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Abstract

In this thesis, we have investigated the localization-delocalization transitions (LDTs) of the
instantaneous normal modes (INMS) in simple fluids with Lennard-Jones (LJ) potential. The
LDT is the transition of the_instantaneous vibrations in the system from the localized to
extended states. The INM spectrum of a simple fluid consists of the real- and
imaginary-frequency branches, corresponding to the positive and negative eigenvalues. The
multifractal properties of the INMs at a mobility edge (ME) show that the singularity
spectrum (SSP) and the probability ‘density function (PDF) of vibrational amplitudes are
invariant with the system size. Therefore, we use these properties to locate the ME in an INM
frequency spectrum. Since the multifractal analysis for the ME in the real-frequency branch
still has the formidable system size effect, we are not able to locate the ME precisely. So, we
only consider the ME in the imaginary-frequency branch. Our results indicate that the
singularity spectrum of the multifractal INMs almost agrees with that of the Anderson Model
(AM) at the critical disorder and that of the INMs at the ME of the short-range truncated
Lennard-Jones fluid. Also, for the LJ fluids at the thermodynamic states that we have
simulated, the SSP of the multifractal INMs still has the same agreement. This agreement is a
numerical evidence for the universality of the multifractals at the LDT. Besides this, within
numerical errors, the location of the maximum in the PDF of vibrational amplitudes is also

evidenced to be invariant with the system size.
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Chapterl

1. Introduction

The localization-delocalization transition (LDT) induced by disorder has been known for
many years. No matter for Anderson Model (AM) or other physical systems related with
waves [1,2,3,4,5,6,7], the researches on this subject are more active. Thanks for the recent
advance in computers and algorithms, the AM has been calculated at even larger sizes so that
the investigations for the multifractality at the LDT are also considerably progressed. The
LDT also happens to vibrational excitations, the waves of atomic motions, in disordered
media. [8,9,10,11]. The studies of_ vibrational .excitations have the benefit to avoid the
complicated many body problems. Vibrational modes are classified into extended modes and
localized modes: The extended modes are in perfect lattices and the localized modes causes
by impurities and defects in the disordered lattices. Such as amorphous materials, the disorder
in atomic structures makes the systems performed. not.like a lattice anymore. The vibrational
modes at low frequencies are generally extended and the high-frequency modes are localized.
Therefore, the LDT occurs at some vibrational frequency; this special point is called to be a
mobility edge (ME). The ME provides an alternative universality for investigating. Recently,
localization of ultrasound is observed in a three-dimensional elastic network of aluminum
beads and the localized ultrasounds show strong multifractality [4,12].

In this thesis, we are interested in the LDT in the instantaneous-normal-mode (INM)
spectrum of simple fluids [13]. We want to confirm that the ME of the INMs has the universal
properties for fluids with different ranges in the pair potential and at different thermodynamic
states. Therefore, we calculate the eigenmodes of the Hessian matrices at the instantaneous
configurations. The fluid configurations are not necessary located at the local minima of
energy landscape [20] so that the INMs of fluids have positive and negative eigenvalues. By
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the multifractal analysis and the probability density function of vibrational amplitudes, we
identify the location of the negative-eigenvalue ME in the INM spectrum. But, these two
methods for the ME in the real-frequency branch have the formidable system size effect.

Our results agree with the AM at the critical disorder and the INM spectrum of a simple
fluid with TLJ potential. This agreement indicates that the MEs in the INM spectra of simple
fluids with the LJ potential and at different thermodynamic states still have the universality. In
the future, how to remove the formidable system size effect on the location of the ME in the
real-frequency branch and solving the crystallization problem of the simple fluids at high
densities or low temperatures are still considerable issues. Moreover, generalizations of the

multifractal analysis to other physical systems are also the future works.



Chapter?2

2.Theory

2.1 Instantaneous normal modes of simple fluids

We consider a fluid of N particles with equal mass. The total potential energy V(R) of the
fluid at a configuration R, which is a 3N-dimensional vector indicating the particle positions,
is a sum of the pair potential ¢(r) for all particle pairs

In a short-time scale, a harmonic approximation can-be applied for V(R) [14], and by
expanding V(R) to the second-order. of particle displacement about Ry, V(R) is approximated

as

V(R)=V(Ro)—F(Ry) * (R-Ro)+ 5(R-Ro) - K(Ro) * (R-Ro), (2.1.1)
where F(Ro) denotes 3N-dimensional force vector. Since Ry may not be a configuration at
local minimum of V(R), F(Ro) is generally non-zero. K(Ry) is the 3Nx3N Hessian matrix
composed of 3X3 blocks, which are functions of relative displacements of particle pairs. With

U=R—Ry, the displacement from R, the harmonic potential in Eq.(2.1.1), the equations of

the motion are
U=F(Ro)—K(Ro) - U.

By defining a shifted coordinate Q



this leads to the equation of motion

Q=—K(Ro) - Q.

A configuration of the fluid system can be specified as a point on the potential energy
surface (PES) of V(R) in the 3N-dimensional space. The evolution of the system can be
described by the motion of the point on the PES, which is composed of many mountains,
valleys and saddle points. The eigenmodes of the Hessian matrix at a configuration are
referred as the instantaneous normal .modes (INMs) of the system. The eigenvalues of the
INMs are associated with the curvatures of the PES, where a positive eigenvalue corresponds
to a valley along the normal mode degree of freedom, while a negative one represents the
curvature at a mountain top or.on ashoulder along another normal mode degree of freedom.
The square roots of the eigenvalues.characterize the frequencies of the INMs. It is justified
that only the negative-eigenvalue INMs specified as “true unstable modes™ contribute to the
self-diffusion coefficient of the fluid system [15]. Here, the “true unstable modes” mean that
the steepest descent paths along the eigenvector direction of an unstable mode and along the
reversed direction on the PES will not lead to the same local minimum of V(R) in the
3N-dimensional space. And, the number of local minimum does not lose in this process.

