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SUMMARY

This paper propose new but unambiguous systematic decompositions of
the effect of covariates on a response variable into main effect and
interaction effects. The population type main effects and interaction
effects under the normal distribution are formulated. These effects under
some examples of distributional parameter settings are computed and
presented. Then, this settings make the study of main effects and
interactions available through classical statistical inferences techniques.
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A Re-visit of

Assessment of Interactions in Chemical Mixtures

SUMMARY
This paper propose new but unambiguous systematic decompositions of the
effect of covariates on a response variable into main effect and interaction
effects. The population type main effects and interaction effects under the
normal distribution are formulated. These effects under some examples of
distributional parameter settings are computed and presented. Then, this
settings make the study of main effects and interactions available through

classical statistical inferences techniques.

Key words: ANOVA; antogonistic-effect; grand mean; interaction; linear

regression; main effect; synergistic effect:

1. Introduction

In biological scienees, it often-needsto verify if several covariates (factors
or characteristics)umeasured from-the subjects are risk factors for a caues of
disease (cancer) or death. For examples, Ponce, et al. (2005) investigated if
maternal age (categorized as < 20,20 —29,30 — 34, >"35 years), maternal
race/ethnicity (African American, White, Hispanic, other races) and some
others are risk factors for preterm birth and Kifley et al. (2007) studied if
smoking (current smoking and past smoking), alcohol use (light, moderate
and heavy) are some others casuses of retinalvenular carliber. The obser-
vations of a covariate are generally classified into intervals (categories) that
aims not only for detection if presence of this covariate forms a risk factor
for the cause but also find support for cumulative lifetime exposure to risk
factor such as smoking would cause more chance of disease or death.

The toxicological research has long been devoted to assess the risk with
exposure to single chemicals in the environment. However, organisms are
rarely environmentally exposed to single chemicals in isolation. More typ-
ically, exposures occur to multiple chemicals simultaneously. It has long

understood that the behavior of one chemical in the body is affected by
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other chemicals. Recently most researches in the literature have been in-
vestigated on the important area of toxicology of mixed chemicals. One
very important study in chemical mixtures is the detection for existence of
interactions and characterization of an interaction being synergistic or an-
tagonistic effect. It is important for this study since one may overestimate

or underestimate the true risk.

There are several approaches for studying the chemical interactions. The
most common technique in analysis of toxicologic interactions is by classify-
ing the chemicals into interval levels and verifying it through the analysis of
variance (ANOVA). This technique can detect the existence of interactions,
however, there is no description of the interaction to be given. The isobolo-
graphic method has a long history but is recently popular as an alternative
method for the study of chemical interactions. Berenbaum (1981) defined
the interaction index through fixed ratio ray designstodetect if the chemical
mixture is additive, synergistic or antagonistic: However, this techniques of
isobole require experimental iterations to obtain the doses of the studying
chemicals that will cause the same magnitude of effect which is not only
labor extensive and require a large number of animal experiments but is not
applicable in real data analysis. For references of various interaction de-
tecting techniques and discussions, see Rider and LeBlane (2005), Ei-Masri,
Reardon and Yang(1997), Charles et. al. (2002) and Mumtaz et al. (1998).

A systematic investigation of mixed chemicals in the environment or
workplace is highly desired while. the isobolographic method is not appli-
cable for this practical investigation of interaction characterization. It is
interesting to see if we can develop an ANOVA like model deserving the
benefit of providing valuable insights into the detection of interactions be-
ing synergistic or antagonistic that is done by the isobolographic method.

In Section 2, we state the fundamental framework of a grouping ANOVA
model for one response variable and several chemical variables that states
new concepts of main effects and interactions. In Section 3, we introduce the
parameter type main effects and interactions where results are computed and

discussed when specifications of normal distribution are given. In Section



4, we perform a simulation study for parametric estimation of these effects.
The simulated results indicate that the proposed estimating method is quite

promissing. In Section 5, the proofs are provided.

