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Abstract

This thesis consists of three chapters.

In chapter 1, we give a brief introduction to stochastic thermodynamics, and then
make use of the notion of time-reversal to derive the integral fluctuation theorem (IFT)
as a mathematical result for general discrete-state system governed by a master
equation. Next, applying the definition [1] of entropy along a single stochastic
trajectory, we get the integral fluctuation theorem (IFT) for stochastic
thermodynamics.

In chapter 2, we first sketch the two-level experiment with a single defect center
in diamond periodically-excited by a laser [2], which verified the validity of the
definition of entropy along a stochastic trajectory, as well as integral fluctuation
theorem (IFT) and detailed fluctuation theorems (DFT) in a two-state system. Then,
we develop a simulation for the Markovian process in this discrete system, to confirm
the experimental observation. Next, we improve the experimental conditions in the
simulation and get more Information than -the experiments about how the data
collected converge to the IFT and DFT.

In chapter 3, we apply the similar simulation to the four-state system of ion
pumps and discuss stochastic thermodynamics under different conditions, such as

different external protocols and whether obey detailed balance condition.
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Content

1 Stochastic thermodynamics

Stochastic thermodynamics provides a conceptual framework for describing a
large class of soft and bio matter systems under well specified but still fairly general
non-equilibrium conditions. Typical examples comprise colloidal particles driven by
time-dependent laser traps and polymers or biomolecules like RNA, DNA or proteins
manipulated by optical tweezers.

The experiment [3] of the stretching of RNA on a nano-scale is one of the typical
experiments for stochastic-thermodynamics. Therein, two conceptual issues must be
faced if one wants to use the same macroscopic notions to describe such an
experiment. First, how should work, exchanged heat and internal energy be defined on
this scale? Second, these quantities do not acquire sharp values but rather lead to
distributions, as shown in Figure 1-1. The occurrence of negative value of the

dissipated work ;. is typical for such distributions.
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Figure 1-1

Measured distributions for dissipative work W,;ss during RNA stretching. The three
panels correspond to different extensions whereas the color refers to different
pulling speeds [3].

The basic concept of stochastic thermodynamics is to take the ensemble average
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on different kinds of distributions and relate them to quantities in classical
thermodynamics. The key interested issues include IFT, DFT, generalized Einstein
relations, and generalized fluctuation dissipation theorem [4] etc.

1.1 Integral fluctuation theorem and detailed fluctuation theorem

The second law of classical thermodynamics states that the entropy keeps
increasing over time in a closed system. But in some particular situations one might
doubt that whether entropy could decrease rather than increase in short time, and
violate the second law of classical thermodynamics. This idea has ever noticed in
nano-technology but hasn’t caught much attention until 1993, when quantitative
description of a violation of the second law in finite systems was first given by the
fluctuation theorem of Evans et al. [5]. This fluctuation relation in. computer
simulations of sheared liquids is a surprisingly simple relation between the probability
to observe entropy generation and that to observe the corresponding entropy
consumption.

To show how the IFT arises, we give an example as follows. Imagined that there
are two rooms next to each other with a door between, and the room A is full of air
molecules while the other room B is totally empty. After the door is opened, some
molecules in room A start moving and end at somewhere in room B along certain
trajectories. According to the time reversibility of Newtonian dynamics, the molecules
just mentioned may also move from the ending places in room B to the original places
in room A along the same but reversed trajectories. However, this phenomenon
seldom occurs according our experiences, or the second law of classical
thermodynamics. Nevertheless, in a tiny system and short time, the phenomenon
would occur with a larger probability compared to a macroscopic system. In fact, the

IFT and the DFT are the theorems which are capable of revealing the relations



between the forward and the reversed trajectories.

The detailed balance condition and the static detailed balance condition

In equilibrium, the stationary distribution p; necessarily obeys the detailed

balance condition

Pn(OWnm(A) = ()W (1), (1-1)
where m is the state next to n. In other words, the detailed balance condition is the
definition of equilibrium. However, the cases in which we are interested are usually
far from equilibrium, so there is another version of the detailed balance condition in
nonequilibrium systems.

For a fixed A(t) in-a-nonequilibrium system, if the stationary distribution
p; (1) obeys the detailed balance condition (1-1), we call this condition the static
detailed balance condition. In other words, for a fixed time, there exists an “expected
equilibrium state but this state cannot ever be reached due to the external protocol.

Based on the static detailed balance condition, the DFT can be derived [6] and is

given by

P(ASeor)

—— O — oAStot (1-2)
P(_Astot)

Where P(As:,:) IS the probability for the trajectories to measure the total entropy
production equal to As;,:, Whereas P(—As;,;) Is that to measure the total entropy

production equal to —As;,;.

The derivation of the IFT for a master equation

The recent research for stochastic thermodynamics has involved in two
approaches: the diffusive system governed by the Langevin equation and the

discrete-state system governed by a master equation. This thesis is focused on the



latter.

Below we will prove the IFT for the discrete-state system governed by a master
equation. First, we consider a stochastic dynamics on an arbitrary set of states {n}
and the dynamics is governed by a master equation, which reads

0Pn(®) = ) Wnn (P (8) = WD) 1-3)

m+n
where p,(t) is the probability to be at state n at time t and only the jumps to
neighbor states are allowed. wy,,,,(1) represents the transition rate from state n to

the neighbor state m and depends on an external time-dependent. protocol A(t).
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Figure 1-2

(a) A network with states {n,m,---} connected by transition rates w,,,, and (b) a
trajectory n(t) jumping at the time sequence z;, with j = 1,2,3...

Then we apply the fluctuation theorem to stochastic trajectories n(t). The
trajectory n(t) is obtained by starting the system in a stationary state obeying
detailed balance for the fixed A(t = 0) and then driving it according to some
protocol A(t) from t = 0 to . Below we will prove [6] that the trajectories n(t)

obey the integral fluctuation theorem

(e RIM®]) =1, (1-4)



where e~RM®] s the ratio of the probability which will be defined soon later, and
the average (---) is taken over infinitely many trajectories.

