) om0 Sy ) o= 3)
i=1

where Sy(z) = 1 — Fyp(z) is the survival function.
Nonparametric approaches are widely-adopted for the twice-censored data (Patilea

and Rolin 2006; Shen 2009). But when the data is known to be drawn from a pa-



rameter distribution, a more suitable approach is to adopt the parameter distribu-
tion to construct TIs. However, for parametric distributions, only the models with
a simple survival function form can be dealt with accurately such as the exponen-
tial distribution and Weibull distribution etc (Miller 1981, Emura and Wang 2010).
For the parameter without a simple survival function form, it is difficult to obtain
an accurate estimators for the parameters. A widely-used method is to derive the
maximum likelihood estimators of the parameters based on the likelihood function
(3). However, it is not easy to find the maximum likelihood estimators based on
the likelihood function (3), even for the normal distribution. For example, the

normal likelihood function can.be express. as. :

(w;=)? 1 (zi—m)? < 1 (zi—m)?
L 70-21- = / e 202 dx Tisi=sy e 202 I{%:l}/ e 202 dx Ts;=23
(p,0%|x) il;[l( r- ) ( e ) (U o )
(4)

Since (4) involves integration, it‘is difficult to solve the p and o2 theoretically
or numerically. Even adopting the EM algorithm to find the MLE, we cannot not
guarantee to obtain an accurate result and it is time consumption.

The thesis is organized as follows: Several existing Tolerance intervals are re-
viewed in Section 2. Section 3 gives the proposed censored rate method. A simu-
lation study for the normal distribution and gamma distribution is give in Section

4. A real data example is give in Section 5.



2 Preliminaries

In this study, we focus on constructing T1 for the normal distribution and other
parametric distribution with censored data. In this section, we give a review of
the widely-used TTs for the normal distribution and gamma distribution as well as
the distribution free T1Is.

Wald and Wolfowitz (1946) proposed a two-sided fS-content, (1 — «)-confidence

tolerance interval for a normal distribution with the form
(L(X),U(X)) = (z — C(1—asn) S, T + C(l—a;n)s) (5)

where T and s are sample mean.and standard deviation of a sample x4, ...x,, of size
n, and ¢(1_qa;n) depends on o and sample size . The ¢, values are tabulated
in Odeh and Owen (1980) (see Table 1).

For the gamma distribution,let X3, ..., X,, bearandom sample from gamma(ca, \).
Krishnamoorthy, Mathew and Mukherjee (2008) pointed out the transformed sam-
ple Y, = Xll / 3, ey Yy = X can be approximated a normal distribution with an
arbitrary mean u and arbitrary variance o. Then by TI (5), let (L(Y),U(Y)) be
a two-sided f-content, (1 — «)-confidence tolerance interval for this normal distri-
bution. Then the gamma(a, \) distribution approximate tolerance interval with
the form

(L(X),U(X)) = (L*(Y), U(Y)) (6)

For the data not following the normal distribution but a parametric distribu-
tion, we can consider the TI with respect to the distribution (Patel 1986). An
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alternative approach is to consider the distribution free TI (Gibbons 1971,1975,
Hahn and Meeker 1991). A two-sided [-content, (1 — a)-confidence distribution

free tolerance interval has the form
(L(X), U(X)) = (Xay, X(w)) (7)

where X(;) and X(,) denote the [th and uth order statistics of the sampled data
x1,..¢, and [ and u are chosen symmetrically and as close together as possible

around the integer less than or equal to (n + 1)/2 such that
u—l—1 n
3 (2)/31'(1 Lz 1o
i=0
In the situation without censored data, the above mentioned TIs can be directly
used. When the data is twiee-censored, directly applying the above TI can not
lead to a satisfactory result. Therefore, in thisstudy, we propose approaches based

on the above mentioned T1Is to construct TI with censored data and show that the

proposed algorithm can obtain a desirable result.



3 Methods

3.1 Censored rate method for the normal distribution

For a twice-censored data, a feasible way to construct TI of the sample pop-
ulation is to estimate the unknown parameter and then generate a new sample
from the distribution based on the estimated parameter value to reconstruct TlIs.
As mentioned in the introduction section, a widely-used method to estimate the
parameter is to adopt the maximum likelihood method. However, it is hard to
derive the maximum likelihood approach from the likelihood function when F'(x)
and S(z) cannot be simplified to forms without involving integrations. In this
study, we propose a censored xate approach to estimate the unknown parameter.
First, we consider the sampled population is the normal distribution.

