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Summary

A general concept of population type multivariate reference region is
introduced. This provides flexible applications of multivariate reference
region. Given one population multivariate reference region, its estimation
and hypothesis testing are important topics in statistical inference for this
unknown region. We present several examples of population multivariate
reference regions. Given multivariate normal case techniques and
criterions for estimation and hypothesis testing are presented and
evaluated.
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Multivariate Reference Regions

SUMMARY
A general concept of population type multivariate reference region is introduced.
This provides flexible applications of multivariate reference region. Given one pop-
ulation multivariate reference region, its estimation and hypothesis testing are im-
portant topics in statistical inference for this unknown region. We present several
examples of population multivariate reference regions. Given multivariate normal
case, techniques and criterions for estimation and hypothesis testing are presented

and evaluated.

Key words: Estimation; hypothesis'testing; reference interval; multivariate reference

region.

1. Introduction

The determination of intervals to provide reference limits is fundamentally im-
portant in clinical chemistry. The reference interval in laboratory chemistry refers
to population-based reference values obtained from a well-defined group of refer-
ence individuals. This is an interval with two confidence limits which covers the
measurement values in the population in some probabilstic sense. The reference
interval tells the physician if the patient’s value is expected in a healthy or diseased
individual or if further testing is warranted. For review of reference intervals, see
Horn and Pesce (2003) and Hung, Chen and Welsh (2010).

Most medical decisions require consideration of several co-existing pieces of infor-
mation, and because these pieces such as blood constituents are often correlated, the

multivariate reference regions is more useful than conventional univariate reference
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intervals for interpreting clinical laboratory results. There is the uncomfortable
statistical fact that when many clinical tests are run on a blood sample from a
healthy person, there is a high probability that at least one result will lie outside
its reference interval. This indicates that a multidimensional point of correlated ob-
servations is likely to lie within the individual’s multivariate reference region, even
when one or more of the observations lie outside their separate reference intervals

for the individual (see Schoen (1970) and Harris, Yasaka et al. (1982)).

Although multivariate reference regions in the practice of clinical chemistry and
laboratory medicine is very important, however, it has been received only limited
attention in literature and applications. The major reason for this is that there is
lack of a natural ordering for multivariate data. This reason also make the existed
proposals of multivariate reference regions more or less ad hoc and then most existed
ones do not have parametrized versions so that their applications are extremely
limited (see Chen and Welsh"(2002)):" This leads to an unfortunate result. Those
laboratories that can not perform their own detailed reference region (interval)
studies may need to validate reference regions published elsewhere for their own
populations. However, validation of a reference region or interval is generally done
through statistical inferences technique such as confidence interval or hypothesis
testing that is not allowed to do so if a multivariate reference region is not a sample
realization of a population type multivariate reference region. This paper aims to
introduce some general but systematic and concise techniques in constructions of
probabilistic population multivariate reference regions that allows us to establish
statistical inferences such as estimation and hypothesis testing for this unknown

region.



In section 2, we introduce general concepts of population multivariate reference
region. Examples of this population region for multivariate normal distribution and
an beta related multivariate distribution are introduced. In Section 3, a techique of
multivariate reference region that may be tranformed from multivariate rectangle is
introduced and studied. In Section 4, we introduce two criterions of estimation of
unknown multivariate reference region. Simulation results for crietrions of area and
mean square error (MSE) are presented. In Section 5, we present a technique that
can test a hypothesis of location parameters and scale parameters simultaneously as

a tool for validation of a multivariate reference region for a laboratory’s population.

2. Multivariate Reference Regions for Independent Transformation Avail-
able Distribution

Let Y be random vector of p variables with joint probability density function
(pdf) f(y,0) where 6 parameter vector in ©.-We denote the sample space of random

vector Y by I'y.

Definition 2.1. A 6 dependent subset-C\,(6)-of space I'; is called the v reference
region if it satisfies

Py(Y € Cy(f)) = for 0 € ©.

The interest is how to develop v reference region Cy(0) for a distribution of Y.
The difficulty in constructing v reference region for Y is that elements of Y are

generally correlated.

