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區間設限資料之統計推論 

 

研究生：黃祥福                     指導教授：王維菁 教授  

                                        

國立交通大學理學院  

統計學研究所  

 

摘要  

在此論文中,我們回顧區間設限資料的推論問題,為呈現概

念的建構原則,亦簡述其它類型的不完整資料.論文分兩大部份, 

一部份為無母數估計,另一部份為迴歸分析.我們回顧了兩類的

無母數估計法,其中自我一致演算法可視為動差法的延伸.另一

方法為無母數最大概似估計法.我們介紹三種較廣泛使用的迴歸

模型: 包含比例風險模型,加速失敗模型和比例勝算模型.推論

的困難度在於模式存在未知函數,需要利用平滑的技巧處理之. 

本論文以介紹點估計的概念為主,並未涵蓋如何由分佈理論推導

信賴區間與統計檢定問題.  

 

 

 

 

 

 

關鍵字:區間設限, 無母數 
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Abstract  

We review inference methods for analyzing incomplete data with 

focus on interval censored data. For nonparametric analysis, two 

estimation approaches are examined. Self-consistency can be viewed 

as an extension of the method of moment by imputing incomplete 

information by its expected value. The other is the nonparametric 

likelihood estimation. We also introduce three popular regression 

models, namely the proportional hazards model, accelerated failure 

time model, and proportional odds model. These models contain 

unknown nuisance functions and different smoothing techniques are 

employed to handle them in the estimation procedure. The thesis 

focuses on point estimation so that second ordered properties are not 

investigated.  
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Chapter 1. Introduction

1.1 Motivation   

In survival analysis we are interested in studying the behavior of the time to the 

event of interest, denoted as T , which often cannot be completely observed. 

Textbooks on survival analysis focus on right censored data in which many elegant 

results have been derived. In the thesis, we consider interval censored data. Although 

such data are commonly seen in practical applications, related statistical methods are 

not formally taught in the classroom. The lack of an overall review at the introductory 

level provides the motivation of the thesis.  

To enhance a thorough understanding about the methodology, we will still review 

related materials for complete and right censored data and address how the basic ideas 

are modified when the data become interval censored. We will consider two types of 

applications. One is nonparametric analysis of the survival function Pr( )T t . The 

other is regression analysis. Specifically let Z  be the covariate vector which 

provides individual information. A regression model imposes additional assumptions 

on how Z  affects T . We will review statistical methods for the proportional 

hazards (PH) model, the accelerated failure time (AFT) model and the proportional 

odds model when T  is subject to interval censoring.   

1.2 Different types of incomplete data 

     It is worthy to introduce different types of incomplete data and compare their 

differences.  

(1). Right censored data  

Observed variables can be expressed as ( , )X   where X T C   and 

( )I T C   . Thus when 1  , X T  and X C ; when 0  ,  X C  and 

X T  (the true failure time T  is located in the right-hand side of the observed time 

X ). Right censoring occurs due to subject’s withdrawal or the end-of-study effect. 
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Most literature in survival analysis consider right censored data.  

 (2) Left censored data:  

We use the same notations to denote observed variables which have different 

definitions. One observes ( , )X   where X T C   and ( )I T C   . When 

1  , X T  and X C ; when 0  ,  X C  and X T  (the true failure 

time T  is located in the left-hand side of the observed time X ). Here is an example 

of left censoring. Denote T  as the time until first marijuana use among high school 

boys in California. If the event had already occurred prior to the recruitment of the 

study, the subject is said to be left censored.  

(3) Doubly censored data 

Doubly censored data include three types of observations, namely “observed”, 

“right censored” and “left censored” ones. Let 
rC  be the right censoring variable and 

lC  be the left censoring variable. It is assumed that l rC C . Observed variables are 

( , )X   where max(min( , ), )r lX C T C and 1   if X T ; 0   if 
rX C ; 

and 1    if 
lX C . 

(4) Interval censored data  

The observation is a random interval ( , ]L R  such that T  falls in the interval 

but its exact value is unknown unless L R . Such data can include right censoring if 

R    and left censoring if 0L  . Interval censored are commonly seen in practice. 

For example a subject is under study has a regular appointment schedule (say every 

three months) to the hospital. The left endpoint L  refers to the last follow-up time 

that the event has not occurred and the right endpoint R  refers to the first follow-up 

time that the event is detected.   
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1.3 Parametric analysis for interval censored data  

The thesis focuses on nonparametric and semi-parametric methods. However 

these methods are still motivated by the parametric approach. Here we briefly 

summarize the parametric analysis for interval censored data denoted as 

{( , ] ( 1,..., )}i iL R i n . Assume that the distribution function of T  is specified as 

( )F  . The likelihood function and the log-likelihood function can be written as  

1

( ) [ ( ) ( )]
n

i i

i

L F R F L 


                    ( 1 . 1 ) 

and 

1

log ( ) log{ ( ) ( )}
n

i i

i

L F R F L 


  .              (1.2)  

The resulting score function is  

1

log ( ) ( ) ( )
( )

( ) ( )

n
i i

i i i

L f R f L
S

F R F L

 

 




 

 
 

 
 .             (1.3)  

By solving ( ) 0S   , we obtain the maximum likelihood estimator of  . Our 

analysis implies that parametric inference is straightforward for interval censored data. 

In fact, difficulties arise when the functional form of ( )F   is completely unspecified 

as in the nonparametric setting or partially specified as in the semi-parametric setting.  

1.4 Organization of the Thesis 

Chapter 2 considers non-parametric inference and Chapter 3 to Chapter 5 discuss 

semi-parametric regression models, namely the proportional hazards (PH) model, the 

accelerated failure time (AFT) model and the proportional odds (PO) model 

respectively. Chapter 6 gives a brief summary of the thesis.  
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Chapter 2. Inference based on Nonparametric Analysis 

 The major objective is to estimate the survival function ( ) Pr( )S t T t   

without specifying the parametric distribution. We will review nonparametric methods 

based on several data structures, from the simplest to the complicated data settings. 

This will help us to understand the fundamental techniques more thoroughly.   

2.1 Complete data 

Complete data are denoted as {  ( 1,..., )}iT i n  which form a random sample of 

T . Based on the fact that ( ) [ ( )]S t E I T t   and applying the method of moment, 

one can estimate it by the empirical estimator  

1

1
( ) ( )

n

i

i

S t I T t
n 

  .                      

Although the method of moment provides a simple solution, it does not guarantee any 

optimality property. Formally the nonparametric likelihood estimator should be 

pursued as a better option. The first step is to re-write the likelihood function based on 

grid points and the probabilities at these points are the parameters to be estimated. 

Suppose that there are only M distinct observed values denoted as 
(1) ( )... Mt t  . Let 

( )

1

( )
n

j i j

i

d I T t


   be the number of observations at 
( )jt  and 

( ) ( )( ) ( )j j jp S t S t   . 

