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摘   要 

 

  近年來利用生物特徵的方式來進行身份辨識越來越普遍，其原因是由於生物特徵具

有難以遭到破解或竊取的優點。然而，隨著科技的進步目前的生物特徵(例如：指紋、

虹膜等)已有被複製的風險。由於腦電波具有個體間的差異，因此在本研究中我們利用

視覺刺激誘發的腦電波為分析訊號來發展身份辨識系統，實驗於安靜無干擾的房間進

行 ，讓受測者接受事件相關的視覺刺激(oddball paradigm)，利用刺激材料出現頻率的不

同誘發出腦波的事件相關電位。辨識的步驟主要分為類別與確認兩大部分，並利用支援

向量機作為分類器。類別的部分，原始訊號經過特徵擷取後藉由一個多種類的分類器會

得到一個一對多的分類結果；而接著在確認部分，由類別步驟所得到的最佳分類結果經

由此部分二元的分類器進行確認。特徵擷取方面，包含了降維，時域以及頻域的分析方

法，能將具有代表性的資訊保留。此外，我們嘗試利用重複確認步驟的二元分類器將前

一步驟(類別)分類錯誤的資料進行修正，修正的準則是依照支援向量機中的信賴評估為

指標。 

 我們利用 18 位受測者的辨識結果得到 97.25%的準確率，並且再經由確認的步驟能

達到 98.89%的正確接受率，這樣的結果顯示腦電波訊號具有的個體差異性足夠用於進

行身份辨識且利用類別和確認兩部分的結合能達到一個好的準確率，且辨識的可信度提

升。而更深入的討論訊號間的差異，我們發現不同受測者的訊號相關性低於同一受測者

不同天的受測資料，這個發現符合腦電波具有低個體內差異性以及高個體間差異性，且

隨著時間的變化同一人的訊號是恆定的。相關性的高低也解釋了某些受測者容易被錯誤

分類的情況，也就是他們和其他人的訊號具有高度的相關性。總結我們系統所得出結果

顯示，結合未來硬體發展更趨成熟腦波能成為一個新的生物特徵以發展成一套更安全的

辨識系統。 



Abstract

The biometrics contains emerging methods for human identification. As advances in

technology, conventional techniques using fingerprint or iris have the risk of being dupli-

cated. In this work we utilize the inter-subject differences in the electroencephalographic

(EEG) signals evoked by visual stimuli for person identification. The identification pro-

cedure is divided into classification and verification phases. For our classification system,

it is based on the supervised classification method with support vector machine. During

the classification phase, we extract the representative information from the EEG signals of

each subject and construct a multi-class classifier. The best-matching candidate is further

confirmed in the verification phase by using a binary classifier. The methods of feature

extraction include dimension reduction and time-frequency analysis. Moreover, we try to

correct those misclassified data through the iterative verification that depends on the con-

fidence values of SVM classifier, which is a confidence level of classification. According

to our experiments in which 18 subjects were recruited, the proposed method can achieve

97.25% identification rate. The results revealed that EEG data with individual differences

can reach a high accuracy in person identification. Combining classification with verifica-

tion, the reliability of the system can be increased. The correlation values of EEG signals

between different subjects is lower than those of EEG signals acquired at different days for

the same subject. This finding suggests that the characteristics of EEG has low intra-subject

variability but high inter-subject variability and it is stable over time. The correlation values

may also explain why some subjects apt to be misclassified when they have high correlation

values to others. Our experimental results demonstrated that the proposed methods have

great potentials for identifying individuals in daily life applications.
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Chapter 1

Introduction



2 Introduction

In the first chapter we introduce some relevant background knowledge. Firstly, we

briefly describe the motivation of the proposed work at the first section. In Section 1.2

we give some introduction to Electroencephalography (EEG), so called brainwave. The

measurement methods, some basic analyses and researches are presented. In Section 1.3

we describe about the application of ERP waveform and give a description of the person

identification based on ERP signals. Finally, Section 1.4 gives the overview of the thesis.

1.1 Motivation

As advances in technology we need more efficient methods for person identification in

order to prevent occurrence of information leaks or cheats. The general person identifi-

cation methods such as passwords and smart cards which are convenient to use; however,

they do not have a high degree of security protection because the risk of forgetting, loss

and might be stolen. As more and more criminal activities of identity fraud, identity fraud

has become a critical and global issue. Several approaches have been applied in order to

overcome this problem.

