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摘要 

Securin 是一種調控有絲分裂與細胞凋亡的重要蛋白。紫鉚花素是一種具有

抑制癌細胞增生作用的多酚類化合物，然而，securin 在紫鉚花素所誘導的有絲

分裂停止與細胞凋亡的調控作用仍不清楚。本篇研究的目的，主要探討紫鉚花素

誘發人類大腸癌細胞的有絲分裂停止與細胞凋亡，以及 securin 的功能。處理紫

鉚花素後會顯著造成 HCT116 大腸癌細胞的有絲分裂停止與細胞凋亡，此外，紫

鉚花素增加磷酸化組蛋白-3 表現量與有絲分裂指數，紫鉚花素誘發大量位在染色

體的磷酸化組蛋白-3，並停在有絲分裂的中期。再者，在缺少 securin 基因的大

腸癌細胞比 securin 功能正常的 HCT116 大腸癌細胞，對紫鉚花素細胞毒性更為

敏感。並且紫鉚花素會大量地抑制 securin 功能正常的 HCT116 癌細胞中 securin

蛋白的表現。進一步研究發現，紫鉚花素會透過活化 caspase-3 引發細胞凋亡。

此外，紫鉚花素增加磷酸化 p53 蛋白，然而在缺少 p53 基因的 HCT116 大腸癌細

胞對紫鉚花素所誘發的細胞死亡比 p53 正常功能的細胞較為敏感。綜合以上結

果，我們推測 securin 與 p53 參與調控紫鉚花素所造成的有絲分裂期停止及細胞

凋亡。 
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ABSTRACT 

Securin has been shown to play important roles in controlling apoptosis and 

mitosis. Butein is a natural polyphenolic compound, which has been shown growth 

inhibitory activity in human cancer cells. However, the regulation of securin on 

butein-induced mitotic arrest and apoptosis is poorly understood. In this study, we 

investigated the role of securin on regulating mitotic arrest and apoptosis after 

treatment with butein in the human colon cancer cells. Butein markedly induced the 

mitotic arrest and apoptosis in HCT116 colon cancer cells. Additionally, butein 

increased the levels of phospho-histone H3 and mitotic index. The phosphorylated 

histone H3 proteins were located in chromosomes of metaphase following treatment 

butein. Moreover, the securin-null colon cancer cells were more sensitive than the 

securin-wild type cancer cells to cytotoxicity by butein. The securin protein 

expression was markedly reduced by butein in the HCT116 securin-wild type cancer 

cells. Furthermore, butein induced caspase-3 activation for apoptosis. Besides, butein 

increased the phospho-p53 (Ser15) levels. However, the p53-null HCT116 cancer 

cells were more sensitive on cell death than the p53-wild type HCT116 cancer cells 

following butein treatment. Taken together, we suggest that butein induces mitotic 

arrest and apoptosis, which may regulate by securin and p53. 
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ABBREVIATIONS 

AIF: apoptosis inducing factor 

CAK: cyclin dependent kinase-activating kinase 

CDC2: cell division control protein 2 

CDC25C: cell division cycle 25 homolog C 

CDKs: cyclin dependent kinases 

CDKIs: cyclin dependent kinase inhibitors 

DMSO: dimethyl sulfoxide  

EGFR: epidermal growth factor receptor 

FBS: fetal bovine serum 

FITC: fluorescein isothiocyanate 

IAP2: inhibitor of apoptosis protein 2 

MTT: 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyl tetrazolium bromide 

PARP: poly (ADP-ribose) polymerase 

PBS: phosphate-buffered saline  

PI: propidium iodide 

PTTG1: pituitary tumor-transforming gene 1 

ROS: reactive oxygen species 

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

TNF: tumor necrosis factor 

MMP-9: matrix metallopeptidase 9 
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1. Introduction 

1.1. Colorectal cancer 

Colorectal cancer is one of the leading causes of cancer mortality in the world. 

Epidemiological studies have linked increased risk of colorectal cancer with a diet 

high in red meat and animal fat, low-fiber diet, and low overall intake of fruits and 

vegetables [1]. Colorectal cancer comes in many forms, including adenocarcinoma, 

leiomyosarcoma, lymphoma, melanoma, and neuroendocrine tumors. 

Adenocarcinoma is the most common type of colorectal cancer [2]. In the past 10 

years, an unprecedented advance in systemic therapy for colorectal cancer has 

dramatically improved outcome for patients with metastatic disease [3]. Until the 

mid-1990s, the only approved agent for colorectal cancer was 5-fluorouracil [4]. New 

agents that became available in the past 10 years include cytotoxic agents such as 

irinotecan and oxaliplatin, oral fluoropyrimidines, and biologic agents such as 

bevacizumab, cetuximab, and panitumuma [5]. Development of novel anticancer 

drugs for colon cancer therapy is highly desired. 

1.2. Anticancer activities of chalcones  

Chalcones, a group of aromatic enones, forms the central core of a variety of 

important biological compounds, which belong to the flavonoid family and are often 

responsible for the yellow pigmentation in plants [6]. These phenolic compounds all 

javascript:showrefcontent('refrenceslayer');
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bear a 1,3-diphenyl-2-en-1-one framework. Chalcones have a variety of biological 

activities, including antifungal [7], antibacterial, antiprotozoal [8, 9], antimutagenic, 

antitumorogenic [10] and anti-inflammatory properties [8, 11, 12]. Various of 

chalcones, such as flavokawain B [13-15], isoliquiritigenin [16], and isobavachalcone 

[17, 18] have been shown to induce apoptosis in different types of cancer cells. These 

triterpenoids have a common target, Bcl-2 protein, which can induce apoptosis in 

cancer cells [6, 19]. Chalcones also have potential to block the NF-κB activation and 

inhibit proliferation, invasion, metastasis and angiogenesis [20-24]. 

