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Statistical Inference based on

Interval Censored Data

Student : Hsiang-Fu Huang Advisor : Dr. Wei-Jing Wang

Institute of Statistics
National Chiao Tung University
Hsinchu, Taiwan

Abstract

We review inference methods for analyzing incomplete data with
focus on interval_censored data. For nonparametric analysis, two
estimation approaches are examined. Self-consistency can be viewed
as an extension of the. method of ‘moment by imputing incomplete
information by its expected value. The other is the nonparametric
likelihood estimation. We ‘also introduce three popular regression
models, namely the proportional hazards model, accelerated failure
time model, and proportional odds model. These models contain
unknown nuisance functions and different smoothing techniques are
employed to handle them in the estimation procedure. The thesis
focuses on point estimation so that second ordered properties are not
investigated.
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Chapter 1. Introduction
1.1 Motivation

In survival analysis we are interested in studying the behavior of the time to the
event of interest, denoted as T, which often cannot be completely observed.
Textbooks on survival analysis focus on right censored data in which many elegant
results have been derived. In the thesis, we consider interval censored data. Although
such data are commonly seen in practical applications, related statistical methods are
not formally taught in the classroom. The lack of an overall review at the introductory
level provides the motivation of the thesis.

To enhance a thorough understanding about the methodology, we will still review
related materials for complete and right censored data.and address how the basic ideas
are modified when the data become interval censored. We will consider two types of
applications. One is nonparametric analysis of the survival function Pr(T >t). The
other is regression analysis. Specifically let Z be the covariate vector which
provides individual information..A regression model imposes additional assumptions
on how Z affects T. We will review statistical methods for the proportional
hazards (PH) model, the accelerated failure time (AFT) model and the proportional
odds model when T is subject to interval censoring.

1.2 Different types of incomplete data
It is worthy to introduce different types of incomplete data and compare their
differences.
(1). Right censored data
Observed variables can be expressed as (X,0) where X =TAC and
Oo=I1(T<C).Thuswhen 6=1, X =T and X<C;when 6=0, X =C and
X <T (the true failure time T is located in the right-hand side of the observed time

X'). Right censoring occurs due to subject’s withdrawal or the end-of-study effect.
1



Most literature in survival analysis consider right censored data.
(2) Left censored data:

We use the same notations to denote observed variables which have different
definitions. One observes (X,d5) where X =TvC and &=I1(T >C). When
0=1, X=T and X>C; when 6=0, X=C and X >T (the true failure
time T is located in the left-hand side of the observed time X ). Here is an example
of left censoring. Denote T as the time until first marijuana use among high school
boys in California. If the event had already occurred prior to the recruitment of the

study, the subject is said to be left censored.

(3) Doubly censored data
Doubly censored data include three types of observations, namely “observed”,
“right censored” and “left censored”ones..Let C_ . be theright censoring variable and

C, be the left censoring variable. It is assumed that C, <C, . Observed variables are

(X,0) where X =max(min(C,,T),C)and d=1 if X=T; 6=0 if X=C;

and o=-1if X=C,.
(4) Interval censored data

The observation is a random interval (L,R] such that T falls in the interval
but its exact value is unknown unless L =R. Such data can include right censoring if
R =0 and left censoring if L=0. Interval censored are commonly seen in practice.
For example a subject is under study has a regular appointment schedule (say every
three months) to the hospital. The left endpoint L refers to the last follow-up time
that the event has not occurred and the right endpoint R refers to the first follow-up

time that the event is detected.



1.3 Parametric analysis for interval censored data

The thesis focuses on nonparametric and semi-parametric methods. However
these methods are still motivated by the parametric approach. Here we briefly
summarize the parametric analysis for interval censored data denoted as
{(L,,R](i=1..,n)}. Assume that the distribution function of T is specified as
F,(-). The likelihood function and the log-likelihood function can be written as

LO) =T TIF,(R) - F.(L)] (1.
and
10gL(8) = Y log{F, (R) - F, (L)} 12
The resulting score function is
_ dlogL(6) - H,(R) — (L)
W00 S ERRIZR L) 2

By solving S(#)=0, we-obtain-the maximum likelihood estimator of &. Our

analysis implies that parametric inference Is straightforward for interval censored data.
In fact, difficulties arise when the functional form of F(-). is completely unspecified

as in the nonparametric setting or partially specified as in the semi-parametric setting.

1.4 Organization of the Thesis

Chapter 2 considers non-parametric inference and Chapter 3 to Chapter 5 discuss
semi-parametric regression models, namely the proportional hazards (PH) model, the
accelerated failure time (AFT) model and the proportional odds (PO) model
respectively. Chapter 6 gives a brief summary of the thesis.



Chapter 2. Inference based on Nonparametric Analysis

The major objective is to estimate the survival function S(t)=Pr(T >t)
without specifying the parametric distribution. We will review nonparametric methods
based on several data structures, from the simplest to the complicated data settings.
This will help us to understand the fundamental techniques more thoroughly.

2.1 Complete data

Complete data are denoted as {T, (i=1...,n)} which form a random sample of
T . Based on the fact that S(t) = E[I(T >t)] and applying the method of moment,

one can estimate it by the empirical estimator
— 1
S(t):—ZI(I'i >1).
L)

Although the method of moment provides a simple solution, it does not guarantee any
optimality property. Formally the-nonparametric likelihood estimator should be
pursued as a better option.-The first step is'to re-write the likelihood function based on

grid points and the probabilities at these points are the parameters to be estimated.