To improve these disadvantages the biometrics is nowadays widely studied because of

the highly reliable results. The biometrics is to authenticate person by physical character-

istics: fingerprint, iris, voice, gait, and palm. However, these typical biometrics may be

dissolved by physical damage (dry skin, scar, sound damage or loss); in fact, about 2-3%

of the population lose the features, not to mention these features could be duplicated or

imitated by imposters. The new type of biometrics EEG that is brought up for person iden-

tification [21, 22]. EEG has low intra-subject variability and high inter-subject variability.

Moreover it is stable over time. For now brainwave can not be stolen or duplicated that is

more favorable for person identification.

We attempt to develop a person identification system based EEG signal that evoked

by visual stimuli, and used efficient feature extraction methods to transform high signal

to noise ratio (SNR) data to discriminative information. In addition to high accuracy of

classification we try to improve the results; therefore, the main framework is divided into

classification and verification that the results will be more reliable. By the security and
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accuracy of EEG biometrics the new method can be highly applied with future advances in

hardware.

1.2 Electroencephalography

1.2.1 Introduction to Electroencephalography

To obtain brainwave periods there are already many measurements. Among all the

measurements which are non-invasive such as magnetoencephalography (MEG), electroen-

cephalography (EEG), and functional magnetic resonance imaging (fMRI) specially suit to

use for extensive research. The reason why many research use EEG signal as their analy-

sis data is, it is portable, easy to operate, and it costs low prices compared with the other

measurements. EEG is used to measure the electrical activity of the brain. This activity is

generated by billions of nerve cells which called neurons. Each neuron is connected with

thousands of other neurons, and the neurons send action potentials to other neurons when

they are communicating. For EEG measurement, we actually measure the combined elec-

trical activity of millions of neurons on the cerebral cortex because the potential of a single

neuron is too small to be measured.

A typical EEG measuring device consists of several components, including EEG elec-

trode cap that receives the electrical activity from the scalp, EEG amplifier that processes

the signal amplification, computers that record the data, and monitors that present the visual

stimulus. The devices are shown in Fig. 1.1.

The EEG signal has high temporal resolution but relatively poor spatial resolution,

which depends on the electrode number of an EEG electrode cap. The electrode layout

on an EEG electrode cap has a international standard called the international 10-20 sys-

tem, as Figure. 1.2 shows. While measuring EEG we often put some single electrodes

surrounding the eye. This is used to measure the electrical activity of eye movement and

eye blinking, which is called EOG. This EOG contaminates the EEG signal badly, so by

measuring it we can remove the trials that was affected. This processing is called EOG

rejection.

During the measurement of EEG we have to fill each electrode with the electrolyte gel
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Figure 1.1: EEG measuring devices. From left to right is the EEG amplifier and the elec-

trode cap.

Figure 1.2: The international 10-20 system. The 10 and 20 refer to the 10% and 20%

interelectrode distance of the skull. The F, C, P, O, T stand for frontal, central, parietal,

occipital, temporal lobe. The odd number is placed in the left side and the even number

refer to electrode positions on the right side [9].

using a blunt needle; and further, we must ensure that the electrolyte gel is exposed to the

scalp completely. This makes the electrodes contact the scalp and lower the impedance. In

an EEG experiment we often wait until all the electrodes have an impedance lower 5 k Ω

before we start the signal acquisition.

1.2.2 Basic Analysis of Electroencephalography

For increasing SNR of EEG, there are some basic EEG analyses. In the subsection we

mainly described time domain and frequency domain analysis.
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Time domain analysis

The common time domain analysis is to observe an Event-related Potential (ERP). An

ERP is a potential change in the EEG when a particular event or stimulus occurs. The

potential change is time-locked and phase-locked, it is a very small potential change and

can not be easily observed in a single trial. So we have to average a few trials to observe

it. Because of the time-locked and phase-locked characteristic, by the averaging process

we can eliminate the random noise and enhance the SNR. Another technique that is often

used to separate these signals from background activity and noise is low-pass or bandpass

filter. It is reasonable because most of the energy of ERP is concentrated at low frequencies.

Some well-known ERP include P100 in the Visual-evoked Potential (VEP), N170 which

reflects the structural encoding process, P300, N400 which reflects access to person identity

node and semantic processing, and Audio-evoked Potential (AEP) [15].