For a fluid with the pair potential ¢(r), the elements of Hessian matrix K(Rg), which are

the second derivatives of V(R) with respect to the particle displacements, are expressed as

62
Ki#'jv - ariuarjv V(R) |R=R0I

_ { _t(Tij),i ij,

Zm:ti t(rmi) =],
tn) =221+ [p(r) - L2 #7
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where i, j are particle indices and u, v coordinate indices. | is the 3-dimensional unit
matrix , ¢'(r) and ¢ (r) denote the first and the second derivatives of ¢(r) with respect to
r, 7 is the unit vector along 7, and t(r) is a 3x3 matrix. The ratio, foep, Of the nonzero
off-diagonal blocks in a Hessian matrix is estimated to be N¢/N, where N; is the average
number of the neighbors around a particle within a cutoff distance r.. Evaluated from the
radial distribution function of the LJ fluid at p* = 0.972 T* = 0.836 (p* reduced density
T* reduced temperature), N, is about 61 with 7. equal to 2.5¢ and independent of N. Thus,
fopp Is inversely proportional to N, with a value about 2.03% for N =3000. For each Hessian
matrix, the trace of the off-diagonal block associated with particles i and j at distance 7;; is
given by the negative of k;;=¢"(ri;)+2¢ (ri;) / rij, whereg'(ri;) and ¢'(ry;) /ri; are
the force constants of the vibrational ‘and rotational binary motions of the two particles,
respectively. [16]. The trace of the diagonal block associated with particle i, expressed as
X j=i kij, is the sum of all force constants connected to this particle.

The elements of each Hessian matrix are subject to constraints [17], which are classified
into three categories: First, the off-diagonal matrix .elements represent the force constant
between pairs of atoms. The balance" of these two kinds of force cause momentum
conservation of the system and, consequently, the sum rules between the diagonal and
off-diagonal blocks make the diagonal blocks determined by the off-diagonal ones as follow;

N
Ki/,t,jv = ZKL'#J'V = 0.

j=1

N
i=1
The Second is the triangle rule for the relative positions of any three particles [18], which
makes only N—1 off-diagonal blocks independent, with N being the particle number of the
system. The Third is the internal constraints of each off-diagonal block, which reduce the
degrees of freedom of an off-diagonal block to the three components of relative displacement
of the related particle pair. None of these constraints appear in the Anderson Model (AM).

The triangle-rule constraints are not considered in those vibrational models with a lattice
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reference frame [19][20]. The third constrains are ignored in the scalar-vibration models [21].
The Hessian matrices of a fluid can be recognized as a generalized version of the Euclidean

random matrices [22], with randomness originated from the disorder of particle positions.

2.2 INMs at Mobility Edge

With the definition given in [23], the Hessian matrices of the generated configurations are
evaluated and then diagonalized with the JADAMILU package [24][25]. The INM-eigenvalue
spectrum D(A) consists of real and imaginary-frequency branches, corresponding to the
positive and negative eigenvalues [26]. According to the results of the multifractal analysis for
five system sizes between N=3000 to N=48000. We want to find out the location of the ME in
the INM spectrum of the LJ fluid-at several thermodynamic states.

For each configuration of N ‘particles, there are 3N INMs with discrete eigenvalues Aq,
where the INM label s is from 1 to 3N.-For INM s, the 3N components of the normalized
eigenvector are denoted as e/ “for j=+1,...;N;where e/ is the three-dimensional projection
vector of particle j in the INM [27]. The magnitude of the projection vector, |ef|, stands for
the vibrational amplitude of particle j in INM s. Due to the normalization of an

INM eigenvector, the vibrational amplitudes of all particles in an INM are subject to a sum

rule

N
el =1
j=1

Generally, the geometric structure of an INM eigenvector can be represented by the spatial

distribution of the vibrational amplitudes.



2.3 Multifractal Analysis

One representation of the multifractal analysis (MFA) reveal as a set of general fractal

dimensions Dg, describing the scaling relation between the summation of the g-th moment

squared vibrational amplitudes |ejs|2 with the system size or the measuring-box size, which

are referred as the system-size scaling and the box-size scaling, respectively. The general

fractal dimensions are related with some exponents « by a Legendre transform. [31,32,33]

The exponents « represent the scaling exponents of the squared vibrational amplitudes

le?|* with the system size L as
lef|* ~L (2.3.1)

Define the singularity strength az—ln|ef|2/lnL, which characterizes the magnitudes of

squared vibrational amplitudes. The number of particles with o within the interval [, a+d ]
is ANwhich scales as
AN ~L @ (2.3.2)

where f(«) denotes the fractal dimensions of the set of particles with o within the
interval [a,a+da]. The function f(«) is called the singularity spectrum (SSP). Generally,
f (@) is a convex function with the maximum at @ =ap equal to the space dimension of the
system and the function of f(a) depends on the system size and the magnitude of disorder in
the system. Another feature point in f(«) is the one where f(a1) = oy, So that the slope of f(«)
at oy is one. In the completely localized region of the INM spectrum, the eigenvectors are
characterized by a few components of the order of L and all other components of the order of
L™ % 4se, the SSP approaches f(a)|g=0 =0 and f(a)|gn0 = 3. It means two extreme
situations. When f(a)|,=o = 0, there is only a particle in the system: When f(a)|4-0 = 3,
we already know that the maximum value of f(a) occurs at «, = «. But, we could not find

the maximum value of f(a) at completely localized region. Therefore, f(a)|g=a, =

10



f(@)] g0 = 3. On the other hand, in the fully extended region, the components of an

. . . 2 R
eigenvector are almost uniform with the value |ef|"=L" so that the spectrum reaches

f(®)].=3 = 3. Due to the finite system-size effect, the extended state has a narrow f(a)
curve closeto f(a)|,=3 = 3 while the localized wave function is represented by a very wide
spectrum with larger ap and smaller ¢,