2. Decomposition of Total Effect Into Covariate Contributions
Let Y be the effect of exposure to two chemicals X; and X5 where random
variables Y, X; and X5 have a joint distribution with mean y and covariance

matrix X as

2
oy Ty Oy O2y
_ _ 2
p=1|p | andX = 1|0, of o012 |- (2.1)
2
2 Oy2 021 03

A key in statistical analysis for toxic effects of a mixture is the formulation
of combined effects as linear function of main effects and interactions. Let
A; = (0,a1], A2 = (a1,02]0. 0 Am = (@p—1,00)and By = (0,b1], By =
(b1, b2, ..., By = (bg_1,00) be respectively, the interval types partitions of
the spaces of X; and X3 where a;’s and b;’s are two known increasing

sequences. The conditional meanof y on rectangularlevel A;x B, is denoted
by pjs = E(Y] <§;> € Aj; X Bg). By defining the groupvariable Y;, =
Y|X; € Aj, Xy €:B,, the error variables as €;, = ¥, — 4, the effect

variable Y in each rectangular level 4; x B, may be represented in a location

model as
B; B By
Ay Y =pnten Yio=pi2+€2 .4 XY= pie+ e
As Yo = po1 + €21 Yoo=piag+€25 ... Yop= pos+ €y
Am le = Wm1 + €m1 Ym2 = WUm2 + €m2i ... me = Wme + €Eme

(2.2)
The two way classical ANOVA technique applying on this interval group-
ing problem is assuming the following ANOVA model

Yig=p+o; + 0y +7vjg+€g:d=1,.,mg=1,..,¢ (2.3)

. . ‘ ¢
with restrictions Y370, a; = >3 ) By = D0 Vig = g1 Vjg = 0. Ap-
plying this classical ANOVA method for toxicological study can only detect



the existence of interactions but can not tell us if they are synergistic or
antagonistic due to these restrictions when they exist.

The central to the problems in interaction study is that the statistical
modeling does not involve the joint distributions of effect variable and chem-
ical variables so that relative contributions of chemicals can not accurately
defined. The population mean p, is a combination of mean of non-polluted
Y and polluted Y. The population mean of a non-polluted subject Y may
be formulated as

pos = E(Y[X <0).

Definition 2.1. Let Aq,..., A,, be the interval levels. Suppose that there
are constants p and b such that the conditional mean p; = E[Y|X € Aj]
may be written as p; = p+ bE(X = 0,|X @ A;). We call p; = p — pop the
X contributed grand meancand 1; =bE(X =6,|X c'A;) the X contributed

main effect. We also call g the grand mean.

The main effect measures the-contribution of covariate X; on the mean of
effect variable Y. With the established main effect formulations, the effect
variables at levels'may be formulated as

Ay As e Am
(2.4)
Yyr=p+n+€ Y2 =S ptN T L Ym = M At €m
These one way ANOVA: - like models are not identical to the classical one
way ANOVA models since their main effects.are not restricted to have zero
sums.

Now, suppose that there are two chemicals (covariates) that contribute
the effect variable Y. We denote 1, ; and 7, 4 as the main effects, respec-
tively, for chemical variable X; at level A; and for variable X, at level B,.
The population mean of non-polluted effect is poz, 2, = F(Y|X1 <0, Xs <
0). The conditional mean p;, = E[Y|X; € A;, Xy € By] quantifies the
effect of exposure to chemicals X; and X, at level A; x B;. No interaction
intuitively represents the fact that ju;, is the sum of p with two individual

main effects.



Definition 2.2. Suppose that there is constant p and vector b such that

the the group mean p;, = E[Y|X1 € Aj, X2 € By] may be written as
. E[X1—91|X1€A'X2€B]
g . e 4 70 g
/’[’]g - /’[’ + /j'com,jg Wlth Mcom,gg - b (E[Xz o 02|X1 c Aj,XZ c Bg] .
(a) We call pig,zy = 14 — fhoz 2, the (X1, X2) contributed grand mean and p

the grand mean in this model.
(b) We say that ficom,jg the (j, g)-th combined effect and there is no inter-

action if the level Aj X By combined effect can be written as

Pcom.jg = NMzy.j + Nay,g, for all j and g. (2.5)

The interaction of exposure to these two chemicals at level A; x By is

defined as the effect excceeding the no-interaction conditional mean.

Definition 2.3. (a) The interaction-at level. A; x.B, is defined as

159 = Heom,jg Tl s o] (2.6)

(b) If nj4 > 0, we say that there-is synergistic effect and, if ;, < 0, we say

that there is antagonistic effect at level A; X &5,.