Frequency domain analysis

As the name suggests frequency domain analysis it is used to observe the changes

in oscillatory activity. Such changed can be evoked by presentation of stimulus or by

concentration of the subject on a particular mental task. Usually, the phase of oscillatory

activity is not time-locked to the stimulus or to mental task of subject. Therefore, time

domain analysis technique cannot be used. Instead, we need frequency domain analysis to

observe the oscillatory activity. For instance, SSVEP have band power in the harmonics of

the visual stimulation frequency at occipital cortex. Fast Fourier transform can be used to

estimate the band power as features. Another example in systems based on motor imagery,

the band power in the mu and beta rhythm over the sensorimotor cortex is used as features.

Moreover, the band power in alpha rhythm is widely used (fatigue detection, concentration)

for it evoked while eye closing.

1.2.3 Event-related Potentials

Several kinds of internally or externally paced events will result in time-locked and

phase-locked brain signals. Almost all the evoked activities have a more or less fixed time-
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delay to the stimulus. These time-locked and phase-locked called event-related potentials

(ERPs) or evoked potentials (EPs). ERP can be viewed as potential changes of the neurons

when our brain deal with mental tasks. Usually the brain activities of mental task is smaller

than the spontaneous brain signals, thus concealed in the irregular and noisy spontaneous

brain signals. In order to extract the ERPs, synchronous averaging are performed, implying

we have to repeat the same mental tasks more than once, after applying synchronous aver-

aging, most of the noise will be eliminated, therefore enhancing the SNR and obtaining the

time-locked and phase-locked signals, ERPs.

For the EEG of our experiment evoked by visual stimuli; therefore, we particularly

introduce visual evoked potential (VEP) from widespread ERP.

VEP

Visual evoked potential (VEP) is induced when the users eyes are stimulated by look-

ing at a test pattern which often is a flashing pattern. The well-known VEP is P100

(Fig. 1.3) which are part of early components called exogenous, because they require a

stimulus. Such early components can be modulated by sustained attention and top-down

cognitive control processes [13]. To measure VEPs, the recording electrodes are placed

over the visual cortex.

The other VEP which related to oscillatory activity is SSVEP that elicited by a brief

visual stimulus modulated at a specific frequency. The visual stimulus flick at different fre-

quencies lead to brain oscillation at the same frequency and at harmonics and subharmonics

of the stimulation frequency.

P300

A longer latency component, the high amplitude P300 appearing approximately 300 ms

after the presentation, is called endogenous, because it can be present even in response to

an expected stimulus (however, it is missing actually). P300 is elicited in oddball tasks in

response to task-relevant, salient infrequent targets, with higher amplitude over posterior

(parietal) scalp. Many different stimulus modalities can be used to evoked the P300, such

as visual, auditory, sense of touch, gustatory or olfactory. In other words, P300 reflects
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P1 P2

P3

N1

N2

Figure 1.3: A typical ERP waveform. The P100 is a positive deflection in the EEG, which

appears approximately 100 ms after presentation of a visual stimulus. The P300 (P3) is

a positive deflection in the EEG, which appears approximately 300 ms after presentation

of a rare or meaningful stimulus. A series of negative and positive components (N1, P2,

N2) proceed the P3. The P3 reflect high-level processing of stimuli such as cognitive

processing, the earlier components reflect low-level, automatic processing of stimulus.
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higher-order cognitive processes. The P300 is a popular topic because it can be reliably

measured and the contribution of characteristics waveform. For instance the latency and

amplitude can be influenced by various factors. Some important factors influencing the

P300 are listed below.

• Interstimulus interval

The interstimulus interval is the temporal interval between the offset of one stimulus

to the onset of another. In recent study, the ISI are positively related to the P300

amplitude. The longer the ISI be used, the larger the P300 amplitude are presented.

• Target frequency

The amplitude of P300 is inversely related to the frequency of the stimulus. The

frequency of the target stimulus is low means that it is more significant for subject.

To elicited a stable P300 response it is helpful using low frequency of the stimulus;

however, this requires a longer measurement time.

• Concentration

The concentration of subject play an important role for signal quality. The ampli-

tude of the P300 depend on how the subjects focus on the stimulus. In an oddball

paradigm, the P300 cannot be elicited while the subject is absent from the target

stimulus.

The typical paradigm used in P300 experiments is oddball, in which irregular relevant

stimuli (target) that require a specific cognitive response. For inducing the P300 it have to

be detected in a sequence of frequent irrelevant non-target stimuli.