The SSP was used to characterize the MIT in the Anderson model many years ago [36]. By
using different disorder distributions, the SSP at an ME was found to be invariant with the
system size. Therefore, it was argued that the critical SSP is universal and not dependent on
energy or disorder [35]. This property serves as a condition to locate the
localization-delocalization transition (LDT) in the AM [34] and the vibrational systems [37].
Despite the results support that the.universality exists in SSP, there are still some problems:
First, to claim the universality-of the SSP, the precisions-of previous numerical works are not
convincible. Second, the fluctuation of electronic waves in the AM at the ME is strong, how
to deal with the fluctuation between different electronic waves? Recently, with more powerful
computers and more efficient algorithm;.roles of the typical average and the ensemble average
were carefully compared by Romer and his coworkers [38,39] and, therefore, the precision of
the SSP at the LDT of the AM is highly improved. The SSP at a ME turns out to be invariant
with respect to the system size of the 3D Anderson model [35][34]. Suppose that this is also
true for the 3D vibrational systems, one can use this property of SSP to determine the mobility
edge. In this thesis, we try to locate the MEs in the INMs of the LJ fluids by the MFA, and

further verify the universality of the SSP at the LDT in the INM spectrum.
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2.3.1 Fractal Dimension and Singularity Spectrum

Here we introduce the definition for the general fractal dimensions of the multifractal
structures. In theory, the fluctuations of eigenvectors can be characterized by a set of inverse

participation ratio (IPR) defined as sum over the g-th moment of squared vibrational

amplitudes |ef|”,

ps :jZNl s[4 = Z Z < ep%lejy’ 17 . (2.3.3)

j=1 v=

where i and v are the index of particle and the Cartesian coordinate, respectively, |e/ > is
the vibrational amplitude on the particle i of a INM and the vector |e; > consists of three
basis vector |e;,,® > along the <Cartesiancoordinate. Underlying the assumption of
multifractality, which, in principle, has no relevant length scale, P,* is assumed to follow the
power-law behavior

Py L=ty (2.3.9)

where the mass exponent 7, is‘a quantity characterizing the nature of the INMs under

investigation. Using the normalization condition Y, |ef|* = 1, we have |ef|*~L~% and the

N~ L%, Therefore,
P o L4 [L7)9 = L79@~D),
The mass exponent 7, is d(q — 1) for the fully delocalized INMs, and 7, equals to zero
for the completely localized INMs. From this argument, the definition of the fractal dimension
of the g-th moment of the squared vibrational amplitudes is given as

lq

q—1"

Dq
where D, is so-called generalized fractal dimensions [31]. The value of D, is less or larger

than d for positive or negative g, respectively.
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There are two scenarios to extract the mass exponent 7, and corresponding fractal
dimensions D,: the system-size scaling and box-size scaling. For the system-size scaling, one
has to calculate the g-th moment of squared vibrational amplitudes for different system sizes,
so the calculations are more expansive. For the box-size scaling, it is a coarse-grain procedure

intrinsically. Here, we consider the box-size scaling by the box-counting method. All particles

are divided into N, small boxes with size [, where N, = (%)3 = (%)3with n =£. The

coarse-graind squared vibrational amplitudes are defined as the local probability density

x* (M) (LPD), which is a sum over all components |ejs|2 within box k,

RO z les]” . (2.3.5)

i€box k

Consequently, we define the general 'Inverse Participation Ratio (gIPR) P,°(n) as

summation over the g-th moment.of LPD |5 (1),
Ny

P %(m) = Z(uks(n))" : (2.3.6)
k=1

Because the strong fluctuation.of an individual INM-at a ME, a proper average for the gIPR
must be taken [38,39]. Generally, thereare two kinds of average for P,*(n): the ensemble
average and the typical average defined, respectively, as

<P >y oy (2.37)

e<lTquS(T))>A < T]TZ}’P ’ (238)

where < --- >, denotes the arithmetic average over the INMs with eigenvalues within a
small window of width AL and centered at A, and 7¢™ and 7.7 denote the mass
exponents for the ensemble average and the typical average, respectively. For a very broad
distribution, the typical average of P,°(n), which is the geometric mean, provides more
intrinsic information about the distribution than the arithmetic mean. Therefore, we take the

typical average in ours research. From the scaling relation of Eq. (2.3.8), the mass exponents
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T, isgivenas

t . <InPz5(m)>;
T Yo _ 1 q

; 70 (2.3.9)

Inn
Generally, there are two methods to calculate the SSP f(«). First, the SSP can be

obtained from the mass exponents 7, viaa Legendre transformation [33][20],

= f(aq) = aqq —_ ’[q , (2310)
where
o, = d; and q d’;i“). (2.3.11)

The underline physics of the Legendre transform can be understood by the probability density
function of the singularity strength «, and the detail derivation is given in Appendix A.l.
Second, the SSP can be directly obtained from the probability density function (PDF) of the
singularity strength a, which will.be discussed in the Sec. 2.4.1.

Now we take the first approach. The number g is chosen as discrete numerical values,
which introduce numerical errors for the derivative of =, with respect to g. To avoid such
numerical errors, the Legendre transformation is translated into the scaling form. Substitute

Eq.(2.3.9) to Eq.(2.3.11-2.3.10), after carefully derivative on g, we have

_11m—<55 S(q,m)Ind*(1,1) >;= lim Infly(4,1) (2.3.12)
% = N k 4 k V= I 3.
& (A7)
InF,(\,n
q )
fa = }Il_l‘)r(l)l— < E 5.°(q,m)Iné°(q,m) > = llmT, (2.3.13)

where 8,°(q,m) = (up(m))9/B,° (). With the Eq.(2.3.12) and Eq.(2.3.13), the a, and f
values of certain q can be obtained directly through the scaling formula without introducing
numerical errors from discrete g points. The brackets in the right hand side of Eq.(2.3.12) and

(2.3.13) are define for the nA,(A,n) and InF,(An).
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The thermodynamic limit in Eq.(2.3.9) is achieved by either L — o or [ — 0. But, due to
the discrete nature of our model in particle size and the finite sizes of simulated systems, the

numerical method practically could not achieve these two limits. Instead of taking the limit,

typ

the value 4

is the slope of a linear fit of < [nPy(n) >, versus Inn within a finite
interval of 7. Similarly, the values of a, and f, in Eq.(2.3.12) and (2.3.13) are obtained by
the slope of a linear fit for inA;(A,n) and InF,(A,n) versus Inm, respectively.

In principle, as q varies from -oo to o, 7, is monotonically increase function, but the slope
of the function, which gives the value of «,, decreases from the limiting value a, to a_.

The two limiting values, @, and a_, confine the range of the singularity spectrum f(«)

under the typical average[37].

