
BIT 26 (1986), 7-16

A N O(NlogN) M I N I M A L S P A N N I N G T R E E A L G O R I T H M

F O R N P O I N T S I N T H E P L A N E *

R. C. CHANG and R. C. T. LEE

National Chiao Tung University, National Tsing Hua University, Hsinchu,
Hsinchu, Taiwan, and Academia Sinica, Taipei,
Republic of China Taiwan, Republic of China

Abstract.

We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a
set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams.
If implemented in parallel, its time complexity is O(N) and it requires O(logN) processors where N
is the number of input points.

1. Introduction.

We are concerned with algorithms to construct minimal spanning trees. The
minimal spanning tree problem can be roughly stated as follows. Given a set of
points, connect them into a tree such that its total length is minimized.

There are many algorithms to construct minimal spanning trees. For most
algorithms to construct minimal spanning trees, the input data consist of a graph.
We shall assume that our data are a set of points in two dimensions. It is well
known that for a graph of N vertices, a minimal spanning tree (MST) can be
found in O(N 2) time. Bentley and Friedman [3] gave two algorithms for con-
structing minimal spanning trees in Euclidean space and showed that on the
average, an MST can be constructed in time O(NlogN). Nevalainen, Ernvall
and Katajainen [9] proposed an improved version of Bentley and Friedman's
MST algorithm. Katajainen [7] proposed an improved version of Bentley and
Friedman's MST algorithm and showed that in the worst case the time
complexity of Bentley and Friedman's algorithm is O(N21ogN). Shamos and
Hoey [11] proved that the minimal spanning tree in the plane can be
extracted from a Voronoi diagram [14, l l]. A Voronoi diagram of 14 points is

Received February, 1985: Revised August 1985.
* This research was partially supported by the National Science Council of the Republic of China

under the Graht NSC74-0408-E007-01.

8 R. C. CHANG AND R. C. T. LEE

shown in Fig. 1-1. The worst case time complexity of Shamos and Hoey's MST
algorithm is O(Nlog N). Yao [15] proposed an algorithm for finding an MST
in the k-dimensional space. By employing fast nearest neighbor searching algo-
rithms, in the worst case, an MST can be found in time O(N2-"(k)(togN) ~-"(k~),
where a(k) = 2 -~k- 1). This bound can be improved to O((Nlog N) 1"8) for points
in 3-dimensional space.

O

i
Fig. 1-1. A Voronoi diagram with 14 points.

Our research arises from one puzzling question: Can a minimal tree in a
plane be formed by divide-and-conquer approach? Note that a minimal spanning
tree connects a set of points into a tree. Since the total length of this tree is
to be minimized, we expect two points to be connected if they are relatively
close to each other. In other words, if there are several points located between
two points P1 and P2, then it is quite unlikely that there will be an edge
connecting P1 and P2 in a minimal spanning tree. This implies that the
calculation of the distance between P1 and P2 should be avoided. Bentley and
Friedman [4] discussed this point. They pointed out that in implementing a
minimal spanning tree algorithm, if efficient nearest neighbor searching algorithms
are used, we can avoid many distance calculations. For the case mentioned above
where P1 is relatively far away from PE, we can probably avoid the distance
calculation between them if a good nearest neighbor searching concept is in-
coporated into the minimal spanning tree construction algorithm, as it was in [3].

AN O(N LOG N) MINIMAL SPANNING TREE ALGORITHM . . . 9

That a minimal spanning tree can be formed by using the nearest neighbor
searching approach indicates that local information is crucial and divide-and-
conquer approach may therefore be appropriate. In the following section we

shall show that a minimal spanning tree can be obtained as a Voronoi
diagram is being constructed. Since this can be formed by a divide-and-conquer
approach, a minimal spanning tree in a two-dimensional plane can be constructed
by the same approach.