Suppose we have a sample X; =(Z;;0;),7-= 1,...,n from the normal distribution
N(p,0?) with the left censored time-L_and. the right censored time U. Suppose
that there are ny, ny and ng data corresponding to ¢; = 1,2 and 3 respectively. We
call ny/n and ng/n as the right and left censored rates. In the proposed approach,
we use the left and right censored rates to approximate the probabilities P(X > U)

and P(X < L). Therefore, we intend to obtain estimators for p and ¢ by solving

U—-p

o

P(X <U) = ®(

)=1—ns/n

L —

g

P(X < L) = d(—) = ny/n (8)

where ®(-) denotes the cumulative normal distribution function.
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Let ¢; and ¢y denote the (1 —ns/n) and n3/n quantiles of the standard normal

distribution. Then (8) can be rewritten as

U=up+qo
L =p+ qo (9)
By solving (9), we have:
UL fi=(U—q6). (10)
qr — 42

Based on the estimators (10), we ¢an generate ns data greater than U and ng
data less than L from the normal distribution N (&, c;?). Then based on the new
ny 4+ n3 data and the n; uncensored data, we can derive the TIs based on (5) and
(7). If the sample size n = ny + ny 4 mng islarge, we can directly use the n data.
If the sample size n = n; + ny +ng is-not large; we can generate more data based
from the normal distribution N (fi, Of2) to derive TIs. The approach is summarized
as the following procedure.

Procedure 1: constructing TIs for a normal distribution with cen-
sored data

For a data following a normal distribution N(u,0?) with a right censored time
U and a left censored time L, the steps of deriving TTs are listed below.

Step 1. Calculate the estimators (10) of (u,0).
Step 2. If the sample size n of the data is large, generate n, data greater than the
upper censored time U and ng data less than lower censored time L respectively

7



from the normal distribution N(fi, &) to replace the ny + n3 censored data. If the
sample size n of the data is small, generate a sample with a larger sample size from
the normal distribution N(f, ).

Step 3. Base on the ny+ns3 data obtained from Step 2 and the n; uncensored data
to derive tolerance interval (5) and distribution-free tolerance interval(7) when the
sample size n is large. Or base on the generated data with a larger sample size to

derive tolerance intervals.

3.2 Censored rate approach for general distributions

For a distribution with a density funetion or probability function f(z|f), we
propose a general procedure based on the censored rate estimation to estimate the
unknown parameters, where-f is a vector of unknown parameters. Similarly as
for the normal distribution, we use ns/n, and 73/n to estimate Pp(X > U) and
Py(X < L). Since we expect that the probabilitics P(X > U|0) and P(X < L|0)
are close to ny/n, and ng/n asymptotically. Thus, for an estimator é, we propose

an error function
e(d) = (P(X < LIf) — =)+ (P(X > U|h) — =)’ (11)

to evaluate the estimator §. An estimator with a smaller error function value is
better than an estimator with a larger error function value.

The method we propose is first to use the n; uncensored data to derive a
maximum likelihood estimator of 6, say 6. Then the second step is to generate

data based on the () estimator. Then we calculate the maximum likelihood



estimator based on the new generate data, say 6@ . Then we repeat the process
to derive é(i),i = 3,...,m, where m can be chosen as 100. Then we calculate
e(AD),i =1,...,m. Under the error function (11), the @) with the smallest (6®)
is regarded as the desired estimator. The steps of deriving TIs with censored data
for a distribution is give in the following procedure.

Procedure 2: constructing tolerance interval for general distributions
with censored data

For data following a distribution with a density function or a probability func-
tion f(z|#) with a right censored time U and a left censored time L, the steps of
deriving T1s are listed below.
Step 1. Use n; uncensored ‘data to derive the maximum likelihood estimators of
0, say 0 and then calculate (A1) for the maximun likelihood estimator.
Step 2. Generate ny and ng«data which are greater than U and less than L
respectively based on the density or probability function f(z, é(i)).
Step 3. Calculate the maximum likelihood estimator of 8, say é(iﬂ), based on the
ny + ny + n3 data and calculate (90 D).
Step 4. Repeat Steps 2 and 3 k times to obtain é(”l),i =1,...,k
Step 5. Find the §@ with the smallest £(§®) value among the (k+1) (6®) values.
Step 6. Generate data based on the # value derived in Step 5. And base on these

generated data to construct tolerance intervals.



4 Simulation

In this section, we conduct a simulation study to evaluate the TIs derived by the
procedures presented in Section 3. We use the f—expection criterion to evaluate
a TL. That is, we evaluate the performance of a tolerance interval (L(X),U (X))

by its expected coverage proportion, which is defined to be
eo(L(X),U(X)) = Ep(F(U(X)) — F(L(X))). (12)

It is worth noting that we use the f—expectation criterion to evaluate TIs
instead of using the f—content criterion, which is to evaluate the performance
of TIs by calculating the coverage probability rg(L(X),U(X)) = Py(F(U(X)) —
F(L(X)) > /). The f—content criterion is-stricter than 5—expectation criterion
because 79(L(X),U(X)) > L— o implies eg(L(X),U(X)) > fif a < 1/2.