The likelihood function can be written as  

( )

1

Pr( )
n

j

j

L T t


  1 2

1 2( ) ( ) ...( ) Md d d

Mp p p .            (2.1)  

The NPMLE is the solution which maximizes 
1( ,..., )ML p p  subject to 

1

1
M

j

j

p


 . 

Applying the theorem of Lagrange multipliers, let 
1

1

( ,..., ) log ( 1)
M

M i

i

g p p L p


    

and set 
1( ,..., ) 0Mg p p   Hence the Lagrange equation system is given by  

1

0 ( 1,..., ) and 1
M

j

j

jj

d
j M p

p




    .              ( 2 . 2 ) 
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The above equations can be solved easily and the solution is ˆ /j jp d n  for 

1,...,j M  and n  .  

2.2 Right censored data  

For right censored data, observed data become {( , ) ( 1,..., )}i iX i n  , where 

min( , )i i iX C T
 

( )i i iI T C ＝ . The survival function can be estimated by the 

Kaplan-Meier estimator  

( , 1)
ˆ( ) 1

( )

i i

i

u t i

i

I X u

S t
I X u





  
 

  
 

 





.                 

The above product-limit expression is elegant since the censoring effect is cancelled 

out in estimation of the hazard function. However under other types of censoring 

mechanism, estimation of the hazards does not provide any advantage. Instead, the 

techniques of self-consistency and nonparametric MLE can be generalized to other 

data structures. Now we illustrate the self-consistency algorithm for right censored 

data. The self-consistency equation can be written as  

1

ˆ1 ( )ˆ( ) ( ) ( , 0)
ˆ( )

n

i i i

i i

S t
S t I X t I X t

n S X




 
     

 
  

 
1

1
( ) (1 ) ( )

n

i i i i

i

I X t I X t w
n




     .              (2.3)  

Notice that for points with iX t , the full weight 1  is assigned; for points with 

iX t  and 1i  , zero weight is assigned; and for points with iX t  and 0i  , 

partial weight ˆ( )iw S t ˆ/ ( )iS X  is assigned. The estimator can be solved 

successively and explicitly. Since ˆ( ) 1iS X   for (1)iX t  with 0i  , we have 

(1)
ˆ( )S t  (1) (1) (1)

1

1 ˆ( ) (1 ) ( ) ( )
n

i i i

i

I X t I X t S t
n




    
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which allows us to solve (1)
ˆ( )S t

 
and then successively for ( )

ˆ( )jS t
 

2,...,j M .  

 

 

Figure 2.1 Self-consistency for right censored data.  

Weight for 
i = 1X ; weight for = ( ) ( )i iX S t S X ; weight for = 0*

iX   

Now we discuss the nonparametric MLE approach for right censored data. 

Define 
(1) ( )... Mt t   as distinct observed failure times and 

1( ) ( ){ ,..., }
m j

j jx x  as 

ordered censored points in the interval ( ) ( 1)[ , )j jt t  . Also let ( )

1

( , 1)
n

j i j i

i

d I X t 


    

and ( ) ( 1)

1

( [ , ), 0))
n

j i j j i

i

m I X t t 



   . The likelihood function can be written as  

( ) ( )

1 1

Pr( ) ( )
j jd mM

j jl

j l

L T t S x
 

     .                ( 2 . 4 ) 

Since the survival function ( )S t  is an non-increasing function, we can make the 

likelihood function larger when 
( )( )

lj
S x  is replaced by 

( )( )jS t Ţhis suggest that we 

can instead consider  

*

( 1) ( ) ( )

1

( ) ( ) ( )
j

j

dM
m

j j j

j

L S t S t S t



        .              
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Direct maximization of *L  in terms of 
( 1) ( )Pr( )j jt T t    or 

( )( )jS t  is not 

suggested for right censored data. Alternatively *L  can be re-parameterized in terms 

of hazards. Specifically we have 
( ) ( )

1

( ) [1 ( )]
j

j i

i

S t t


   and hence  

1

( 1) ( ) ( ) ( )

1

( ) ( ) [1 ( )] [ ( )]
j

j j i j

i

S t S t t t 






   .             

It follows that  

1
*

( ) ( ) ( )

1 1 1

{ [1 ( )] [ ( )]} { [1 ( )]}j j

j jM
d m

i j i

j i i

L t t t  


  

      

          
( ) ( )

1

[ ( ) ] [ 1 ( ) ]j j j

M
d n d

j i

j

t t 




 
                          

(2.5)  

where  ( )

1

( )
n

j i j

i

n I X t


  . Maximization in terms of 
( )( )j jt  , we obtain 

ˆ /j j jd n 

 

and accordingly  

( ) ( )

( )
ˆ ˆ( ) {1 ( )} {1 }

j j

j

j

t t t t j

d
S t t

n


 

    
               

which is the Kaplan-Meier estimator.  

 

 

Figure 2.2:Idea for modifying the likelihood L  
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2.3 Double censored data 

Recall that observed data can be denoted as: {( , ) ( 1,..., )}i iX i n  , where 

max{min( , ), }i ri i liX C T C  and 1i    if i liX C ; 1i   if i iX T  and 

0i   if i riX C . The self-consistency equation can be written as  

1

1ˆ( ) ( , 1)
n

i i

i

S t I X t
n




  
ˆ ˆ( ) ( )

( , 1)
ˆ1 ( )

i
i i

i

S t S X
I X t

S X



   


 

                

ˆ( )
( , 0)

ˆ( )
i i

i

S t
I X t

S X
   .                           ( 2 . 6 ) 

Turnbull (1974) suggested the following steps to implement the algorithm. First, 

partition the observation period: (1)(0, ]t , …, ( 1) ( )( , ]M Mt t , where (1) ( )... Mt t   are 

ordered time points. Then define three types of observations in each interval  

(1)

( 1) ( )

1

( ( , ], 1)
n

j i j j i

i

N I X t t



    ,                

( 1)

( 1) ( )

1

( ( , ], 1)
n

j i j j i

i

N I X t t





    
              

 

(0)

( 1) ( )

1

( ( , ], 0)
n

j i j j i

i

N I X t t



    .               

Turnbull’s idea is to combine “exact” and “left censored” observations by imputation. 

Specifically for a point in ( 1) ( )( , ]k kt t  with 1   , the conditional probability of 

falling in ( 1) ( )( , ]j jt t  (for all k j ) is  

( ) ( 1) ( 1) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) 1 ( )

j j j j

kj

k k

F t F t S t S t

F t S t
  

 


.            

Thus the imputed value ( 1) ( )

1

( ( , ])
n

i j j

i

I T t t



  is given by  

(1) (1) ( 1) ˆ
k m

j j k kj

k j

N N N 






  .                  

which is a function of data and ˆ(.)S  Now the modified data become 
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(1) (0)( , )( 1,..., )j jN N j m  which contains “pseudo-exact” and “right censored” points. 