Suppose that there are only M distinct-observed values denoted as t,, <...<t,,. Let

dj = Z I(T, :t(j)) be the number of observations at t and p; = S(t(j)—)—S(t(j)).
i=1

The likelihood function can be written as

L=ﬁ[Pf(T =t5) = (P) " (P)™..(Py)™ - 2.0)

M
The NPMLE is the solution which maximizes L(p,,...,p,) subject to ij =1.

=1

M
Applying the theorem of Lagrange multipliers, let g(p,,..., py,) =109 L—ﬂ(z p, —1)

i=1

and set vVg(p,,...., py) =0 Hence the Lagrange equation system is given by

d. M
—L-2=0(j=1..,M)and > p,=1. (2.2
. =

]



The above equations can be solved easily and the solution is p; =d;/n for
j=1...,M and A=n.
2.2 Right censored data

For right censored data, observed data become {(X.,d) (i=1,...,n)}, where

X;=min(C,,T,) o=I(T, <C;). The survival function can be estimated by the

Kaplan-Meier estimator

A ZI(Xi:u,éizl)
SO=11{1-- ICED

u<t

The above product-limit expression:is elegant since the censoring effect is cancelled
out in estimation of the hazard function. However under other types of censoring
mechanism, estimation of.the hazards does not-provide any advantage. Instead, the
techniques of self-consistency and nonparametric MLE can be generalized to other
data structures. Now we illustrate the self-consistency algorithm for right censored

data. The self-consistency equation can.be written as

S(t) :%i[l(xi >t)+ (X, <t,8 =0) SS(()?)J
:%Zn:('(xi>t)+(1—5i)|(XiSt)Vvi)- (2.3)

i=1

Notice that for points with X, >t, the full weight 1 is assigned; for points with

X, <t and ¢, =1, zero weight is assigned; and for points with X; <t and ¢, =0,

partial weight wi=§(t) /§(Xi) is assigned. The estimator can be solved
successively and explicitly. Since S(X;)=1 for X; <ty with & =0, we have

§(t(1)) :%Zn:(l(xi >1y)) + (A=) (X S'[(1))Sﬂ(t(1)))

i=1



which allows us to solve S(t,)) and then successively for S(t;) j=2,...M.

Figure 2.1 Self-consistency for right censored data.
Weight for X;'=1; weightfor X, = S(£)/S(X,); weight for X," =0
Now we discuss the.nonparametric MLE approach for right censored data.

Define t, <...<t,,, as-distinct observed failure times and {X;,.....X; ,} as
mj

Tar T

ordered censored points in the interval [t y,t;,5)-"Also let d; :ZI(Xi =t .,0 =1)
=1

and m; = Z (X €[t),t.1)): 6 =0)) . The likelihood function can be written as
i=1

L=T][Pr(T=t,)] TIs0)- (2.

j=1
Since the survival function S(t) is an non-increasing function, we can make the
likelihood function larger when S(x;,) is replaced by S(t;,) .This suggest that we

can instead consider

=TTt -5t [se)]"



Direct maximization of L in terms of Pr(t , <T <t;) or S(t;) is not

(i)
suggested for right censored data. Alternatively L can be re-parameterized in terms

j
of hazards. Specifically we have St ) =] [[1-A(t;)] and hence
i=1

S(1.9)~S(t) = [ TR At T

It follows that

=TT T A LA D] - A"

=1 =1
M n—\&
=[102¢;,91 £2t,(6™) (2.5)
j=1
where n; :ZI(Xi >1;,) - Maximization in'terms of A(t ;) = 4, we obtain
i=1

A~

4;=d;/n; and accordingly,

. ) d-
S® = [Ta-Atg3= {3

st fst i

which is the Kaplan-Meier estimator.

()

Figure 2.2:1dea for modifying the likelihood L



2.3 Double censored data

Recall that observed data can be denoted as: {(X;,5) (i=1,....n)}, where

X;=max{min(C;,T;),C,} and & =-1 if X;=C;; o,=1if X;=T, and

r? li i

0,=0 if X, =C,.The self-consistency equation can be written as

2y 1x B _ 1 SM-S(X)
S(t) = n}_:lj (X, >t,8 =1) +1(X, >1,5, 1)—1—§(Xi)
_ o S
+I(Xist,5i—0)§(xi). (2.¢

Turnbull (1974) suggested the following steps to implement the algorithm. First,

partition the observation period: (0,t, ], ...,(tyaytw,], where t, <..<t,, are
ordered time points. Then define three-types of observations in each interval

N :Zl)l(xi et .t ] A =1),

N =Zl:|(xi e (tiytyl A=-1)

n
0) _ —
NP =2 MK et b)) 1.4 =0).
i=1
Turnbull’s idea is to combine “exact” and “left censored” observations by imputation.

Specifically for a point in (t,_,,t,,] with A=-1, the conditional probability of

fallingin (t;_,.t;] (forall k= j)is

F () - F(;y) _ S(t;y) —S{;) _
F(t(k)) 1_S(t(k)) 9

Thus the imputed value ZI(Ti € (t;.pt;]) isgiven by
i=1

(i-1°

k=m
@O — ND (-1) 5
N = N JrkZNk Gy -
=]

which is a function of data and §(.) Now the modified data become



(N® N®)(j=1,...,m) which contains “pseudo-exact” and “right censored” points.