With the above settings, the effect variable in interval level A; x B, of
(2.2) may be formulated into an ANOVA like model in the following:

Yig =M+ Nzy 5+ Ny g+ Njg + €jge (2'7)

This reflects the aggregate contribution of two covariates X; and X5 being
Py wo TNy j+ s ,g T Njg- Hence'the group mean 1i;, may not be completely
contributed by X; and X, at level A; x By unless po z, », = 0. We say
that a two way ANOVA model is additive if n;, = 0 for all j,g’s. This
formulation of interactions does not make any restriction on the main effect
and interaction parameters so that it is appropriate for making inferences
of synergistic or antagonistic effect based on this model. This conceptual
development of main effects and interactions in this section is for general
study. In the next section, we restrict on the normal distribution for explicit

formulation of these characteristics.



3. Main Effect and Interaction Formulation Under Normal Dis-

tribution

Consider that we have a subject that is exposed to chemical variable X

and the exposed effect variable Y and X are jointly normal with distribution

Y 0y 05 Oy
() () (2 )
We first display formulations of un-polluted effect and main effect.

Theorem 3.1. With normality assumption, we have un-polluted effect as

Pyz0 _93 PyzO _93
yr-y 2 yr-y %

a::g - e %z, l, = 2o
T Vane ) e )

and main effects as

Pyz O _10=0g )2 _1ca)—Oxy2
N o SR T
o _1%i—1-0 2 L 1,950 2
Ch M(Q(J—“"&y)—;u—“‘*%)){e 896 N/ <38
’,”m _ _'_ pyxa—y e_%(am;lzfem )2

Vam(1 - (2=t ))

T

where py, = Uay[f is the correlation coefficient between Y and X and & is
yOx

the distribution function of the standard normal distribution.

In Table 1, we set up several parameter values to display the un-polluted
effect.

Table 1. Un-polluted effects po, and pg
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Oyl = 0.2 Oyl = 0.4 Oyl = 0.7 Oyl — 0.9
0, = 1.5
1.195 0.890 0.432 0.127
p=1 (0.305) (0.610) (1.068) (1.373)
1.163 0.825 0.319 -0.019
12 (0.337) (0.675) (1.181) ( 1.519 )
0, =2
1.695 1.390 0.392 0.627
b =1 (0.305) (0.610) (1.068) (1.373)
1.663 1.325 0.819 0.481
1.2 (0.337) (0.675) (1.181) (1.519)
1.612 1.225 0.643 0.255
Lo (0.838) (0.775) (1.357) (1.745)
1.561 1.121 0.462 0.022
L8 (0.439) (0.879) (1.538) (1.978)
6, =3
2.695 2.390 1.932 1.627
O = (0.305) (0.610) (1.068) (1.373)
2.663 2.025 1.819 1.481
12 (0.337) (0.675) (1.181) (1.519)
2.612 2.225 1.643 1.255
Lo (0.388) (0.775) (1.357) (1.745)
2.561 2.121 1.462 1.022
L8 (0.439) (0.879) (1.538) (1.978)
2.525 2.051 1.339 0.684
2 (0.475) (0.949) (1.661) (2.136)
2.436 1.871 1.024 0.460
2:5 (0.565) (1.129) (1.976) (2.540)

We have several comments for the results in Table 1:

(a) The quantity g, measures the effect on Y not polluted with chemical

X. This effect, for fixed 0,,decreases when 6 increases. For fixed 0,, this

effect increases in 0,.

(b) The quantity p, measures the constant effect contributed by variable

X. The un-polluted effect, for fixed 6,, increases in 6,. For fixed 0, this

un-polluted effect is a constant in 6,,.

We compute the main effects and display the results in Table 2.