Definition 2.2. We say that the distribution of a random vector Y is independence-

transformable if there is invertible function Z = G(Y, 6) such that elemets, Z1, ..., Z,,

of Z are independent with, respectively, parameter-free pdf’s fi(z1), ..., fp(%p)-



Let us denote the sample space of vector Z by I',. In the following example, we

present two independence transformable distributions.

Example 1. (a) Suppose that ¥ has multivariate normal distribution N, (p, )
where X is positive definite matrix. We know that Z = £~1/2 (Y — y) is p vector
of i.i.d. random variables with standard normal distribution N(0,1). Hence Y is
independence-transformable where he sample space of Y and Z are, respectively,
r,=T, =R"

Y

v ) has a joint pdf
2

(b) Suppose that bivariate random vector (

Lo+ B+ _ _ _ 1
Frov (1, 72) = Y o=t (1—yp) A=t (YL yati-1(_Yi)y < <m<t,
2

T(a)T(B)T(v) " " "

2 Y .
- ) 1
By letting () = ( ), we.may see that-Zi and Z» are independent random
Z Y1/Ys

variables, respectively, with distributions beta(a, ) and beta(a + (3,7). Hence Y is
independence-transformable:where the sample space of Z isT", = (0,1) x (0,1) and
sample space of YV is Iy, = {<z;> 10<yy <ya<1}. 0

We now consider that for p-vector Y;-we havea transformed vector Z = G(Y, 0)
that includes independent and parameter-free elements 7y, ..., Z,. Then, reference
region Cy(#) may be constructed based on a Z-based reference region through in-

version.

Definition 2.3. Suppose that there is a Z-based ~ reference region C',, a subset of

['z. We define the « reference region for distribution of Y as
Cy(0) = Ggl(Cz) ={yel:G(y,0) €C,} (2.1)

where G, 1 is the inversion of function G.



Two approaches are available for construction of Z-based « reference region C,.
First, in some situations, we can introduce C, through a univariate mapping on Z.
Second, since Z has independent elements, it is allowed to construct C'z through

product of element-wise reference intervals. We first introduce the second approach.

Definition 2.4. If there is distribution of a univariate mapping @, = ¢(Z) so that

a <y coverage interval of ()., denoted by C, is available, then we have

C,={z:q(z) € Cy}.

In the follwoing example, we presents two methods in constructing the univariate

mapping when Y has a mutivariate normal distribution.

Example 2. Again, let Y be with the multivariate normal distribution N, (p, %)
and we let the independence-transformationbe Z = %~ /2(Y — ). Let the elements
of vector Z be Zy, ..., Z).

(a) We then have one univariate mapping (Y = u) S~ Y(¥.— ) = >°F_| Z? that has
chi-square distribution x2(p). One popularly way i construct a v reference region

for Z is based on this chi-square transform as
i 2
Cz={2€RP:22<x}

where x?2 is the v quantile point of the chi-square distribution x*(p) and we im-
plement vy coverage interval C;, = (0,)&] for chi-square variable @ = Y7, Z2.

Through the inversion, we have

Oy ) ={y = p+ 522 22 < 32}

={y: (y—w)'S Ny —n) <X2} (2.2)
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(b) We can consider the univariate mapping ﬁl;Z = %122—1/2’ (Y—p) ~ N(0,1).

Since (—QS(HT"’), QS(iZ"’)) covers the standard normal random variable with proba-

bility v, an alternative ~ reference region for 7 is

1 1+ 1+
C’Z:{zeRp:%I;ze (—® I(T'V),@ 1(T7))}. (2.3)
Through inversion, we have
1 1, 1+ 1,1+
) ={y=pn+3"22: —1 o (—), e (—))}). O
Cy(u, ) ={y=pn+3"/%2 \/ﬁPZE( (=)@ (=)}

3. Reference Region Transformed from Multivariate Rectangles
In this section, we start from censtructing coverage intervals for independent
transformed variables Z1, ..., Z, and then take inversion from the product of these

element-wise coverage intervals.