We assume that for a fixed A the system is in a stationary state p,, obeying the
detailed balance (1-1). Therefore, the probability prob[n(t)] for a trajectory
n(t) = (ng,nyq, -+, n,) starting at state ny, jumping to n, at t,, jumping to n, at
T,,+, finally jumping to n, at 7, and staying there till time t = , is given by

prob[n(t), A(t)] = py, (/1(0)) X exp l—f Z Wnom(/l(t)) dt] X Wnon, (/1(1'1))

m+ny

X exp f Z Wnlm(/l(t)) dt] X Wn . n, (/1(1'2)) X -

1 men,

T

X exp _—f Z Wnkm(/l(t)) dt] ! (1-5)

Tk m=ny

On the other hand, the probability for the reversed trajectory 7(t) =n(t —t)
occurring under the reversed protocol A(t) = A(z — t) is given by

prob[ﬁ(t),i(t)] = p%o (1(0)) X e [—f Z Wiiom A(t)) dtl X Wy 7, (A(Tl))

m#*ng

X exp [—f Z Wi m /1(13)) dt] X Wi 7, (A(TZ))
X exp [— f

Waem (A(0)d ‘ (1-6)

Tk m=fy
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An example of the reversed trajectory 7i(t) [red line] and the reversed protocol

A(t) compared to the ordinary ones [blue line].

The crucial quantity is the ratio

pT'Ob [ﬁ(t), i(t)] | prsiowﬁoﬁlwﬁ1flz Wﬁk_lﬁk (1_7)

e_R[n(t)]
prob[n(t),/l(t)] prslownonlwnlnz W ing

where the last term follows by the cancellation of the exponential integral terms in
(1-5) and (1-6). Then the IFT can be proved by the normalization condition in which
the sum of prob[ﬁ(t),i(t)] over all possible trajectories is equal to one. Before

summing over trajectories, we multiply (1-7) by preb[n(t), A(t)]. It reads
prob|i(t), A(t)] = e R"®Olprob[n(t), A(E)]: (1-8)
Then summing over the possible trajectories
1= Z prob[(), ()] = Z e~ FnOlyrobn(6), A(H)] (1-9)
Finally, we change the notation Y. -+ prob|f(t), A(t)] into (---) and thus have
(eRIn®ly = 1 (1-10)

So far we have proved the IFT (1-10) for stochastic trajectories by introducing
the reversed trajectory 7i(t) = n(r —t) and the stochastic quantity R[n(t)]. This
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result is a mathematical result and seems not to be associated with thermodynamics.
Nevertheless, the meaning of the IFT would become transparent after introducing the

stochastic entropy along a single trajectory in the next section.

1.2 Stochastic entropy along a single trajectory

Entropy might be considered as an ensemble property and therefore seems not to
be applicable to a single trajectory. However, the previous research for so-called
fluctuation theorems generally [9] relates the probability of entropy generating
trajectories to that of entropy annihilating trajectories. So it obviously requires a
definition of entropy on-the level of a single trajectory. Therefore, the definition of
entropy. production along a single stochastic trajectory is introduced through the
diffusive system with a particle in overdamped motion [1], then generalized to the
discrete-system governed by a master equation.

At first, from the common definition of a nonequilibrium Gibbs entropy [8]

S() =-— f dx p(x,t) Inp(x,t) = (s(t)), (1-11)
the suggested definition for trajectory-dependent entropy of the system for a

Brownian particle is given by
s(t) = —Inp(x,t), (1-12)
where the probability p(x,t) is obtained by solving the Fokker-Planck equation
0ep(x, ) = =0,j(x,t) = =0, (U F(x,2) — DI, )p(x, ¢). (1-13)

Similarly, the definition of trajectory-dependent system entropy for the probability

Pne) derived from a master equation is given by
S(t) = —In Pn(t) (t) (1-14)

In the diffusive system of a Brownian particle, the relation between the rates of

7



change s$(t), Sto:(t), and s,,(t) is derived from the equations of motions [1].
Therefore, the similar derivation is also applied to the discrete-state system. The

equation of motion for the system entropy s(t) becomes

o 0pa(®) Put (1)
$@) = - (D) Iny— Z §(t —7;)In o @) (1-15)

The first term on the right-hand side contributes along the time intervals during which
the system remains in the same states; to more explicitly, the system is at the same
state during the time intervals whereas the time-dependent protocol and the
corresponding probability of the state keep changing, and thus it results in the part of
s(t) due to the change of the protocol. On the other hand, the second term arises
from the jumps at 7;; to more explicitly, the time-dependent protocol and the
corresponding probability of the state remain the same at z; when jumps occur
whereas the system change the states, and thus it results in the other part of s(t) due
to the change of states.

Now we split up the right-hand side of (1-15) into a total entropy production

Stor (t) and a medium entropy production s,,(t) as follows.

atpn(t) pn} (T]')Wn;-rnT
Stor(8) = = —— | —25 t—1; ) ln——m— (1-16)
8 pn(t) 2l 7 ( ]) pn]T (T]')Wn;n}'
and
Wn*.'nf
$(6) = — Z §(t —7j)ln—— (1-17)
7 Wn]Tn}'

where Wit is the transition rate for forward jump and Wit is that for backward
J J

jump. Besides, the balance $;,:(t) = s(t) + $,,(t) holds.
Although the choice of s,,:(t) seems to be arbitrary, there are two facts which

motivate this choice. First, we would observe the ensemble properties of entropy by
8



taking average over trajectories, so we need the probability for a jump occurring at

T =1; from nj to nj, which is pn]f(rj)wnjfn;. Hence, these entropy become

S(t) = (3(0)) = Z annklnz_Z' (1-18)
n,k
Sm(t) = ($m(1)) = z PnWniIn :—:: (1-19)
nk

and

PnWnk

S0 (®) = ($10e(D) = ) puwln
nk

Wi (1-20)

such that the balance S;y¢(t)-=S(t) +S,,(t). holds. Besides, the ensemble of total
entropy production S,,.(t) in (1-20) is consistent with the macroscopic entropy (1-11)
and thus S, (t) = 0 obeying the second law of classical thermodynamics. Second,
with this choice of s,,(t) in (1-17), the total entropy production As;, fulfills the
IFT, which we will show below.