Turnbull (1974) suggested to use them to estimate the hazard probability in the

k=m
interval (t,.t;,] by N®/Y, where Y, => N®+N denotes the number at
k=i

risk and |\~|§1) denotes the number of failure. The product-limit expression gives a

direct relationship between the survival function and the hazard probabilities:

S(t,) =] [-N® /Y3 (2.7

i<j
Note that since both N}” and YJ. are still functions of §(t(1)),..., §(t(M)), iterations
are needed which can be summarized by the following steps.

Step 1: Give initial values: S (tg)r+S(t0)

Step 2: compute : @

Step 3:0btain : S® (ty)y--. , S®(tyy)s

Step 4: repeat (2) and (3) until the pre-specified convergence criteria is reached.

@ ——

Figure 2.3 Self —consistency for double censored data

Weight for X, = S(X,)/S(t) ; weightfor X{/=Pr(f<T < X,')/F(X,.')
9



We discuss the NPMLE approach for doubly censored data. The following
result is summarized form the work of Mykland and Ren (1996). Let the
log-likelihood function of complete data be

IczznllogPT(:ti (2.¢

i1
When the failure time (T,,...,T.) is known, the NPMLE is easy to obtain as in
section 2.1. But under doubly censoring, we cannot observe all the failure time. Hence
the EM algorithm is applied. To obtain the iteration, we need to calculate
QPIR) =Y E, logP(T =11 X,,.5]

where P, is the initial distribution of T . Here we do not group the observed data as
in Turnbull(1974). Instead, we assume that the distribution of T has mass only at

each observations X, <---< X ,.-Then we discuss the following conditions.

(1) EPO [log P(T =t)]| X(i)’é‘(i) =1]=logR(T = X(i))

> P@logP(T'=X ;)
(2) EPO [|Og P(T :tl) | X(')’5(|) =2 O] b~ Xiy<X(iy

S
PO logP(T = X,)
(3) EpllogP(T =t)] X, 8 = -1 == 1-S©

where P and S is the initial probability and survival at X, respectively.

O
Hence for all distinct points w;, <w, <---<w, oftheset {X, <---<X},

n zpj(O) log P(T =X;,)
R :izzl: 16, =D)log R(T = X)) +1(5, =0) = S.©

.z P?logP(T =X ;)
+1(5,=-1)—= 1-S©

10



1(6, =0, X5 < X/1y)
Z{I(g 1) P(O)Z Si((og (j)
(s =-1, X o)
P(O)Z (0) el }Iog P =X)
I

1(5, =0, Xy < W)

S.©@

S

k=1

(S =1 X > W)
+7, RO S(O)() K }Iog P(T =w,)
i=1 i

where o, =Y 1(Xg, =W, =1), 7 =Y 1(X;=w) and R°=P°(T =w,). For
i=1 i=1
simply the exception Q(P|PF,) we define

G20 X <w) 1(8, = -1, X

X,)
p(© p© M~ )
A =a + 7B Z S.© Z S.©

| |

and
PM=w)=0q k=1..M

M
Hence Q(P|P,) can be re-expressedas Zﬂk log g, . Then the M-step is given by
k=1

M M
max A . lag-subjectto. > g, =1 (2.9)
k=1 k=1

Applying the theorem of Lagrange multiplier, the maximization is attained at

=4 /n k=1..,M.
The steps of iterations are summarized below:

step1: set G0 =1/M (k=1..,M);

step2: set G =4 /n (k=1..,M);

Step 3: repeat 1=2,3,... (Step 2) for until convergence.

11



2.4 Interval censored data

Recall that we observe {(L,R](i=1..,n)} and know that T.e(L,R].

Turnbull (1976) discussed nonparametric estimation of Pr(T >t) based on interval

censored data. The first crucial step is to construct ordered disjoint intervals in which

the probability can be estimated. To achieve this goal, the data {(L;,R;]](i=1...,n)}
are re-arranged in an ascending order and the indentify the intervals such that a

left-endpoint and a right-endpoint are adjacent to each other. Denote the disjoint

intervals as {(I;,r;] (j=1...,m)}. It can be shown that only these intervals can

receive positive mass. Note that an observation (L,R.] can occupy more than one

intervals (I;,r;] for some j«Denote the &, =H(l;,r;]<(L,R)} which indicates

IN je

whether (L, R]] overlaps.with_(l;,r,]. Denote ‘p, =F(r)—-F(l;,) as the mass in

(;,r].

The self-consistency equation for.an estimatorof p; satisfies

1 é‘ijpj 1 )
== =— W :1,...,m 2.1
g n;dlpl+...+5impm n.zll i U ) (

where w; can be viewed as the proportion contributed by (L,R] inthe estimation

of p, andhence > w,=1.

j=1
We discuss the NPMLE for interval censored data and see how it relates to the

self-consistency solution. The likelihood based on the original data can be written as
L:HF(Ri)_F G (2.1
i=1
which can be re-expressed as

12



i=1
m
where 0<p; <1 and Z P; =1. Notice that the summation in L creates
j=1
numerical difficulty in the maximization. The idea of EM is employed to solve the

problem. If the variable 1; =1(T; €(l;,r;]1) can be known, the likelihood based on

j ]
this “complete” information is given by
~5 n m l..
U=11 11w/
i=1 \_j=1

and the corresponding log-likelihood is

logL=>">"1,logp, .

i=1 j=1

m
Maximization of 109 L subject to Z P; =1"reduces to the multinomial problem.
j=1