2.3.2 Box-size scaling and System-size scaling

The scaling of the three quantities < InP,(n7) >, InAg(A,n) and InFy (A, n) versus Inn
can be calculated in two different ways: the box-size scaling and the system-size scaling. In
the box-size scaling, only one system with very large L is needed so that L is a constant and
the variations of the three measured quantities with the box size | are calculated. In the
system-size scaling, all simulated systems with different L are partitioned into small boxes of
the same size so that | is a constant and the variations of the measured quantities with L are
evaluated.

In the box-size scaling, by averaging 103 INM eigenvectors at the ME in the negative
branch and taking the scaled size L'=1/n as an integer varied from 2 to 8, we have
calculated [nP,(4,n), Ind,(4,n) and InF,(4,n) for q between -5 and 5. Generally, for each
a, the InPy(A, 1), InAq(A,n) and InF (A, n) data have a linear behavior at small Inn.

In the system-size scaling, we set 1=2.427 in p*=0.972 such that the simulated
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system of N=3000 is exactly partitioned into 216 boxes, with L' = 6 and the average particle
number n, = 13.9 (I changes with reduced density p*). For other larger simulated systems
and with this I, the ratio L/l is not exactly an integer so that we partition each realization into
small boxes of size | as many as possible, with some remains not enough to be a small box. In
such a partition, the number of small boxes available is L, where L is maximum integer
which is smaller than or equal to L/ [. Thus, for the five system sizes that we have simulated,
the values of L are 6,7,9,12 and 15. Correspondingly, the definition of 7 in the system-size
scaling changes as 1/L. For a partition with remains, only particles in those small boxes
are involved in the calculations of uf(n); however, by requiring that one corner of the
partitioned box of size L coincides with one of the simulation box, each realization may have
eight different ways of partition, which' enhances the number of sampling for statistical

average.

2.3.3Probability Density Function of Vibrational Amplitudes

Another approach to characterize the multifractal INMs is the statistics of the squared
vibrational amplitudes in a INM eigenvector. Averaged over the multifractal INMs of N
particles in a system of size L, the probability density functions (PDF) P, (y) of the squared
vibrational amplitudes ¢ = |ej5|2 is defined such that P, (y)Ay is the ratio AN/N, where
AN is the averaged number of particles with squared vibrational amplitudes lying between
and ¥ + Ay in an INM. By changing variable to the singularity strength a« = —Iny/InL,
the corresponding PDF P, () is given as P,(y)dy/da. The probability of finding a
singular strength corresponding to [a, @ + da] is P,(a)da = AN/N. Based on the physical
meaning of f(a), P.(a) has ascaling of

16



P (a)~Lf@-a

Recently, it has been proved analytically and confirmed with the numerical results of the AM
in 3D [41], that the proportionality of the scaling is the maximum value of the PDF at a,

because of f(«a,) = d. Therefore, P,(a) can be expressed as
P (a) = PL(ao)Lf(a)_d :

and the SSP based on the PDF reads as

gy
fla)= % +d . (2.3.14)
Since the scale invariance of.a, with system size, the position of the maximum PDF is

expected to be independent of L.

2.4Multifractality of INMs at ME

We present the multifractal properties of the INMs at a ME, including the generalized
singularity strength, the singularity spectrum and the probability density function of
vibrational amplitudes introduced in last section. All these quantities are used to confirm the
universal properties of INMs at a ME. In principle, at a ME, the singularity spectrum f (@)
should not change with the system size and the scaling method. Moreover, the probability
density function of vibrational amplitudes P,(a) shows that the maximum probability

P, (ay) should not change with the system size. These two conditions are the most important
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issues to confirm the location of a ME. So, we will further compare the results of these two
methods on checking the universality on ME of INMs simple fluids and discuss each method

in the chapter of conclusion.

2.4.1 Determination of mobility edge by MFA

Based on the system size dependence of SSP, the strength of squared vibrational amplitudes
@, canserve as a quantity to locate the mobility edge. Recently, it is suggested that, with g=1,
a, directly correlates with the von Neumann entropy of quantum entanglement [28], and the
entanglement entropy also serves as a quantity to determine the localization-delocalization
transition [29].

MFA is an alternative analysis to locate the ME. We calculate the a, and a; of the
imaginary-frequency INMs at different fixed eigenvalues for five system sizes from N=3000
to N=48000. By following reference [30]; it has been clearly shown that near a ME both a,
and a; reveal the system-size invariance. This work has been done by my partner [46], so |
do not discuss it anymore in my thesis. In‘the following, based on my partner’s results for the
locations of the MEs, | perform the Multifractal analysis for the INMs at the MEs and
calculate the probability density function of vibrational amplitudes, with the purpose for a

double check on the precise locations of the MEs.
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Chpater3

3.Model and Numerical method

3.1The Lennard-Jones potential

The potential consisted of attractive and repulsive interactions is described by the following

equation:
¢LJ(7”) = 4¢g [(%)12 - (g)ﬁ] )

where € and o are the length and energy parameters of the LJ potential. And the specific
Lennard--Jones parameters are different for differentinteracting particles. In the thesis, we
assume that the potential of a liquid system with N particle is a pairwise summation of a pair
potential ¢,;(r). But, for ensuring.continuity for both the potential and the force at the
cutoff distance 7. for simulation consideration, we need to add a linear term A(*/s) + Bto
the LJ potential ¢,,(r). We choose two different cutoff distances 7,=2.50, 7.=3.50 and
perform Monte-Carlo simulations to construe the configuration with the periodic
boundary condition. The A and B coefficient change with the cutoff distance, showing in the
Table3.1.

b(r) = ¢y (r) +A(£) +B,r< re.
0 ,r=r1c
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Table3.1: Coefficient A and B in different cutoff distance.

r.=3.50 r.=2.50
—0.003726165749 —0.038999477
0.01521636 0.113815584

We give the cutoff distances 7., reduced densities p* and reduced temperatures T* of the

finite-range LJ fluid at five thermodynamic states, where p* and T* are in the units of the

1

two LJ parameters in Table3.2. With N particles confined in a cube of the length L:(%)g

and using the boundary conditions, the fluid configurations are generated by Monte Carlo

simulation for five system sized from N=3000.to48000.