In this simulation study, we use the normal distribution and the gamma dis-
tribution as examples to show the performance of the proposed methods. First,
the coverage probabilities of TTs without censoring case are calculated for different
sample sizes. Then we generate data and censor the data greater than a upper cen-
sored time U and less than a lower censored time L. By applying Procedures 1
and 2 to the uncensored data to derive TIs, we calculate the coverage probabilities

of 0.9-content, 0.95 level TIs for different censored rates.

4.1 Normal Distribution

Table 1 presents the coverage proportions of TIs for the case without censored data
and the cases for different censored rates for the normal distribution.
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Table 1 shows the expected coverage probability with different censored rates:

Table 1: Coverage proportions of 0.9 content, level 1 — a = 0.95 TIs (5) and (7)
for the standard normal distribution N (0, 1) for different censored rate s

Sample size n 20 100 500 1000
Uncensored T1 0.9426848 0.9341925 0.9179708 0.9115069
(L,U) = (—14,1),s = 0.239

TI (5) 0.947882 0.93905 0.916313  0.911379
Distribution-free TT (7) 0.956301  0.954294  0.919415  0.914434
(L,U) = (=0.6,1), s = 0.433

TI (5) 0.942749  0.929939  0.915095  0.910275
Distribution-free TI (7) 0.955512  0.945512 0.91995 0.913309
(L,U) = (~0.6,0.6), s = 0.548

TI (5) 0.939381 0.93231 0.914093  0.914511
Distribution-free TT (7) 0.953178  0.949264  0.920145  0.917852
(L,U) = (—0.2,0.6), s = 0.695

TI (5) 0.937867  0.938966 0.907528  0.911114
Distribution-free TT (7) 0.95215 0.952404 0913157  0.913473
(L,U) = (0.2,1), s = 0.737

TT (5) 0:946476 _0.929956  0.917268  0.910407
Distribution-free TT (7) 0:956862 © ©0.942909  0.921643  0.913668

11
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Figure 1: N(0,1) coverage proportionsof T1/(5) for sample size n=100 with different
censored rate (solid line) and coverage proportions with uncensored case (dashed
line)
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Figure 2: N(0,1) coverage proportions of TI (5) for sample size n=500 with different
censored rate (solid line) and coverage proportions with uncensored case (dashed
line)
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Table 1 shows the coverage proportions of T1s are always greater than the setted
[ value 0.9. The coverage proportions tend to the setted 5 — value 0.9 when the
sample size increases. To achieve a better result for the small sample size case, we
generate more data from the distribution based on the estimators (j, §) and then
based on the data to calculate TTs.

Table 2 shows the coverage proportion with different censored rates using the

generated 1000 data:

Table 2: Coverage proportions by regenerated 1000 data of 0.9 content, level 1—a =
0.95 TIs (5) and (7) for the standard normal distribution N(0,1) for different
censored rate s

Sample size n 50 100 500 1000
Uncensored T1 0.9426848- 0.9341925 0.9179708 0.9115069
(L,U) =(-1.4,1),s =0.239

TT (5) 0.901595 « 0.901327  0.91058  0.911992
Distribution-free TT (7) 0.905144 0.904295 0.912937  0.914608
(L,U)=(-0.6,1),s =0.433

TI (5) 0.889236-0.906238  0.912777  0.910127
Distribution-free TI (7) 0.892327  0.90933  0.916351  0.913837
(L,U) =(-0.6,0.6),s = 0.548

TI (5) 0.898635  0.903914  0.91148  0.911942
Distribution-free TT (7) 0.901709  0.906403  0.914477  0.915684
(L,U) =(-0.2,0.6),s = 0.695

TI (5) 0.895989 0.9002 0.907408  0.911784
Distribution-free TT (7) 0.899081  0.903822  0.911118  0.914475
(L,U)=(0.2,1),s =0.737

TI (5) 0.880731  0.894976  0.911529  0.910671
Distribution-free TT (7) 0.883636  0.89777  0.914798  0.91385

13
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Figure 3: N(0,1) coverage proportions by regenerated 1000 data of TI (5) for sample
size n=100 with different censored rate(solid line)rand coverage proportions with
uncensored case (dashed line)
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Figure 4: N(0,1) coverage proportions by regenerated 1000 data of TI(5) for sample
size n=500 with different censored rate(solid line) and coverage proportions with
uncensored case (dashed line)
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From Tables 1-2, it reveals that the sample size n increases, the coverage
proportions will much close to 0.9. It means that sample size n increases, then the
accuracy of tolerance interval will increase too. For small sample size situation.
from Table 2 result, we can use regenerate data method to increase accuracy.

Figures 1-2 show that when the censored rate increases, coverage proportion is
still close to uncensored situation. And coverage proportion are higher than 0.9
in Figures 1-4. It reveals that the normal method is a good way to construct the

tolerance interval for normal distribution.