1.3. Butein and its anticancer activities 

Butein (3,4,2′,4′-tetrahydroxychalcon), a plant polyphenol flavonoid extracted 

from the stembark of cashews and Rhus verniciflua stokes, has traditionally been used 

for the treatment of pain, parasitic, and thrombotic diseases [25]. Butein has 

anticancer activities against cancers, including leukemia [26], melanoma [27], breast 

carcinoma [28, 29], colon carcinoma [30, 31], osteosarcoma [32], and hepatic stellate 

cells [33]. Butein can induce apoptosis in different types of cancer cells [23, 34, 35]. 

It has been shown that the apoptotic effect of butein is due to its inhibition of the 

expression of such NF-κB-regulated gene products as IAP2, Bcl-2, and Bcl-xL [23]. 

Also, butein can increase caspase-3 activity and expression of death receptor DR5 

[36]. Moreover, butein induced cell cycle arrest and apoptosis in human hepatoma 
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cancer cells [34]. Butein also down-regulated MMP-9 in human leukemia cells [23]. 

In addition, butein is a tyrosine kinase inhibiter to cause inhibition of EGF-induced 

tyrosine phosphorylation of EGFR in cancer cells [35]. 

1.4. Apoptosis  

Characteristic apoptotic features include membrane blebbing, cell shrinkage, 

chromatin condensation, and formation of a DNA ladder with multiple fragments 

caused by internucleosomal DNA cleavage [37]. There are two major apoptosis 

pathways, including intrinsic (also called „mitochondrial‟ or „Bcl-2-regulated‟) and 

extrinsic (also called „death receptor‟) apoptosis signaling, in cells responsive to 

apoptotic stimuli [38, 39]. The extrinsic pathway is initiated by binding of the 

transmembrane death receptors such as Fas, tumor necrosis factor (TNF) receptor, 

DR3, DR4, or DR5 with their specific ligands, which is followed by activation of 

initiator caspase-8 to induce apoptosis [40]. The intrinsic pathway is activated by 

intrinsic death stimuli such as reactive oxygen species (ROS), DNA-damaging 

reagents, resulting in the release of cytochrome-c and the activation of caspase-9 

which in turn activates caspase-3 [41]. Both extrinsic and intrinsic pathways lead to 

activation caspase-3 for apoptotic induction [42, 43]. Activation of caspases can 

cleave specific cellular substrates, including cytoplasmic structural proteins such as 

actin and nuclear proteins such as poly (ADP-ribose) polymerase (PARP) for 
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inducing cell death [19, 44, 45]. Failure of apoptosis regulation results in pathological 

conditions including cancer development [46]. 

1.5. Cell cycle progression 

Cell cycle progression is an important biological event to control normal cells, 

which almost universally becomes aberrant or deregulated in transformed and 

neoplastic cells. The cell cycle consists of four orderly and tightly regulated phases, 

including G1, S, G2 and M [47-49]. The regulation of cell cycle progression is 

regulated by cyclin dependent kinases (CDKs) and cyclins [50]. CDKs participate in 

cell cycle by binding with cyclins and negatively regulated by CDK inhibitors 

(CDKIs) [48]. In order to regulate cell cycle progression, different checkpoints are set 

at various stages of the cell cycle [51]. Entry into mitosis is controlled by CDC2, also 

known as CDK1 (Cyclin Dependent Kinase 1), which is regulated by the cell 

cycle-dependent synthesis and degradation of cyclin B1, which accumulates during 

G2/M and disappears at the end of mitosis. CDC2 is also regulated by phosphorylation 

at different three sites [52]. Phosphorylation of threonine 161 by CDK-activating 

kinase (CAK) is required for CDC2 activity [53], whereas phosphorylation of tyrosine 

15 by Wee1 [51, 54, 55] and threonine 14 by Myt1 [56] inhibits CDC2 activity. At the 

onset of mitosis, the phosphatase CDC25C dephosphorylates tyrosine 15 and 

threonine 14 to activate CDC2 [57].  
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1.6. Securin and apoptosis 

Securin consists of a homologous family of proteins expressed in different 

species [58-61]. Securin participates in DNA repair after radiation [62]. Securin 

overexpression has been reported in a variety of endocrine-related tumors [63-66] and 

nonendocrine-related cancers [67-69]. It has been shown that securin can promote the 

cell proliferation and tumorigenesis [70, 71]. Securin levels correlate with tumor 

invasiveness, and it has been identified as a key signature gene associated with tumor 

metastasis [72]. It has been reported that overexpression of securin induces apoptosis 

[70, 73], aneuploidy [74], genomic instability [75, 76], angiogenesis [77, 78], and 

senescence [79].  

1.7. Securin and cell division 

Securin has a well-established role in binding and inhibiting separase, an enzyme 

that cleaves the chromosomal cohesion, and thereby ensuring the appropriate timing 

of sister chromatid separation to prevent abnormal sister chromatid separation in the 

mitosis progression [14, 80-84]. Securin can prevent aberrant chromosomal 

segregation when cellular DNA or spindles are damaged [59, 60, 85]. Securin 

accumulates during G2 and prophase and is destroyed at the onset of anaphase [14, 

86]. 
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1.8. Purpose of this study 

The regulation of securin in the butein-induced mitotic arrest and apoptosis was 

still unclear. In this study, the anticancer abilities of butein on mitotic arrest and 

apoptosis are investigated in the human colon cancer cells. Understanding the 

mechanism by which securin regulates butein-induced mitotic arrest and apoptosis 

may provide the identification of novel strategies for colon cancer therapy. 
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2. Materials and methods 

2.1. Chemicals and reagents 

Butein (B-178), Hoechst 33258, Cy3-labeled mouse anti--tubulin (c-4585), 

propidium iodide, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), and the Cy3-labeled mouse anti--tubulin were purchased from Sigma 

Chemical (St. Louis, MO). Butein was dissolved in DMSO, and the concentration of 

DMSO was < 1 % in the control and drug-containing medium. 