With the definitions for entropy along a single stochastic trajectory (1-15) (1-16)
(1-17), the meaning of the IFT (1-10) becomes transparent, which is derived from the
discrete-state system governed by a master equation. At first, we recall the stochastic

quantity R[n(t)] from (1-7)

R[n(t)] =In probln(t) A(D)] =In prsl"wnonlwnmz " Why_amg
prob[(t), A(t)] DS Wi, Wityiiy *** Wity

(1-21)

Then we split up the right hand side of (1-21) into the contribution of As and As,,,

according to the interpretation of (1-15) and (1-17). That is,

N
Wnonl Wnlnz Wnk_lnk pno

R[n(t)] =1n (1-22)

s
figfiy Wity 71, Wit _ 17y pﬁg



s
WnonaWnin, *"* Wny_iny Pn,

=1In < (1-23)
Whgng— i Wng_inge—, " Wnyng pn‘r
W W see W S
= In—o Ttz TkdMk 4 1np% (1-24)
Wiyeng_1Wng_ing—, *" Wnyng pn‘r
where we have used the definition 7i(t) = n(t — t). Then finally,
R[n(t)] = As,,, + As = As;,; (1-25)

where As, isthe first term and As is the second term in (1-24).

So far we proved that the stochastic quantity R[n(t)] defined as
In prob[n(t),A(6)]/prob[fi(t), A(t)] is exactly the total entropy production
As;o: = As,,, + As in the discrete-state system governed by a master equation.

Therefore, the integral fluctuation theorem becomes
(e ROy = (¢=Astor) = 1, (1-26)

As an immediate consequence of (1-26), one can derive a formula (As;,;) = 0
according to Jensen’s inequality e‘4’ > (e”). This result is consistent with the second
law of classical thermodynamics and gives an a posteriori support to the entropy
definition.

So far, the main result is proved but there is still one thing which has to be
referred. Although we start the derivation for the IFT from the stationary distribution
pn, and p;_ obeying detailed balance for a fixed 4, the choice for the initial and
final distribution, in fact, are not uniquely selected. As a mathematical result, the IFT
is truly universal which is valid for any external protocol, any initial conditions, and
any trajectory length, so there are infinitely many choices of initial and final
distribution. Nevertheless, the most intuitive and physically meaningful choice might

be pn, = ps, and p, = p,(t), which the former stands for stationary state with

10



A(t = 0), and the latter is the state which has reached the static state after a long time.
Notice that the probability in a static state discussed in this thesis might still oscillate
but doesn’t ascend or descend on average over time.

In the later sections, this choice of p,, and p,_ is applied mostly to our

discussion.




2 An experiment test and simulation for two-state system

2.1 Experimental test for entropy production of a two-level system

To verify the fluctuation theorem in a nonthermal system with time-dependent
rates, an experiment of a two-level system is demonstrated [2]. The device with a
single defect center in natural lla-type diamond (Drukker) is excited by a red and a
green laser simultaneously and can be considered as an effective two-level system

with a dark and a bright state, such that
a
0(dark) _ 1(bright),
b
where a_and b are determined by the green and red lasers respectively.

This system is driven-out.of the initial equilibrium by modulating the intensity of
the green laser with a sinusoidal protocol A(t) with modulation period t,,. This
leads to the time-dependent rate

a(t) = ao[1 +yA(t)] (2-1)
with

A(t) = sin(2nt/t,,), (2-2)
where 0 < y <1 is the strength of the modulation. The intensity of the red laser is

constant and therefore b = by. Therefore, the master equation for the time-dependent

probability p,(t) and p;(7) of this two-level system then reads

d
pc(l)t(t) =p1(t) - b —po(t) - a(t)
(2-3)
dp,(¢)
12 = po(©) - a(t) ~ po(®) b

where the p,(t) and p,(t) represent the probabilities for the system being at state 0
and 1 stays, respectively. Once the probability distribution of the system is given, a

dimensionless, nonequilibrium entropy for driven systems on the level of a single

12



stochastic trajectory has been defined [1] as
s(t) = —Inpypy (O, (2-4)
where the measured probability p,, at state n(t) at t is determined by the master

equation.

%
/
/\ /‘\\., / )] aoof (h) a00] ()
0.3 . T - - , - . 2
(d) 107 g 400
) i = 200 200
< [ & 200
0.0 I o
T T T 0 0 0
0 50 100 150 200 -1.0 0.0 1.0 4 0 4 8 4 0 4 8
t/ ms As Asm ASyo1

Figure 2-1 [2]

Figure 2-1 (a) shows the protocol a(t) together with the probability p,(t) to
dwell in the bright state or state one. The step function Figure 2-1 (b) displays a
sample binary trajectory n(t) jumping between the two states. In Figure 2-1 (c), the
protocol gives the evolution of the entropy of the system s(t) according to (2-4). The
curve consists of smooth part and the jump part. The smooth part is due to the
time-dependent protocol at the same state; the jump part is due to the contribution
—In[p,/p_] between the two states, where p_ and p, are the probabilities of the
states immediately before and after the jump respectively.

Besides the entropy of the system itself, energy exchange and dissipation lead, in
general, to a change in medium entropy. For an athermal system such as a discrete

state system, this change in medium entropy s, cannot be inferred from the

13



exchanged heat. Rather it has to be defined through the rate constants, and is given by

W. .
As,, = an—L'j' (2-5)

ji
for a jump from state { to state j with instantaneous rate w;; (w; being the
backward rate). In this case it becomes As,, = In[b/a(t)] for a jump 1—0 and
As,, = In[a(t)/b] for a jump 0—1. As demonstrated in Figure 2-1 (d), the medium
entropy changes only when the system jumps, thus balancing to some degree the
change of s(t).

One of the fundamental consequences of the definition of stochastic entropy is
the fact that besides entropy producing trajectories, entropy annihilating trajectories
also exist; see Figure 2-1.(e)-and (f), respectively. However, in accordance with
physical intuition, the latter become less likely for longer trajectories or increased
system size. In fact, entropy annihilating trajectories not only exist, they are essential
to satisfy the IFT

(exp[—Astoe]) = 1. (2-6)

This theorem states that the non-uniform average (:--) of the total entropy
change As;,; = As + As,,, over infinite trajectories becomes unity for any trajectory
length and any driving protocol. Moreover, trajectories with As;,; < 0 may seldom

occur but are exponentially weighted and thus give a contribution substantially to the

left hand side of (2-6).

2.2 Reproduction of the experiment by simulation

The validity of the definition of stochastic entropy for a single trajectory and the
corresponding IFT is in principle verified by the experiment of two-state system
stated above. Nevertheless, restricted by the intrinsic limitation of experiments such

as the amount of data, the resolution of instruments, and etc., there are still some
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conditions which cannot be verified thoroughly.

The resolution of the detectors in the experiment is 1ms and therefore the
measurable shortest time interval between two jumps must be 1ms or longer.
Nevertheless, is the resolution short enough to detect the fastest jumps between states?
How would the measured transition rates be affected if the resolution is longer or
shorter?