Table 2. Main effects




" 2 3

0, =1
Oyz = 0.2 —0.048 0.137 0.300
0.4 —0.096 0.273 0.600
0.7 —0.168 0.478 1.049
0.9 —0.216 0.614 1.349

0, =15
Oyz = 0.2 —0.078 0.137 0.300
0.4 —0.156 0.273 0.600
0.7 —0.273 0.478 1.049
0.9 —0.351 0.614 1.349

0, =2
Oyz = 0.2 —0.096 0.137 0.300
0.4 —0.192 0.273 0.600
0.7 —0.337 0.478 1.049
0.9 —0.433 0.614 1.349

The main effects (1) are negative for lower level are negative and are
negative for bigger levels (5 and 72). This shows'that main effects positive
or negative is not only relying on covariance between ¥ and X but also
relying on low or high levels.-This shows that this setting makes the main
effects independently ‘determined by the relationship between variables Y
and X. This property is not allowed in the ¢lassical ANOVA model that
can only detect if the main effects exist.

Assume that the subject is exposed to chemical variables X; and X

and the exposed effect variable Y and X, and X5 are jointly normal with

distribution
Y 7} o2 o o
y Y 1y 2y
2
X1 ) ~N3(| 0y ), | ay1 07 o012 ])-
2
X5 02 Oy2 021 03

It is known that the conditional mean of Y given X1 = x1, Xo = x5 is
0'% J12 -t 1 91
9y|x1$2 :9y - (0y1,0y2) (‘721 U% > (<CL‘2> - <9z>)
9 -1
. . 01 012 91
_021 (O-y170-y2) <0_21 0_% > (92>

—1
2
g g T
1 12 1
+ (oy1,042) 2
021 0'2 o



When X; and X5 are uncorrelated, the conditional mean then is
Oy1 Oy2 Oy1 Oy2
_ Yy Yy Yy Yy
9y|$1m2 —Qy— 3 91— 3 92+ 2.I'1+ 2.712.
01 02 01 03

We now state the results for some types of effects defined earlier in the

following theorem.

Theorem 3.2. Suppose that the normality assumption is true.

(a) The (4, g)th group mean may be decomposed as jjg = ft + fhcom,jg With

0'% 012 -t 91
=0y — (oy1,0y2) oo 02 0,

and

a7 U12>_1 <E[X1|X1 € Aj, X € Bg])

Lcom,jg = (Ty1,0y2) (021 o3 E[Xs| Xy € Aj, X, € By

(b) The un-polluted effect for two chemicals is

O'% 0'12>_1[<E[X1|X1SO,XQSO]—91>.

Hoaray = Oy + (0515 72) <0'21 0% E[Xs| X1 <0, X, <0]— 0,

(¢) The (z1, z2)-contributed grand mean-is

-1
_(0_ o ) O'% 012 [ E[X1|X1§0,X2§0]
yl»Py2 0921 0'% E[X2|X1 S 0,X2 S 0] '

(d) The level A; x B, interactions is

0'% 0'12>_1 <E[X1|X16Aj,X2€Bg]

g = (1, 0y2) <0‘21 o3 E[X,|X, € A}, X, € By ) (1. F 7k ]

where main effects 7n;, ; and 7n,, 4 are, respectively, defined in the form of
(3.1) for variables X and Xo.

The mixture of chemical variables X; and X5 contributes to toxicity Y
through the common mechanism of the sum of individual effects and the
interaction effect. However, the interaction is not contributed from any

product term between conditional means of X; and Xo.
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Let us give an example for explanation of interactions where we con-
sider a three dimensional normal distribution for Y, X, X5 with mean and

covariance matrix as

Hy 1 Oy1 Oy2
on = 1 and ¥ = O1y 1 012 . (32)
1 02y 021 1

The interval levels are determined with a; = F, 1(2/3),as = F; }(5/6) and
by = F;.}(2/3),b, = F;,'(5/6). In Tables 3 and 4, we display the true

interactions for these inetrval levels.

Table 3. Unpolluted effect

Oy1 = 0.2 Oy1 = 0.3 Oy1 = 0.7
Oy2 = 0.7 Oy2 = 0.4 Oy2 = 0.9
012 — 0.3
py = 1.2 0.093 0.338 —0.777
ty = 1.5 0.390 0.637 —0.481
py = 1.7 0.591 0.840 —0.276
fy = 2.0 0889 1.136 0.023
g19 = —0.3
py = 1.2 —0.624 —0.220
ty = 1.5 —-0.323 0.079
py = 1.7 —0.124 0:282
fy = 2.0 0.176 0.584
Table 4. Unpolluted effect
Jyl =0.2 Uyl =0.3 Uyl =0.4
Oy2 = 0.2 Oy2 = 0.3 Oy2 = 0.4
012 — 0.3
fy = 1.2 0.707 0.465 0.211
py = 1.5 1.004 0.761 0.511
py = 1.7 1.207 0.961 0.712
py = 2.0 1.506 1.258 1.014
012 — —-0.3
fy = 1.2 0.392 —0.019 —0.426
py = 1.5 0.683 0.271 —0.130
py = 1.7 0.886 0.487 0.067
fy = 2.0 1.191 0.783 0.380