In section 2 we present the divide-and-conquer approach to construct minimal
spanning trees and prove the correctness of the algorithm. Section 3 shows that
the complexity of this algorithm is O(NlogN) and can be implemented as a
parallel algorithm with complexity O(N) using O(log N) processors. Concluding
remarks are given in section 4.

2. The divide-and-conquer approach to construct minimal spanning trees.

That a minimal spanning tree for a set of points in the Euclidean plane can
be constructed by a divide-and-conquer approach is based upon the following
observation. Suppose we use a straight line L to divide these points into VL
and VR respectively. The trees are denoted MST(VL) and MST(VR). If we try
to merge these two minimal spanning trees, what will happen? Obviously, the
leftmost part of MST(VL) and the rightmost part of MST(VR) will hardly be
affected by this merging and they will probably remain unchanged. The only
parts which will be affected by this merging process are the central parts of
MST(VL) and MST(VR). Thus, if there is a correct way to merge MST(VL) and
MST(VR) efficiently, then a minimal spanning tree can be constructed by using
a divide-and-conquer approach.

It turns out that there is indeed a merging process which is efficient. Note
that a minimal spanning tree is a part of the Delaunay triangulation [6], as
shown in [10]. To merge MST(VL) and MST(VR), we merely examine the
Delaunay triangulation edges between MST(VL) and MST(VR) to see whether
they should be added to connect these two minimal spanning trees. We shall
show later that the algorithm to find Delaunay triangulations proposed in [-8]
can be used as the merging process because it will find all of the Delaunay
edges between MST(VL) and MST(VR).

Since a minimal spanning tree is a connected graph, points in VL must be
connected to points in VR. In other words, edges must be added. If more than
one edge is added, then a cycle is formed and some edge in this cycle must be
deleted to keep the resulting graph a tree.

Thus our merging process involves two kinds of actions: adding new edges
and possibly deleting edges. Because all minimal spanning tree edges must be
Delaunay edges [10], we only have to consider edges which are Delaunay edges.
To determine whether an edge is a Delaunay edge or not, we may use the method
proposed in [8].This algorithm was originally designed for merging two Delaunay

l0 R. C. CHANG AND R. C. T. LEE

triangulations, Here we may simply view it as an algorithm to find a candidate
set of Delaunay edges.

As pointed out in [8], there is an ordering of candidate edges. The merging
process adds the candidate edges one by one from bottom to top. If a cycle is
formed after adding an edge, the longest edge in the cycle is deleted. For the
minimal spanning trees in Fig. 2-1, (v3, Vlo) is the first edge to be added. After
(vs, v8) is added, a cycle is formed. In this cycle, (v3, V~o) is the longest and is
thus deleted. Finally, (vs, vT) is added. A cycle is again formed, and we find
that (vs, v6) is the longest in this cycle and so it is deleted. The resulting minimal
spanning tree is shown in Fig. 2-2.

v 5

Vl v 6

V .
.)

9 v13
v 8 Vll

V
I0

Fig. 2-1. Two MST's which are to be merged.

v 2

v 1

V

v 5

v

- v 8 v 9

©
vlO

v12

Vtl

Fig. 2-2. The merged MST of 13 points.

AN O(N LOG N) MINIMAL SPANNING TREE ALGORITHM . . . II

Having described the algorithm informally, we arc now ready to prcscnt it
formally. It is called MINISPAN and is a recursivc algorithm whose input is a
set V of N points in the plane and whose output is a minimal spanning tree
for V. Without loss of generality, we assume N even.

Algorithm MINISPAN.

Input: A set V of N points in the Euclidean plane.
Output: A minimal spanning trcc of V.
Step 1: Choose a cut line L perpendicular to the X-axis such that N/2 points

of V have X-values less than L and N/2 points have X-values greater
than L. These two point sets are denoted VL and V n respectively.

Step 2: Recursively find the minimal spanning trees of V L and V n.
Step 3," Use the algorithm proposed by Lee and Schachtcr [8] to find a

candidate edge set which is a subset of the Delaunay edges of V. Add
the edges in the candidate edge set into MST(VL) and MST(Vn) one by
one from bottom to top. If a cycle is formed, delete the longest edge
in the cycle.