Turnbull (1974) suggested to use them to estimate the hazard probability in the 

interval ( 1) ( )( , ]j jt t  by (1) /j jN Y  where (1) (0)
k m

j k k

k j

Y N N




   denotes the number at 

risk and (1)

jN
 
denotes the number of failure. The product-limit expression gives a 

direct relationship between the survival function and the hazard probabilities:  

(1)

( )
ˆ( ) {1 / }j i i

i j

S t N Y


 
                  

( 2 . 7 ). 

Note that since both (1)

jN  and 
jY  are still functions of 

(1)
ˆ( ),...,S t ( )

ˆ( )MS t , iterations 

are needed which can be summarized by the following steps.  

 Step 1: Give initial values: (0)

(1)
ˆ ( ),...S t (0)

( )
ˆ, ( )MS t ; 

 Step 2: compute : (0)ˆ
kj  

 Step 3:obtain : (1)

(1)
ˆ ( ),...S t (1)

( )
ˆ, ( )MS t ; 

 Step 4: repeat (2) and (3) until the pre-specified convergence criteria is reached.  

 

 

 

Figure 2.3 Self –consistency for double censored data 

Weight for ( ) ( )i iX = S X S t ; weight for  
i = Pr( ) ( )i i

′X t < T ≤ X F X  
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      We discuss the NPMLE approach for doubly censored data. The following 

result is summarized form the work of Mykland and Ren (1996). Let the 

log-likelihood function of complete data be  

                           
1

l o g ( )
n

c i

i

l P T t


                       ( 2 . 8 ) 

When the failure time 
1( ,..., )nT T  is known, the NPMLE is easy to obtain as in 

section 2.1. But under doubly censoring, we cannot observe all the failure time. Hence 

the EM algorithm is applied. To obtain the iteration, we need to calculate   

00 ( )

1

( | ) [log ( ) | , ]
n

P i i i

i

Q P P E P T t X 


   

where 0P  is the initial distribution of T . Here we do not group the observed data as 

in Turnbull(1974). Instead, we assume that the distribution of T  has mass only at 

each observations 
(1) ( )nX X  . Then we discuss the following conditions.  

(1) 
0 ( ) ( ) ( )[log ( ) | , 1] log ( )P i i i i iE P T t X P T X     

(2) ( ) ( )

0

(0)

( )

( ) ( ) (0)
[log ( ) | , 0]

log ( )
i jX X

j

P i i i

j

i

E P T t X

P P T X

S




  


 

(3) ( ) ( )

0

(0)

( ) ( ) (0)

( )

[log ( ) | , 1]

log ( )

1
i j

X X

j

P i i i

i

j

E P T t X

P P T X

S



   






 

where (0)

iP  and (0)

iS  is the initial probability and survival at 
( )iX , respectively. 

Hence for all distinct points 
1 2 Mw w w    of the set 

(1) ( ){ }nX X  , 

(0)

( )

0 ( ) (0)
1

( | ) ( 1) log ( ) ( 0)

log ( )
i j

jn

i i i i

i

j

i

Q P P I P T X I

P P T X

S
  






    




  

(0)

(0)

( )

( 1)

log ( )

1

j
i j

i

i

j

I

P P T X

S







   








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( ) ( )(0)

(0)
1 1

( 0, )
( 1)

i

n n
i j

i j

j i i

I X X
I P

S




 

 
  


   

( ) ( )(0)

( )(0)
1

( 1, )
log ( )

i

n
i j

j j

i i

I X X
P P T X

S





   
 


  

( )(0)

(0)
1 1

( 0, )
i

M n
i k

k k k

k i i

I X w
P

S


 

 

 
 


   

( )(0)

(0)
1

( 1, )
log ( )

i

n
i k

k k k

i i

I X w
P P T w

S






   
 


      

where 
( )

1

( , 1)
n

k i k i

i

I X w 


   , 
( )

1

( )
n

k i k

i

I X w


   and 0 0( )k kP P T w  . For 

simply the exception 0( | )Q P P  we define  

( ) ( ) ( )(0) (0)

(0) (0)
1 1

( 0, ) ( 1, )
i i

n n
i k i j

k k k k k k

i ii i

I X w I X X
P P

S S

 
   

 

    
       

and  

( ) 1,...,k kP T w q k M    

Hence 0( | )Q P P  can be re-expressed as 
1

log
M

k k

k

q


 . Then the M-step is given by 

                   
1

m a x l o g
M

k k

k

q


  subject to 
1

1
M

k

k

q


               (2.9)  

Applying the theorem of Lagrange multiplier, the maximization is attained at  

ˆ / 1,...,k kq n k M  . 

The steps of iterations are summarized below: 

  Step 1:  set 
(0)ˆ 1/kq M

 

( 1,..., )k M ; 

  Step 2:  set 
( )ˆ /i

k kq n ( 1,..., )k M ; 

  Step 3: repeat 2,3,...i    (Step 2) for until convergence. 
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2.4 Interval censored data 

Recall that we observe {( , ] ( 1,..., )}i iL R i n  and know that ( , ]i i iT L R . 

Turnbull (1976) discussed nonparametric estimation of Pr( )T t  based on interval 

censored data. The first crucial step is to construct ordered disjoint intervals in which 

the probability can be estimated. To achieve this goal, the data {( , ]( 1,..., )}i iL R i n
 

are re-arranged in an ascending order and the indentify the intervals such that a 

left-endpoint and a right-endpoint are adjacent to each other. Denote the disjoint 

intervals as {( , ] ( 1,..., )}j jl r j m . It can be shown that only these intervals can 

receive positive mass. Note that an observation ( , ]i iL R  can occupy more than one 

intervals ( , ]j jl r
 
for some j . Denote the {( , ] ( , )}ij j j i il r L R  I

 
which indicates 

whether ( , ]i iL R  overlaps with ( , ]j jl r . Denote 
jp j( ) ( )jF r F l 

 
as the mass in 

( , ]j jl r .  

The self-consistency equation for an estimator of 
jp
 
satisfies  

              1 11 1

1 1

...

n n
ij j

j ij

i ii im m

p
p w

n p p n



  

 
 

   
( 1,..., )j m

        
( 2 . 1 0 )

 

where
 ijw  can be viewed as the proportion contributed by ( , ]i iL R  in the estimation 

of 
jp
 
and hence

 
1

1
m

ij

j

w


 . 

 We discuss the NPMLE for interval censored data and see how it relates to the 

self-consistency solution. The likelihood based on the original data can be written as  

                          1

( ) ( )
n

i i

i

L F R F L


 
                    

( 2 . 1 1 )
  

which can be re-expressed as 
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*

11

n m

ij j

ji

L p


 
  

 


 

where 0 1jp 
 

and
 

1

1
m

j

j

p


 . Notice that the summation in 
*L  creates 

numerical difficulty in the maximization. The idea of EM is employed to solve the 

problem. If the variable ( ( , ])ij i j jI I T l r 

 

can be known, the likelihood based on 

this “complete” information is given by  

*

1 1

ij

n m
I

j

i j

L p
 

 
  

 
   

and the corresponding log-likelihood is 

*

1 1

log log
n m

ij j

i j

L I p
 

 . 