It is seen that the un-polluted effect po, ., may be negative. This happens

because the assumption of a joint continuous distribution.




In the next, we display the interaction effects.

Table 5. Interaction effects for o1 = 0.2 and oyp = 0.7

11

(Hys Ty1, 0y2) = (1.2,0.2,0.7) (1.5,0.2,0.7) (1.5,0.3,0.4)
012 — 0.3
11 0.736 0.736 0.586
712 0.741 0.741 0.454
113 0.720 0.719 0.454
721 0.575 0.572 0.475
122 0.555 0.549 0.426
123 0.554 0.558 0.354
731 0.427 0.428 0.371
732 0.384 0.383 0.321
733 0.429 0.437 0.245
012 — —0.3
11 1212 1.216 0.945
N12 1:302 1.303 1.041
M3 1.379 1.382 1.127
N21 1.394 1.404 1.064
122 12543 1.543 1.200
123 1.584 1.596 1.276
731 1.562 1.559 1.162
732 1.712 1.72% 1.286
733 1.719 1.741 1.353

There are comments for the results displayed in Table 5:

(a) The interactions'are antagonistic when o is positive valuesand synergistic

when p is negative values, and'it is an additive model when p is zero.

(b) There is monotone property.for the interactions with

Nij < Ni+1j and Nij < Nij41-

This is interesting. Unfortunately, we are not available to provide theoretical

proof.

(¢) The interaction effect to be positive or negative is not solely dependent

on the sign of correlation coefficient between X; and Xos.

We here state a second type of interaction effect.

Definition 3.3. By defining d;, = E(Y|X, € A;,X; € By) and 07, =
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E(Y|X: € Aj, X3 € By,012 =0). The type II interaction is defined as

Nig = 5}9 — 6J2-g, for all j and g¢.

We display the computed results of this setting of interaction in Table 6.

Table 6. Type II interaction effects for with oy = o0 = 0.4

fy = 1.2 fy = 1.5 py = 1.7
012 — 0.3
711 0.045 0.056 0.035
712 0.034 0.055 —0.014
113 0.026 0.025 —0.073
721 —0.119 —0.137 —0.038
722 —0.159 —0.145 —0.115
723 —0.146 —0.105 —0.180
731 —0.260 —0.255 —0.140
732 —=0.305 —0.281 —0.194
733 —0.263 —0:240 —0.164
g19 = —0.3

N1 =0.067 —0.067 —0.065
12 0.010 0.014 0.030
713 0.107 0.099 0.147
721 0.117 0.109 0.084
722 0.245 0.229 0.197
723 0:325 0.324 0.236
731 0.295 0.266 1.156
732 0.408 0450 0.290
733 0.414 0465 0.312

Again, this type of interaction effect.may be positive or negative for any

sign of correlation coefficient between X; and X,.

4. Statistical Inferences for Interactions

With specifications of main effects and interactions, it is then interest-
ing to introduce techniques of statistical inferences for them when they
are practically unknown. In this section, we will perform a simulation
to verify the efficiencies of one parametric estimation of the main effect
and interaction. We set the levels as a1 = Fj '(2/3),a2 = F,; '(5/6)
and by = F;,'(2/3),b, = F,,'(5/6). We assume that we have observa-
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U1 Yn
tions | 11 |,..., | x1n |- Let the sample means and sample variances
T21 Ton

for Y, X1, X2 be respectively denoted as Y, Xy, X5 and 55,512,53. Also,
we denote the sample correlation coefficients for {Y, X1} and {Y, Xz} be

respectively denoted as r,; and ryo. Some statistics are defined below:

a1 = F{1(2/3), 80 = Fy1(5/6),b1 = F571(2/3),by = F5 ' (5/6),

v S _ a1 X1 2
Nx1,1 = @ljlg?ll . X, [ —€ g )
Ver[@(H5=t) — @(=51)]
Lo Yy1Sy WEE Ry, 1227 Fy
T]Xl,z - &2_)2'1 &I_Xl [ ]
V2r[®(*257) = ‘I’(s—l)]
N v S _1 a2 X1 2
Nx1,3 = Tyt e )