Table3.2:Five different thermodynamic states-of-LJ/ fluids with different cutoff distance,

reduced density, reduced temperature, N. and_equilibrium M Csteps.( N is the average

number of the neighbors around a particle within a cutoff distance 7..)

Te p T N¢ Monte Carlo steps
250 0.972 0.836 61 40000
250 1.0 0.836 63 100000
250 1.0 0.7 63 100000
250 1.0 0.5 63 200000
350 0.972 0.836 172 40000

Finally, we need to introduce the truncated Lennard-Jones (TLJ) potential, it is obtained by

truncating the LJ potential ¢, ;(r) at the minimum r

20

_ 21/6

o and then lifting up in energy




by &,

(P () ter<T,
¢TL](T)—{0 >
Because the truncated Lennard-Jones (TLJ) potential has been done by changing the pair

interaction potential ¢(r). Therefore, we will compare the result with ours. All the pair

potentials show in Fig(3.1).

2 1L ; | | |
E — rc=l.l20
i !‘ . I'L=2‘50 .
i I‘C=3.50
T — full-LJ i
!
= !
G -
M
{
O_ -!. “,‘.’-'_;__'_',:.-7 --------
t g
R4
b
L/
-1 L/ ' ! . |
1 5 !

1/C

Fig(3.1) The truncated Lennard-Jones (TLJ) potential (the dashed line) , Lennard-Jones
potential with two different cutoff distances 7.=2.5¢ and r.=3.5¢ (the red solid and block
solid line, respectively) and full Lennard-Jones potentail. Each potential is scaled with the

depth of the potential well, ¢, and the distance is scaled with the collisopn length, o.
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3.2The Monte Carlo method

The Monte Carlo method follows the canonical ensemble and is widely used in numerical
simulations [42]. Here we briefly introduce the algorithm.
Define the system have an initial m state and to take the system from state m into any one
of its neighboring states n with equal probability. The energy difference of the states is
MV = 2Ny V(™) = X V(™) = Vi — Vo
The probability of a state p, can be expressed as the Boltzmann factor of the energy

difference

Z‘l-e‘Vn/kBT e—Vn/KBT_e—Vnm/KBT

Pn _ —
T z7-1.e=Vm/kpT — e—Vn/kpT

= e_AVnm/KBT.

Pm

where Z =Y e V/*8T s the partition function. I[f“AV,,, <0, the transition probability
e~AVnm/¥BT>1 the transition is accepted .If AV,,,>0, a random number s will be generated. If
e~AVam/ksT >g the transition is accepted. Otherwise, if e 2Vnm/K8T <g the transition is
rejected. Consequently, the transition. between two states is performed. A complete Monte
Carlo step is defined as that every transition is perturbed.

In a Monte Carlo step, the transitions are accepted while others are not. The accepted rate
of total transitions in a Monte Carlo step depends on the choosing of n state and is related
with the distinction between m and n for a system reaching equilibrium. In our algorithm,
about 40000 Monte Carlo steps system are used to reach the equilibrium, but in high density
and low temperature system the Monte Carlo steps are more than 40000. The numbers of
Monte Carlo steps in different thermodynamic states have showed in Table3.2. And we
determine the system reaching the equilibrium or not by the radial distribution function. The

radial distribution functions of the different thermodynamic states all show in Fig(3.2).
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Fig(3.2-a) The radial distribution functions of LJ fluids for three different cutoff distances
under same reduced density and reduced temperature.
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Fig(3.2-b) The radial distribution functions of LJ fluids for different reduced density under
same cutoff distance, and reduced temperature.
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— T'=0.836

Fig(3.2-c) The radial distribution functions of LJ fluids for different reduced temperature
under same cutoff distance, reduced density.

3.3 The JADAMILU method

The underlying algorithm of JADAMILU combines the Jacobi-Davidson (JD) method
with efficient multilevel incomplete LU(ILU) preconditioning which has been used to solve
many problem successively[43,44]. The detail of JD method is referred to the original paper
[45] and reference therein. The main features of JADAMILU are modest memory
requirements and robust convergence to accurate solutions.

The preconditioning plays a key role in the speed of execution. For a given matrix C, a
good preconditioner is a matrix P that is cheap to construct and invert, while still being a good
approximation of the original matrix. This means P~1C is close to the identity matrix,
whereas cheap to invert means that solving a system Px=y should not cost more than a

few multiplications by C.
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The algorithm can calculate a single eigenvalue and the corresponding eigenvector close to
desired value o . When more eigenvectors are sought, the code uses a simple deflation
process: the algorithm is restarted but restricted to the subspace orthogonal to converged
eigenvectors. Experiments show that the later eigenvectors can be computed with similar
accuracy. Inpractice, if several eigenvalues are desired, some eigenvalues close to

the boundary of the interval could be missed.
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Chapter4

4.Results

4.1 Box-size scaling and system-size scaling for different thermodynamics
states

Using Monte-Carlo simulation for N particles in a cubic box of length L and with the
periodic boundary conditions, we generate the configurations of the Lennard-Jones fluid with
a linear term and with different cutoff - distances- r. [10]. Given in table 3.2 for
different thermodynamic system we have done and in table 4.1 for the particle number N and

the box length L, the simulations of five system sizes are performed.

1

Table 4.1: The cube of the length is calculates by L= (%)5,

(@) p* = 0.972
N 3000 6000 12000 24000 48000
L 14.56 18.38 23.12 29.12 36.69
) p* =1.0
N 3000 6000 12000 24000 48000
L 14.42 18.17 22.89 28.85 36.34

And we used the configurations to construct the 3Nx3N Hessian matrices. By using the
JADAMILU package to solve the Hessian matrices, we achieve the eigenvectors and

eingenvalues with different frequency spectrums. These different frequency spectrums are in
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the imaginary-frequency branch of INMs spectrum. At first, we roughly locate the ME by the
property of o, and «; reveal the system-size invariance with the eigenvectors and
eigenvalues receive from Hessina matrices. And, we are going on further analysis to check the
universality of different thermodynamic states. Under the box-counting measuring, there are
two different finite size scaling analysis methods: system-size scaling and box-size scaling.
But the scaling behavior will breakdown for small box | near lattice constant a, the choice of
small box size should be [ > a.