Besides the resolution, the amount of the realizations is also a limit of
experiments. Although the IFT is valid for summing over infinite number of
trajectories, the tests with only 2000 trajectories in the experiment seem to be
sufficient for IFT. Nevertheless, is it enough for thousands of trajectories all the time?
What if the conditions such as the external protocol or the trajectory length change?
The IFT is generally valid but is there any experimental condition beyond the
feasibility?

Therefore, as an a priori tool, a simulation based on the conditions of the
experiment stated above is developed to recheck the validity of the definition of
stochastic-entropy for a single trajectory and the corresponding IFT, and furthermore

examine another conditions for a two-state system.

The simulation is developed on the idea of throwing a stochastic die sequentially
with the same time interval. The first step of the simulation is to create a single
trajectory and then we can get an ensemble of trajectories. Assumed that the system is
initially at state-one, then a die is thrown after a period of time to decide whether the
system will stay still or jump to the other state, that is state-two. If the side of “jump”
is on the top, the system will jJump to the other state instantly without any hesitate and
wait for the next chance to throw a die. Whether the system stood still or jumped to

15



the other state this time, the next chance to throw a die is totally independent. That is,

the process is Markovian.

The method of the simulation

The probability of jumping depends on the product of transition rate and the
given time interval At, that is
P;;(t) = wy;(t) X Ar. (2-7)
where P;;(t) is the probability jumping from i-state to j-state. For example, if the
given interval Az Is Ims and the transition rate wy, from state-1 to state-2 at a
certain time is 500(1/s), then the system has probability P;, = 0.5 to jump from 1 to
2 at that moment. Note that the jump probability P;;(t) is different from the state
probability B,(t) derived from a master equation. The latter means the probability
which the system should be found in state-n _over averaging many trajectories and
thus an ensemble quantity. On the other hand, although the former also means
probability, it Is a quantity for each time to throw a die for each trajectory. Besides,
the time interval At is arbitrary and decides the probability to jump. The shorter
the At, the less probable the system would jump and vice versa. Be careful to choose
a suitable At so that the probability to jump would not be larger than one at any time
over the total process, or it would be ambiguous otherwise.
With the transition rates, initial probability distribution for stationary states, and
the definitions for system entropy Eq. (2-4) and medium entropy Eqg. (2-5), a set of
Figure 2-2 (a)(b)(c) and Figure 2-3 (a)(b) for a single trajectory similar to the two-state

experiment Figure 2-1 (a-f) can also be demonstrated.
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Entropy production in the two-state system with a single defect center in diamond,
with parameters a, = (15.6ms)™, b = (21.8ms)™ !, t,, = 50ms, and y = 0.46
for a single trajectory over 4 periods. (a) shows the protocol a(t) [solid blue line]
together with the probability p,(t) [dashed green line] to dwell in the state one. (b)
Single trajectory n(t) [solid blue line] and probability of state-one [dashed green
line]. (c) Evolution of the system entropy [black dots]. The curve is much smoother
than that in Figure 2-1 (c) when the system is at the same state because Figure 2-1 (c)
is experimental measurement. (d) Entropy change of the medium, where only jumps

contribute to the entropy change.
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Figure 2-3

Two examples of the change of system entropy [solid black line] and medium entropy

[dashed red line]. The dashed blue lines indicate the original value of the entropy.
The change of system entropy As = s(t) — s(0) just fluctuates around zero without

net average entropy production, whereas in (a) As,, contributes positive change of

entropy and thus an entropy producing trajectory and (b) As,, contributes negative

change of entropy and thus an entropy annihilating trajectory.

After creating a single trajectory, an ensemble of trajectories can also be created

to check the validity of IFT. Figure 2-4'is a set of the histograms of entropy change of

(a) system, (b) medium and (c) total entropy production taken from 2000 trajectories

with the same condition in the two-state experiment Figure 2-1 (g)(h)(i).
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Figure 2-4

Histograms taken from 2000 trajectories of the (a) system, the (b) medium, and the
(c) total entropy change. The system entropy shows four peaks corresponding to four
possibilities for the trajectory to start and end (01, 1->0, 0->0, and 1->1). The
distribution (c) of the total entropy change has the mean (As;,;) = 1.76 and width
Otor = 3.72; on this scale.it.differs only slightly from the distribution of the medium
entropy change (b).

In Figure 2-5, the calculations of IFT taken from 2000 trajectories for period
from 1 to 20 are demonstrated. Note that each period is calculated 5 times to examine
the deviation of the outcome of IFT. With increased length, a deviation of IFT
becomes observable. This deviation is due to the requirement for more realizations as
the mean value of the entropy increases and the deviation can be corrected in the latter

section.
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Figure 2-5

The mean (exp(—s;,:))-over-2000 trajectories for each period with the modulation
depth y = 0.46.

2.3 Improvements in simulation

2.3.1 Consideration of the ensemble average of states

So far we have reproduced the main results of the two-state experiment [2], and
the next step IS to improve the experimental conditions. First, we determine the
probability for the system being at the state-one by taking average over stochastic
trajectories and derive the ensemble average of states for state-one, and we call this
quantity (n,(t)). (n,(t)) means the probability which the system is at state-one
from the viewpoint of single trajectories, whereas p,(t) is derived from the master
equation.

The interpretation of (n,(t)) has many advantages which would be seen soon
later. The most important one is to check the idea of throwing a die and the
correctness of the simulation. If there is something wrong, the curve of (n(t)) would

be totally different from the curve of probability p(t) for the corresponding state.
20



Figure 2-6 shows (n,(t)) averaged from 2000 trajectories with the condition of the

two-state experiment.

0.7 T T T T T T T T T
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0.45 r r r r r r r r r
(0] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t/s
Figure 2-6

(n,(t)) [solid blue line] over 2000 trajectories. The dashed red line is the probability
of state-one p,(t) solved from the master equation.

From Figure 2-6, it can be seen obviously that (n,(t)) can only roughly fit the
curve of p;(t), especially at the place with larger amplitude. The result is due to the
lack of realizations. Therefore, we try to add trajectories so that the curve of (n,(t))

would be smooth and fit the curve of p,(t) closely.
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The mean [solid blue line]-of state-one over 100,000 trajectories compared to the
probability of state-one [dashed red line].