4.2 Gamma distribution simulation

Then we consider the gammadistribution case. We generate data form the gamma
distribution G(4,0.05) under different censored times/ and U, and then adopt
Procedure 2 with £ = 100 _to generate data , a ‘and A. The performance of

0.9-content, 0.95 level T1I and distribution-free T1 (7) are given in Tables 3 and 4.
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Table 3: Coverage proportions of 0.9 content, level 1 —a = 0.95 TIs (6) and (7)
for the gamma distribution G(4,0.05) for different censored rate s

sample size n 50 100 500 1000
Uncensored T1 0.9402119 0.9357238 0.916368 0.9105909
(L,U) = (10,110), s = 0.203

TI (6) 0.947519  0.934563 0.918274 0.911681
Distribution-free T1I (7) 0.958208 © :0.947696 0.923222 0.914777
(L,U) = (20,100), s = 0.284

TI (6) 0.942466 - 0.937306 0.916717 0.910158
Distribution-free TI (7) 0.948382  0.949671- 0.921288 0.912783
(L,U) = (30,90), s = 0.408

TI (6) 0.939538 «0.93021  0.917118 0.912648
Distribution-free TT (7) 0.947022 0946774 0.922243 0.915167
(L,U) = (35,85),s = 0.487

TI (6) 0.949929  0.934746  0.91729  0.911581
Distribution-free TT (7) 0.961445  0.948354 0.922517 0.915089
(L,U) = (40,80),s = 0.576

TT (6) 0.942529  0.935224 0.916078 0.910171
Distribution-free TT (7) 0.953255  0.949475 0.920472 0.912968
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Figure 5: G(4,0.05) coverage proportions of /T1 (6) for sample size n=100 with
different censored rate (solid line) and coverage proportions with uncensored case
(dashed line)
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Figure 6: G(4,0.05) coverage proportions of TI (6) for sample size n=500 with
different censored rate (solid line) and coverage proportions with uncensored case
(dashed line)
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Table 4: Coverage proportions by regenerate 1000 data of 0.9 content, level 1 — «
TIs (6) and (7) for the gamma distribution G(4,0.05) for different censored rate s

sample size n 50 100 500 1000
Uncensored T1 0.9402119 0.9357238 0.916368 0.9105909
(L,U) = (10,110), s = 0.203

TI (6) 0.896458  0.907104 0.911554 0.911693
Distribution-free TT (7) 0.899885 1 +0.911698 0.914112  0.914507
(L,U) = (20,100), s = 0.284

TI (6) 0:904749 - 0.914296 0.908947 0.911292
Distribution-free TT (7) 0.907736  0.916863- 0.911582 0.915556
(L,U) = (30,90),s = 0.408

TT (6) 0.902437-0.904648 0.911802 0.912217
Distribution-free TT (7) 0:905624  0:908264 0.915571 0.916125
(L,U) = (35,85),s = 0.487

TI (6) 0.903451  0.902536 0.908789 0.912732
Distribution-free T1I (7) 0.906411  0.905598 0.912366  0.91565
(L,U) = (40,80),s = 0.576

TI (6) 0.887841  0.909547 0.914453 0.912056
Distribution-free TI (7) 0.892355  0.912906 0.916733  0.915406
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Figure 7: G(4,0.05) coverage proportions by regenerated 1000 data of TI (6) for
sample size n=100 with different censored rate(solid line) and coverage proportions
with uncensored case (dashed. line)
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Figure 8: G(4,0.05) coverage proportions by regenerated 1000 data of TI (6) for
sample size n=500 with different censored rate(solid line) and coverage proportions
with uncensored case (dashed line)
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From Tables 3-4, it reveals that the coverage proportions of the tolerance inter-
val and distribution-free tolerance interval for the gamma distribution are higher
than 0.9. When the sample size increases, the coverage proportion tend to be close
to 0.9. As for small sample size situation, we can adopt Procedure 2 to generate
more data to improve the estimation.

From Figures 5-8, it reveals that when the censored rate increases, coverage
proportion is more far away from the coverage proportions with uncensored rate
case. But it still higher than 0.9. It reveals that the general approach method is a
good way to construct the tolerance interval for continuous distributions.

If we increase sample size n and iteration time k, the general approach method is
more accurate. However, if the iteration time k'is too large, it is time consumption.
So choose the suitable iteration times (k = 100) can make the coverage more

accuracy with shorter simulation time.
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5 A real data example

A data set which record the ages at first stroke of 1205 patients from a hospital in
Taiwan is used to illustrate the methods. The data is given in the Appendix. Figure
9 shows an approximately density function fitting the 1205 data. The sample mean
and standard deviation of the 1205 data are 68.36 and 13.07 respectively. Since
it is not symmetric curve and is skewed to the right, we expect it is not a normal
distribution. To obtain a better result, we consider using the generalized extreme
value distribution to fit the data (Embrechts, ppelberg, Mikosch 1997, Leadbetter,
Lindgren, Rootzen 1983, Resnick 1987 and Stuart 2001), and use Procedure 2 to

derive TIs.