Maximization of 
*log L
 

subject to 
1

1
m

j

j

p



 

reduces to the multinomial problem. 

Applying the theorem of Lagrange multiplier, maximization is attained at  

1

ˆ /
n

j ij

i

p I n


 . 

However ijI
 
is not known and the “E-step” imputes its value by  

1

1 1

( ,..., )
...

ij j

ij m

i im m

p
w p p

p p



 


 
. 

Consequently the “M-step” maximizes 

                       

1

1 1

( ,..., ) log
n m

ij M j

i j

w p p p
 

 .                ( 2 . 1 2 ) 
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Maximization is attained at 
1

ˆ (
n

j ij

i

p w


 1
ˆ ,...,p ˆ ) /mp n  which is equivalent to the 

self-consistency equation. The steps of iterations are summarized below.  

  Step 1:  set 
(0)ˆ 1/jp m

 

( 1,..., )j m ; 

  Step 2:  set 
( )

1

ˆ (
n

k

j ij

i

p w


 ( 1)

1
ˆ ,...,kp  ( 1)ˆ ) /k

mp n
; 

  Step 3: repeat 2,3,...k    (Step 2) for until convergence 

  

 

Figure 2.4 Construction of the mass interval censored data and the idea of self 

consistency. Weight for
1 1( , ]L R  in estimating 1P̂ , 2P̂ , 3P̂  are 

1 1 2 31 (1 1 0 )P P P P       

2 1 2 31 (1 1 0 )P P P P       and 0 ,respectively. 

 

A different algorithm which directly estimates the survival function was 

suggested by Turnbull (1976). His idea is based on the product-limit expression of  
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S(t). The hazard probability in the interval ( , ]j jl r  can be estimated by /j jd Y   

where 
k m

j k

k j

Y d





 
and 

1

n
ij j

j

i ik kk

p
d

p








. The algorithm is given below. 
 

  Step 1:  set 
(0)

1

n
ij

j

i ikk

d







 , (0) (0)
k m

j k

k j

Y d





 

( 1,..., )j m   

  Step 2:  set 

( )

( )

( )
ˆ {1 }

l

jl

j l
i j j

d
S

Y

  ; 

Step 3: repeat 2,3,...l    (Step 2) for until convergence. 
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Chapter 3. Inference based on Proportional Hazards Model 

 The proportional hazards model specifies the effect of covariate on the hazard of 

T  such that  

0

1
( ) lim Pr( [ , ) | , )Z t T t t T t Z


   


 

           
0( ) e x p ( )Tt Z  ,                           ( 3 . 1 ) 

where 0 ( )t  is an arbitrary baseline hazard rate and   is the vector of parameter . 

The survival function can be written as  

exp( )

0 0
0 0

( ) exp( ( ) ) exp( ( )exp( ) ) ( )
t t

T Z

Z Z

T

S t u du u Z du S t          

where ( ) Pr( | )ZS t T t Z  . The main objective is to estimate   and usually 

estimation of 0 ( )t  is of less interest except for the purpose of prediction.   

3.1 Inference under right censoring  

Right censored data can be denoted as ( , , )i i iX Z  ( 1,..., )i n  where 

i i iX T C  , ( )i i iI T C   , and iZ  is the covariate. Due to the expression of the 

likelihood, 

               
1 1

1
( ) ( )( ) ( )i i i

n n

Z i Z i

i i

i iZ Z x S xL f x S x   
 


  ,        ( 2 . 2 ) 

the likelihood function under the PH model can be rewritten as    

0 0 0
0

1

) ( )exp( ) exp( ( )exp( ) )( ,
i

i

n
T T

i

i

x

x Z u Z duL     


   . 

Note that under the semi-parametric setting, the parametric structure of 0 ( )t  is 

unspecified. 

 The partial likelihood approach based on right censored data allows one to 

estimate   without dealing with 0 ( )t . Let 
(1) ( ),..., Mt t  be the ordered observed 

failure times. Let iA  be the set containing the information about who fails at 
( )it  

and iB  be the set containing the censoring information in 
( ) (i-1)[ , )it t  and one failure 
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occurs at time 
( )it . The likelihood function can be expressed in terms of the sets 

{( , )( 1,..., )}j jA B j M  such that  

   1 1 2 2Pr( ... )M MB A B A B AL         

              ( ) ( 1 ) ( 1 ) ( 1 )

1

P r ( | ) P r ( | )
M

j j j j

j j

j

A B A B B A  



    

     ( ) ( 1 ) ( 1 ) ( 1 )

1 1

Pr( | ) Pr( | )
M M

j j j j

j j

j j

A B A B B A  

 

     

where 
( )

1( ... )j

jA A A    and 
( )

1( ... )j

jB B B   . Notice that 

 
( ) ( 1)Pr( | , )j j

jA B A 
 ( )

( )

( ) ( )

( ) ( )

( )

( )

( )

j

k

j

j j

j j

k R t

z

z

t dt

t dt









 

      

( )

0 ( ) ( ) ( )

0 ( ) ( )

( )

( )exp( )

( )exp( )
j

T

j j j

T

j k j

k R t

t Z dt

t Z dt

 

 





 

               

( )

( )

( )

exp( )

exp( )
j

T

j

T

k

k R t

z

z









 

in which 0 ( )t  disappears in the last equation. It can be shown that ignoring the 

second component of L  still leads to an unbiased estimating equation. Specifically 

the partial likelihood   

            ( ) ( 1 )

1

( ) P r ( | )
M

j j

c j

i

L A B A 



   
( )

1

( )( )

exp( )

exp( )

TM
j

T
j k

k R jt

Z

Z










        ( 3 . 3 ) 

which yields the score function:  

( )

( )

1

( )

( )

( )

exp( )

( ) log ( )
exp( )

T

k k
M

k R

c j T
j k

k R

j

j

t

t

Z Z

U L Z
Z




 








  






. 

The estimator of   is the one which solves ( ) 0U   . Breslow (1975) suggested to 

estimate 0 0

0

( ) ( )

t

t u du    by  
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                     1
0

0

1

( , 1 )

( )
ˆ( )exp( )

n

t i i

i

n
T

i i

i

I X u

t

I X u Z









 

 







.                ( 3 . 4 ) 

3.2 Inference under interval censoring  

Finkelstein (1986) was the first author to address the inference of proportional 

hazards models for interval censored data. Observed data can be written as 

( , , )i i iL R Z  ( 1,..., )i n . It is assumed that iT  and ( , )i iL R  are independent given 

iZ . The likelihood function can be written as   

                0 0

1 1

[ ( )] { } { }
T T
i i

i i

n n
Z Z

Z i Z i i i

i i

L S L S R S L S R
 

 

    
         ( 3 . 5 ) 

where ( ) Pr( | )ZS t T t Z  . Unlike the case of right censoring, there is no way to 

remove 
0(.)S  from (3.5). This means that we need to estimate   and 

0(.)S  jointly. 