2.2. Antibodies 

Anti-CDC2, anti-phospho-CDC2 (Tyr15), anti-phospho-CDC2 (Thr14), 

anti-phospho-CDC2 (Thr161), anti-phospho-histone H3 (Ser10), anti-phospho-p53 

(Ser15), and anti-poly (ADP-ribose) polymerase (PARP) was purchased from Cell 

Signaling Technology, Inc. (Beverly, MA, USA). Anti-caspase-3 antibody was 

purchased from BioVision (BioVision, Inc., USA). Anti-cyclin B1 (Ab-2) antibody 

was purchased from Oncogene Sciences (Cambridge, MA). Anti-actin (I-19) antibody, 

goat anti-rabbit IgG horseradish peoxidase, and goat anti-mouse IgG horseradish 

peoxidase were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 
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Antibody Source Molecular Weight Brand Catalog 

Actin  mouse 42 Santa Cruz sc-1616 

CDC2 rabbit 34 Oncogene PC-25 

Cyclin B1 mouse 60 Oncogene CC03 

Caspase-3 mouse 32 Biovision 3004-100 

PARP rabbit 17 Cell Signaling Tech #9542 

Phospho-CDC2 (Thr161) rabbit 34 Cell Signaling Tech #9114 

Phospho-CDC2 (Tyr15) rabbit 34 Cell Signaling Tech #4539 

Phospho-CDC2 (Thr14) rabbit 34 Cell Signaling Tech #2543 

Phospho-p53 (Ser15) rabbit 53 Cell Signaling Tech #9284 

Phospho-histone H3 (Ser10) rabbit 17 Cell Signaling Tech #9701 

Securin mouse 22 Abcam ab3305 

Anti-rabbit IgG-HRP goat secondary antibody Santa Cruz sc-2004 

Anti-mouse IgG-HRP goat secondary antibody Santa Cruz sc-2005 

Anti-rabbit IgG-Hylite 488 goat secondary antibody Jackson 115-485-003 

2.3. Cell culture 

The wild type, securin (-/-), and p53 (-/-) HCT116 colorectal carcinoma cell lines 

were kindly provided by Dr. B. Vogelstein of Johns Hopkins University (Baltimore, 

MD). These cell lines were cultured in complete McCoy‟s 5A medium (Sigma 

Chemical) supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, 

100 μg/ml streptomycin and sodium bicarbonate. These cells were maintained at 37°C 

and 5% CO2 in a humidified incubator (310/Thermo, Forma Scientific, Inc., Marietta, 

OH). 

2.4. Cytotoxicity assay 

The cells were plated in 96-well plates at a density of 1 × 10
4
 cells/well for 16-20 

h. Thereafter, the cells were treated with various concentrations of butein for 24 h, 
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and then the cells were washed with phosphate-buffered saline (PBS) and were 

replaced fresh complete McCoy‟s 5A medium for cultured 2 days. Subsequently, the 

cells were incubated with 0.5 mg/ml of MTT in fresh complete McCoy‟s 5A medium 

for 4 h. The surviving cells converted MTT to formazan by forming a blue-purple 

color when dissolved in dimethyl sulfoxide. The intensity of formazan was measured 

at 565 nm using a microplate reader (VERSAmax, Molecular Devices Inc., CA). The 

relative percentage of cell viability was calculated by dividing the absorbance of 

treated cells by that of the control in each experiment. 

2.5. Time-lapse observation of cell death 

HCT116 colon cancer cells were plated at a density of 2 × 10
5
 cells per 35-mm 

Petri dish in complete medium for 16-20 h. Then the cells were treated with or 

without 40 μM butein by time-lapse observation under an optical phase contrast 

microscope with an incubator system (OLYMPUS IX71, Japan). The pictures were 

edited by DP manager software (Ver. 3.3.1, OLYMPUS) 

2.6. Cell cycle analysis 

The cell cycle progression after treatment with butein was measured by flow 

cytometer. The cells were plated at a density of 1 × 10
6
 cells per 60-mm Petri dish in 

complete medium for 16-20 h. After treatment, the cells were collected and fixed with 

ice-cold 70% ethanol overnight at -20 °C. After centrifugation, the cell pellets were 
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treated with 4 μg/ml PI solution containing 1% Triton X-100 and 100 μg/ml RNase at 

37 °C for 30 min. After re-centrifugation, the cells resuspended in 1 ml ice-cold PBS. 

To avoid cell aggregation, the cell solutions were filtrated through nylon mesh 

membrane. Subsequently, the samples were analyzed by CellQuest software in flow 

cytometer (BD Biosciences, San Jose, CA). A minimum of ten thousand cells was 

analyzed for DNA content, and the percentage of cell cycle phases was quantified by 

ModFit LT software (Ver. 2.0, Becton-Dickinson). 