Applying the theorem of Lagrange multiplier, maximization is attained at
n
Py =2 1;/n.
i=1

However |} is not known and the “E-step” imputes its value by

%P |
O Py + ot Oy Py

Wi (Pysees Pr) =

Consequently the “M-step” maximizes

ZZV\/ij(pl,...,pM)log pj . (2.1

i=1 j=1

13



n
Maximization is attained at P; = > Wi ( Py ,.... P,,)/N which is equivalent to the
i=1

self-consistency equation. The steps of iterations are summarized below.

step1: set P =1/m (j=1,..,m);

Step 2:  set (k) Z peb L pU ) n;

Step 3: repeat K =2,3,... (Step 2) for until convergence

: 3

Data

M~

£

ey

e R N o
$a

o
L~
~
-
—~—
[ =]
~
S -
)
~
[V

Prob 5 B

0

Figure 2.4 Construction of the mass interval censored data and the idea of self
consistency. Weight for (L,,R,] in estimating P,P,,P, are 1.R/(1-R+1-P, +0-R)

1-B,/@-B+1-P,+0-B) and 0,respectively.

A different algorithm which directly estimates the survival function was

suggested by Turnbull (1976). His idea is based on the product-limit expression of

14



S(t). The hazard probability in the interval (I;,r;] can be estimated by d,/Y,

I]p]

ZZK 'k Py

k=m
where Y; = Zd and d; = . The algorithm is given below.
—

k=m .
Step 1. set d( = ZZ Y9=>d° (j=1..m)
k=]

klk

(|)

Step 2:  set S() H{l Y(')
I<j

Step 3: repeat |1 =2,3,...  (Step 2) for until convergence.

15



Chapter 3. Inference based on Proportional Hazards Model
The proportional hazards model specifies the effect of covariate on the hazard of

T such that

ﬂz(t):IAi_rE%Pr(T e[t,t+A)|T >1,2)

=4 (t) exp(B (3.
where A,(t) is an arbitrary baseline hazard rate and f is the vector of parameter .

The survival function can be written as

t t ex T
S, (t) = exp(= A, (u)du) = exp(~ 4 (u)exp(Z A)du) =S, ()***
where S, (t)=Pr(T >t|Z). The main objective is to estimate g and usually
estimation of A,(t) is of less interest except for the purpose of prediction.

3.1 Inference under right censoring
Right censored data.. can be denoted as (X,,0,5Z,) (i=1..,n) where

X, =T, AC,, 6, =1I(T, <C)), and . Z, is.the covariate. Due to the expression of the

likelihood,
L= £ (P S2005 =T T4 0075, 05). (2.2
the likelihood function under the PH model can be rewritten as
L(8.2) =] T Ao) o0l 5)" exp(-'Ao(e)exp(Z P
Note that under the semi-parametric setting, the parametric structure of A,(t) is

unspecified.

The partial likelihood approach based on right censored data allows one to

estimate S without dealing with A,(t) . Let tay e by be the ordered observed

failure times. Let A, be the set containing the information about who fails at t,

and B; be the set containing the censoring information in [t,,t.,,) and one failure

(i)*

16



occurs at time t; . The likelihood function can be expressed in terms of the sets
{(A,,B))(j=L..,M)} such that
L=Pr(B,nANB,NA N..AB, NA,)
M
=TJPrA BYnA® D)Br@ 1A -
j=1
=T Pr(A |BYA AKX JPTPr(B, B (nAT")
=1 j=1

() _ (0 _ i
where AV =(An..nA) and B" =(B n..nB;). Notice that

//Lz(j) (t(i))dt(j)
Z izk (t(j))dt(j)

keR(t(j))
Aot exp(Z;, B)dty,
D () exp(Ze B)dt,
keR(t(j))
exp(z;,8)
D exp(zf)

kER(t(J))

PI’(AJ- | B(j),A(j_l)) _

in which A4,(t) disappears in the last equation. It can.be shown that ignoring the

second component of L still leads‘to an unbiased estimating equation. Specifically

the partial likelihood

il . . M ZT-
Lc(ﬂ)=H PA( B InAK ! ZH Zelxp(exg)ézﬂ)

which yields the score function:

] ] > en(Z A2,
_o _ kR
I AT YA

keR((j))

The estimator of  is the one which solves U(f)=0. Breslow (1975) suggested to

estimate Ao(t)zjﬂo(u)du by

17



j (X, =u g = 1)
Ayt = [ (3.
° |(X >u)exp(zZ] ﬁ)

3.2 Inference under interval censoring
Finkelstein (1986) was the first author to address the inference of proportional

hazards models for interval censored data. Observed data can be written as

(L,R,Z) (i=L1..,n). It is assumed that T, and (L,R) are independent given
Z., . The likelihood function can be written as

L= H[s s, (R)]= H[{s 37 LS, (R )}Zﬂ (3.t
where S, (t)=Pr(T >t|Z). Unlike:the case of right censoring, there is no way to
remove S,(.) from (3.5). This means thatwe need to estimate g and S,(.) jointly.
The likelihood function in.(3.5) is represented based on original observations. For the
purpose of maximization when the nuisance function “S,(.)- is involved, this function
will be expressed in terms of grid points. Figure 3.1 .shows the construction of grid

points based on an example containing.four observed.intervals (L,,R] (i=12,34).