The likelihood function in (3.5) is represented based on original observations. For the 

purpose of maximization when the nuisance function 
0(.)S  is involved, this function 

will be expressed in terms of grid points. Figure 3.1 shows the construction of grid 

points based on an example containing four observed intervals ( , ]i iL R  ( 1,2,3,4)i  .  

In this example, 
(1) (2) (8)t t t    are formed. In general, we let 

(0) (1) ( 1)0 Mt t t       be ordered grid points. The i th observation to the 

likelihood (3.5) can be re-expressed as 

1

( 1) ( )

1

[ ( ) ( )]
i i

M

ij Z j Z j

j

S t S t







1

exp( ) exp( )

0 ( 1) 0 ( )

1

[ ( ) ( ) ]
T T

i i

M
Z Z

ij j j

j

S t S t
 







   

where 1ij   if 
( 1) ( )( , ] ( , ]j j i it t L R   and 0 otherwise. Accordingly the likelihood in 

(3.5) can be written as  

1
exp( ) exp( )

0 ( 1) 0 ( )

11

[ ( ) ( ) ]
T T

i i

n M
Z Z

ij j j

ji

L S t S t
 







  .  
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Figure 3.1 Construction of the mass interval censored data 

Note that 
0(.)S  is a function but the maximization of L  will only be evaluated on 

its value at the grid points, namely 
0 ( )( )jS t  for 1,...,j M . Since the parameters 

0 ( )( )jS t for 1,...,j M  have natural constraint i.e.,
0 (1) 0 ( )0 ( ) ( ) 1MS t S t    , it 

make the mle hard to obtain. Finkelstein (1986) suggested that one can re-parametrize 

the 
0 ( )( )jS t  by 

0 ( )log[ log ( )]k kS t   . It can remove the range restriction of the 

parameters 
0 ( )( )jS t , but it doesn’t remove the order restriction.  

Sun (2006) proposed a corrective method that can remove the nature constraint. 

The following is the detail of the method. Based on the product-limit expression, one 

can write  

0 ( )( )jS t 0 ( )

0

(1 ( ))
j

k

k

t


   . 

Thus L  becomes a function of   and 
0 (1) 0 ( )( ),..., ( )Mt t    . Note that 

0 ( )( ) (0,1)kt    is a conditional probability. To remove the natural constraint, we 

can re-parameterize 
0 ( )( )kt   by setting 

exp( )

0 ( )( ) 1 k
kt e


    .  
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Figure 3.2 shows that by the above transformation, k    . Thus   

    0exp( )

0 ( )

0

exp( )

( ) e

j

k
k k

j

j

k

S t e


 





 


 .  

 

Figure 3.2 The relationship between 
0 ( )Λ (Δ )kt and kα   

Finally, let  

      
0

exp( )
j

j k

k

 


  , 

for 1,...,j M  and 0   and 
1M   . We have obtained  

           
1

1

11

{ e x p [ e x p ( ) ] e x p [ e x p ( ) ] }
n M

T T

k ij i j i j

ji

L Z Z    






          ( 3 . 6 ) 

Thus the log of likelihood becomes 

1

1

1 1

log {exp[exp( ) ] exp[exp( ) ]}
n M

T T

ij i j i j

i j

l Z Z    




 

     . 

Note that the unknown parameters are 
1( , ,..., )M   , all of which have no additional 

constraints. The estimation process is summarized below.  

 Denote the score statistics as ( , )T

T T

l l
U

 

 


 
. The score functions of   and 

  are given by  
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1
1

, 1 ,

1 1

( )
n M

i i ij i j i j

i j

l
Z g f f








 


 


   

and 

1

, ,

1

n

i i j i j

ij

l
g b c











  ( 1,...,j M ) 

where 
1

( 1) ( )

1

[ ( ) ( )]
i i

M

i ij Z j Z j

j

g S t S t






  , 
, ( ) ( )( )log ( )

i ii j Z j Z jf S t S t , 
,0 , 1 0i i Mf f   , 

, exp( )T

i j j ib Z   , 
1

, 1 ( )( ) ( )
i

M

i j ik ik Z k

k j

c S t 






   and 
2 0i m   . The objective is to  

solve 0U   so that the likelihood can be maximized. The Newton-Raphson method 

can be applied to obtain the solution. Let 
11 12

21 22

[ ]
A A

A
A A

  as the observed Fisher 

information matrix. The elements of 11A  include  

2
, , , , , , ,

2
1

( )
n

i j i k i j i k i j i k i j

ij k i i

b b c c b b cl

g g  


  

 
  for j k .  

The elements of 
12 21

TA A  include  

2 1 1
,1

, , 1 , , 1 ,2
1 1

{ [ ( ) ] ( )}
n M M

i j

i i j i i j il il i l il i l i l

i l j lj i

cl
Z b g c f f f

g
  

 

 


 

  


    

 
   . 

The elements of 
22A  include  

2
1 11 1

, 1 , , 1 ,1 1
1

2

( ) ( )
n

M MT

i i i ij i j i j i ij i j i jT j j
i

l
Z Z g f f g h h 

 

  

  


           
    

where  

, , ( ) ,log ( )
ii j i j Z j i jh f S t f  .  

Denote nX  as the estimate of ( , )   in the n -iteration, the Newton-Raphson 

algorithm can be summarized as follow:  

1

1K K K KX X A U

    ( 0,1,...)K  , 

where 
KA  and 

KU  are A  and U  evaluated at the K th estimate of ( , )  . The 

procedure is stopped when 
1K KX X   is close to zero. 
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Chapter 4. Inference based on Accelerated Failure Time Model 

The accelerated failure time (AFT) is a popular alternative to the PH model. An 

AFT model can be written as   

                              TY Z                            ( 4 . 1 ) 

where logY T  and   is the error variable with the density function (.)f . 

Existing research focuses on semi-parametric estimation of   without specifying the 

form of (.)f . We will briefly review inference methods developed for complete data 

and right censored data and then focus more on interval censored data. 