By average 103 INMs of N=3000,6000,12000,24000 and 48000 at the ME in the
imaginary-frequency branch and taking the ratio L/l = 1/5 in the box-size scaling method
as an integer varied from 2 to 8, we have calculated the nA,(A,n) and InF;(A,n) for g
between -5 and 5. And in the system-size scaling, we defined 1=2.427 in p*=0.972 and
1=2.403 in p*=1.0, it means in the simulated system of N=3000 was exactly partitioned into
216 boxes. For other larger simulated systems and with this I, L/l is not exactly an integer so
that we partition each realization into small boxes of size | as many as possible, with some
remains not enough to be a small.box. Therefore, the five system sizes that we have simulated,
the values of L are 6,7,9,12 and 15. L is maximum integer which is smaller than or equal to
L/ L. And, we have calculated < InPy(n) >,, the InA,(A,n) and InF,(A,n) for g between
-6 and 5.9. Indicated our results, the maximum of f(a) occurred at «, on all the
thermodynamic state have been showed in Table.(4.2).

With the data sets of a, and f,;, the singularity spectrum f(a) at ME is shown in
Fig.(4.1-4.5) Within numerical errors, the singularity spectrum at the ME is generally
identical and agrees with the AM and the INMs at the ME of the short-range truncated
Lennard-Jones fluid [37]. The results of SSP curve f(a) provide an evidence to confirm the
location of the ME in the INMs spectrum. The reference figures all obtain from [40], the
purpose is to compare with my data and confirm the mobility edges at different
thermodynamics states still have the same properties. And, the ME at different
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thermodynamic states are shown in Table.(4.3).

In conclusion, the system-size scaling is better than the box-size scaling in theory. Because
the system-size scaling is exactly partitioned all the simulated system into equal size of small
box. The box-size scaling is partitioned one simulated system into several unequal sizes of
small boxes. Therefore, the fluctuation of the particle number between each small box for
system-size scaling is much smaller than box-size scaling. From the view of our results, the
system-size scaling is much sensitive to the precision of the ME frequency spectrum. Because
it is hard to tell the different between the SSP f(a) curve at the frequency spectrum A and
the frequency spectrum B. A and B frequency are all nearby the ME. Finally, we locate the
exactly frequency of ME based on the system-size scaling result.

(All the reference data in Anderson madel and INMs of TLJ fluid come from [38][39][40])

Table.(4.2) The ME at different thermodynamic states.

r. p* T* ME(A)

250 0.972 0.836 -69.6+0.5
250 1.0 0.836 -70.440.5
250 1.0 0.7 -59.640.5
250 1.0 0.5 -43.340.5
350 0.972 0.836 -72.140.5
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Table.(4.3) The position of the singularity strength « (g=0) under box-size scaling and

system-size scaling.

(@) r. = 2.5 p* = 0.972 T* = 0.836

24)]

Box-size

System-size

3000

4.094:+0.0342

6000

4.067+0.0306

12000

4.052+0.0639

24000

4.048+0.0262

48000

4.083+0.0402

4.177+0.0435

€ re=25p"=1.0

T*

= 0.7

(24)]

Box-size

System-size

3000

4.095+0.0557

6000

4.085+0.0124

12000

4.094+0.0178

24000

4.114+0.0246

48000

4.123+0.0406

4.047+0.0224

(€)r. = 3.5 p* =0.972 T* = 0.836

(24))

Box-size

System-size

3000

4.096+0.0138

6000

4.106+0.0202

12000

4.119+0.0375

24000

4.127+0.0448

48000

4.123+0.0101

4.104+0.0346
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(b)r. =25 p*=1.0 T* = 0.836

(2]

Box-size

System-size

3000

4.039+0.0132

6000

4.048+0.0312

12000

4.075+0.0184

24000

4.054+0.0252

48000

4.09+0.041

4.109+0.0244

dr.=25p"=10T"=05

24)]

Box-size

System-size

3000

4.143+0.0378

6000

4.178+0.0174

12000

4.139+0.0274

24000

4.217+0.0851

48000

4.23520.0435

4.002+0.0491
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Fig.(4.1-a) At thermodynamic state r. = 2.5 p* = 0.972 T* = 0.836 , the box-size scaling
of the singularity spectrum f(a) of the INMs LJ simple fluids at a ME. The INMs of
imaginary-frequency is calculated with A = —69.6 + 0.5 (blue line with error bar). And, the

circles, squares and red dashed line are all reference data come from [38][39][40].
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Fig.(4.1-b) At thermodynamic state re= 2.5 p*=0.972 T* = 0.836 , the system-size
scaling of the singularity spectrum f(a) of the INMs LJ simple fluids at a ME. The INMs of
imaginary-frequency is calculated with A = —69.6 + 0.5 (green line with error bar) for five
different system sizes from N=3000 to 48000. In each panel, f(a) is generated with the

data of @, and f, withastep of Aq =0.1.
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circles, squares and red dashed line are all reference data come from [38][39][40].
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Fig.(4.2-b) At thermodynamic state ‘re= 2.5 p* = 1.0 T* = 0.836 , the system-size scaling
of the singularity spectrum f(a) of the INMs LJ simple fluids at a ME. The INMs of
imaginary-frequency is calculated with A = —70.4 + 0.5 (green line with error bar) for five
different system sizes from N=3000 to 48000. In each panel, f(a) is generated with the

data of a, and f; withastep of Aq=0.1.
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Fig.(4.3-a) At thermodynamic state r. = 2.50 p* = 1.0 T* = 0.7 , the box-size scaling of
the singularity spectrum f(a) of the INMs LJ simple fluids at a ME. The INMs of
imaginary-frequency is calculated with A = —59.6 + 0.5 (blue line with error bar). And, the

circles, squares and red dashed line are all reference data come from [38][39][40].
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data of a, and f; withastep of Aq =0.1.
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Fig.(4.4-a) At thermodynamic state r. = 2.50 p* = 1.0 T* = 0.5 , the box-size scaling of
the singularity spectrum f(a) of the INMs LJ simple fluids at a ME. The INMs of
imaginary-frequency is calculated with A = —43.3 + 0.5 (blue line with error bar). And, the

circles, squares and red dashed line are all reference data come from [38][39][40].