Definition 3.1. Let Cy,...,C, be, respectively, the /P coverage intervals for
independent variables 71, ..., Z,.. With product €, =1 x Cy x ... x C},, we may

define the ~ reference region for distribution of ¥ as C,,(0) = G, ' (C.,).

The following example gives the v reference region from the multivariate rectan-

gle.

Example 3. (a) We continue the settings for multivariate normal vector Y and

transformation Z. By letting 6 = v'/?, we choose quantile z11s. Let C, be the
2

product of p y1/P-coverage intervals, respectively, for Z, ..., Z,. Then the reference

region for Y then is

Cy(1,X) ={y:y=pn+XY%2 2 € C.}.



Generally we choose shortest element-wise coverage intervals that leads to the prod-

uct C, as
21
.= 7o cn <o o)
2
while a general type product reference region is
21
C,=A{ Z:z tzj1 < zj < zjo,j = 1,..,p with P(zj; < Z; < zj9) = 71/7’}.
2

(b) We next consider the beta distribution case. With § = y/2, a product of

coverage intervals is

Co={(2) s a1 € (5 P () s S GO A (S0,

The reference region for Y then is
_ Y1\ . [Z122\ [ 21
o= ) Y £ ) J.

4. Estimators and Statistical Properties for Reference Region

Now, suppose that we have a random sample Yi,..., Y, from the distribution
f(y,0). Tt is desired to introduce concepts and methods of statistical inferences
when the v reference region is unknown. In our settings, the ~ reference regions
are unknown due to that there unknown distribution parameters. Hence, statistical
inferences for unknown v reference region may be reduced to inferences for unknown

distribution parameters. We start from point estimation aspect.

Definition 4.1. Let T be a random region in I' constructed by the random sample

Y1, ..., Y,. We define its expectation as E(T) = {E(ty) : t, € T} if all E(t,) exist
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and probability limit Plim(T) = {Plim(t,) : t, € T} if all Plim(t,) exist where
Plim(t,) = a if t,, converges to a in probability. We then say that an estimator
C,(8) is unbiased estimator of C,(6) if E(C,(#)) = Cy(#) and it is consistent for

C,(8) if Plim(C,,(9)) = C, ().

An estimator of vy reference region Cy(f) may be obtained by plugging 6 by 0

when estimator 6 is available.

Definition 4.2. Let 6 be an estimator of parameter §. We let estimator of vy
reference region be Cy(f) = C’y(é). Then Cy(6) is a maximum likelihood estimator

(mle) of C,,(0) if mle  exists.

Example 4. Now, suppose that random sample Y7, ...,Y;, is drawn from normal

distribution N, (i, ¥). We know that ¥ and- 3= S, = 1" (V; - Y)(V; - V)
are, respectively, mle’s of p and .
In straight forward way, the estimator of y reference regions for Cy(p1, X) of (2.2)

and (2.3) are, respectively,
Cy(1, D) ={y =Y+ Syl/zz 22’z < X2}

and

1+7

) e (—

Gy 3) = {y = ¥ + SY25 %1;,216 (—o-1 (1t Nl

D 2

These two estimated -y reference regions are consistent, respectively, for C,(y, 3) of
(2.2) and (2.3) since Y and S, are, resctively, consistent for g and $. O

We here consider some other criterions for evaluation of estimator of 7 ref-

erence region. Let us denote the area of the true 7 reference region by Ac.

With replications m = 10,000, we perform a simulation from normal distribution



N3 (09,3 = <

0'2 012

021 g

Y

1th replication. We define the averaging area as

1 o= .
Ap=—2 A
i=1

and the square root of the mean square error (MSE) as

m

SMSE; = (i D (AL - Ap)?)2.

m

=1

9

5 )) Let A’é represents the area of the estimate Cy, (1, ) in

The simulated results of averaging area Az, square root of the mean square error

SMSE ; associated with the true area Ac are displayed in Table 1.