In this example, t, <t, <---<t, are formed. In general, we let

® =@
0=ty <ty <---<ty.,, = be ordered grid points. The ith observation to the

likelihood (3.5) can be re-expressed as

M+1 M +1

ex| iT ex iT
23385, (1) = 82, (6] = 2 8,080t )™ 7 = Solt) )™ ]
j= i=
where ¢, =1 if (t,.,.t;]<=(L,R] and 0 otherwise. Accordingly the likelihood in

(3.5) can be written as

LTS a5, 5,6,
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Figure 3.1 Construction of the mass interval censored data

Note that S (.) is a function but the maximization of L will only be evaluated on
its value at the grid points, namely.S,(t;,) for j=1..,M. Since the parameters
So(t;)) for j=1..,M have natural constraint-i.e.,0<Sy(t;)<---<S;(t,,) <1, it

make the mle hard to obtain. Finkelstein (1986) suggested that one can re-parametrize

the S,(t;) by o =log[-logS,(ty,)]. It can _remove the range restriction of the

parameters Sy (t;,), but it doesn’t remove the order restriction.

Sun (2006) proposed a corrective method that can remove the nature constraint.
The following is the detail of the method. Based on the product-limit expression, one

can write

Solt;)) =H(1—AO(At(k))) :
Thus L becomes a function of g and Ay (At,),...,Ay(At,,) . Note that
Ay (At,,) €(0,1) is a conditional probability. To remove the natural constraint, we
can re-parameterize A, (At,,) by setting A,(At,,)=1-e %)
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Figure 3.2 shows that by the above transformation, —oo <, <. Thus

j
i = exp(ay)
~exp(ay) =
Solt) =] e ™" =e =
k=0

(04 b

Ag(Bgy)

Figure 3.2 The relationship between A, (Af,,) anda,

Finally, let

i
Vi :_ZeXp(ak)’
ko

for j=1..,M and o,=-wand ¢, , =o.We have obtained

n M+l

Lk:HZé‘ij{eXp[EZibﬂ xyid — ] E)Zﬁﬁe»(}ﬂ( (3.¢€

i=1 j=1

Thus the log of likelihood becomes

M+1

1= 10og > 5,{explexp(Z B) x 7, 1-explexp(Z B) 7,1}
i=1 )
Note that the unknown parameters are (3, ..., ) , all of which have no additional

constraints. The estimation process is summarized below.

o d

PYRPYy )" . The score functions of « and
(94

Denote the score statistics as U = (

S are given by
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M +1

——ZH:Z gl_lz (fl 1 IJ

and

ol & .
—= b .c =1..,M
aaj — g| 1,j 70, ] (J )
M+1

where ¢, = Zd; [Szi (t(j-1))_szi (t(j))] ' fi,j :Szi (t(j))l()g Szi (t(j)) v fo=Tima=0,
j=1
M+1
b, =exp(e; +Z'B), ¢ :kZ(éik Ox.1)S; (ty)) and &, =0. The objective is to
=]

solve U =0 so that the likelihood can be maximized. The Newton-Raphson method

can be applied to obtain the solution. Let A=[All Alz] as the observed Fisher
1 2

information matrix. The elements of A, include

2 b..b.c.C. b.b.c

8' z(ljlkljlk 1, )0,k I,J) for _]<k

8aj6ak 5 o}
The elements of A, = A} “include
aZI n \\ M+1 CI Cij M +1
aajaﬂ_zlzl I]{gl [C|J+Z(5|I 5|I+1)f||] i2 Zé‘ul(ful |I

The elements of A,, include

GZI _anzuzu {[ gi ZM+15| (fi -1 fi ')Jz_gi_lzvﬂé‘i'(hi '—l_hi )}
8,36‘,5 -1 TN i j=1 TN i

i=1

where
h;=fi;109S, (t;)+f;

Denote X, as the estimate of («,f) in the n -iteration, the Newton-Raphson

algorithm can be summarized as follow:

X=X +AU, (K=01..),
where A, and U, are A and U evaluated at the Kth estimate of («,f). The
procedure is stopped when X, ., —X . isclose to zero.
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Chapter 4. Inference based on Accelerated Failure Time Model

The accelerated failure time (AFT) is a popular alternative to the PH model. An
AFT model can be written as

Y=Z"f+¢ (4.:

where Y =logT and ¢ is the error variable with the density function f_(.).
Existing research focuses on semi-parametric estimation of S without specifying the
form of f_(.). We will briefly review inference methods developed for complete data
and right censored data and then focus more on interval censored data.

4.1 Inference based on complete data
Consider the transformed variable under the error scale, &(B)=Y,-2'pB for
i=1..,n. Note that when £ isthe true value, {&(43,) (i=1...,n)} form an iid
sample which becomes a useful—property. to construct nonparametric inference

methods. Let &, (B) <&, (B)<-:<gy(B) be the order statistics with the

corresponding covariates denoted as +Zy, Z 5y, Z,,, < Define ¢ as the score of Z

satisfying Zci = 0. Consider the linear rank statistic of the form:
i=1

v(B) :iz“)c‘ . (4.:

Note that when g= /4, Pr(Z;, =Z,)=1/n.Asaresult,

()

E(V(%)) = ZCiE(Z(i)) :Zciz_ =0.
i=1 i=1
This implies that one can estimate S by solving the equation v(8)=0. The error

distribution and the form of ¢, both affect the efficiency of the resulting estimator.