Density
1 1 1 1 1

0.000 0.005 0.010 0.015 0.020 0.025 0.030
I

0 20 40 60 80 100

age

Figure 9: stroke data

The generalized extreme value distribution has the density function :

fim o) = [+ D ep-n e (3)

o o
for 1+ &(x — p)/o > 0, where p is a location parameter with —oco < u < 00 , o
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is a scale parameter with ¢ > 0 and ¢ is a shape parameter with —oo < & < o0.
Figures 10 and 11 are two density functions with respect to different parameter

values.

Density
0.2 0.3 0.4
1 1 1

0.1
L

Figure 10: The density function of the generalized extreme value distribution with
pw=0,0=1£6=05

0.3

Density
0.2
1

0.1

0.0
L

Figure 11: The density function of the generalized extreme value distribution with
p=0,0=1&6=-0.5
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Table 5: Coverage proportions for TI (5), distribution-free TT (7) based on the
normal distribution and distribution free TI based on the GEV distribution for
the stroke data

True T.I (43.74,86.38)

Censored time (L,U) (55,95) (60,90) (65,85)
Censored rate 0.171784 0.273858 0.418257
Normal T.I (5) (48.09,89.52) (49.01,89.15) (51.59,88.53)
Coverage proportions 0.904564 0.892116 0.860580
Distribution-free

Normal T.I (7) (47.58,86.87) (48.16,86.87) (51.44,88.30)
Coverage proportions 0.882157 0.878838 0.861410
Distribution-free

GEV T.I (7) (41.73,86.87) (40.50,86.87) (43.12,86.22)
Coverage proportions 0.921991 0.926971 0.903734
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Figure 12: Coverage proportions for stroke of TI (5)(solid line), distribution-free
TI (7)(upper dashed line), and GEV distribution-free TI (lower dashed line)

From Table 5 and Figure 12, it -reveals that the coverage proportion of GEV
distribution-free tolerance interval is much ¢close to 0.9 than tolerance interval and
distribution-free tolerance interval based on the normal distribution. And when
censored rate increases, the bias of coverage-proportion of three tolerance interval
increases. The GEV distribution fits the data better than the normal distribution.
The reason may be that the data does not follow normal distribution, but we think
the uncensored data follow normal distribution.

However, when the censored rate for data increases, the bias of coverage propor-
tion increases. Then using normal method to construct tolerance interval is better
than GEV method in this example. Therefore, if the censored rate is too large,

using normal distribution method will better than GEV distribution method.
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Table 6: Real data for the 1205 ages at first stoke

46.74
61.33
49.75
36.47
74.42
59.89
73.04
86
75.36
40.15
88.12
77.57
64.9
78.51
87.08
86.95
86.75
85.33
64.62
52.96
31.16
78.56
86.58
46.41
79.71
81.22
63.19
53.13
49.48
41.43
67.09
83.72
55.97
42.58
76.34
67.52
66.3
75.43
60.65

44.32
61.79
82.76
69.11
51.56
74.88
82.78
74.58
54.92
80.67
61.58
73.8
42.5
79.87
S7.73
75.3
67.45
91.42
62.33
51.74
72.05
66.19
70.34
68.9
84.57
76.5
56.21
85.43
50.02
61.03
58.33
76.87
66.31
82.74
65.21
60.43
69.19
68.32
64.45

75.75
75.71
81.97
43.74
78.07
68.32
84.23
71.53
68.22
85.76
79.06
82.82
44.775
64.85
75.49
93.99
68.08
77.25
76.86
69.95
61.81
88.93
71.2
75.59
78.23
72.3
64.56
86.39
77.43
68.57
79.82
83.92
49.24
57.2
61.55
69.4
68.1
68.47
72.66

78.73
76.86
78.47
47.93
81.36
79.98
71.59
68.27
81.97
73.49
61.09
66.05
74.5
86.68
65.81
65
78.14
68.27
85.94
7479
65.96
83.47
83.28
75.65
81.26
76.2
65.54
63.95
39.18
88.31
35.36
47.04
72.93
72.36
53.9
77.84
64.81
62.36
45.62

71.64
88.65
78.52
64.81
76.67
80.25
86.38
50.95
69.88
51.96
73.7
51.64
79.67
83.65
88.26
66.37
42.95
56.86
77.1
70.8
77.96
76.73
64.47
63.83
51.74
63.85
80.44
51.11
46.98
39.19
58.22
71.03
65.92
59.72
55.9
63.81
84.03
67.37
57.72