With increased realizations, it seems the curve of (n,(t)) fit that of p;(t) more

closely and IFT is also more accurate (Figure 2-8) rather than the results in Figure 2-5.
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Figure 2-8

The mean (exp(—s;,;)) over 100,000 trajectories for each period with the
modulation depth y = 0.46 and resolution= 1ms. IFT is calculated 5 times for each

period in order to examine the deviation.
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Although IFT becomes more accurate after adding more realizations and its
validity is also verified in principle, there is something needed to examine more
carefully. If we zoom into just one period in Figure 2-7 (Figure 2-9 (a)), one can find
there is a constant phase delay of (n,(t)) compared to that of p,(t). This is due to
the low resolution. Although it doesn’t affect the validity of IFT, it implies that the
external protocol we are studying is a little different from the real one and this
difference would result in a little deviation in the mean (AS;,;). Figure 2-9 shows the
figures with different resolution and the corresponding (AS;4:). Because the curve in

Figure 2-9 (€) fits P,(t) most closely, it might approach most the “real” value of

(ASior):
(@) (b) (C)
L L " Joesl " Joesl” “ “
0.65 | 0.65
06/ 1 06 0.6/
0.55| ) / 70.55 10.55
0.5
0.5 105 ~
0.56 0.58 0.6 0.46 0.48 0.5 0.36 0.38 0.4
t/s t/s t/s
Resolution=5ms Resolution=1ms Resolution=0.1ms
(AStOt>=1'789 <AStOt>=1'743 <ASt0t>=1'735
Figure 2-9

The blue lines represent (n,(t)) and the red lines represent p,(t) over 100,000
trajectories, respectively. (a), (b) and (c) are intercepted from trajectories of 20

periods with different resolution 5ms, 1Ims and 0.1ms respectively.
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2.3.2 Estimation for quantity of statistics

With only 2000 trajectories and under suitable experimental conditions, such as
trajectory length, resolution, modulation depth etc., it seems that IFT works well in
principle (deviation < 20%, Figure 2-5). In the simulation, IFT is even confirmed with
higher accuracy (deviation < 5%, Figure 2-8) when the number of trajectories is
increased to 100,000. Nevertheless, is this number large enough for other conditions?
To show this concern is necessary, we take longer observation time. Figure 2-10
demonstrates that the deviation is increased with the number of period. The example
Figure 2-10 (a) has a point separated far from others, which seems to be absurd at first

glance. But in fact, this extreme case appears typically.
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Figure 2-10

The mean (exp(—s;s¢)) over 100,000 trajectories for each period with the
modulation depth y = 0.46 and resolution= 1ms. Same as the former examples,
IFT is calculated 5 times.for.each period in order to examine the deviation. Notice
that there is a point at the upper right corner. Note the red dashed rectangle is just
Figure 2-8 and Figure 2-10 (b) is the magnified view of (a) omitting the point at the

upper right corner.

The result in Figure 2-10 is due to the structure of the non-uniform average
(exp(—Asgoe)). Because the entropy annihilating trajectories As;,; < 0 may occur
seldom but are exponentially weighted, they contribute substantially to the left hand
side of IFT. To keep (exp(—As;y:)) = 1, each of entropy annihilating trajectories
needs a large quantity of entropy producing trajectories to balance. Therefore, the
variation on the number of entropy annihilating trajectories would affect the results of
IFT enormously, especially when the number of annihilating trajectories is small.
With increased observation time, the mean of total entropy production As;,; shifts in
a positive direction and spreads outwards in both directions (Figure 2-11 and Figure
2-12). The number of annihilating trajectories also decreases, and it leads to the larger
deviation of IFT. In most situations, a large number of entropy producing trajectories
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lacks sufficient number of annihilating ones to balance, which brings about the result
of (exp(—As;,:)) < 1. But sometimes, too many, or even a little more entropy
annihilating trajectories are generated, resulting in (exp(—As;,:)) > 1. This explains

the distribution of (exp(—As;,:)) in Figure 2-10.
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Figure 2-11

Histograms of total entropy production As;,. with different periods of (a) 20T, (b)
60T, and (c) 100T, respectively. The mean (As;,;) and the width &;,; (two standard

deviations) of 'As;,+ are also shown in each figure.
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The mean of total entropy production (Asi,:) is proportional to the trajectory
length. It seems surprising-at-first glance but in fact can be explained easily; because
the total process is Markovian, the change of (As;,;) from t = 0to 10 periods
must be the same as that from t = 10 to 20 and so on.

Except for the rough description from Figure 2-11, the relation between the
probability of entropy producing trajectories and entropy annihilating trajectories, in

fact, obeys the detailed fluctuation theorem (DFT) [7]

P(Astor) — eBStot.
P(—Astor)

(2-8)
Where P(As;,:) 1s the probability for the trajectories to measure the total entropy
production equal to As;,;, whereas P(—As:,:) Is that to measure the total entropy
production equal to —As;,;.

This theorem was derived originally for the long time limit in nonequilibrium
steady states. However, it even holds as long as the protocol driving the system is

periodic and time-symmetric, as well as the probability distribution p,(t) has

relaxed into the corresponding periodically oscillating distribution. In this case, the
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trajectory length is very long and thus As,, dominates As;,;. Therefore, DFT is valid

in principle and suitable for the estimation.
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Figure 2-13

The test diagram of DFT for the data set (i). The red asterisk denotes the mean of
total entropy production (As;,;) and the points near (As;,;) have more accuracy
of the DFT. The blank on the right side represents the missing points due to the lack
of realizations; some positive entropy production Asg,: can not correspond to their
negative entropy production —AS;q¢-

The dashed line is with slope = 1.

To estimate the trajectory number required to verify IFT, we take an example as
follows. Assumed there are two sets of data to verify the IFT of two-state system.
() 20 periods and (As;o)) = 1.74 over 100,000 trajectories
(j) 40 periods and (As.o)() = 3.52 over 100,000 trajectories.
As shown in Figure 2-10, IFT works very well in the data set (i) but not in the data set
(J) and we wonder how large the trajectory number does (j) require to get a

satisfactory result as in (i).
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Whether IFT works well depends on whether DFT works well throughout As;,;
Figure 2-13. Of course we cannot examine DFT for each As;,;, so our method of
estimation is to examine DFT for the most frequency value As;,; = (As,:). The
number of trajectories with As.,; = (As¢oe);) = 1.74 (with error £5% in the
simulation) in (i) is approximately 375 and the corresponding number of trajectories
with —(Aso¢) ;) = —1.74 is estimated to be 64.9 according to DFT but is 66 actually.
The little variation doesn’t matter and the number 64.9 of trajectories of —(As;o¢) ;)
is large enough, so that the number of trajectories is also large enough to verify IFT in
(.