Some observations about our algorithm are now in order. First of all, our
algorithm is easy to be comprehended and hand simulated. At the very beginning
the algorithm merely connects two points into an edge. Later, Delaunay edges
are found and added one by one. Since Delaunay edges are quite natural in
concept, they can be found visually. Whenever a cycle is found, the longest rink,
which is easy of find, is deleted.

Another important property of our algorithm is that unnecessary distance
calculations arc avoided. Now we shall prove the correctness of MINISPAN
using the following lcmma proved in [-13].

LEMMA 1.
T is a minimal spanning tree if and only if for each non-tree edge (v, u), the

length of (v, u) is at least as long as the length of any edge on the unique cycle
in T formed by joining v and u.

Applying this lemma, we can prove the following:

THEOREM 1.

Algorithm MINISPAN produces a minimal spanning tree of V.

PROOF: Since we always delete one edge when a cycle is formed during the
merging process, the resulting graph T is a spanning tree of V. In the sequel
we shall show that the spanning tree is also minimal.

Suppose that T is not a minimal spanning tree. Then there exists an edge
(v,u)¢T such that the length of (v,u) is shorter than some edge on the
cycle by joining v and u.

12 R. C. CHANG AND R. C. T. LEE

The two vertices of edge (v, u) must belong to one of the following two classes :
Class t : u, v ~ VL or YR.
Class 2: ve VL, ue VR (or ve VR, u~ VL).
If (v, u) belongs to Class I, then either (v, u)s {edges deleted during the merging

steps} or (v, u)e {EL--MST(VD} where EL is the edge set of VL. But the edges
deleted during the merging steps are the longest ones in each cycle formed in the
merging steps of MINISPAN. Therefore (v, u)¢ {deleted edges}.

Assume that (v, u)~ {EL--MST(VL)}. Then adding (v, u) generates two kinds of
cycles, one consisting of edges only in MST(VD and the other including some
edges in VR. For the former case, since MST(VL) is a minimal spanning tree
of VL, according to Lemma 1, (v, u) must be the longest edge in the cycle. The
situation of the latter case can be described in Fig. 2-3. In this case,
el, e2 e ~ E L and el, e~ , e)e E R.

v !
/

/
/

I I

3

V w

Fig. 2-3_ The situation that a cycle contains edges from both V L and VR.

Since MST(VL) is connected, there must exist a deleted edge (u', v') which is
an edge of a cycle consisting of only edges of EL. Since (u' ,v ')~MST(VL),
according to Lemma 1, the length of (u, v) is greater than or equal to that of
(u', v). But (u', v') is deleted only if (u', v') is the longest in the cycle formed during
the merging steps. Therefore, (v, u) is the longest edge in the cycle consisting of

(v, u), et, e2,..., e'l, e'2,..., e),..., ek.
Assume (v, u)e class 2. Since the longest edge in any cycle is always deleted

during step 3 of MINISPAN, (v,u)¢ctass 2. Hence (v,u) cannot exist, and
according to Lemma 1, T must be a minimal spanning tree of V.

3. The complexity analysis of MINISPAN.

Let us first assume that the computation model is a random access machine
(RAM) as described in [1].

AN O(N LOG N) MINIMAL SPANNING TREE ALGORITHM . . . 13

Step 1 can be executed by using the linear median algorithm proposed by
Blum, Floyd, Pratt, Rivest and Tarjan [5] in time O(N) in the worst case. Since
Step 2 solves two problems of size N/2, the cost of this step is 2" f(N/2). The
timing of Step 3 needs a deeper analysis. We claim that Step 3 takes O(N) time
in the worst case, as indicated in the following Theorem.

THEOREM 2.
The mergin 9 step in Algorithm MINISPAN takes O(N) in the worst case.