1.3 Application of ERP

Because of the obvious features of ERP there are a lot of application covering various

aspects. Some research focus on the self-relevant task to induce ERP by the stimuli which

is meaningful to the subjects, and some research interest in more in-depth cognitives issues

such as mind [2, 6, 8] The P300 is widely used in criminal detection due to it is relative
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to high-order cognitive processes that when people receive event-related information. In

addition to applications of ERP other studies attempt to find effective methods of feature

extraction that make data more practical.

1.3.1 Person identification based ERP

Since the EEG signals with discriminative individual differences the researchers begin

to study that how to use EEG as a biometric. The ideal conception is to promote brainwaves

as new keys for safer person identification systems. The resting data of EEG are used and

then some research investigated the task-related EEG signals [26] to induce more specific

waveform such as ERP. The details of person identification based EEG will introduce in

next chapter.

1.4 Thesis overview

Chapter 2 provides the overview of person identification systems, including the basic

components and key-issues. We also illustrate the disadvantages and limitations of the

present-day systems. The paradigm of data acquisition and experimental procedures will

be introduced in Chapter 3. Chapter 4 provides the main structure of the system and the

methods of feature extraction. The classification to evaluate our system also describe in

this chapter. In Chapter 5, the results of our classification. Finally we summarize this work

with the results and explain some possible reasons of misclassification of our methods in

Chapter 6 and give some conclusions in Chapter 7.
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2.1 Introduction to person identification systems

There are a lot of systems require reliable personal recognition schemes to either con-

firm or determine the identity of an individual requesting their services. The purpose of

such schemes is to ensure that the supplied services only can be accessed by a allowed

user and no one else. Examples of such applications include secure access to buildings,

computer systems, laptops, cellular phones and ATMs [12].

Conventional person identification methods include passwords, smart cards, and a vari-

ety of biometric techniques. Passwords and smart cards are widely-used because of the ad-

vantage of convenience. However, smart cards might be stolen, simple passwords might be

deciphered, and complicated passwords might be forgotten. Biometric recognition, refers

to the automatic recognition of individuals based on their physiological or behavioral char-

acteristics is popular recently and considered more secure way.

Biometric recognition

By using biometrics it is to confirm or establish an individual’s identity based on ”who

he/she is”, rather than by ”what he/she possesses” (e.g., a smart card) or ”what she remem-

bers” (e.g., a password). What qualities need to have a biometric can be used in identity?

Any human physiological or behavioral characteristic can be used as a biometric character-

istic on condition that it satisfies the following requirements:

• Universality: anyone have this characteristic;

• Distinctiveness: the characteristics of any two people should have sufficient differ-

ences to separate different people;

• Permanence: the characteristic should be sufficiently invariant with time (correspond

to the matching criterion);

• Collectability: the characteristic can be measured quantitatively.

In addition to the above requirements, a practical biometric system should be provided with

sufficient accuracy and speed, be user-friendly, and it can expand the number of users. It is

also necessary to prevent the impostors by robust anti-theft mechanism.
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Figure 2.1: Examples of biometric characteristics. From left to right are fingerprint, iris,

voice, palm and gait.

Biometric system

A biometric system is essentially a pattern recognition system that works by biomet-

ric data acquired from an individual. After feature extracting from the acquired data the

features are compared to the template set in the database.

The biometric system can be divided into two mode depending on the application. One

is verification mode that the system validates a person’s identity by comparing the acquired

biometric data with his/her own biometric template stored in database. People who want

to be approved by the system need to claim an identity via a PIN (Personal Identification

Number), a user name or a smart card. The system conducts a one-to- one comparison to

determine whether the claim is true or not (e.g., user: I am John. system: Whether this

biometric data belong to John.). The other is recognition mode that the system recognizes

an individual by searching the templates of all the users in the database for a match. A one-

to-many comparison to establish an individuals identity consequently conducted in this

system with out a declaration of subjects; however, it will fail if the subject is not enrolled

in the database (e.g., system: Whose biometric data is this?).

2.2 Categories of biometrics

Fingerprint

In 19th century, Alphonse Bertillon who is a chief of the criminal identification division

conceived and then practiced the idea of using a number of body measurements to identify

criminals [23]. After this, a more significant and practical discovery of the distinctiveness

of the human fingerprints became clear and soon the fingerprints used for criminal iden-
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tification. While law enforcement agencies were the earliest adopters of the fingerprint

identification technology, it is being increasingly used later because more identity fraud

has created.