The Wilcoxon statistic corresponds to ¢, =2i(n+1)" -1 and the log-rank statistic

corresponds to n.t—1 where n. isthe number atrisk at ¢ . )
p 2" j )
J:
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4.2 Inference based on right censored data

Right censored data are denoted as {(X,,05,Z) (i=12,..,n)} . Let
£(B)=Y,—Z'B, where Y, =log(X,). Censored data under the error scale can be
written as {(&(f),o) (i=1..,n)}. Note that {(5(4).0) (i=1..,n)} form a
random sample of {£(/3,),0} which is a censored version of &(/4,) . We discuss two

methods of modifying the linear rank statistics introduced earlier.

4.2.1 Linear rank statistics

Let &, (B) <&y (B)<---<&,(B) be the distinct uncensored ordered error

variables and let &,(f),....&, (5) be censored error variables in [5@)(/})'5(”1) (ﬁ’)).

Following the book of Kalbfleisch and Prentice (2002), the modified linear rank

statistics can be written as
v(p) = Z(c, (.)+ZC, i (4.¢
where Z, and Z; represent the corresponding covariates of £,(f) and &;(5)

respectively. The requirement is given below:

zk:(ci+miCi):0.

i=1

The efficiency of the resulting estimator depends on the underlying error distribution,

the censoring distribution and the forms of ¢, and C,. For the Wilcoxon statistics,

Prentice (1978) suggested that

¢ =1- ZH and C, 1H

j1 1+, 1+n

where n, isthe numberatriskat £, ().
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4.2.2 Log-rank statistics
As mentioned earlier the log-rank statistics can be expressed as a special linear
rank statistics but it has its own representation as follows:
s ~ ~
Zl(e,- G ré& K 2)

U3 =>.:62- : (4.¢
' Zl(s (B)z&(B))

4.2.3 Me-estimator by Ritov (1990)
The idea was motivated by the parametric likelihood analysis. The likelihood

function and log-likelihood based on (& (5),5,) (i=1,...,n) can be written as

L £ TR ACIRLE £ 0 (4.
and

1(5,1.) =i5i log f,(&(£)) (=) 10gS, (¢,(5))

respectively. Taking derivative respectto” 8, we get

5'(,3 D) Z":[ f(E(ﬂ))Z(ﬁ)( 5)f(€(ﬁ))

= TEW) S,(&(P) &0l

The difficulty comes from the fact that f,, f' and S, are all unknown functions.

The idea of M-estimator is to replace —.0) by g() which is a known function.
Accordingly %ﬁff) can be replaced by
UM(8.5,)= Y ZI89(E (B) + 1~ 6) 000,
19.) = iLo;9(¢; +Ud- :
= S.(&(8))

where S_(-) can be estimated by the following product-limit estimator

A il(gj(ﬁ)zu,ajzl)
S, =[[11-
Ut Zl(é,-(ﬂ)zu)

The form of g(.) and the underlying error distribution affect the efficiency of
24



the resulting estimator. Two common choices of g(-) are g(u)=u or

-k if u<-k
g(u)=< u if Julgk
k if u>k.

Note that if the error distribution is specified, we have

- f £/ (x)dx = — jf% f (x)dx = —jf g(x)dF,(x)

70
f.()

which suggests the best form of g(.) is since it yields the maximum

likelihood estimator.

4.3 Inference under interval censoring

Consider interval censored data-(L,RZ) (i=1..,n) which can be
transformed under the «error —scale - such that. &“(8)=logL -Z'B and

& (B)=logR —Z" p. Now we discuss how to extend the ideas of previous methods

to interval censored data.
4.3.1 Modify M-estimator by Rabinowitz et.al. (1995)

Consider the log-likelihood function
L= S InlF " (A} F A (D,

The MLE of g can be obtained by solving the score function

SRR B3I E B )Y _
S L L B 3F AT (4.7

and it follows that E(S(4,))=0. Since the forms of f, and F, are un-specified,

one can replace the middle part of S(f5) by

_ 9[FA{s" (BN - 9lFA="(B)}]
FAe"(B)}-FAs(8)}

where the function g with domain [0,1] satisfies g(0)=g(l)=0. Thus one can

¢(8,F,)

estimate S Dby solving
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S(B,F.)=>c(B,F.)Z,=0.
i=1
In Appendix, we show why the restrictions on g makes E[S(/,,F.)]=0. Again the

form of g(.) and the underlying error distribution affect the efficiency of the
resulting estimator. The best choice which leads to the maximum likelihood estimator
is g="f oF*.

Recall that in Section 4.2.3, the nuisance function S, has an explicit
product-limit estimator and hence UM(ﬂ,ég(.lﬂ))zo is solved. However for
interval censored data, there is no explicit formula for estimating S, or F,. One
way of estimating F, is by..maxing the likelihood based on
{("(B), & (B)(i =1,...,n)}. Thegrid intervals.in which F, receives masses can be
constructed similar to the setup in-Section 2.4. Denote -t (3) = (t, (0).t,(B)] for
k =1,...,m as the mass intervals. The next step is to express the likelihood based on
{(&"(B), e (B))(i=1,...,n)¥ in “terms of {(t (Bt (A k=1,...m} . Define
t.(8)=max{t; (B):t; (B)<&" (B} and &y (B) =min{t(B):t:(B8)>5"(B)}-
That is (f, (8).t,:(B)] becomes a new representation of (&"(8),&"(B)] which

will be a union of consecutive t, (£). The corresponding log-likelihood function

becomes
1= I AG, (0}~ FAL (A
subject to
F &, O} F &, O} (=12...0)
and

FA;(8)}el0l] (j=12,...m).
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Given an estimate of f, the above maximization procedure can be performed. The

resulting estimate of F,, denoted as Ifg, will be plugged into the following

estimating function to solve for the next estimate of f:

S(BF. FYa(pF 2= (4.
4.3.2 Method for a simplified AFT model with univariate covariate

Besides the methods we discussed earlier, Li and Pu (2003) developed an

interesting way to estimate /. Consider a simplified AFT model:

Y. =BZ +¢, (i=1..n).
where Z, is a one-dimensional covariate. The main idea of this paper is based on the
assumption that & and Z; are uncorrelated. Kendall’s provides a rank-invariant

measure for assessing the association between two variables. Suppose that (g;,Z;)

and (g;,Z;) are independent. realizations from (g,Z). The pair is concordant if
H{(& —¢;)(Z, —Z;) >0} and discordant if 1{(& —&,)(Z,=Z;) <0}. The population
version of Kendall’s tau is defined as

t=Pr{(g —¢,)(Z,—Z;) > O}~ Pr{(& —&;)(Z, - Z;) < O}.

The sample estimate of 7 is

ZI{(gi —e N2, =2;)>0-{(5—¢))(Z,-Z;) <0}

i<j
[nJ/Z
2

If complete data are available, one can solve

o 2B e (BN ~2) > - W (B e, (P)(Z,~2)) <0} =0

to estimate 5. However & (f)=Y,—£Z, issubjectto interval censoring such that

T =

we only know that & (8) e (&"(8),&"(B)]. Some interval observations provide the
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complete information for the order of &(5) and ¢;(). Notice that if

&5 (B) <8jL(,B) ,then g <eg,.

58 & &8 5B & )

{ r 1 { ’3 1

Figure 4.1 The relative position of ¢, and &, when £7%(B8)<¢,"(B)

Hence the total number of known concordant pairs becomes

D@ <Z)ONER (B <& (BN + HZ > Z)1(&"(B) > £ (BN}

i<j
and the total number of known discordant pairs-is

D ANZ <Z)NENB) > 61BN+ NZ > Z) e (B) < £, (B)}-

i<j

The modified Kendall T coefficient can be write as

n(nl—l)_Z[l(Zi <Z))=NZ >ZINE"B) <&, (BN~ 1 (=1 () > & (B)]-

The resulting estimation function'is given by

Ko(B) =2 [N(Z <Z;) - 1(Z; > ZIN(E" (B) < &, (B) = 1 (& (B) > & (A)]

i<j
This method has two major drawbacks. One is the restrictive assumption that Z is
univariate. The other is the lack of efficiency if the data contains very few orderable

paired intervals.
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Chapter 5. Inference based on Proportional Odds Model

5.1 Model and the likelihood

Besides the PH and AFT models, the proportional odds (PO) model is also a

popular choice. The proportional odds model is defined as
logif{t ( )}=1og{BE
(5.
where logit(t)=log{t/1-t} , and F,(t)=P(T <t|Z) . Note that B(t) is a
non-decreasing baseline function with B(0)=0. Accordingly the distribution and

density functions become

B(t)e 47
()= Lﬂ‘z
1+ B(t)e
and
BY(t)e #?
fz (t) 5 ( )

{L+B{)e "y
respectively where B®(t) is the derivative of -B(t). The parameter of interest is f
and B(t).As before, we will examine likelihood-based inference methods.

Under right censoring, the observations consist of {(X,,s,Z,) (i=12,...,n)}.

The log-likelihood function is
1@)=n"Y510d, % ) 46 ) 1ogRLx( (5.2
i=1

where 8= (£, B(t)) . Under interval censoring, the observed data consist of

{(L,R,Z) (1=12,..,n)}. The log-likelihood function becomes

n

|(9)=n—1Z lod [R)-F L ( (5.¢

The presence of B(t) makes it difficult to directly obtain the M.L.E. by maximizing

the log-likelihood function. We will present two methods both of which suggested to
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replace B(t) by an approximated function which is easier to handle.

5.2 Smoothing method for approximating the baseline function

Shen (1998) proposed a sieve method to approximate B(t) in the likelihood
function. The method can be applied to not only right censored data but also interval

censored data. Now we briefly describe the approach. The basic idea is that the

baseline B(t) can be approximated by a parametric function. Specifically define
I =<ty <---<t,, <o) be the location of knots and M =(m, <m <---<m) as

the order of polynomial in these subintervals. Here m, <N k<K where N_,,

max !

and K are pre-assigned numbers. For convenience, we define h=(1,M). Let

k. m .
S(t):ZO:Z(;nijt‘l(t(i <t <ty ) (5.¢
i=0 j=

as splines with variable orders and knots.-An example of .s(t) is depicted in Figure

5.1. There are two knots  which form  three intervals.“Each interval contains a

polynomial of different orders. From this figure, we see that s(t) can be used to

approximate any smooth functions.

The approximated function of B(t) is defined as
A t
B(t) = j exp(s(x))dx
In order to ensure the smoothness of B(t), the function s(t) must satisfy the
following constraint: The spline at t, have a derivative of order min(m_,m).
Thus, we transform the parameters 6 ={B(t), #} into 49~={77=(77i,-), £} which can

be estimated from the log-likelihood 1(8) subject to the constraint.