2.7. Annexin V and PI assays 

The cells were plated at a density of 7 × 10
5
 cells per 60-mm Petri dish in 

complete medium for 16-20 h. Thereafter, the cells were treated with 0-40 μM butein 

for 24 h. Apoptotic cells was performed using an annexin-V-FITC Apoptosis 

Detection Kit (BioVision, Mountain View, CA) according to the manufacturer‟s 

instructions. Then cells were collected and resuspended in 500 μl of binding buffer, 

added 5 μl of annexin-V-fluorescein isothiocyanate (FITC) and 5 μl of propidium 

iodide (PI). Finally, the samples were analyzed by flow cytometer using CellQuest 

software (FACScan, Becton–Dickinson, San Jose, CA). The cells showed annexin 

V(+)/PI(−) and annexin V(+)/PI(+), which indicated at early and late apoptosis, 

respectively. 
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2.8. Western blot 

   After the end of drug treatment, the cells were lysed in the ice-cold whole cell 

extract buffer containing the protease inhibitors. The lysate was vibrated for 30 min at 

4 ℃ and centrifuged at 10,000 rpm for 10 minutes. Protein concentration was 

measured by BCA protein assay kit (Pierce, Rockford, IL). Equal amounts of proteins 

were subjected to electrophoresis using 12 % sodium dodecyl sulfate-polyacrylamide 

gels. To verify equal protein loading and transfer, proteins were then transferred to 

polyvinylidene difluoride membranes and the membranes were blocked overnight at 4

℃ using blocking buffer (5 % non-fat dried milk in solution containing 50 mM 

Tris/HCl (pH 8.0), 2 mM CaCl2, 80 mM sodium chloride, 0.05 % Tween 20 and 0.02 

% sodium azide). The membranes were then incubated for 2 h at 25℃ with specific 

primary antibody followed by anti-rabbit or anti-mouse immunoglobulin 

G-horseradish peroxidase conjugated secondary antibodies. The membranes were 

washed three times for 10 min with washing solution. Finally, the protein bands were 

visualized on the X-ray film using the enhanced chemiluminescence detection system 

(PerkinElmer Life and Analytical Sciences, Boston, MA). A gel-digitizing software, 

Un-Scan-It gel (ver. 5.1; Silk Scientific, Inc.), was used to analyze the intensity of 

bands on X-ray film by semi-quantification. 
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2.9. Immunofluorescence staining and confocal microscopy 

The cells were cultured on coverslips, which were kept in 35-mm Petri dish at a 

density of 5 × 10
5
 per well for 16-20 h. After treatment with or without 40 μM butein 

for 24 h, the cells were washed with PBS. Then fixation with 4% paraformaldehyde 

solution overnight at 4 °C, the cells were washed three times with PBS, and 

non-specific binding sites were blocked in PBS containing 10 % FBS and 0.3 % 

Triton X-100 for 1 h at 37 °C. Thereafter, the cells were separately incubated with 

rabbit anti-phospho-histone H3 (1:100) antibody in PBS containing 10 % FBS 

overnight at 4°C, and washed three times with 0.3 % Triton X-100 in PBS. Then the 

cells were incubated with anti-rabbit IgG-Hylite 488 (1:100) in PBS containing 10 % 

FBS for 1 h at 37 °C, and washed three times with 0.3 % Triton X-100 in PBS. The 

samples incubated with mouse anti-securin (1:100) antibody in PBS containing 10 % 

FBS overnight at 4°C, and washed three times with 0.3 % Triton X-100 in PBS. Then 

the cells were incubated with anti-mouse IgG-Cy3 (1:100) in PBS containing 10 % 

FBS for 1 h at 37 °C. The β-tubulin and nuclei were stained with the Cy3-labeled 

anti-β-tubulin and Hoechst 33258, respectively. After staining, the samples were 

immediately examined under Olympus confocal microscope (Olympus, Tokyo, 

Japan). 
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2.11. Mitotic index analysis 

The cells were cultured on coverslips in a 35-mm Petri dish at a density of 5 × 

10
5 

for 16-20 h. After treatment with or without 40 μM butein for 24 h, the cells were 

carefully and gently washed with PBS (pH 7.4) and then fixed with 4% 

paraformaldehyde solution in PBS for one hour at 37 ºC. The cells were incubated 

with rabbit anti-phosphorylated histone H3 (Ser10) antibody. Then the cells were 

incubated with goat anti-rabbit IgG-Hylite 488. The -tubulin was stained with the 

Cy3-labeled mouse anti--tubulin (1:50) for 30 min at 37 ºC. Finally, the nuclei were 

stained with 2.5 g/mL Hoechst 33258 for 30 min. Mitotic index indicated the 

percentage of mitotic cell number/total counted cells that was counted under a 

fluorescence microscope in each treatment. The prophase, metaphase, anaphases, and 

telophase in total mitotic phases were counted under fluorescence microscope.  

2.12. Analysis of phospho-histone H3 by flow cytometer 

After treatment with butein for 24 h, HCT116 cells were harvested and fixation 

with 75% alcohol in -20℃ overnight. Subsequently, the samples were incubated with 

10 % bovine serum albumin in PBS for 1 hour at 4 °C. After that, the samples were 

incubated with rabbit anti-phospho-histone H3 antibody (1:100), and following 

incubated with anti-rabbit IgG-Hylite 488 (1:100) for 2 hours at 4 °C in dark. At the 

end of incubation, the cells were resuspended in 1 × PBS and immediately analyzed 
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by a flow cytometer (FACS Calibur, BD Biosciences). The fluorescence intensities of 

phospho-histone H3 were quantified the green fluorescence using CellQuest software 

(BD Biosciences). 