Vol - oS )]

. S2 1 S1o N\ iy ] .
Njg = (Sy1, Syz) <821 S% > <ﬂ2;z> — [nXl,j iy 77X2,g]

S Xl (X € Aj, Xy € By)

Yoy XoiI(X1; € Aj, Xy € By)

ith S i
W :U’ljg ZZ:]_ I(Xlz € A]7 X2’L c Bg) = zzzl I(Xlz = AJ’ XZZ € Bg)
1 100,000
MSE’s for main effect MSE; = ———— i — 1)
SE’s for main effee J = 100,000 ; (Mg — ny)
1 100,000
MSE’s for interactions MSE,, = 100,000 ; (Mjgi — 77jg)2-

In the simulation studies in this section, the replication numbers are all
100,000’s. With sample sizes n = 30 and 50 and designs of parameters
(fy, 0y1,042), we display the average of simulated main effects and their

MSE’s corresponding variables X; and X5 in Table 7.

Table 7. Performance of main effects and their corresponding MSE’s
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(Ny, Oyls a—yQ) n 2 s
n =30
—0.049 0.133 0.297
(1.2,0.2,0.7), X3 (0.003) (0.021) (0.086)
. —0.172 0.469 1.043
2 (—0.168) (0.064) (0.178)
—0.074 0.201 0.447
(1.5,0.3,0.4), X, (0.004) (0.026) (0.096)
. —0.099 0.268 0.595
2 (0.004) (0.032) (0.110)
n = 50
—0.049 0.135 0.298
(1.2,0.2,0.7), X, (0.002) (0.012) (0.051)
. —0.170 0.472 1.044
2 (0.005) (0.038) (0.105)
—0.073 0.203 0.449
(1.5,0.3,0.4), X, (0.002) (0.015) (0.057)
. =0.098 0.270 0.597
2 (0:002) (0.019) (0.065)

From the MSE’s results in Table 7, it is seen that the estimation of main
effect through theé ‘above parametric estimation is effcient since the MSE’s
are reasonably small. We also see that the MSE’s for n = 50 are relatively
smaller than those for n = 30. This shows that increasing the sample size

may reduce the errors in estimation of main-effects:

For sample sizes n = 30 and 50;.we_also.perform the simulation of esti-
mating the interactions and the'simulated results are displayed in Table 8
and 9.

Table 8. Interaction effects and their MSE’s (012 = 0.3,n = 30)
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(s Oy1: Oy2) (1.2,0.2,0.7) (1.5,0.3,0.4) (1.0,0.2,0.3))
0.752 0.586 0.417
1 (0.049) (0.060) (0.064)
0.748 0.538 0.388
h2 (0.055) (0.063) (0.064)
0.691 0.467 0.342
s (0.125) (0.084) (0.075)
0.685 0.551 0.391
121 (0.501 (0.194) (0.159)
0.556 0.433 0.307
22 (0.078) (0.065) (0.059)
0.526 0.369 0.267
123 (0.186) (0.104) (0.080)
0.457 0.423 0.295
131 (0.103) (0.084) (0.072)
0.383 0.340 0.238
152 (0.121) (0.092) (0.072)
0.381 0,296 0.212
153 (0.225) (0431) (0.094)
Table 9. Interaction effects and their MSE’s (o412 = 0.3, 2= 50)
(s Oy1s Oy2) (1.2,0.2,0.7) (1.5, 0.3, 0.4) (1.0,0.2,0.3)
0.740 0.576 0.411
i (0.028) (0.033) (0.036)
0.724 0.521 0.376
h2 (0,030) (0:032) (0.033)
0.672 0.453 0.331
s (0.070) (0.048) (0.037)
0:605 04504 0.357
121 (0:323) (0:110) (0.085)
04534 0.414 0.296
22 (0.045) (0.034) (0.030)
0.514 0.356 0.259
123 (0.123) (0.058) (0.044)
0.435 0.406 0.284
a1 (0.056) (0.043) (0.036)
0.366 0.325 0.229
32 (0.069) (0.050) (0.038)
0.387 0.300 0.215
133 (0.130) (0.074) (0.049)