44 .48
66.26
97.07
67.13
76.13
64.84
49.25
69.83
57.98
79.96
80.7
07.11
70.81
52.7
53.64
46.64
74.21
64.66
995.65
63.09
75.33
74.07
7793
81.38
58.92
79.52
61.28
73.08
52.65
73.52
61.98
86.31
70T
72.1
56.74
75.2
77.35
78.02
74.31

77.97
78.2
69.8

54.32
44.1

76.48

61.91

61.36
55.9

65.33

80.89

56.14

81.51

62.69

74.12

40.87

43.38

83.79

72.83

39.47

79.06

63.96
58.3

75.94

81.83

53.34

76.89
56.3

44.05
78.6

84.85

95.65

71.04

78.79

79.59

66.45

81.51

27.62

67.26

47.23
86.05
66.81
93.66
23.7
52.87
79.88
87.5
54.92
67.75
48.25
75.76
48.78
32.33
80.56
60.18
75.3
70.7
57.04
73.1
41.23
66.39
48.38
67.72
56.78
73.26
61.01
66.01
44.47
63.23
93.98
58.2
69.19
67.99
78.65
67.47
58.71
82.3
88.7

69.72
56.19
51.67
73.75
70.5
67.75
77.12
90.81
67.95
73.59
55.93
77.82
53.11
70.67
60.17
68.75
85.92
2.7
69.01
68
67.82
75.32
5
89.52
76.35
68.22
107.07
80.07
46.04
65.05
64.79
81.71
95.14
66.65
83.81
55.12
68.34
78.67
58.31

85.08
76.46
73.93
55.37
66.22
64.17
77.33
84.58
62.19
76
56.88
74.93
70.11
65.32
76.83
75.4
75.29
81.76
85.63
66.98
71.09
83.31
47.46
78.59
71.87
76.61
78.38
84.44
80.54
67.2
82.18
79.22
63.22
66.42
61.22
74.22
59.44
83.52
55.47
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80.37
67.07
78.61
56.87
78.39
59.12
57.76
72.22
95.5
70.04
54.03
75.45
60.42
38.15
75.54
68.69
64.04
60.16
49.16
82.43
74.72
38.76
63.67
65.28
78.42
76.42
78.04
55.61
70.45
54.14
75.45
65.52
79.39
82.54
79.92
79.46
68.08
76.88
73.8
71.93

67.28
76.38
76.15
71.98
71.59
69.19
66.56
65.73
78.37
76.98
85.63
79.81
80.46
81.32
71.38
64.86
72.46
34.64
71.34
37.46
74.19
56.96
58.34
50.87
67.3
76.67
48.92
76.81
77.14
82.35
67.42
64.15
46.02
91.76
73.95
67.54
78.85
57.58
86.56
55.56

51.17
75.37
75.81
66.77
61.53
59.99
48.24
48.54
78.44
88.77
70.32
81.87
65.23
82.83
68.15
64.42
88.58
72.3
67.08
78.41
66.5
66.5
78.53
76.25
73.08
69.37
58.92
86.95
80.72
72.96
55.11
70.99
49.67
66.21
57.03
52.12
76.04
36.99
80.04
76.42

80.51
56.81
77.18
77.16
73.28
76.98
79.66
65.87
63.21
41.53
70.72
59.56
69.76
81.02
72.43
39.1
82.43
54.13
39:68
69.36
55.95
59.44
68.65
73.4
84.31
71.08
73.78
62.9
66.64
42.79
68.54
95
73.2
82.02
72.91
75.36
80.51
86.13
67.15
77.72

77.19
76.45
71.64
72.92
70.7
68.67
79.1
65.71
72.18
60.34
78.54
68.09
53.41
80.17
68.24
73
98.95
72.63
71.84
82.16
66.32
71.98
89.09
77.53
56.58
53.15
62.78
46.5
62.41
64.94
64.65
58.66
66.98
75.2
61.98
69.78
74.93
87.43
78.21
80.32

70.56
68.85
88.07
80.84
42.13
70.94
73.64
64.97
79.16
76.27
75.64
59.77
54.1
55.91
76.86
46.83
83.79
68.62
72.05
51.56
82:25
7427
12.27
74.03
70.04
76.32
69.55
75.71
80.97
39.04
53.08
57.88
61.05
83
61.5
80.86
58.32
73.97
39.82
80.24

67.61
83.32
88.08
65.47
68.52
71.61
56.82
82.54
86.62
53.41
77.44
73.71
60.98
64.85
67.09
75.45
80.58
80.22
5.7
85.78
48.53
27
68:85
5141
64.84
57.71
51.48
70.82
73.8
75.83
72.38
63.62
25.74
76.73
93.75
85.57
64.04
89
77.14
84.29