Because the trajectory length with (As;,:) < 0 decreases exponentially with
increased (As;,;) according to DFT, to maintain these rare trajectories to balance
those with (As;,:) > 0, the number of total trajectories also has to be increased
exponentially, that is

N; = N; x e!Astor)j~(Astoc);, (2-9)
Where N; is the trajectory number with which IFT can be verified satisfactorily in
the data set (i); N; is the required trajectory number in a certain data set (j) to satisfy
IFT with the same accuracy as in (i); (Asy:); and (Asg,.); are the means of total
entropy production in (i) and (j), respectively.

With this estimation, N; for each'trajectory length can be calculated easily
(Figure 2-14). On the other hand, because the total entropy production As;,; is
linearly weighted in (As;,;) rather than exponentially weighted, (As;,;) would
converge to the stable value without large trajectory number. Applying N; to the

calculations of IFT, corrected and satisfactory results are shown in Figure 2-15.
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The reference N; =100000 is in the condition with 20 periods and (As;,;) = 1.74 .

With increased length from 20 to 100 periods, (As;,) is also increased linearly and

it results in the exponentially increased N;.
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The results of IFT versus the trajectory length over 100000 trajectories ([blue circles]
taken from Figure 2-10 (b) omitting the separate point) and over [red asterisks]
corrected trajectory number shown in Figure 2-14. Note IFT is calculated five times

for each length.

The results of IFT with the corrected numbers of trajectories are obviously more
accurate than the original ones. It means this estimation.is correct at least in the order
of magnitude. Nevertheless, with the longer trajectory length, the results are not as
accurate as the result of 20 periods; it means the required number N; is increased at

least exponentially with the mean (As;y¢).

2.4 Brief conclusion

In.conclusion, in this chapter a method of simulation is developed to reproduce
the experiment of two-state system driven by a sinusoidal protocol. There are three
important points in the simulation. The first one is throwing a stochastic die
sequentially with the same time interval and then individual stochastic trajectories can
be generated. The second one is determining the state probability by taking average
over trajectories. This probability of the i-state (n;(t)) should be the same as that
derived from the master equation. This check tests if the given resolution and the
trajectory number are sufficient to produce good data under the external protocol. The
third point is the estimation of the required trajectory number. According to DFT, we
find that the required number to verify IFT at least increases exponentially with the

mean (As,,;), where the mean is linear to the trajectory length.
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3 A simulation for entropy production for four-state system

3.1 The four-state system for ion pumps

In this chapter, we consider four-state systems with different conditions based on
the ion pumps of Na and K-ATPase.

Na, K-ATPase is a molecular motor, whose mechanism of action is shown to be
consistent with the flashing ratchet [11]. The enzyme is a transmembrane protein
complex, which can pump-Na® and K" against the concentration gradients across the
cell membrane. In a cell the energy required for the active transport is derived from
the hydrolysis of ATP (adenosine triphosphate) or from the fluctuation of the
transmembrane electric potential [12]. The former cause the violation of detailed
balance condition and the latter is the external time-dependent protocol in our

simulation for four-state systems.

3.2 The simulation for four-state system

One of the features of the ion-pump system is that, even If the stationary
distribution p3 obeys the detailed balance condition for fixed protocol A(7), or the
system obeys the static detailed balance condition, the protocol may still drive the
system toward a specific direction. That is, there is net flow in the ion-pump system.

In most situations, the concentrations keep flowing to the neighbor states in a
specific direction and thus it results in net flow. But there is a special case in which
the concentration distribution doesn’t change over time and thus there is no transition
flux between the neighbor states, even if the system is subject to a time dependent

protocol. Sometimes this condition is called the time-dependent detailed balance.
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3.2.1 Time-dependent detailed balance condition without net flow

The set of transition rates given below obeys the time-dependent detailed

balance condition and contributes no net flow in the ion pump system.

k, = 40 k_, =60 ks
—
%
k2 — ZOOeZSinwt k—2 — 120825inwt @ k_, @
k3 = 90 k_3 = 200 kl k—1 k_3 k3
k, = 20e~2sinwt k., = 10e—2sin wt k_, @
<«
4

where w = 1000 and the amplitude Ais set as 1.
With this set of transition rates, the averaged transition flux j;; between the

states i and j over one period.T is zero, where J;; over one period T reads

1 T+T
varm— Tf P;wi; = Pwj; dt (3-1)
T

Because the time-dependent transition rates between the states are changed
simultaneously and proportionally, there is no flux between states and the
concentration distribution remains the same.

The main results for 20 periods over 100,000 trajectories are follows.

(Asgoe) = 0 (e~Astot) = 1.003 (Ncircie) =0 J=0
where Ngircle IS the number of turns of a stochastic trajectory and (N_i-ce) iS the
average of Ng.ce Over trajectories. Moreover, N.i.ce IS €qual to the total jumps

divided by four.
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Figure 3-1
An example of a single trajectory. (a) The state at which the system stays. (b) The
system entropy due to s(t) = —In p,)(t). (c) The system entropy change which

subtracts the initial value of the system entropy from the system entropy, that is,
As = s(t) = (0). (d) The change of system entropy due to As,, = Inw;;/wj;.
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Figure 3-2

the result can be realized from. a single trajectory (Figure 3-1). When the system
jumps from i to j, the system entropy change is As = =Inp; = (—Ilnp;) = Inp;/p;.
On the other hand, the medium entropy change is As,, = Inw;;/w;;. And because the
system obeys the time-dependent detailed balance, the equation p;w;; = p;jwj; is
always true with time, the medium entropy change becomes As,, =Inw;;/w;; =
Inp;/p;. Therefore, the total entropy production. Asse = As + As,, =0 for each
jump of a single trajectory and it results in Figure 3-2 (a).

Because As;,; Is zero for each trajectory, the IFT and the DFT are fulfilled
trivially. Besides, the number of turns of each trajectory N, iy¢e iS Symmetric because

the system doesn’t prefer any direction due to the protocol.

3.2.2 Static detailed balance condition with net flow

In general situations of the ion pump, the external time-dependent protocol
would drive the system and the concentrations of each state would flow towards the
same direction on average over time. Besides, some protocols would drive the system

clockwise and another would drive the system counterclockwise because the system
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itself hasn’t any preference for the protocol.