4.1 Inference based on complete data 

Consider the transformed variable under the error scale, ( ) T

i i iY Z     for 

1,...,i n . Note that when 
0  is the true value, 

0{ ( ) ( 1,..., )}i i n    form an iid 

sample which becomes a useful property to construct nonparametric inference 

methods. Let 
(1) (2) ( )( ) ( ) ( )n         be the order statistics with the 

corresponding covariates denoted as 
(1) (2) ( ), ,..., nZ Z Z . Define 

ic  as the score of 
( )iZ  

satisfying 
1

0
n

i

i

c


 . Consider the linear rank statistic of the form:  

                             
( )

1

( )
n

i i

i

v Z c


 .                      ( 4 . 2 ) 

Note that when 
0  , 

( )Pr( ) 1/i kZ Z n  . As a result,  

0 ( )

1 1

( ( )) ( ) 0
n n

i i i

i i

E v c E Z c Z
 

    . 

This implies that one can estimate   by solving the equation ( ) 0v   . The error 

distribution and the form of 
ic  both affect the efficiency of the resulting estimator. 

The Wilcoxon statistic corresponds to 12 ( 1) 1ic i n     and the log-rank statistic 

corresponds to 
1

1

1
i

j

j

n 



  where 
jn  is the number at risk at 

( ) ( )j  .  
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4.2 Inference based on right censored data 

Right censored data are denoted as {( , , ) ( 1,2,..., )}i i iX Z i n  . Let 

( ) T

i i iY Z    , where log( )i iY X . Censored data under the error scale can be 

written as {( ( ), ) ( 1,..., )}i i i n    . Note that 
0{( ( ), ) ( 1,..., )}i i i n     form a 

random sample of 
0{ ( ), }    which is a censored version of 0( )  . We discuss two 

methods of modifying the linear rank statistics introduced earlier. 

4.2.1 Linear rank statistics 

Let 
(1) (2) ( )( ) ( ) ( )k         be the distinct uncensored ordered error 

variables and let 1( ),..., ( )
ii im     be censored error variables in ( ) ( 1)

ˆ ˆ( ), ( )i i   



. 

Following the book of Kalbfleisch and Prentice (2002), the modified linear rank 

statistics can be written as 

                        ( )

1 1

( ) ( )
imk

i i i ij

i j

v c Z C Z
 

                     ( 4 . 3 ) 

where 
( )iZ  and 

ijZ  represent the corresponding covariates of 
( )( )i   and ( )ij   

respectively. The requirement is given below:  

1

( ) 0
k

i i i

i

c m C


  . 

The efficiency of the resulting estimator depends on the underlying error distribution, 

the censoring distribution and the forms of 
ic  and iC . For the Wilcoxon statistics, 

Prentice (1978) suggested that  

1

1 2
1

i
j

i

j j

n
c

n

 


  and 
1

1
1

i
j

i

j j

n
C

n

 


 , 

where  
jn  is the number at risk at 

( )( )j  .  
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4.2.2 Log-rank statistics  

As mentioned earlier the log-rank statistics can be expressed as a special linear 

rank statistics but it has its own representation as follows:  

                 1

1

( ( ) ( ) )

( )

( ( ) ( ))

n

j i j

jLR

i i n

i
j i

j

I Z

U Z

I

   

 

   





 
 

  
 
 
 





.           ( 4 . 4 ) 

4.2.3 M-estimator by Ritov (1990) 

The idea was motivated by the parametric likelihood analysis. The likelihood  

function and log-likelihood based on ( ( ), ) ( 1,..., )i i i n     can be written as 

                    1

1

( , ) ( ( ) ) ( ( ) )i i

n

i i

i

L f f S
 

       



               ( 4 . 5 ) 

and 

1

( , ) log ( ( )) (1 ) log ( ( ))
n

i i i i

i

l f f S        


    

respectively. Taking derivative respect to  , we get  

1

( , ) ( ( )) ( ( ))
[ ( ) (1 ) ( )]

( ( )) ( ( )

n
i i

i i i i

i i i

l f f f
Z Z

f S

  

 

    
   

    


   


 . 

The difficulty comes from the fact that f , f
  and S  are all unknown functions. 

The idea of M-estimator is to replace 
( )

( )

f

f





 


 by ( )g   which is a known function. 

Accordingly 
( , )l f






 can be replaced by   

           
( )

1

( ) ( )
( , ) [ ( ( )) (1 ) ]

( ( ))
i

n
M

i i i i

i i

g u dS u
U S Z g

S


 





    
 






  


       ( 4 . 6 ) 

where ( )S   can be estimated by the following product-limit estimator 

1

1

( ( ) , 1)

ˆ ( ; ) 1

( ( ) )

n

j j

j

n

u t
j

j

I u

S t

I u


  



 







 
  

 
  

 
  





. 

The form of (.)g  and the underlying error distribution affect the efficiency of  
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the resulting estimator. Two common choices of ( )g   are ( )g u u  or  

( ) | |

.

k if u k

g u u if u k

k if u k

  


 
 

 

Note that if the error distribution is specified, we have  

( )
t

f f x dx 


 

( )
( )

( )t

f x
f x dx

f x






 
  ( ) ( )

t
g x dF x



   

which suggests the best form of (.)g  is 
(.)

(.)

f

f






 since it yields the maximum 

likelihood estimator.  

4.3 Inference under interval censoring 

Consider interval censored data 
,( , )i i iL R Z ( 1,..., )i n  which can be 

transformed under the error scale such that ( ) logL T

i i iL Z     and 

( ) logR T

i i iR Z    . Now we discuss how to extend the ideas of previous methods 

to interval censored data.  

4.3.1 Modify M-estimator by Rabinowitz et al. (1995) 

Consider the log-likelihood function  

1

ln[ { ( )} { ( )}]
n

R L

i i

i

L F F    


  . 

The MLE of   can be obtained by solving the score function 

                  
1

{ ( ) } { ( ) }
( ) 0

{ ( ) } { ( ) }

R Ln
i i

iR L
i i i

f f
S Z

F F

 

 

   


   


 


              ( 4 . 7 ) 

and it follows that 
0( ( )) 0E S   . Since the forms of f  and F  are un-specified, 

one can replace the middle part of ( )S   by  

[ { ( )}] [ { ( )}]
( , )

{ ( )} { ( )}

R L

i i
i R L

i i

g F g F
c F

F F

 


 

   


   





 

where the function g  with domain [0,1] satisfies (0) (1) 0g g  . Thus one can 

estimate   by solving  
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1

( , ) ( , ) 0
n

i i

i

S F c F Z  


  . 

In Appendix, we show why the restrictions on g  makes 
0[ ( , )] 0E S F  . Again the 

form of (.)g  and the underlying error distribution affect the efficiency of the 

resulting estimator. The best choice which leads to the maximum likelihood estimator 

is 1g f F 

 .  