53.45
84.13
89.96
63.87
71.68
79.21
84.03
72.8
76.68
53.78
31.86
56.57
80.87
72.75
86.94
77.47
79.93
44.65
54.12
73.95
68.5
91.93
43.72
71.7
81.55
43.07
64.82
76.13
80.12
74.47
74.59
87.07
55.68
81.44
73.84
49.92
82.62
75.79
82.8
71.45

71.54
79.46
76.82
81.44
73.79
74.99
87.4
54.54
61.53
77.58
72.02
07.44
79.61
78.35
72.17
81.41
72.03
79.48
65.24
62.58
80.08
71.31
69.05
93.84
76.22
99.18
56.33
68.82
55.13
62.37
79.4
71.64
76.19
79.94
83.32
54.06
74.35
79.15
79.47
78.54

84.44
56.22
65.31
82.78
70.93
52.82
76.11
75.91
81.91
49.95
62.12
62.63
65.32
83.15
58.5
73.11
74.63
77.72
68.62
56.42
72.47
62.83
48.38
53.64
70.54
76.02
27.13
45.25
58.73
61.98
96.38
67.42
79.07
78.42
63.72
80.81
78.89
89.08
52.61
52.17
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71.36
42 .88
72.72
35.33
67.2
91.99
46.02
70.01
46.55
76.21
66.3
33.17
93.5
84.9
70.54
38.38
43.65
51.7
83.23
80.57
66.53
68.07
61.65
80.98
86.05
73.45
68.62
72.89
69.91
65.49
57.15
73.26
80.18
75.06
53.66
62.89
73.55
61.85
68.57
77.79
43.59
57.96

37.14
83.69
75.51
86.39
53.41
65.28
65.07
90.02
78.6
82.39
79.44
51.99
83.65
70.97
67.38
47.33
69.65
83.68
59.01
70.58
50.46
48.43
64.61
76.75
54.64
71
69.76
81.42
71.18
56.06
82.19
92.8
56.56
56.85
76.41
56.01
75.39
85.22
70.85
76.97
81.52
70.39

47.79
82.56
75.18
44.63
85.28
54.55
75.06
65.36
23.8
57.33
54.04
81.1
68.49
71.38
79.33
82.03
76.45
71.57
67.56
56.95
61.96
78.63
04.14
40.89
83.77
41.98
71.49
08.24
86.67
74.81
71.49
59.42
60.17
76.12
85.86
84.92
54.6
84.49
53.04
55.05
61.19
49.95

45.17
78.38
84.33
71.32
81.17
54.09
76.8
72.88
67.22
50.82
69.3
50.21
66.45
54.69
63.68
68.52
75.97
50.82
69.48
84.32
39.75
o4.73
67.71
70.09
67.84
72.87
79.31
71.5
78.14
71.48
75.78
72.91
57.34
80.65
81.07
54.76
40.85
70.26
67.56
80.62
52.63
80.41

57.82
86.88
67.75
78.58
85.65
66.56
88.22
51.6
61.06
57.89
32.32
69.1
45.72
58.73
47.79
46.38
65.91
77.84
83.61
51.4
80.69
38.15
37.63
33.36
384.93
34.79
42.15
72.17
77.02
43.68
74.13
S7.72
74.05
56.03
66.48
57.99
83.95
77.79
56.89
40.18
65.32
71.61

84.32
80.57
80.76
65.78
73.71
86.22
88.53
72.13
39.3
73.99
88.15
64.59
73.28
44.9
79.9
43.33
47.85
69.73
70.43
92.25
77.8
49.2
66.47
81.27
54.19
45.16
81.78
76.17
76.56
65.39
72
43.29
86.89
60.48
76.94
48.75
69.56
60.89
88.19
67.72
83.37

58.83
87.09
56.13
63.27
69.58
73.86
49.16
70.36
73.76
49.68
55.94
108.22
72.02
60.88
72.9
69.25
50.01
100.36
7448
70.97
1295
99.47
77.99
60.48
8944
85.88
60.69
70.76
69.56
76.33
65.47
71.65
75.3
61.67
77.01
79.55
61.19
86.25
69.48
74.48
58.28

78.99
86.01
65.25
70.45
72.25
77.22
80.12
82.62
70.91
72.65
56.32
59.31
75.67
62.57
54.21
54.75
48.88
71.9
77.14
81.69
55.44
52.88
78.43
80.36
74.75
71.28
52.67
73.43
59.61
78.97
93.92
58.14
81.84
7
69.75
87.57
50.35
42.29
81.38
91.24
94.57

2.7
62.89
74.25

61.8
60.02
69.79
84.56
52.43
56.96
72.71
84.49
76.35
69.44
95.35
51.86

53.4

60.2
48.62
49.27
59.42
74.53
65.92

62
69.65
38.22
73.16
64.52
73.02
88.16
85.32
69.16
65.72
84.97
77.12
37.67
60.18
55.33
65.98
78.07
64.22
67.82