The set of transition rates given below drives the system clockwise, or in the

positive direction.
kl =40
kz — ZOOe—Zsinwt
k3 =90

k4 — 2063 sin wt

k—l = 60
k—2 — 1208—1sinwt
k_s = 200

k_4 5 1062 sin wt

@==0

-2

The main results for 20 periods over 100,000 trajectories are follows.

(AStot) = 2.50

(e~ Astor) = 1,01

<Ncircle> = 0.67

J =5.18

where (N ireie) > 0 and.J > 0. because the system goes in the positive direction.
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(a) and (b) are the histograms of As;,; and N;j .. for 20 periods over 100,000
trajectories, and (c) is the test diagram of the DFT with the red asterisk denoting the

mean (AS;,¢)-

The IFT remains valid in this case because the number of entropy annihilating
trajectories is large enough to balance the number of entropy producing trajectories.
Figure 3-3 (c) shows the DFT test and the red asterisk denotes the mean (As;,;). It can
be seen that DFT is accurate if the point representing the trajectory number with
As;o; is not.much far from the mean (As;,;). Nevertheless, there are many missing
points due to the insufficient number of realizations; the largest value of As;,; is
16.5 whereas the smallest one is -7.3, so not each positive entropy production As;,;
can be compared with its corresponding negative entropy production —As;,;. The

large blank on the right side in Figure 3-3 (c) just indicates this situation
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The set of transition rates given below drives the system counterclockwise, or in

the negative direction.

kl =40 k_1 = 60 @ @

-2

kZ — ZOOe—ZSin(ut k_2 — 1206—3Sin(ut
ke | | ey f) k_s| ks

k3 = 90 k_3 = 200

k4 — 2064sinwt k_4 — 1OeSSinwt @ @
The main results for 20 periods over 100,000 trajectories are follows.

(Aseor) = 335 (e 88tot)y = 0.995  (Ngjpcre) = —1.24 ] = —9.65

where (N_;q.) <0 and J < 0 because the system goes in the negative direction.
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(a) and (b) are the histograms of As;,; and N;j .. for 20 periods over 100,000
trajectories, and (c) is the test diagram of the DFT with the red asterisk denoting the

mean (AS;,¢)-

The mean of total entropy production (s;,;) is always positive no matter
whether the system goes in the positive direction or negative direction; because both
the contributions As,, and As of As,,:, are not oriented to directions and evaluated
by As,, =Inw;;/wj; (2-5) and As = Inp;/p; due to (2-4). Besides, the IFT and the

DFT in this case are also valid in general similar to the last case of clockwise net flow.

3.2.3 Non-detailed balance condition without time-dependent driving

In the conditions of both time-dependent detailed balance and static detailed
balance, the product of clockwise transition rates is equal to that of counterclockwise
transition rates, that is

kikyksks = k_sk_sk_sk_;. (3-1)

However, in a non-detailed balance system, these two products are not equal, that

kykoksky # k_yk_sk_ok_q. (3-2)
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In such a system, the stationary distribution p,, for any fixed A violates the detailed

balance and is subject to a net flow.

Before applying the time-dependent external driving to the system, we first
consider the case in which the transition rates are all time-independent, like w =0 in
the previous systems. In biological systems, it corresponds to the active transport

which consumes energy.

The set of the transition rates not obeying detailed balance and without

time-dependent external driving is given by k,
ky =200 k_, =60 @T@)
k, = 200 k_, =120 ky | | kg /) k_s| |ks
ks = 400 k_s = 200

Q=20
k, = 20 k_, =10 Ka

The main results for 20 periods over 1,000,000 trajectories are follows.
(ASpor) = 3.20 (emStet) = 0.97 (Ngirere) = 1.03 J=8.20

Note that (e 2Stet) = 0.91 over 1,000,000 trajectories
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An example of a single trajectory with (a) the state at which the system stays and (b)

the system entropy change
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Figure 3-6
(a) and (b) are the histograms of As;,; and N_jrc. for 20 periods over 1,000,000

trajectories, and (c) is the test diagram of the DFT without the point of the mean
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(As;o:) due to the insufficient realizations.

The discrete distribution of As;,; (Figure 3-6 (a)) can be explained from the
view of a single trajectory (Figure 3-5). Because the set of transition rates violates the
detailed balance, some transition rates in the positive direction are larger than those in
the negative direction. Therefore, certain jumps contribute more As,, to the system.

In this case, these jJumps between state-1 and state-2 as well as between state-3
and state-4 contribute more As,, to the system. It is can be observed from (Figure 3-5)

Although the distribution of As,,; is not Gaussian-like, the IFT are still valid
but need more number of realizations (1,000,000 trajectories) rather than another
cases (100,000 trajectories)-discussed above. In Figure 3-6 (c), because the derivation
of the DFT depends on the static detailed balance condition [6], the DFT is not

accurate in general and the test diagram in Figure 3-6 (c) looks terrible.

3.2.4 Non-detailed balance condition with time-dependent driving

In this section, we combine both the causes which drive the system: the
non-detailed balance condition and the time-dependent external driving. In biological
systems, it corresponds to the active transport and external time-dependent protocol.

According to the intuition, if both the two causes contribute the flow in the
positive direction, the resulting flow must be also positive. The set of the transition
rates are given below with which both the causes drive the system in the positive

direction.
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The main results for 20 periods over 100,000 trajectories are as follows.

(Aspor) = 18.47 (eAstor) = 0.27 (Neircie) = 3.83 J =30.23
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Figure 3-7

(a) and (b) are the histograms of Asy¢ and. Ngjrc1e for 20 periods over 100,000
trajectories; and (c) is the test-diagram of the DFT without the point of the mean
(As;,:) and leaving a large blank due to insufficient realizations.

The distribution of As;,; (Figure 3-7 (a)) can be separated into two parts, the
Gaussian-like part and the discrete part. The former is due to the time-dependent
driving and the latter is due to the non-detailed balance similar to Figure 3-6(a).

The result of the IFT with (e 2Stot) = 0.27 -is much less than one but in our
anticipation. The mean (As;,;) = 18.47 'is so large that the trajectory number
100,000 is too insufficient to verify the IFT; in fact, the required trajectory number is
about 2.4 x 102 according to (2-9). Furthermore, to verify the validity under this
condition, we improve the parameters in the next case.