2.13. Statistical analysis 

Each experiment was repeated at least three times. Data from the population of 

cells treated with different conditions were analyzed using paired Student‟s t-test. In a 

comparison of multiple groups, data were analyzed by one-way or two-way analysis 

of variance (ANOVA), and further post Tukey‟s tests using the statistic software of 

GraphPad Prism 5 (GraphPad software, Inc. San Diego, CA). A p value of < 0.05 was 

considered as statistically significant in each experiment. 
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3. Results 

3.1. Butein decreases the cell viability and increases the G2/M fractions in human 

colon cancer cells 

Fig. 1 shows the chemical structure of butein. To examine the cytotoxicity and 

proliferation following butein treatment in HCT116 colon cancer cells, the cells were 

analyzed by MTT assays. Treatment with 10-40 μM butein for 24 h significantly 

reduced the cell viability via a concentration-dependent manner in both the securin 

(+/+) and securin (-/-) HCT116 cells (Fig. 2). The values of IC50 (the concentration of 

50 % inhibition of cell viability) were calculated according to Appendix 1. The values 

of IC50 were around 26.6 μM and 18.2 μM in the securin (+/+) and securin (-/-) 

HCT116 cells, respectively. The securin (-/-) cancer cells were more sensitive than the 

securin (+/+) cancer cells to cytotoxicity by butein (Fig. 2). 

To investigate the effect of butein on the cell cycle progression and the role of 

securin on the cell cycle progression, the securin (+/+) and securin (-/-) HCT116 cells 

were treated with butein and compared by flow cytometry. Comparing with untreated 

and butein-treated samples, butein decreased the G1/G0 fractions and dramatically 

increased the G2/M fractions in both the securin (+/+) and securin (-/-) HCT116 cells 

(Fig. 3A and 3B). Moreover, the securin (-/-) cancer cells were higher increase of 

G2/M fractions than the securin (+/+) cancer cells after treatment with butein at 20-30 
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μM. 

3.2. Butein inhibits securin protein expression in human colon cancer cells 

To investigate the protein expression of securin in the butein-induced cancer cell 

death, the cells were analyzed by Western blot. The securin protein expression was 

reduced by butein in securin (+/+) HCT116 cells (Fig. 4A). Actin was used as a 

loading control protein. Comparing with untreated samples, butein significantly 

decreased the expression of securin in a concentration-dependent manner in the 

securin (+/+) HCT116 cells (Fig. 4B). 

    We have further examined the effect of butein on the securin protein expression 

by immunofluorescence staining and confocal microscopy. As shown in Fig. 5, the red 

fluorescence intensity (Cy 3) exhibited by securin and the blue color was represented 

the location of nuclei by staining with Hoechst 33258. The fluorescence intensities of 

securin proteins were decreased after treatment with 30 μM butein for 24 h (Fig. 5). 

3.3. Butein induces histone H3 phosphorylation, mitotic arrest and aberrant 

chromosome separation 

To determine whether G2 or M phases induced by butein, the cells were treated 

butein and analyzed the protein levels of phospho-histone H3, a mitotic marker 

protein by Western blot and immunofluorescence staining. Comparing with untreated 

samples, butein significantly increased the expression of phospho-histone H3 in a 
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concentration-dependent manner in the securin (+/+) HCT116 cells (Fig. 6). However, 

butein did not alter the phospho-histone H3 protein level in the securin (-/-) HCT116 

cells (Fig. 6). To examine butein on the cell morphology and cellular location of 

phospho-histone H3 proteins in HCT116 cells, the cells were treated with or without 

butein (30 μM for 24 h) and subjected to immunofluorescence staining and confocal 

microscopy. The green fluorescence intensity exhibited by phospho-histone H3, the 

red fluorescence intensity exhibited by β-tubulin proteins of the cytoskeleton, and the 

blue color was represented the location of nuclei by staining with Hoechst 33258. 

Treatment with butein increased the accumulation of phospho-histone H3 in mitotic 

cells (Fig. 7). Moreover, butein induced abnormal chromosome segregation in the 

mitotic cells (Fig. 7). In addition, the fluorescence intensity of phospho-histone H3 

proteins was increased by butein by indirect phospho-histone H3 immunofluorescence 

staining and flow cytometer (Fig. 8A). The fluorescence intensity of phospho-histone 

H3 proteins was elevated to 10-folds by 40 μM butein treatment comparing to 

untreated HCT116 cells (Fig. 8B). 

Moreover, we have analyzed the mitotic index after treatment with butein. Butein 

markedly increased the mitotic cell number (Fig. 9). The stages of mitotic cells after 

treatment with butein in prometaphase (with condensed DNA but no spindle), 

metaphase (with a spindle but no visible separation of sister chromatids), anaphase 
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(with a spindle and clearly separated sister chromatids), and telophase (with a spindle 

and clearly separated cells) were counted under fluorescence microscope. The 

percentages of prophase, metaphase, anaphase and telophase were 51.9 %, 45.8 %, 

0.7 %, and 1.5 %, respectively. Besides, butein decreased the protein levels 

phospho-CDC2 (Thr-14) and slightly reduced phospho-CDC2 (Tyr-15) in colon 

cancer cells (Fig. 10). In contrast, butein increased the protein levels phospho-CDC2 

(Thr-161) and cyclin B1 (Fig. 10). However, the total CDC2 protein level was not 

altered in the butein-treated cells. 

3.4. Butein induces apoptosis in human colon cancer cells 

The effect of butein on the induction of cell death was observed by time-lapse 

living cell morphology. The arrows indicate that butein induced the cell death 

morphology and reduced cell number (Fig. 11). However, the untreated cells clearly 

displayed the increase of cell proliferation and cell number after 48 h observation (Fig. 

11). 