We have several comments for the results in Tables 8 and 9:

(a) Most MSE’s are low enough showing that the estimators are quite effi-
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cient in predicting the unknown interactions. However, there are few (for
examples, 0.501 when n = 30 and 0.323 when n = 50 for ny; with de-
sign (1.2,0.2,0.7)) with relatively larger MSE’s. This is due to small sizes
of samples falling in these cells. This also indicates that level settings is

important.

(b) Comparison of the MSE’s for cases of n = 30 and 50, we see that
increasing the sampel size can reduce the MSE’s for estimation of unknown

interactions.

5. Appendix

We denote that the conditional pdf of y given X; € A; is

fy|A / fy|901 Xl c A )f$1(x1)d$1

and the conditional pdf of y given A; x By is

1

Xz) EAj XBg)

fa:lwg (331, ~T2)d5171d332

1
- X / fy,m,wg (Z/,l'hxz)dxld:r;z.
P(<X;> S Aj X Bg) AjxBy
since X ; fz1,20 (€1, x2) is the truncated pdf of X; and X, on
P(<X;>6Aj><Bg)
Aj X Bg.

Proof of Theorem 3.1: From the well known property E(y|z) = 6, +

£ Pur%s (x — 0,) where z is a given value, we have conditional mean of Y at
x
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Ay
“0:/ yfyia. (y)dy
oo 1 a
:/ooyP(0<X<a1) ) [y, z)dzdy
1 ai 00
T PO<X <a) /0 [/_oo yf (yle)dy] fo(x)dz
= 1 " PyzTy
= P X < al)/o 8y + = (@ = 02))fo(2)de
=0, + 1 pyxay[/ale (z)dr — 0, P(0 < X < ay)]
Y PO<X<a) o: Jy r T S ASap
(5.1)
_ pych'y _l(*Gm )2 (al O )2
_0 + e 2 oz —6 2
Y \/ﬂ[q)((na—&c) . (I)(_a-im )][ ]
@ o a1 Gm
from the fact that f_oo zfp(@)dy =0;P(X < a1)— \/;_e 3 ). For-

mulation (5.1) states the'linear function of conditional mean E(X|X € A;).

The other 6;’s may be derived analogously and are skipped. [

Proof of Theorem 3.2: The conditional mean of Y given the intercal

Aj x B, can be derivedias follows:

Hijg = / yfy|Aj><Bg (y)dy

:/ Y Xl / / f Y, L1, L2 d.’lfldl'zdy
P(<X2> € A;x By)
N X]. / / / yf y|$1’x2)dy]f$1 T2 (I'I,I'Q)dl'ldl'z
P(<X2> € Aj x By)
= 9 + a'y170-y2)< 1 122> (< 1>_<
P(<X1>6A x By) 021 O3 T
Xo

le,zg (Il,xz)dxldl‘z

2 -1 . B
:9y+(0-y1,0-y2) (0-1 012> <E[X1|X1 GA]7X2€BQ] 91> .

0921 O'% E[X2|X1 EAj,XzEBg]—92
The result of (a) is straight forward and the result of (b) is induced from
(2..6) with (a) and the above conditional mean. [J
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Proof of Theorem 3.4: Assuming that X; and X5 are uncorrelated, they
are independent in this normal case and the formula is derived from the

followings:

1
]
Hig = Oy + P(X, € Aj)P(X5 € By) (741, 02) ( 0 o2

o2 0\ [0

1
P(Xl € AJ)P(XZ € Bg)(

(X2 € By) fAj x1 f1(z1)dxy
(X1 € 4y) fBg T2 fa(w2)dry

|»—l,_.w|>—\

= P
=0, + CTylvcry2) p

N )|

o

— 1280, + 2420,

01 P
P Ja, w1fr(a1)day o) L Tv2 I, w2fo(x2)dzs )
=0t e Cexeay W2 g eny
:,u/y12+77;’+772- O
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