The choice of h is based on its comparative Kullback-Leibler risk R(h) which

is defined as —Eg(l(é)) where @ is the estimator of @ . Since the parameter @ is
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unknown, we cannot obtain it directly. For each fixed h, let 4 be the sieve

maximum likelihood estimate of & without the ith observation, and Ifii(.) is the

corresponding estimated distribution. Shen (1998) suggests that we can use the
statistics

-n">"log P, ()
i=1

to estimate —Eg(l(é)) where Q, isthe ith observation. This is the selector value

of h. Then we choose optimal h that minimizes R(h).

s(1)

Figure 5.1.  Anexample of s(t). Here t, =4 andt, =8. The polynomials

from left to right are -x®>+6x%+x-24 ,x+8and x*-15x+72, respectively.

Hence we find the universal sieve maximum likelihood estimator by estimating

6 and h recursively. The detail of the algorithm is as following.
Step 1: Initial spline

For any fixed order m<N_., estimate {#,7} using the maximum likelihood
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method with single polynomial. Then we choose the optimal order m that minimizes

R(h)

Step 2: Adding knots

Consider a candidate knot point t; within an interval spanned by existed knots. For

any fixed order M =(m,,m), estimate {#,77} as step 1. Find the order M that

minimize R(h). This value is the selector of this candidate. Then the optimal t; is

found using Fibonacci search to minimize the selector.
Step3: Comparison

Compare the original sieve maximum likelihood estimate based on the spline without

t; with the new one including 't;,..If the new maximum likelihood estimate has a

smaller value in terms of.the selector, then split the interval into two and proceed
further as in Step 2. Otherwise, go.to Step‘4.
Step4: Repeat Steps 2-3 for all intervals spanned by.existing knots until no new knot
can be added

5.3 Sieve method by Huang and Rossini (1997)

The proportional odds model is expressed as

logR, t £€) IBgti+p'€ (5.¢
where F,(t)=F(t|0) is the baseline distribution function. Let ¢, (t)=Ilogit F,(t),

the distribution function can be written as

exp(ay(t) + 4" Z)

FO=17 exp(ay (D) + f72)

The difficulty of estimating S comes from the presence of ¢,(t). Huang and
Rossini (1997) proposed to is difficult to estimate this function by a function with nice

analytic properties. The idea of this approximation is similar to the previous method.
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If the real function &, (t) is known, we might choose some knots 0<t, <---<t, <o
and let
. K b —b, bt 5b_t,
G(t)=2, ”—t e 1| QPO £ (5.¢
=N T e 1) i Thi- o1
where b; =, (t,) and b <---<b . Here we choose kand t; which satisfy

1. k beaninteger that grows atrate O(n*) O<a<l

2. max,, (t;, —t;5)<Cn™* for some constant C

3n

(1)

20

15

Figure 5.2. The curve of a,(t) (dashed line) and its approximate

function(real line). Here a,(f) =log(3f) and we take £, =17,35,7,9

There is some difficulty to implement the idea. Since the true function is unknown,

b, =a,(t;) is also unknown. Treating b, as unknown, the restriction that

b, <---<b, has to be considered in the maximization. The estimator of Shen (1998)

is easier to implement since the unknown parameters have no specific restrictions.
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Chapter 6 Conclusion

Most textbooks on survival analysis focus on right censored data. However
empirical medical data are often interval censored. In this thesis, we review important
inference methods which can be applied to interval censored data. We emphasize how
the fundamental ideas of inference are extended to this complicated data structure.
From the discussions, we see that many elegant techniques adopted for right censored
data no longer applied. Instead, numerical algorithms become very important in
analysis of interval censored data. Because the main purpose of the thesis is to
provide a general review of many different methods, we do not investigate thoroughly

on specific methods or algorithms. This can be interesting topics for future study.
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Appendix

Proof of E[S(f,.F,)]=0. Let X;=(X;<X;<--<X,,) betheith patient’s
ordered sequence of examination times, where n. denote the number of examination.

For convenience. define X,, =—0,and X,,,, =oo. Define L; be the last of the ith

in+1

subject's examination times preceding T., and let R, be the first examination time
following ;.

—4
—
—1
4
—
—

For a p-dimensional vector b, define bracketing examination times on the time
scale of the residual by

g-(b)=logL=2Z'b 5 &"(O)=logR —Z'b

We only have to prove

FE =0l BN ¢ 5
F{e" (0)}-F{s (0)} o
where function g with domain [0,1] satisfies g(0)=g(1) =0, then

E[S(3, F. 1= E(GB)Z | X,,Z,)=0

Ee(0)Z | % 2)=Z,EL

Consider
P(xik <Ti = Xik+1 | X~i'Zi)
= P(xik _Zitb <Ti = xik+l_Zitb| x~i’Zi)
= F(Xik+l _Zitb) - F(Xik+l _Zitb)
=F(5,..(0)) —F(g, (b))
Thus,

£ AP O -0l (" O
F{&" (0)}-F{e (0)}
— i glF{i..(0)}] - g[F{s. (b)}]P(X. <T <X, .| e Z)
k=0 F{gik+l (b)}_ F{gik (b)} ik i = Nik+l i1 &i
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N

9[F{&i..(0)}] - 9[F{s; (b)}]

k

>

9[F{&i..(0)}] - 9[F{s; (b)}]

k=

9[F{&i .1 (0)}] - 9[F{s; (0)}]
= g[F{oc}] - g[F{~oc}]

=g[] -g[0] =0

The proof is complete.
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