We further assessed apoptosis from the cells that had been exposed to butein by 

annexin V and PI staining analysis. The control cells were not significantly stained 

with fluorochromes; however, the annexin V (+) apoptosis cells were increased by 

treatment with 40 μM butein for 24 h in HCT116 cells (Fig. 12A). After quantification 

of apoptotic cell number, butein induced apoptosis via a concentration-dependent 
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manner in HCT116 cells (Fig. 12B). 

3.5. Butein increases the protein levels of active caspase-3 and cleavage of PARP 

in colon cancer cells 

To examine the induction of apoptosis pathway following butein treatment, 

HCT116 cells were analyzed the protein levels of the caspase-3 activation and PARP 

cleavage using Western blot. The active forms of caspase-3 (12 kDa and 17 kDa) 

were induced following treatment with butein (Fig. 13). Moreover, the cleaved form 

proteins of PARP (89 kDa) were increased by exposure to butein in HCT116 cells. 

3.6. Butein induces phosphorylation of p53 (Ser15) and existence of p53 reduces 

the butein-induced cell death 

Treatment with 10-40 μM butein for 24 h significantly reduced the cell viability 

via a concentration-dependent manner in both the p53 (+/+) and p53 (-/-) HCT116 

cells (Fig. 14). The values of IC50 were around 26.6 μM and 18.1 μM in the p53 (+/+) 

and p53 (-/-) HCT116 cells, respectively. We had examined the effect of butein on the 

p53 protein expression in HCT116 cancer cells. Butein did not alter p53 protein level 

but increased phospho-p53 (Ser15) proteins in HCT116 cells (Fig. 15A). The 

semi-quantified data showed that butein (30-40 μM for 24 h) significantly elevated 

the protein levels of phospho-p53 (Ser15) (Fig. 15B). 
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4. Conclusion 

We provide a model that the butein induces mitotic arrest and apoptosis in human 

colon cancer cells (Fig. 16). Butein induces mitotic arrest and apoptosis that may be 

regulated by the inhibition of securin and the activation of p53. Understanding the 

mechanisms by which securin and p53 regulates mitotic progression and apoptosis 

following butein may contribute to novel therapeutic strategies in colon cancers. 
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5. Discussion 

Various types of chalcones display anticancer effects on growth inhibition and 

apoptosis [11, 87-89]. In this study, we provide for the first time that butein induces 

mitotic arrest and apoptosis in human colon cancer cells. The cell cycle arrest at G2/M 

phase has been suggested to mediate the antiproliferative activities of butein [34]; 

however, butein induced G2 or mitotic arrest still unclear. Our results further provide 

that butein is a potent agent to induce mitotic arrest in cancer cells. 

 The phosphorylation of histone H3 is known to be involved in cell division [90]. 

Phosphorylation of histone H3 is critical for proper chromosome condensation and 

segregation in mitotic cells [91]. We found that butein significantly increased the 

levels of phospho-histone H3, which located in chromosomes in colon cancer cells. It 

is indicated that butein can induce mitotic cells. According to confocal microscope 

observation and mitotic index analysis, the butein-treated HCT116 colon cancer cells 

arrested in prophase and metaphase stages. Thus, we suggest that butein blocks 

mitotic arrest at the metaphase/anaphase transition. 

Securin controls sister chromatid separation, progression from metaphase to 

anaphase; its defects can result in chromosomal instability [81, 92, 93]. It has been 

reported that securin is required for genomic stability during mitosis [60, 81]. 

Moreover, securin regulates DNA repair following UV and X-ray damages [62]. Thus, 
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the inhibition of securin would block the cell survival and proliferation in tumor cells, 

providing important strategy in cancer therapy. Treatment with anticancer agents 

including ultraviolet, doxorubicin, and bleomycin decreased the securin expression in 

cancer cells [94, 95]. We found that butein markedly reduced securin protein 

expression and abnormal chromosomal segregation in colon cancer cells. We suggest 

the down-regulation of securin may mediate genomic instability and abnormal 

chromosome separation in human colon cancer cells. Interestingly, comparing with 

the securin (+/+) and securin (-/-) HCT116 cells by butein treatment, we found that 

the securin (-/-) cells were higher on the increase of G2/M fractions than the securin 

(+/+) cancer cells; however, butein did not alter the phospho-histone H3 protein level 

in the securin (-/-) HCT116 cells. We suggest that butein may block securin 

expression to induce abnormal mitotic progression and inhibiting cell proliferation. 

Nevertheless, whether butein induces G2 phase arrest in the securin (-/-) HCT116 cells 

need to be further investigated. 

Activation of CDC2/cyclin B1 complex is a well-known mechanism to regulate 

mitotic progression. The activation of CDC2/cyclin B1 complex promotes mitotic 

progression, including chromosome condensation, nuclear envelope breakdown, and 

spindle pole assembly. Phosphorylation of Thr61 by CAK is required for CDC2 

activity [53], whereas phosphorylation of Tyr5 by Wee1 [51, 54, 55] and Thr14 by 



 26 

Myt1 [56] inhibits CDC2 activity. At the onset of mitosis, the phosphatase CDC25C 

dephosphorylates Tyr15 and Thr14 to activate CDC2 [57]. Cyclin B1 is degraded to 

allow mitotic exit and cytokinesis [96, 97]. We found that butein increased the 

activation of CDC2 on Thr161 phosphorylation and reduced inhibitory 

phosphorylation at Thr14. The protein level of cyclin B1 was also increased by butein 

treatment. The alterations in CDC2 phosphorylation and cyclin B1 by butein may 

maintain spindle checkpoint activation and further inhibits exit from mitosis. 

