
CHAPTER 5 

CONCLUDING REMARKS 
 

    An experiment combining flow visualization and temperature measurement is 

conducted in the present study to explore the possible presence of new vortex rolls 

and some unique time-dependent vortex flow characteristics associated with a high 

speed air jet impinging onto a horizontal circular heated disk confined in a vertical 

cylindrical chamber. Effects of the inlet gas flow rate, temperature difference between 

the heated disk and cold air jet, and the jet-to-disk separation distance on the new 

vortex flow characteristics are inspected in detail. In this experiment the jet-to-disk 

separation distance is varied from 10.0 to 30.0 mm, the jet Reynolds number from 0 to 

1,623, the Rayleigh number from 0 to 63,420 and the Grashof number from 0 to 

90,600. The major results obtained in the present study can be briefly summarized in 

the following: 

1. At sufficiently high jet Reynolds numbers a tertiary vortex roll can be induced in 

the chamber, in addition to the primary and secondary rolls identified in the early 

study [10]. The quaternary roll is only seen for H=10.0 mm at an even higher 

Rej. 

2. The critical Rej for the onset of the tertiary and quaternary inertia-driven rolls are 

higher at increasing temperature difference between the heated plate and 

injection air for H=10.0 & 20.0 mm. But the tertiary inertia-driven roll is 

disappeared by increasing T∆  at H=30.0 mm. 

3. At increasing jet flow rate the tertiary and the quaternary inertia-driven vortex 

rolls are larger in size and stronger in intensity. The opposite is the case for a 

higher temperature difference between the heated plate and injection air. 

4. The buoyancy-driven instability does not exist at H=10.0 & 30.0 mm. 
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5. The onset of the inertia-driven time dependent vortex flow occurs at even higher 

Rej than that for the onset of tertiary and quaternary rolls. This critical Rej 

increases with  for H=10.0 & 20.0 mm. Again the opposite is true for 

H=30.0 mm. 

T∆

6. The time-periodic vortex flow appears at a slightly higher Rej for the onsets of 

the tertiary and the quaternary inertia-driven rolls. The vortex flow inside the 

rolls deforms noticeably. 

7. When the jet flow rate exceeds certain critical level, the vortex rolls somewhat 

deform and the flow pattern is like a polygon. The inner rolls tend to break into a 

number of well connected cells. Moreover, the deformed vortex rolls slowly 

rotate in circumferential direction. 

8. At a high Rej the unstable flow in the chamber with H=10.0 & 20.0 mm is 

initiated by the inertia-driven instability. But for H=30.0 mm the unstable flow 

results from the mutual pushing and squeezing of the large inertia- and 

buoyancy-driven rolls. Hence an increase in T∆  destabilizes the flow. 

9. For H=20.0 mm both the inertia- and buoyancy-driven instabilities exist and 

reverse flow transition can appear at increasing Rej. 

10. The frequency of the temperature oscillation for a time periodic flow is mainly 

affected by the jet Reynolds number. 

11. Flow regime maps are given to delineate the temporal state of the vortex flow 

and the boundaries separating various states are empirically correlated.  
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