36



7 L] L) ) L] L) 3 L) L) L L) L]
6 F - 25 F -
3k i w% 1 G
4 - e s
o
, 1% taf foist y
1 o Vi .5 -
0 | 0 EE———
6 20 2 4 6
27k -
3
S
LS

= Negative INM
— — AM Size scaling
~  System size scaling

0

0
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the singularity spectrum f(a) of ‘the INMs LJ simple fluids at a ME. The INMs of
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different system sizes from N=3000 to 48000. In each panel, f(a) is generated with the

data of a, and f; withastep of Aq =0.1.
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Fig.(4.5-a) At thermodynamic state r. = 3.5 p* = 0.972 T* = 0.836 , the box-size scaling
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circles, squares and red dashed line are all reference data come from [38][39][40].
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Fig.(4.5-b) At thermodynamic state r.=3.5 p* =0972 T* = 0.836 , the system-size
scaling of the singularity spectrum. f(a) of the INMs LJ simple fluids at a ME. The INMs of
imaginary-frequency is calculated with- A =—=72.1 + 0.5 (green line with error bar) for five
different system sizes from N=3000 to 48000. In each panel, f(a) is generated with the

data of @, and f, withastep of Aq =0.1.

4.2 Singularity spectrum

In this section, we further compare the Singularity Spectrum curve f(a) at different
thermodynamic states. Check to confirm if the SSP of INMs LJ fluids under different
thermodynamic states still have invariance curve of f(a). The results in Fig.(4.6) show that
the SSP curve under different thermodynamic states almost consist with each other. But, the

two edges of SSP curve (the spots at big |g| ) disperse to independent curve. We think that is
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came from the gIPR P;/(n) to the power of big |g|. When the gIPR F; () to the power of
[q] is big, it will amplify the numerical error in data base. If the average number of INMs can
be increased, the the numerical error in data base will be reduced. The SSP curve f(a) also

will be able to perfectly consist with different thermodynamic states of INMs LJ fluid.
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Fig(4.6-a) The system-size scaling of the singularity spectrum f(«) of the INMs LJ simple
fluids at a ME under different thermodynamic states. These thermodynamic states already

have showed in Table.4.3.
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Fig(4.6-b) The box-size scaling of the singularity spectrum f(a) of the INMs LJ simple
fluids at a ME under different thermodynamic states. The results of five different simulated
system sizes from N=3000 to 48000 show in order. These thermodynamic states already have
showed in Table.4.3.
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4.3Probabilty density function of vibrational amplitudes

The probability density function of vibrational amplitudes is calculated with 7000-9000
INM eigenvectors for each N from 3000 to 48000. The variation of P,(a) with each system
size is shown in Fig(4.6-4.10). The position of the P, (a) maximum is almost invariant with
system size. Within numerical resolution, this maximum position almost located at = 4.1 +
0.05 , it is very close to the a, value of f(a) obtained from the box-size scaling and
system size scaling. Moreover, we used the Eq.(2.3.14) to calculate the singularity spectrum
f (), and all the results showed in Fig(4.6(b)-4.10(b)).

The reason why we let the probability density function of vibrational amplitudes become a
method to locate the position: of ME-is the maximum point of P,(a) must be locate at
Py, (). Because the SSP curve f(a) at @y, f(a)|y=«, = 3. When this situation occurred, it
means that it is the spot closest the ‘extended mode and the number of particle are the most.
The meanings are the same. But this method still has a disadvantage. The discrete numerical
point of a will induce numerical error for PDF. So, the precision of @, must been
influenced by the average number of INMs and the numerical resolution (Aa). If the average
number of INMs can increase, the numerical resolution can be smaller and the curve of PDF
does not become rough. Our results have showed this situation at some thermodynamic states.
It means that the position of a, do not consist with different simulated system and the

relation between the maximum value of P,(a) (P.(a,))and (InL)Y/? is not linear.
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Fig.(4.7-a) At thermodynamic state r. =2.56 p*=0.972 T* = 0.836, the probability
density function of vibrational amplitudes- P; (a) change with different simulated system size

for INMs LJ fluids at 2 = —69.6 + 0.5. a = —In|e;*|?/InL . The numerical results with the

resolution Aa equal to 0.05. And, the inset shows P, (a,) versus (lnL)1/2 and fit of

A+ B(lnL)l/z (red solid line), with A= 0.026988 and B=0.27511.
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Fig.(4.7-b) At thermodynamic state r. = 2.5¢ p* = 0.972 T* = 0.836, the singularity
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spectrum f(a) of the INMs LJ simple fluids at a ME obtained by f(a) =
(Eq.(2.3.14)) with five different simulated system sizes from 3000 to 48000. And, the circles,

squares and red dashed line are all reference data come from [38][39][40].
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Fig.(4.8-a) At thermodynamic state re-=2.50.p* = 1.0 T* = 0.836,the probability density
function of vibrational amplitudes P,(a) change with different simulated system size for
INMs LJ simple fluids at A = —70.4 + 0.5. a = —In|e;5|?/InL . The numerical results with
the resolution Aa equal to 0.05. And, the inset shows P, (a,) versus (lnL)1/2 and fit of

A+ B(lnL)l/z (red solid line), with A= 0.0833 and B=0.2462.
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Fig.(4.8-b) At thermodynamic state-r.=2.50 p* =1.0 T*=0.836, the singularity
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spectrum f(a) of the INMs LJ fluids at a ME obtained by f(a) =
(Eq.(2.3.14)) with five different simulated system sizes from 3000 to 48000. And, the circles,

squares and red dashed line are all reference data come from [38][39][40].
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Fig.(4.9-a) At thermodynamic state r. = 2.50 p* = 1.0 T* = 0.7, the probability density
function of vibrational amplitudes P; () change with different simulated system size for
INMs LJ fluids at A = —59.6 + 0.5. a = —In|e;5|?/InL . The numerical results with a
resolution Aa equal to 0.05. And, the inset shows P, (a,) versus (lnL)1/2 and fit of

A+ B(lnL)l/z (red solid line), with A= 0.082 and B=0.2455.
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Fig.(4.9-b) At thermodynamic state re=2.50-p" = 1.0 T* = 0.7, the singularity spectrum