The test diagram of the DFT is also terrible but still in our anticipation, because

the system doesn’t obey the static detailed balance condition

To verify the IFT and the DFT under the same transition rates in the previous
case, we reduce the trajectory length to 5 periods and take over 1,000,000 trajectories.

The main results of this set of parameters are follows.
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(Asgor) = 4.61 (e Astor) = 0.96 (N ireie) = 0.95
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(a) is the histogram of As;,; for 5 periods over 1,000,000 trajectories, and (b) is the
test diagram of the DFT with the point of the mean (As;y¢)-

Although the distribution of As;,; is strange, the IFT is still valid as expected.
And the discrete part of the distribution of As;,; is also due to the non-detailed
balance condition. The test diagram of the DFT becomes better but still invalid in this
case; because the system doesn’t obey the static detailed balance condition, the points
in the DFT diagram would not fit the straight line even if the trajectory number goes

infinity
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The invalidity of the DFT can also be seen from Figure 3-8 (a). The part of the
distribution of As;,; > 0 has many peaks due to the non-detailed balance condition
of the system. Whereas the part of As;,; < 0 is strictly decreasing with the decreased
As;,:. Therefore, according to the shape of the distribution, the ratio of the probability
P (As¢or)/P(—As.,) can’t be equal to e?Stot for every As,,. even over infinitely
many trajectories. Nevertheless, from Figure 3-8 (b) there are still some points valid

for the DFT.

Finally, we take a thought in consideration. If there is a positive flow due to the
non-detailed balance condition, could it be possible to apply an external driving to the
system to balance the positive flow and result in zero net flow?

After some attempts, we found a set of transition rates satisfying this condition,

which is given by
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Figure 3-9
With the set of transition rates given above, the fluxes between states become

zero on average over time after the system has reached the static state.

The main results for 20 periods over 100,000 trajectories are as follows.

(Astor) = 13.25 (e™8stot) = 0.27 (Neircie) = 0 J=0
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Figure 3-10

(a) and (b) are the histograms of Asy¢ and. Ngjrci1e for 20 periods over 100,000
trajectories; and (c) is the test-diagram of the DFT without the point of the mean
(As;,:) and leaving a large blank due toinsufficient realizations.

The result of the IFT with (e #Stet) = 0.27 is much less than one but in our
anticipation. The mean (As;,;) = 13.25 is so large that the trajectory number
100,000 is too insufficient to verify the IFT; in fact, the required trajectory number is
about 1.x 10'° according to (2-9). If we reduce the trajectory length to 5 periods and
take over 1,000,000 trajectories, the mean (As,,.) and (e “Stet) become 3.22 and
0.96 respectively, therefore verify the IFT.

One can observe that there is no discrete part in the distribution of As.,. It
means that the external driving which would cause negative flow, to some extent
balance the discrete part of As,,; due to the non-detailed balance condition.

Consistent with the flux between states, the average of turns (N,;-c;e) = 0. The
test diagram (Figure 3-10 (c)) of the DFT is also terrible as expected due to the

insufficient trajectory number.
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3.3 Brief conclusion

The table (Table 3-1) in the next page shows the conditions discussed above. The
IFT is valid for all conditions. The test diagrams for the DFT are valid under the
conditions obeying the static detailed balance condition and invalid under the
conditions violating the detailed balance condition. These results satisfy the

theoretical prediction [7].




Time-independent protocol

Time-dependent protocol

with positive driving

Time-dependent protocol

with negative driving

Time-dependent protocol

with no driving

Static

Detailed balance

Distribution of As;,;

Gaussian-like

Distribution of As.;

Gaussian-like

Distribution of As;.:

Delta peak with Asy,; = 0

IFT: O DFT: O IF: O DFT: O IFT: O DFT: O
N Distribution of AsS;.¢ Distribution of As;.; Distribution of As;.;
on-
Detailed bal Discrete Discrete unknown
etailed balance
IFT: O DET: X FT. O  DFT X IFT. O DFL X
Table 3-1
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Conclusions and Future Works

The most of woks in this thesis are related to the verification for the IFT. Is it
meaningful to do so?

Although the IFT is a mathematical result and has proved to be valid under
universal and arbitrary conditions, it is necessary to examine the IFT thoroughly. For
example, in classical mechanics, the law of conservation of momentum is truly
universal and can be applicable to any system which is not subject to external forces.
This law had been tested repeatedly theoretically and experimentally in the early stage
of the development of classical mechanics. Nowadays, we don’t need to verify the
law of momentum conservation when carrying out mechanical experiments. On the
contrary, this law can be applied to examine whether the experimental results are
reliable or not. The IFT perhaps plays a similar role in stochastic thermodynamics as
the momentum conservation law in classical mechanics.

The IFT is rather general because the time-reversed process used to prove the
theory doesn’t dependent on specific assumptions. Despite stochastic thermodynamics
is developed for decades, there still remain many problems in practical applications
especially in convergence for finite realizations. One of the main works of this thesis
is to discuss this problem on the examples of two-state and four-state numerical

experiments.

There is a question pending for further research. One of the most significant
features of stochastic thermodynamics is that some thermodynamic observables, like
work and entropy are distributions rather than sharp values. Moreover, these
distributions may extend to negative values. For example, the distribution of entropy
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production could be negative in a closed system and violate the second law. With the
increased mean (As), the entropy annihilating trajectories would be less possible to
occur and the IFT becomes more difficult to be fulfilled due to insufficient
realizations. Especially in a system with a very large mean (As), negative entropy

would hardly occur, and it perhaps imply a limit of stochastic thermodynamics.

Another work of this essay is applying the simulation for Markovian process to
discuss discrete-state system with various conditions, which are maybe difficult to be
carried out in experiments.

In a 2-state system, the stationary distribution p; for a fixed A would
spontaneously obey the detailed balance condition. In'a 3 or more state system with
circular structure, the stationary distribution p, for a fixed 2 would violate the
detailed balance and is subject to a net flow. Notice that the flow for each state is the
same due to the circular structure. In a 4 or more state system with cross structure, the
stationary distribution ‘p; for a fixed 2 would also violate the detailed balance and
is subject to a net flow. Besides, the flow for each state would be different and the flux
between states also becomes different and complicated.

The IFT is always correct no matter how complicated the systems are because it
is a mathematical result for general networks, and it is interesting to discuss various

conditions in the view of stochastic thermodynamics.
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