If the exit out of G2 into mitotic phase occurs in the setting of coexistent DNA 

damage, the tumor cells undergo apoptosis and induction of a form of cell death 

called “mitotic catastrophe” [98, 99]. Mitotic catastrophe is characterized by 

missegregation of chromosomes, leading to an aberrant mitosis or imperfect cell 

division [100]. It has been suggested that mitotic catastrophe is accompanied by 

chromatin condensation and mitochondrial release of proapoptotic proteins such as 

cytochrome c and AIF [101]. We found that butein induced apoptosis related to the 

activation of caspase-3 and cleavage of PARP. Accordingly, we suggest that butein 

causes mitotic catastrophe and subsequently induces caspase-dependent pathway for 

cancer cell death. 

    The tumor suppressor p53 has been proposed as an important target for cancer 

treatment [102, 103]. The diverse phosphorylation sites of p53 have been indicated to 
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play important roles in the regulation of many cellular responses [104-106]. The 

phosphorylation of p53 at Ser15 is an important target for p53 activation [107] and 

stabilization [104, 108]. Moreover, the phosphorylation of p53 at Ser15 may transmit 

a survival signal and may suppress apoptosis in response to several stimuli [109]. We 

found that butein increased the phosphorylation of p53 at Ser15 in HCT116 colon 

cancer cells. Butein induced the cytotoxicity in both the p53 (+/+) and p53 (-/-) colon 

cancer cells. However, the p53 (-/-) cells were more susceptible to cell death than the 

p53 (+/+) cells in the increase about 21% following butein. These findings suggest 

that butein still displays anticancer ability in the p53-mutational or -nonfunctional 

cancer cells. 
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Fig. 1. Chemical structure of 3, 4, 2’, 4’-tetrahydroxychalcone (butein) 
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Fig. 2. Comparison of cell viability between the HCT116 securin (+/+) and securin (-/-) 

cells by butein. The cells were treated with 0-40 μM butein for 24 h. After drug treatment, 

the cells were recultured in fresh medium for 2 days. The cell viability was measured by 

MTT assay. Results were obtained from four experiments and the bar represents the mean ± 

S.E.M. **p < 0.01 indicates significance between control and butein-treated samples. 
##

p < 

0.01 indicates significant difference between the securin (+/+) and securin (-/-) HCT116 

cancer cells by butein treatment at the same concentration. 
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Fig. 3. The effect of butein on cell cycle progression between the HCT116 securin (+/+) 

and securin (-/-) cells. (A) The cells were treated with 0-40 μM butein for 24 h. The cells 

were trypsinized and then subjected to flow cytometry analysis. The representative flow 

data were shown from one of five separate experiments with similar findings. (B) The 

percentages of G0/G1, S and G2/M fractions were quantified by ModFit LT software. 

Results were obtained from five experiments and the bar represents the mean ± S.E.M. *p 

< 0.05 and **p < 0.01 indicate significant difference between control and butein treated 

samples. 
#
p < 0.05 and 

##
p < 0.01 indicates significant difference between the securin (+/+) 

and securin (-/-) HCT116 cancer cells by butein treatment at the same concentration. 
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Fig. 4. The effect of butein on the protein expression of securin in the HCT116 securin 

(+/+) cells. (A) The cells were treated with 0-40 μM butein for 24 h. The total protein 

extracts were prepared for immunoblot analysis using anti-securin and anti-actin 

antibodies. Actin was a loading control. (B) The relative intensity of securin was from 

Western blot by semi-quantification. Results were obtained from three experiments and the 

bar represents the mean ± S.E.M. *p < 0.05 and **p < 0.01 indicate significant difference 

between control and butein treated samples. 
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Fig. 5. The protein expression and location of securin after treatment with butein in 

the HCT116 securin (+/+) cells. The cells were treated with or without 30 μM butein for 

24 h. At the end of treatment, the cells were incubated with mouse anti-securin and then 

incubated with goat anti-mouse Cy3. The securin proteins displayed red fluorescence with 

goat anti-mouse Cy3. The nuclei were stained with Hoechst 33258. 
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Fig. 6. Comparison of the protein levels of phospho-histone H3 between the securin 

(+/+) and securin (-/-) HCT116 cells following butein treatment. (A) The cells were 

treated with 0-40 μM butein for 24 h. The total protein extracts were prepared for 

immunoblot analysis using anti-phospho-histone H3 and anti-actin antibodies. Actin was a 

loading control. (B) The relative intensity of phospho-histone H3 was from Western blot by 

semi-quantification. Results were obtained from three experiments and the bar represents the 

mean ± S.E.M. *p < 0.05 indicates significant difference between control and butein treated 

samples. 
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p < 0.01 indicates significant difference between the securin (+/+) and securin (-/-) 

HCT116 cells by the butein treatment at the same concentration. 
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Fig. 7. Butein increases phospho-histone H3 and abnormal chromosome separation in 

the HCT116 securin (+/+) cells. The cells were treated with or without 30 μM butein for 24 

h. At the end of treatment, the cells were incubated with rabbit anti-phospho-histone H3 

(Ser10) and then incubated with goat anti-rabbit IgG-Hylite 488. The phospho-histone H3 

(Ser10) proteins displayed green fluorescence with goat anti-rabbit IgG-Hylite 488. The 

β-tubulin and nuclei were stained with the Cy3-labeled mouse anti-β-tubulin and Hoechst 

33258, respectively. 
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Fig. 8. The effect of butein on the protein level of phospho-histone H3 in the HCT116 

securin (+/+) cells by flow cytometer. (A) The cells were treated without or with 40 μM 

butein for 24 h. The cells were incubated with rabbit anti-phospho-histone H3 (Ser10) 

antibody. Then the cells were incubated with goat anti-rabbit IgG-Hylite 488. Fluorescence 

intensity of phospho-histone H3 was detected in whole cell population by flow cytometer. 