Iris

According to human eye micro vascular, infinite variety of combinations, the complex

iris texture carries very distinctive information useful for personal recognition. The combi-

nation of iris blood vessels will not change basically even with the age increasing (except

for severe diabetes, glaucoma). It is difficult to surgically tamper because of the living

conditions (such as vascular blood flow). In view of those characteristics of iris it become

popular in person recognition.

Voice

Unlike fingerprint and iris, the biometric of voice is using signal characteristics. Voice

is a combination of physiological and behavioral biometrics. The features of an individual

voice are based on the shape, amplitude and frequency. The physiological characteristics

of human speech are invariant for an individual. Speaker recognition is most appropriate

in phone-based applications such as voice dialling. However, there are some disadvan-

tages lead to difficulties in the application of person identification (we will detail in next

subsection).

2.2.1 Disadvantages of present-day biometric systems

There are other biometrics such as face, palm and gait except above described. Al-

though biometrics are more reliable and secure method of identity, it still has some dis-

advantages. For fingerprint, people long-term need to work by hands might lose their fin-

gerprint (e.g., repair worker). For iris recognition, it is necessary to use infra-red scanning

eye that may cause safety concerns. Voice is not very distinctive and it can be imitated by

training. The behavioral part of the speech of a person might change over time, and is also

influenced by emotion and different physical states (such as common cold). Furthermore,
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collection of voice depend on the quality of microphone and is sensitive to background

noise.

In addition to the disadvantages above mentioned of different biometrics, present-day

biometrics can be stolen, duplicated, or even provided under violent threats. Therefore, a

more robust person identification system is necessary.

2.3 EEG-based person identification systems

To address the disadvantages of existing biometrics some researchers brought up using

brain signal as a biometric [21, 22]. To evaluate the uniqueness and consistency of the

characteristics in EEG signal, the work in [18] confirmed that the inter-subject variation of

EEG spectra where different subjects administered the same task was larger than the intra-

subject variation where the EEG signals of the same subject were repeatedly acquired for

several times. The characteristics in EEG signal fit well with the requirements of biometric

system.

2.3.1 Basic components of EEG-based person identification

Signal pre-processing

Typical procedures include amplification, filtering and artificial rejection in order to

improve the signal-to-noise ratio. In general, the brain activity is obscure and difficult

to detect, a sufficient amplification consequently required. The bandpass filter is usually

applied for filtering to cover high pass and low pas filter. In addition, a notch filter is also

used to suppress the 60 Hz power line interference. For artificial rejection, the electro-

oculographic (EOG) and electromyographic (EMG) are excluded detected by a predened

threshold.

Feature extraction

The original signal of brainwave is chaotic that lead to difficulties in the practical ap-

plication. In addition to common amplitude and latency information are used in analysis
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various feature extraction methods have been studied to extract more discriminative fea-

tures, such as discrete wavelet transform, continuous wavelet transform, autoregression

model (AR), power spectrum and so on.

Classification

The results of classification is to perform how suitable the feature used for distinguish-

ing between different people. Many classification methods have been proposed in pattern

recognition field. The classifier in a person identification can be anything from a simple

linear model to a complex non-linear or a machine learning models. The acquired data are

divided into training phase and testing phase. The training phase consists of a repetitive

process of tasks to train a classifier and then use the testing phase to evaluate the perfor-

mance.

2.3.2 EEG signals: resting data

The acquired signal of brainwave are mainly divided into two types, resting data and

task dependent data. The resting data has the advantages of easy operation and when people

in resting state the brain will generate the alpha rhythm that can be used as a waveform

characteristic of each subject. In 2002, Poulos proposed a bilinear model to find the non-

linear components in the EEG and the identification rate ranged from 72 to 85% [20]. By a

lot of methods of feature extraction such as autoregressive (AR) coefficients, coherence and

cross-correlation, the performance analysis of the system that Riera proposed obtained true

acceptance rate of 96.6% [24]. For simplicity and practicability, the work [16] classified

subjects simply by thresholding the EEG power spectrum.

2.3.3 EEG signals: task dependent data

Compared to resting data, the task-induced EEG signals are more specific that will re-

duce spontaneous effects of signal analysis. In 2003, Palaniappan and Ravi investigated

the task-related EEG signals [19], the stimuli used in their work were standard image

database [27]. By extracting features(channel wise power spectral density) from visual
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Figure 2.2: Task dependent experiment. To induce EEG of task dependent data there are

three examples: From left to right are standard image database, checkerboard and motor

imagery.

evoked potentials (VEPs), the identification accuracy was improved to be larger than 93%.