82.86
77.05
81.34
66.35
99.79
58.97
63.24
71.1
73.65
47.13
76.36
82.18
64.75
67.26
82.21
81.62
68.34
55.75
81.27
77.98
54.21
61.48
67.75
89.13
78
48.7
65.87
76.59
70.94
74.48
66
61.74
48.37
35.61
76.02
73.45
50.26
78.8
78.79
68.63
66.22

30



Table 7: The ¢,y for two-sided tolerance interval described by a normal distribu-
tion

l1—a=0.95 1—a=0.99
p p
n  0.90 0.95 0.99 0.90 0.95 0.99
4 537 6.34 8227942 11.12 14.41
5 4.29 5.08 6.60- -6.65 7.87 10.22
6 3.73 4.42 9.76.  5.38 6.37 8.29
7 3.39 4.02 5.24 4.66 5.52 7.19
8 3.16 3.79 4.89° 4.19 4.97 6.48
9 299 3.59 4.63  3.86 4.58 2.98
10 2.86 3.39 4.44 ° 3.62 4.29 5.61
12 2.67 3.17 4.16 3.28 3.90 5.10
15 2.49 2.96 3:89 - 297 3.53 4.62
20 2.32 2.76 3.62  2.68 3.18 4.17
25 222 2.64 3.46 2.51 2.98 3.91
30 2.15 2.55 3.35 2.39 2.85 3.74
40 2.06 2.45 3.22 225 2.68 3.52
60 1.96 2.34 3.07 211 2.51 3.30
oo 1.64 1.96 2.58 1.64 1.96 2.58
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Table 8: The number v for two-sided distribution-free tolerance interval contains
at least 100p% of the Sampled Population with 100(1 — «)% Confidence

p=0.90 p=0.95 p=0.99
1—a 1l—a l—«
n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
10 1 1 1 1 1 1 1 1 1
0.6513 0.6513 0.6513 0.4013 0.4013 0.4013 0.0956 0.0956  0.0956
15 1 1 1 1 1 1 1 1 1
0.7941 0.7941 0.7941 0.5367 0.5367 0.5367 0.1399 0.1399 0.1399
20 1 1 1 1 1 1 1 1 1
0.8784 0.8784 0.8784 0.6415 0.6415 0.6415 0.1821 0.1821 0.1821
25 1 1 1 1 1 1 1 1 1
0.9282 0.9282 0.9282 0.7226 0.7226 0.7226 0.2222 0.2222 0.2222
30 1 1 1 1 1 1 1 1 1
0.9576 0.9576  0.9576. 0.7854 0.7854 0.7854 0.2603 0.2603  0.2603
40 2 1 1 1 1 1 1 1 1
0.9195 0.9852 0.9852 -0.8715 ~ 0.8715 ~ 0.8715 0.3310 0.3310 0.3310
50 2 2 1 1 1 1 1 1 1
0.9662 0.9662 0.9948 0.9231 « 0.9231 ~0.9231 0.3950 0.3950  0.3950
60 3 2 1 1 1 1 1 1 1
0.9470 0.9862 0.9982 ) 0.9539 - 0.9539 . 0.9539 0.4528 0.4528  0.4528
80 5 4 2 2 1 1 1 1 1
0.9120 0.9647 0.9978 1 0:.9139 09835 0.9836 0.5525 0.5525 0.5525
100 6 5 4 2 2 1 1 1 1
0.9424 0.9763 0.9922 0.9629 0.9629 0.9941 0.6340 0.6340 0.6340
200 15 13 11 6 5 4 1 1 1
0.9071  0.9680 0.9919 0.9377 09736 0.9910 0.8660 0.8660  0.8660
300 23 22 19 10 9 7 1 1 1
0.9301 0.9542 0.9903 0.9350 0.9659 0.9934 0.9510 0.9510 0.9510
400 32 30 27 15 13 11 2 1 1
0.9254 0.9643 0.9908 0.9010 0.9645 0.9906 0.9095 0.9820  0.9820
500 41 39 35 19 17 14 2 2 1
0.9249 0.9607 0.9921 0.9135 0.9657 0.9945 0.9602 0.9602 0.9934
600 51 48 44 23 21 18 3 2 1
0.9043 0.9591 0.9901 0.9247 0.9680 0.9938 0.9389 0.9830 0.9976
800 69 66 61 32 30 26 5 4 2
0.9146 0.9593 0.9912 0.9199 0.9606 0.9935 0.9015 0.9583 0.9971
1000 88 85 79 41 39 35 6 5 3

0.9801 09515 0.9901 0.9194 0.966  0.9907 0.9339 0.9713 0.9973
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