Table 1. Comparison of areas of estimated and true 7 reference region associated

with SMSE ;
Ag
Ac (SMSEZ) | n=4%0 n="70 n =100
n =30
o7 =
9.834 10.00 10.07 10.10
712 = 0.3 10.52 (2.22) (1.91) (1.49) (1.27)
8.949 9.042 9.137 9.249
12 =05 9312 (2.07) (1.68) (1.37) (1.10)
9.746 10.06 10.16 10.16
12 = —0.3 10.32 (2.23) (1.75) (1.52) (1.30)
8.935 9.026 9.189 9.202
12 = =05 9372 (2.40) (1.67) (1.29) (1.20)
05 =0.3
2.910 2.986 3.013 3.059
12 = 0.09 309 (0.69) (0.53) (0.46) (0.38)
2.690 2.730 2.750 2.773
12 = 0.15 2811 (0.61) (0.48) (0.40) (0.36)
2.917 2.991 3.057 3.044
o12= =009 3097 6g) (0.54) (0.44) (0.37)
2.649 2.712 2.755 2.755
12 = —0.15 2811 (0.62) (0.47) (0.41) (0.34)
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Several comments may be drawn from the results in Table 1:

(a) In terms of area for a region, the estimated area and the true area of 7 reference
region in the designed cases are all under estimated, however, not with too much
differences.

(b) As expected, the variation showing in MSE is larger when the variance o2 is

larger.

Comparison of areas and MSE’s between the estimated one and the true region
is not sufficient to evaluate the efficiency of an estimator of unknown ~ reference
region. It requires further study to see if the estimated and the true regions are
really overlapping closely. For this need, we define the area non-overllaped between

these two as

AN L = Non-overlapping Area = A¢ + A5 — 2Acy(u HAE, (1,5)

and the following MSE

1 — Non-overlapping Area 9
MSE = —
S m 2:: 2 x (Length (C(6)) + Width (C’(Q)))
_ 1 i Ao+ 4e —24¢, (3¢, (u3) )2
m x (Length (C(0)) + Width (C(9)))

where we choose this denominator term to make this MSE dimension-free. The

simulated results of ANL and MSE are displayed in Table 2

Table 2. Efficiencies of estimation of v reference region through area difference

and MSE
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n = 30 n = 50 n="70 n = 100

05 =0.3
o012 = 0.09, ANL 1.074 0.869 0.745 0.641
MSE 0.149 0.120 0.103 0.088
o012 =0.15, ANL 0.987 0.794 0.669 0.583
MSE 0.137 0.110 0.092 0.081
012 = —0.09, ANL 1.065 0.868 0.746 0.649
MSE 0.147 0.120 0.103 0.090
012 = —0.15, ANL 0.981 0.795 0.677 0.591
MSE 0.136 0.110 0.094 0.082

05 =1

012 =03, ANL 4.000 3.068 2.552 2.099
MSE 0.304 0.233 0.194 0.159
o120 = 0.5, ANL 3.275 2.625 2.237 1.972
MSE 0.248 0.199 0.170 0.149
o120 = —0.3, ANL 3.622 2.885 2.480 2.109
MSE 0.275 0.219 0.188 0.160
o120 = —0.5,ANL 3.289 2.621 2.237 1.930
MSE 0.250 0:199 0.170 0.146

We have two comments for the simulated results:

(a) The non-overlapping area ANT. decreases and then the efficiency of point esti-

mator increases when sampleSize n/ rises or variance O'Z decreases.

(b) The dimension-free MSE shows that the estimation of true reference region is

satisfactory.

5. Testing for Hypothesis of Reference Region

The establishment of reference region requires careful planning, control, and doc-
umentation of each aspect of the study. Thus, the resulting reference regions are
well-characterized in terms of the variation attributable to pre-analytical and an-
alytical factors. With this consideration, to establish a laboratory’s own reference
region (interval) is difficult due to costs and forces. Even large laboratories are find-

ing it increasingly difficult to conduct these comprehensive studies cost-effectively.
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Therefore, laboratories are becoming more reliant on manufacturers to establish
scientifically sound reference regions that can be verified using simpler, less labor-
intensive, and lower cost approaches. One important approach requiring less effort
for the establishment of reference regions (intervals) is the validation through hy-
pothesis testing to verify if an established reference region can match the use for
this laboratory’s specific population. This task can be done statistically only when
the unknown reference region is function of distributional parameters.