Pr(a)

n
f(a) of the INMs LJ fluids at a ME obtained by f(a) = %+ d (Eq.(2.3.14)) with
five different simulated system sizes from 3000 to 48000. And, the circles, squares and red

dashed line are all reference data come from [38][39][40]..
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Fig.(4.10-a) At thermodynamic state r..= 2.5 p* = 1.0 T* = 0.5, the probability density
function of vibrational amplitudes P,(a) change with different simulated system size for
INMs LJ fluids at A = —43.3 + 0.5. a = —In|e;*|?/InL . The numerical results with the
resolution Aa equal to 0.05. And, the inset shows P, (a,) versus (lnL)1/2 and fit of

A+ B(lnL)l/z (red solid line), with A= 0.1028 and B=0.228.
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Fig.(4.10-b) At thermodynamic state r..= 2.50p" = 1.0 T* = 0.5, the singularity spectrum

Pr(a)

n
f(a) of the INMs LJ fluids at a ME obtained by f(a) = %+ d (Eq.(2.3.14)) with
five different simulated system sizes from 3000 to 48000. And, the circles, squares and red

dashed line are all reference data come from [38][39][40].
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Fig.(4.11-a) At thermodynamic state-r. = 3.50 p* = 0.972 T* = 0.836, the probability
density function of vibrational amplitudes P, (a) change with different simulated system size
for LJ fluids INMs at 2 = —72.1 + 0.5. a = —In|e;*|?/InL . The numerical results with the
resolution Aa equal to 0.05. And, the inset shows P, (a,) versus (lnL)1/2 and fit of

A+ B(lnL)l/z (red solid line), with A= 0.0686 and B=0.246.
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Fig.(4.11-b) At thermodynamic ‘state-r. = 3.56 p* = 0.972 T* = 0.836, the singularity
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spectrum f(a) of the INMs LJ fluids at a ME obtained by f(a) =
(Eq.(2.3.14)) with five different simulated system sizes from 3000 to 48000. And, the circles,

squares and red dashed line are all reference data come from [38][39][40].
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Chapterb

5.Conclusions

In this paper, we have investigated the multifractality of the INMs at the
imaginary-frequency branch ME of simple fluids. The locations of the MEs are determined by
the invariance of the singularity spectrum (SSP) and the maximum position in the probability
density function of vibrational amplitudes with the system size. We generalize the multifractal
analysis for the INMs at a ME with the box-counting method for the LJ fluids at different
thermodynamic states. In the hox-counting method, the simulated system is partitioned into
equal-volume small boxes. The multifractal analysis under typical ensemble is performed for
both the box-size scaling and the:system-size scaling. By the box-size scaling and the
system-size scaling, the singularity spectrum of the multifractal INMs agree with the results
calculated for the AM and the short-range interaction fluid. Moreover, the SSP curve consist
with different thermodynamic states in INMs LJ simple fluids. Therefore, we can confirm that
the SSP is a universal quantity. But, the SSP under the system-size scaling is more sensitive
for predicting the precise location of the ME. So, we suggest the system-size scaling for
determining the imaginary-frequency branch ME.

The probability density function of vibrational amplitudes provides another method to
determine the location of ME. But, this method is influenced in numerical resolution by the
average number of the INMs, which means that the average total number of INMs that we
have calculated for each system size in our researches are not enough to reduce the fluctuation
in the values of P,(ay) and «. Also, the precision of «, and the SSP curve calculated by

PDF of vibrational amplitudes can not compare with the MFA. Especially, the SSP curve
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calculated by PDF of vibrational amplitude on two edges of curve (big |q|) do not consist
with the AM and short-range interaction fluid.

In conclusions, these two methods perform well in the researches on this subject. The
precision of the SSP f(a) curve and probability density function of amplitudes P, (o)
would be better as long as the average number of INMs is enhanced in 2 or 3 orders. The
other direction is to increase the simulated system size to check whether the universality still
exists. In principle, these improvements will produce higher precisions in numerical data by
reducing error bars. We still need to overcome the formidable system size effect on the
real-frequency ME and solve the crystallization problem of a simple fluid at high densities or
low temperatures. These problems are still considerable issues. Moreover, let the multifractal
analysis apply to the other physic system, because the multifractal analysis has the advantage
in theory to be easy and understandable. The most importance is that the multifractal theory is

easier to be realized than the complicated many-body theories for realistic physical systems.
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Appendix A

A.1 Derivation for Legendre Transform of SSP from the

Mass Exponents

Generally, the general inverse participation ratio scales with system size as
B*(m) ~ 7', (A1)
where 14 is the mass exponent. Here, we derive the Legendre transform t, = aq — f(a).

Consider the LPD pu,° defined «in' Eq.(2:3:5), in the discrete system satisfies the
normalized condition ZZZlﬂks = 1, -where N = (% 3 =p=3. The probability density

function of the LPD py.(uy*)~is defined as

ANy,

pr () d’ = N_n'
where A N, is the number of boxes with g, within [u;°, w® + dpy®]. The pr(uy®) is
normalized as,
Jor (i) dp = 1.
By changing variable to the singularity strength
a = Inu,® / Ilnn,
the corresponding PDF P, (o) is given as pr(ux)du,’/do. The PDF of a should also

satisfy the normalization condition

fPL(a)da = Jﬂ(uks)duks =1.

After changing variable to the singularity strength, the definition of the gIPR become

Fa" ) = Zk;(uks)q =Ny [P0 (ui®) - ()T - dpy® = Ny [ Pu(e) -0 - da.
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Based on the definition of fractal dimension AN,~L "®, where AN, is the numberof boxes
belong to [a, a + da], and the probability of o within [, a + da] is P (a)da = AN, /N,,.
Therefore, we have
P -1 - da ~ n~f@,
Consequently,
PS(m) ~ [plea-r@l. qq (A.2)
Evaluation of the integral by the saddle-point method gives
Py () ~ nl@a~/ @1, (A3)
which reproduce Eq.(A.1), with the mass exponent t, related to the singularity spectrum via

the Legendre transform

Tq = aq = f (@),

at

_Q

ag = and g = A

3|
Q
I
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