A novel peak matching algorithm proposed by Singhal that only relied on recording from

single channel gave 78% accuracy [26], they used a checkerboard pattern to induce steady-

state visually evoked potentials (SSVEP). Moreover, Marcel [14] devised more appropriate

mental tasks which contained imagination of repetitive self-paced hand movements and

generation of words to perform their research. A statistical framework based on Gaussian

mixture models and maximum a posteriori model adaptation successfully applied to person

authentication.

2.4 Limitations of biometric systems

Noise

A fingerprint with a scar, or a voice altered by cold are examples of noisy data. Simi-

larly, the brainwave might be affected by emotions; however, this disadvantage may be an

advantage for person identification that prevent impostors from threats. The old measuring

instruments or unfavorable ambient conditions such as poor illumination in face recognition

system will reduce the accuracy of discrimination.

Intra-class variations

Although the biometric is considered stationary, it may be very different from the data

used to generate the template. This variation is typically caused by a user who is incor-

rectly interacting with the sensor. For instance, the different angle used in face recognition.
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Sensor replacement might cause different results of the same subject. The varying psycho-

logical makeup of an individual might result in different behavioral characteristic at various

time measurements.

Moral issues

While the biometric is a more reliable and secure method of identity, some people may

be reluctant to provide part of their body to as a biometric that they probably feel that

privacy has been violated. It is important that biometrics acquiring needs to solicit for

user’s consent. To a large extent, the human factor dominates the success of the biometric-

based identification system. Therefore, the biometric system must be user-friendly and

accepted by users.

2.5 Thesis scope

After reviewing related researches for person identification, we attempt to adopt the

method of training the EEG of subjects as a biometric to identify different persons. We

designed a simple task that formed by different-sized disc and presented in different pro-

portions of occurrences to induce the VEPs and ERPs. The feature extraction of raw EEG

data which correspond with the classifier and can achieve the better classification is the

major part of our work. The proposed EEG-based person identification system will test

by 18 subjects to verify its reliability. The methods of feature extraction described in the

Chapter 3, we used the features to train a accurate classifier which contained classification

phase and verification phase.

The preliminary classification obtained by a multi-class classifier. The best-matching

candidate of each classification is further verified by using a binary classifier to exclude

the impostors in verification phase. For the performance evaluation, the accuracy rate and

the error rate are were used. Besides, we tried to correct the false classified data by the

confidence value of the SVM classifier. Summarizing the methods described above, we

developed a reliable and accurate EEG-based person identification system.



Chapter 3

The proposed methods for person

identification
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3.1 System Overview

In this study we present a person identification system using EEG signals. Because

resting state is prone to be more fluctuating, we adopt task-related EEG signals evoked by

visual stimuli in this work. Representative information is extracted from the EEG signals

of subjects and are used to train a one-to-many classifier for person classification. The best-

matching candidate of each classification is further verified by using a binary classifier to

exclude the impostor. The main structure of our system shows in Fig. 3.1.

Figure 3.1: Flow chart of EEG-based person identification system.
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Figure 3.2: A trial consists of one-second stimulus, an image containing either a small disk

or a large one, and one-second fixation.

3.2 Materials

3.2.1 Experiments

Participants

Eighteen subjects participated in this study (age ranges from 21 to 33 years with mean

24 years, twelve males). Informed consent was obtained from all the participants. All the

subjects have normal or corrected-to-normal visions. For five participants among all the

subjects, EEG data were acquired two times with an interval of more than one week.

Stimuli

The oddball paradigm of data acquisition in this study is shown in Fig. 3.2 and presented

under the visual angle in human. The subject was seated comfortably in a silent room where

no other signal interference except our experimental equipments and was asked to watch a

monitor screen. The visual stimulus, an image containing either a small disk or a large one

(ten times larger than the small one) and the visual angle is 6.1◦ and 1.3◦ separately, was

presented for one second followed by another second of fixation image of a cross using

Presentation 0.71 software. The order of the small disk or the large disk were randomize.

During the fixation cross eye blink was allowable. The frequency ratio between the stimulus

images is one (large disk) to three (small disk). Around 250 trials were acquired for each

participant which contain at least 50 trials of large disk for analysis.
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Figure 3.3: The epoch with eye movement in the green zone was rejected.