PROOF: Finding the candidate set of edges takes O(N) operations [8]. Since a
Delaunay triangulation contains at most O(N) edges, the maximum number of
candidate edges is O(N). The remaining problem is whether the total, number of
edges traversed when cycles are formed is also O(N). Since the total number of
edges in a cycle formed in the merging step is O(N), a brute force implementation
of Step 3 will take O(N 2) steps in the worst case. In the following, we shall
show that edges in MST(VL) and MST(VR) do not have to be traversed more
than twice.

Note that we add edges to the MST one by one and from bottom to top.
If an edge (u, v) is added and a cycle C is formed as shown in Fig. 3-1, there
are two possibilities:

Case 1 : (u, v) is the longest in C.
Case 2: (u, v) is not the longest in C.
In case 1, (u, v) is deleted. Since the edges in C besides (u, v) form a path,

the next cycle will include all these edges. However, we do not have to traverse
them again because we only have to record the longest edge among e~ and compare
the new candidate edge with this edge without cycle traversing. That means, we
only have to traverse the edges once in this case.

el e L ~ u v

," / / - 'q

Fig. 3-1. The set of edges that we must traverse.

Case 2 is more complex. In this case, (u, v) is retained and the longest edge
in the current cycle is deleted. If another cycle is formed, then the new cycle will

include some edges between e~ and eL, (u,v), but not any edge e~, L + 1 < i _-< k.
Thus for such ei, the edges are traversed only once. For (u, v) and e~, 1 < i _-< L,
these edges are part of the edge set of next cycle and will be traversed again
in the next cycle, but only once.

Thus each edge wilt be traversed at most twice. Hence, we conclude that the
merging steps take O(N) in the worst case.

Assume that the total running time of MINISPAN is f(N). Based on
Theorem 2, we can formulate the following recurrence relation:

f (N) = 2f(N/2) + O(N)

MST i - 4

The solution of f(N) is O(NlogN). Therefore, the running time of MINISPAN
is O(N log N).

Algorithm MINISPAN can readily be implemented on a tree machine, [4],
as depicted in Fig. 3-2.

MSTi_ 3

MSTi_ 2

MSTi- 1

MST.
1

14 R. C. CHANG AND R. C. "f. LEE

Fig. 3-2. A tree machine.

To simplify our discussion, let us denote the bottom of the tree machine to
be the first level, which contains log N processors, the ancestors of the first level
as the second level. In the same fashion, the ancestors of the kth level is the
(k + 1)th level. Accordingly, the root of the tree machine is in the [log log N] level and
each processor can be numbered as PU~j, where i is the level number, and j is
the sequence number of the same level (from left to right). For example, PU14
denotes the fourth processing unit in the first level. Assuming that we have a

AN O(N LOG N) MINIMAL SPANNING TREE ALGORITHM . . . 15

drive computer, which feeds data into the bottom level of the processors, a
minimal spanning tree can be constructed in parallel.

First, we feed N data points into the processors on the first level. This takes
N operations. Then, each processor PUlj.~j = 1 log N, finds in parallel the
(N/logN) data points which fall between (N/logN). (i -1) and ((N/logN)i-1)
(according to X-axis) points respectively. This also can be accomplished in O(N)
by using the linear median algorithm [5]. The third step is to find the minimal
spanning trees of these (N/log N) points in the first level in parallel. This takes
O((N/log N)log(N/logN)) < O(N) by MINISPAN. The output of each PUlg is a
minimal spanning tree of the N/logN points. Applying the merging step of
MINISPAN, we can merge these trees in the subsequent levels of processors in
parallel. In the worst case, the merging step in the (k+ 1)th level needs
O((N/log N)2 k) operations. The total rulaning time needed to construct a minimal
spanning tree of N vertices is

Iloglog N]

T (N) = O(N)+
k=2

(N/log N)2 g-~ = O(N),

where the first term in the equation above is the time spent in the processors
of the first level.

Therefore, in the worst case, the parallel complexity of MINISPAN is O(N)
with O(log N) processors.