We require the y reference region C,(f) for the laboratory’s population to be

dependent on unknown parameter f that fulfills
v=Py(Y € Cy(0)) for € ©.

When the v reference region is unknown, we only know that it is one with the space
of Cy () as

{Cy(0) : 6 € ©}. (5.1)
We assume that Cy(01) # Cy(0s) if 01 # 0. Any set D C T, is a ~y reference
region if there exists 6y € © suchithat.D = C,(fy). Hence, testing hypothesis of v

reference region such as

HO : Cy(ﬁ) =D
is equivalent to test the hypothesis of unknown parameter as
HO 10 = 90. (52)

Suppose that the random vector Y has the normal distribution N, (p, ). Then a
testing hypothesis of any type of v reference region is equivalent to test the following

hypothesis of distribution parameters

HO L u = ,U,(),E = 20. (53)
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In literature, we can see approaches for testing hypothesis about mean vector as
Hy : 4 = po and approaches for testing hypothesis about covariance matrix as
Hy : ¥ = ¥,. It is rare to have approaches to test hypothesis for mean vector
and covariance matrix simultaneously. The hypothesis about the reference region
is reduced to test hypothesis in (5.3) that requires a new test.

With the normality assumption, we have

(Y — 110)' S5 (Y — o) ~ x*(p)

when Hj is true. Suppose that we further have a random sample Yy, ...,Y,, from

Ny(pt,Y). Then,

n

Q= (Yi — no) S5 Smao) ~ x> (np)

=1

when Hj is true. A rule for testing Hy is
rejecting Hy if Q > xq(np)

where xo(np) is the (1 — o)th-quantile of the chissquare distribution x2(np).

We consider the hypothesis (5.3):by.choosing data from the following distribution

1
N(,uo+r<1> , 20 + Al)

where (r,\) = (0,0) corresponds to distribution of Hy. With replications m =
10,000, we perform a silmulation to verify the power performance of this chi-square

test defined as
1 m
- ZI(Qj > Xa(np))
7j=1
where (Q; is the observation of statistic () from j-th sample. By settings pg =
(8) and X5 = ( 013 Oi3>, we display the simulated results in Tables 3 and 4

respectively for significance level o = 0.05 and 0.1.
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Table 3. Power performance (o = 0.05)

(r,A) n = 30 n = 50 n="70 n = 100
(0,0) 0.0466 0.0517 0.0500 0.0503
(0.5,0) 0.2707 0.3640 0.4549 0.5645
(1,0) 0.9461 0.9980 1 1
(0,0.5) 0.7888 0.9287 0.9756 0.9971
(0,1) 0.9886 0.9996 1 1
(0.25,0.25) 0.4860 0.6471 0.7684 0.8774
(0.5,0.5) 0.9253 0.9864 0.9982 1
Table 4. Power performance (o = 0.1)
(r,\) n =30 n = 50 n="70 n = 100
(0,0) 0.1016 0.0940 0.0962 0.1017
(0.5,0) 0.3875 0.5041 0.5959 0.6890
(1,0) 0.9744 0.9980 1 1
(0,0.5) 0.8706 0.9594 0:9889 0.9986
(0,1) 0.9948 1 1 1
(0.25,0.25) 0.6149 0.7668 0.8581 0.9305
(0.5,0.5) 0.9613 0.9955 0:9999 1

We have several comments drawn from the simulated power results in Tables 3

and 4:

(a) The results for (r,\) = (0,0) are all close to values a’s ensuring that this is a

level « test.

(b) Large sample size does improve to raise the power.

(¢) Power performance reflecting from the shift in scale is stronger than the shift in

location.

Chen, L.-A. and Welsh, A. H. (2002). Distribution-function-based bivariate quan-
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