   Recall that in Section 4.2.3, the nuisance function S  has an explicit 

product-limit estimator and hence ˆ( , (. | )) 0MU S     is solved. However for 

interval censored data, there is no explicit formula for estimating S  or F . One 

way of estimating F  is by maxing the likelihood based on 

{( ( ), ( ))( 1,..., )}L R

i i i n     . The grid intervals in which F  receives masses can be 

constructed similar to the setup in Section 2.4. Denote ( ) ( ( ), ( )]k kL kUt t t    for 

1,...,k m  as the mass intervals. The next step is to express the likelihood based on 

{( ( ), ( ))( 1,..., )}L R

i i i n      in terms of {( ( ), ( )], 1,..., }kL kUt t k m   . Define 

, , ,( ) max{ ( ) : ( ) ( )}L

i L j L j L it t t       and , ( ) min{ ( ) : ( ) ( )}R

i U jR jR it t t      . 

That is 
, ,( ( ), ( )]i L i Rt t   becomes a new representation of ( ( ), ( )]L R

i i     which 

will be a union of consecutive ( )kt  . The corresponding log-likelihood function 

becomes   

, ,

1

ln[ { ( )} { ( )}]
n

i U i L

i

l F t F t  


   

subject to 

, ,{ ( )} { ( )} [0,1] ( 1,2,..., )i U i LF t b F t b i n     

and 

{ ( )} [0,1] ( 1,2,..., )jF t j m    .  
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Given an estimate of  , the above maximization procedure can be performed. The 

resulting estimate of F , denoted as F̂ , will be plugged into the following 

estimating function to solve for the next estimate of  :  

                      ˆ( , )S F 
1

ˆ( , ) 0
n

i i

i

c F Z


 .                  ( 4 . 8 ) 

4.3.2 Method for a simplified AFT model with univariate covariate 

Besides the methods we discussed earlier, Li and Pu (2003) developed an 

interesting way to estimate  . Consider a simplified AFT model:  

i i i iY Z   ,    ( 1,...i n ). 

where iZ  is a one-dimensional covariate. The main idea of this paper is based on the 

assumption that i  and iZ  are uncorrelated. Kendall’s provides a rank-invariant 

measure for assessing the association between two variables. Suppose that ( , )i iZ  

and ( , )j jZ  are independent realizations from ( , )Z . The pair is concordant if 

{( )( ) 0}i j i jI Z Z     and discordant if {( )( ) 0}i j i jI Z Z    . The population 

version of Kendall’s tau is defined as  

   Pr{( )( ) 0} Pr{( )( ) 0}i j i j i j i jZ Z Z Z            .  

The sample estimate of   is  

{( )( ) 0} {( )( ) 0}

/ 2
2

i j i j i j i j

i j

I Z Z I Z Z

n

   

 

      


 
 
 


. 

If complete data are available, one can solve  

1
{( ( ) ( ))( ) 0} {( ( ) ( ))( ) 0} 0

( 1)
i j i j i j i j

i j

I Z Z I Z Z
n n

       


       

  

to estimate  . However ( )i i i iY Z     is subject to interval censoring such that 

we only know that ( ) ( ( ), ( )]L R

i i i      . Some interval observations provide the 



28 
 

complete information for the order of ( )i   and ( )j  . Notice that if 

( ) ( )R L

i j    , then 
i j  .  

 

Figure 4.1 The relative position of iε  and jε  when 
R L
i jε β < ε β( ) ( )  

 

Hence the total number of known concordant pairs becomes  

{ ( ) ( ( ) ( )) ( ) ( ( ) ( ))}R L L R

i j i j i j i j

i j

I Z Z I I Z Z I       


      

and the total number of known discordant pairs is  

{ ( ) ( ( ) ( )) ( ) ( ( ) ( ))}L R R L

i j i j i j i j

i j

I Z Z I I Z Z I       


     .  

The modified Kendall τ coefficient can be write as  

1
[ ( ) ( )][ ( ( ) ( )) ( ( ) ( ))]

( 1)

R L L R

i j i j i j i j

i j

I Z Z I Z Z I I
n n

       


     

 .  

The resulting estimation function is given by  

( ) [ ( ) ( )][ ( ( ) ( )) ( ( ) ( ))]R L L R

n i j i j i j i j

i j

K I Z Z I Z Z I I        


        

This method has two major drawbacks. One is the restrictive assumption that Z  is 

univariate. The other is the lack of efficiency if the data contains very few orderable 

paired intervals.  
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Chapter 5. Inference based on Proportional Odds Model 

5.1 Model and the likelihood 

Besides the PH and AFT models, the proportional odds (PO) model is also a 

popular choice. The proportional odds model is defined as  

                       l o g i t { ( ) } = l o g { B ( t ) }t

ZF t Z                   

( 5 . 1 ) 

where logit( )=log{ 1 }t t t , and ( ) ( | )ZF t P T t Z  . Note that B(t)  is a 

non-decreasing baseline function with (0) 0B  . Accordingly the distribution and 

density functions become 

( )
( )

1 ( )

t

t

Z

Z Z

B t e
F t

B t e











 

and 

(1)

2

( )
( )

{1 ( ) }

t

t

Z

Z Z

B t e
f t

B t e











 

  respectively where 
(1) ( )B t  is the derivative of ( )B t . The parameter of interest is   

and ( )B t . As before, we will examine likelihood-based inference methods.    

      Under right censoring, the observations consist of {( , , ) ( 1,2,..., )}i i iX Z i n  . 

The log-likelihood function is  

                1

1

l o g 1 ) l o g [ 1( ) ( ) ( ( ) ]
n

i i

i

i iZ ZFl n f x x  



              ( 5 . 2 ) 

   where ( , ( ))B t  . Under interval censoring, the observed data consist of   

{( , , ) ( 1,2,..., )}i i iL R Z i n . The log-likelihood function becomes  

                     1

1

( ) l o g ( [ ( ) ] )
i i

n

Z i Z i

i

l n F R F L 



                 ( 5 . 3 ) 

The presence of ( )B t  makes it difficult to directly obtain the M.L.E. by maximizing 

the log-likelihood function. We will present two methods both of which suggested to 
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replace ( )B t  by an approximated function which is easier to handle.  

 

5.2  Smoothing method for approximating the baseline function 

Shen (1998) proposed a sieve method to approximate ( )B t  in the likelihood 

function. The method can be applied to not only right censored data but also interval 

censored data. Now we briefly describe the approach. The basic idea is that the 

baseline ( )B t  can be approximated by a parametric function. Specifically define 

(1) ( )(0 )kI t t      be the location of knots and 
0 1( )kM m m m     as 

the order of polynomial in these subintervals. Here 
maxim N , k K  where maxN  

and K  are pre-assigned numbers. For convenience, we define ( , )h I M . Let  

                     ( ) ( 1 )

0 0

( ) ( )
imk

j

ij i i

i j

s t t I t t t 

 

                     ( 5 . 4 ) 

as splines with variable orders and knots. An example of ( )s t  is depicted in Figure 

5.1. There are two knots which form three intervals. Each interval contains a 

polynomial of different orders. From this figure, we see that ( )s t  can be used to 

approximate any smooth functions.  