4. Concluding remarks.

In this paper, we have presented an algorithm to construct minimal spanning
trees. This algorithm is based on the concept of Voronoi diagrams, and its input
is a set of points in two dimensions. The algorithm is easy to comprehend and
can be hand simulated, avoids unnecessary distance calculations, can be im-
plemented as a parallel program and can construct minimal spanning trees in
linear time complexity using O(logN) processors. It is different from most
minimal spanning tree algorithms, except those in [3, i0] because our algorithm
uses the geometrical properties of the input data. It uses many ideas in [10]
suggesting to construct a minimal spanning tree by extracting it from the
Voronoi diagram (actually the Delaunay triangulation). Our algorithm is more
direct, it constructs a minimal spanning tree straightforwardly. It does not have
to construct a Voronoi diagram because the divide-and-conquer method of
constructing Voronoi diagrams can be used to construct minimal spanning trees.
Our algorithm is in the same spirit as [3] since we try to avoid unnecessary
distance calculations.

We like to point out here that by fully utilizing the properties of points in two
dimensions,we have obtained a parallel algorithm whose complexity is O(N), and

16 R. C. CHANG AND R. C. Y. LEE

a n d which uses O(log N) p rocessors . O u r m e t h o d of d i v i d i n g e l emen t s in to

g r o u p s is o p t i m a l a c c o r d i n g to T a n g a n d Lee [12].

R E F E R E N C E S

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison Wesley, Reading, Mass. (1974).

2. J. L. Bentley, A parallel algorithm for constructing minimum spanning trees, Journal of
Algorithms, Vol. 1, No. 1 (1980), 5t-59.

3. J. L. Bentley and J. H. Friedman, Fast algorithms for constructing minimal spanning trees in
coordinate spaces, IEEE Transactions on Computers, Vol. C-27, No. 2 (1978), 97-105.

4. J. L. Bentley and H. T. Kung, A tree machine for searching problems, Proceedings, IEEE 1979
International Conference on Parallel Processing (1979), pp. 257-266.

5. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E. Tarjan, Time bound for selection,
Journal of Computer and System Sciences, VoL 7, No. 4 (1972), pp. 724-742.

6. B. Delaunay, Sur la sphere vide, Bull. Acad. Sci. USSR (VII)~ Classe Sci. Mat. Nat. (1934),
pp. 793-800.

7. J. Katajainen, On the worst case of a minimal spanning tree algorithm for Euclidean space, BIT
Vol. 23 (1983), pp. 2-8.

8. D. T. Lee and B. J. Schachter, Two algorithms for constructing Delaunay triangulations, Inter-
national Journal of Computer and Information Sciences, Vol. 9, No. 3 (1980), pp. 219-242.

9. O. Nevalainen, J. Ernvall and J. Katajainen, Finding minimal spanning trees in a Euclidean
coordinate space, BIT, Vol. 21 (1981), pp. 4(~54.

10. M. I. Shamos, Computational Geometry, Ph.D. Thesis, Yale University (1978).
11. M. I. Shamos and D. Hoey, Closest point problems, 16th Annual IEEE Syrup. on Foundations

of Computer Science (1975), pp. 151-162.
12. C. Y. Tang and R. C. T. Lee, Optimal speeding up of parallel algorithms based upon divide-

and-conquer strategy, Information Sciences, Vol. 32, No. 3 (1984), pp. 173-186.
13. R. E. Tarjan, Sensitivity analysis of minimal spanning trees and shortest path trees, Information

Processing Letters, Vol. 14, No. 1 (1982), pp. 30-33.
14. G. Voronoi, Nouvelles applications des param~tres eontinus a ta theorie des formes quadratiques,

Deuxieme Memoire: Recherches sur les paratleltotdres. Deuxieme angew. Math. Vol. 134 (1908),
pp. 198-287.

15. A. C. Yao, On constructing minimal spanning trees in k-dimensional space and related
problems~ SIAM Journal on Computing, Vol. 11, No. 4 (1982), pp. 721-736.