X-axis indicates the fluorescence intensity of Hylite 488. Y-axis indicates the cell counts. 

(B) The fluorescence intensities were quantified from a minimum of 10,000 cells by 

CellQuest software of flow cytometer. Results were obtained from three experiments and 

the bar represents the mean ± S.E.M. **p < 0.01 indicates significant difference between 

control and butein treated samples.  
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Fig. 9. The effect of butein on mitotic index in the HCT116 securin (+/+) cells. The cells 

were treated with or without 40 μM butein for 24 h. Mitotic index (the percentage of mitotic 

cell number/total cell number) was counted under a fluorescence microscope. The -tubulin 

and nuclei of cells were stained with the Cy3-labeled mouse anti--tubulin and Hoechst 

33258, respectively. Results were obtained from three experiments and the bar represents the 

mean ± S.E.M. **p < 0.01 indicates significant difference between control and butein treated 

samples.  
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Fig. 10. The effect of butein on protein expression of phospho-CDC2, CDC2 and 

cyclin B1 in the HCT116 securin (+/+) cells. The cells were treated with 0–40 μM Butein 

for 24 h. The total protein extracts were prepared for immunoblot analysis using specific 

anti-CDC2, anti-phospho-CDC2 (Tyr-15), anti-phospho-CDC2 (Thr-14), and 

anti-phospho-CDC2 (Thr-161), and anti-cyclin B1 antibodies. Actin was a loading control. 

The representative Western blot data were shown from one of three separate experiments 

with similar findings. 
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Fig. 11. Time-lapse observation in the butein-induced cancer cell death of the securin 

(+/+) HCT116 cells. The cells were treated with or without 40 μM butein by time-lapse 

observation from 0 to 48 h. The morphology of cells was observed under an optical phase 

contrast microscope with cell incubator system. The arrows indicate the cell death following 

butein treatment. 
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Fig. 12. The effect of butein on apoptosis in the HCT116 securin (+/+) cells. (A) The cells 

were treated with 0-40μM butein for 24 h. The apoptosis was measured by Annexin and PI 

assay. The population of Annexin V+/PI- cells represents cells undergoing early apoptosis 

(lower right), whereas the fraction of Annexin V+/PI+ cells are those undergoing late 

apoptosis (upper right). (B) Populations of total apoptotic cells including early and late 

apoptosis were quantified by CellQuest software in flow cytometer. Results were obtained 

from four experiments and the bar represents the mean ± S.E.M. *p < 0.05 and **p < 0.01 

indicate significant difference between control and butein treated samples. 
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Fig. 13. The effect of butein on the activation of caspase-3 and the cleavage of PARP in 

the HCT116 securin (+/+) cells. The cells were treated with 0-40 μM butein for 24 h. The 

protein levels of active caspase-3 (17 kDa) and cleaved-PARP (89 kDa) were analyzed by 

Western blot. The representative Western blot data were shown from one of three separate 

experiments with similar findings. Actin was a loading control.  
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Fig. 14. Comparison of cell viability between the HCT116 p53 (+/+) and p53 (-/-) cells 

following butein treatment. The cells were treated with 0–40 μM butein for 24 h. After 

drug treatment, the cells were recultured in fresh medium for 2 days. The cell viability was 

measured by MTT assay. Results were obtained from four experiments and the bar 

represents the mean ± S.E.M. *p < 0.05 and **p < 0.01 indicate significance between 

control and butein-treated samples.
 ##

p < 0.01 indicates significant difference between the 

p53 (+/+) and p53 (-/-) HCT116 cancer cells by butein treatment at the same concentration. 
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(B) 

Fig. 15. The effect of butein on the protein expression of p53 and phospho-p53 (Ser15) in 

the HCT116 securin (+/+) cells. (A) The cells were treated with 0–40 μM butein for 24 h. 

The total protein extracts were prepared for immunoblot analysis using anti-p53, 

anti-phospho-p53 (Ser15) and anti-actin antibodies. Actin was a loading control. (B) The 

relative intensity of phospho-p53 (Ser15) was from Western blot by semi-quantification. 

Results were obtained from four experiments and the bar represents the mean ± S.E.M. **p < 

0.01 indicates significance between control and butein-treated samples. 

Butein (M, 24 h)

0 10 20 30 40

R
e
la

ti
v
e
 i
n

te
n

s
it

y
 o

f 
p

h
o

s
p

h
o

-p
5
3
 (

fo
ld

)

0.5

1

1.5

2

2.5

3

3.5

**

**

(A) 
Butein 

(μM, 24 h) 
0    10     20    30     40 

Phospho-p53 

(Ser15) 

Actin 

p53 (DO-1) 



 62 

 

 

 

Fig. 16. Proposed model of apoptosis induction and mitotic arrest induced by butein 
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Appendix 1. Calculation of IC50 value of butein in the HCT116 securin (+/+) and 

securin (-/-) cells. The mean percentage of cell viability by butein in different 

concentrations (10, 20, 30, 40 μM) from MTT assays was calculated by Excel software. 

The equation (y=ax+b) and linear regression were analyzed by Excel software. The y 

value (viability, %) is indicated as 50. The x value shows the IC50 value. After calculation, 

the IC50 values were 26.6 μM and 18.2 μM in the HCT116 securin (+/+) and securin (-/-) 

cells, respectively. 