The approximated function of ( )B t  is defined as  

ˆ( ) exp( ( ))
t

o
B t s x dx   

In order to ensure the smoothness of ˆ( )B t , the function ( )s t  must satisfy the 

following constraint: The spline at 
( )it  have a derivative of order 

1min( , )i im m
. 

Thus, we transform the parameters { ( ), }B t   into { ( ), }ij      which can 

be estimated from the log-likelihood ( )l   subject to the constraint.  

   The choice of h  is based on its comparative Kullback-Leibler risk ( )R h  which 

is defined as ˆ( ( ))E l   where ̂  is the estimator of   . Since the parameter   is 
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unknown, we cannot obtain it directly. For each fixed h , let ˆ
i  be the sieve 

maximum likelihood estimate of   without the thi  observation, and ˆ (.)iP  is the 

corresponding estimated distribution. Shen (1998) suggests that we can use the 

statistics 

1

1

ˆlog ( )
n

i i

i

n P





   

to estimate ˆ( ( ))E l   where 
i  is the thi  observation. This is the selector value 

of h . Then we choose optimal h  that minimizes ( )R h . 

 

 

Figure 5.1.  An example of ( )s t . Here 
(1) 4t   and

(2) 8t  . The polynomials   

from left to right are 3 2-x +6x +x - 24 , x+8 and 2x -15x +72 , respectively.  

Hence we find the universal sieve maximum likelihood estimator by estimating 

  and h  recursively. The detail of the algorithm is as following.   

Step 1: Initial spline 

For any fixed order maxm N , estimate { , }   using the maximum likelihood 
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method with single polynomial. Then we choose the optimal order m  that minimizes 

( )R h  

 

Step 2: Adding knots 

Consider a candidate knot point 
( )it  within an interval spanned by existed knots. For 

any fixed order 
0 1( , )M m m , estimate { , }   as step 1. Find the order M  that 

minimize ( )R h . This value is the selector of this candidate. Then the optimal 
( )it  is 

found using Fibonacci search to minimize the selector. 

Step3: Comparison 

Compare the original sieve maximum likelihood estimate based on the spline without 

( )it with the new one including 
( )it . If the new maximum likelihood estimate has a 

smaller value in terms of the selector, then split the interval into two and proceed 

further as in Step 2. Otherwise, go to Step 4. 

Step4: Repeat Steps 2-3 for all intervals spanned by existing knots until no new knot 

can be added 

5.3 Sieve method by Huang and Rossini (1997) 

The proportional odds model is expressed as 

                      l o g i t ( ) l o g i t ( )T

Z oF t F t Z                   ( 5 . 5 ) 

where 
0( ) ( | 0)F t F t  is the baseline distribution function. Let 

0( ) log ( )ot it F t  , 

the distribution function can be written as  

0

0

exp( ( ) )
( )

1 exp( ( ) )

T

Z T

t Z
F t

t Z

 

 




 
 

The difficulty of estimating   comes from the presence of 0( )t . Huang and 

Rossini (1997) proposed to is difficult to estimate this function by a function with nice 

analytic properties. The idea of this approximation is similar to the previous method. 
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If the real function 0 ( )t  is known, we might choose some knots 
(1) ( )0 < < kt t   

and let 

            
1 ( 1 ) 1 ( )

0 ( 1 ) ( )

1 ( ) ( 1 ) ( ) ( 1 )

ˆ ( ) [ ] ( )
k

j j j j j j

j j

j j j j j

b b b t b t
t t I t t t

t t t t
   



  

 
   

 
        ( 5 . 6 ) 

where 
0 ( )( )j jb t  and 

1 kb b  . Here we choose k and 
( )it  which satisfy  

1. k  be an integer that grows at rate ( )aO n  0 1a   

2. 1 ( ) ( 1)max ( ) a

j k j jt t Cn

     for some constant C 

 

Figure 5.2. The curve of 0α (t) (dashed line) and its approximate  

function(real line). Here ( ) )0α t = tlog(3  and we take 
(.)t =1,3,5,7,9  

There is some difficulty to implement the idea. Since the true function is unknown, 

0 ( )( )j jb t  is also unknown. Treating 
jb  as unknown, the restriction that 

1 kb b   has to be considered in the maximization. The estimator of Shen (1998) 

is easier to implement since the unknown parameters have no specific restrictions.  
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Chapter 6 Conclusion  

Most textbooks on survival analysis focus on right censored data. However 

empirical medical data are often interval censored. In this thesis, we review important 

inference methods which can be applied to interval censored data. We emphasize how 

the fundamental ideas of inference are extended to this complicated data structure. 

From the discussions, we see that many elegant techniques adopted for right censored 

data no longer applied. Instead, numerical algorithms become very important in 

analysis of interval censored data. Because the main purpose of the thesis is to 

provide a general review of many different methods, we do not investigate thoroughly 

on specific methods or algorithms. This can be interesting topics for future study.  
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Appendix 

Proof of E[ ( )] = 00 εS β ,F .   Let 0 1 1( )
ii i i i nX X X X      be the ith patient’s 

ordered sequence of examination times, where in  denote the number of examination. 

For convenience. define 
0iX   , and 

1ii nX   . Define iL  be the last of the ith 

subject's examination times preceding 
iT , and let iR  be the first examination time  

following 
iT . 

 

For a p-dimensional vector b , define bracketing examination times on the time 

scale of the residual by 

( ) log , ( ) logL t R t

i i i i i ib L Z b b R Z b      

We only have to prove 

[ { ( )}] [ { ( )}]
( ( )Z | , ) ( | , ) 0

{ ( )} { ( )}

R L

i i
i i i i i i iR L

i i

g F b g F b
E c b X Z Z E X Z

F b F b

 

 


 


 

where function g  with domain [0,1] satisfies (0) (1) 0g g  , then  

= ( ( )Z | , ) 00 ε i i i iE[S(β ,F )] E c b X Z   

Consider  

1( | , )i k i i k i iP X T X X Z   

 1( | , )t t

i k i i i k i i iP X Z b T X Z b X Z      

1 1( ) ( )t t

i k i i k iF X Z b F X Z b      

1( ( )) ( ( ))i k i kF b F b    

Thus,  

[ { ( )}] [ { ( )}]
( | , )

{ ( )} { ( )}

R L

i i
i i iR L

i i

g F b g F b
Z E X Z

F b F b

 

 




 

1
1

0 1

[ { ( )}] [ { ( )}]
( | , )

{ ( )} { ( )}

in

ik ik
i k i i k i i

k ik ik

g F b g F b
P X T X X Z

F b F b

 

 




 


  


  
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1

0

[ { ( )}] [ { ( )}]
in

ik ik

k

g F b g F b 



   

1

0

[ { ( )}] [ { ( )}]
in

ik ik

k

g F b g F b 



   

1 0[ { ( )}] [ { ( )}]
ii n ig F b g F b    

[ { }] [ { }]g F g F     

[1] [0] 0g g    

The proof is complete.  