EEG recording

Thirty-two standard scalp electrodes were placed according to the International 10-20

System of Electrode Placement and the EEG data were recorded with Scan 4.3 software.

The sampling rate for data acquisition was 500 Hz with a 16-bit A/D conversions. The

earlobe electrodes A1 and A2 provided the reference. Impedance was kept below 5 kΩ.

Signals were digitally filtered within the 5-30 Hz band.

3.2.2 Signal preprocessing

We used EEGLAB 9.0 [4] to perform the following signal preprocessing procedure.

The EEG data were first segmented into epochs starting from one second before the stim-

ulus onset to one second after stimulus onset. The baseline correction picked the interval

that relatively smooth compared to the activity regions was applied to remove the DC drift.

Epochs with burst activities during the post-stimulus period were rejected (with the thresh-

old values -50µV and 50µV) (Fig. 3.3).

The trials evoked by the large disk events were used in the following person identifica-

tion analysis because it reflected the VEPs and ERPs.
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3.3 Dimension reduction

The features we extracted from time domain series that the raw data have 500 sample

points and it be calculated separately for all channels. A high-dimensional data need more

time to analyze and it might include noise. In addition, it is difficult to interpret the char-

acter of the high-dimensional data. For this reason, how to reduce the dimension with an

efficient method is important. In our work we reduced the time domain dimensions from

500 to 50.

Principal components analysis

Principal component analysis (PCA) is a method for reducing feature dimension [10].

Its main idea is to find a set of basis, usually with a much smaller dimension, to represent

the original data set while preserving as much as information measured by the variance of

data distribution. For a N-dimension training data {x1, x2, ... xN}, PCA aim to find a linear

transform matrix P which transform the xk into M-dimension (M 6 N). The zk are more

representative.

zk = PTxN , k = 1, 2, 3, ... N , (3.1)

The scatter matrix is the matrix of eigenvectors of XTX, we need to find the Popt to maxi-

mize the transformed ST .

ST =
N∑
k=1

(xk − x̄)(xk − x̄)T , (3.2)

The original data are transformed by matrix of eigenvectors corresponding to the multiple

eigenvalue of ST will obtain zk with low-dimension and maximum scatter matrix.

The procedure of PCA can be simplify as follows: 1. Compute the covariance matrix

of the original input data. 2. Measure the eigenvalues of the covariance matrix in the

order from large to small and then find the corresponding eigenvectors. 3. The normalized

input data are multiplied by the eigenvectors obtaining the PCs. The data after PCA could

represent the distribution of the original high-dimensional data in a low-dimensional space.
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Locally linear embedding

LLE transforms the data to a low-dimensional space while preserving the relationships

of relative distances between data points. If there is an embedded non-linear manifold ly-

ing in a high-dimensional space and the dimension of the manifold is relatively low, this

manifold can be well represented in a low-dimensional space [25]. Therefore, we also ap-

plied the locally linear embedding (LLE) method to transform the data to a low-dimensional

space while maintaining the manifold structure manifested in the original high-dimensional

space. Firstly, we find a set of nearest neighbors for each data point Xi in D-dimensional

Euclidean space. Then we reconstruct, or represent, each data point by a linear combina-

tion of its neighbors Xij with weightings Wij as the contribution of the neighbor Xij to

this linear combination for Xi. The reconstruction error is:

E(W ) =
∑
i

|Xi −
∑
j

WijXij|2 , (3.3)

where the sum of the weightings for each data point Xi equals one. Like the previous

cost function the data point Xi can be mapped to the corresponding point Yi in a low-

dimensional space as follow but here we fix the weights Wij while optimizing the coordi-

nates Yi.

Φ(Y ) =
∑
i

|Yi −
∑
j

WijYij|2 , (3.4)

The data point Xi can be mapped to the corresponding point Yi in a low-dimensional space

as:

Yi =
∑
j

WijYij , (3.5)

where the point Yij is the point in low-dimensional space corresponding to Xij in the

original high-dimensional space. From neighbor k=1∼n (n=30 that is the minimum number

of trials), the classification accuracy is the highest when k=9. Therefore, we set the number

of neighbor k to be 9.
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Figure 3.4: Classification of different number of neighbor (k). The classification accuracy

is the highest when k=9.

3.4 Feature extraction

The signal-to-noise ratio (SNR) of brainwave is low. It will take a large amount of time

to calculate the compact bases which represent the original signal; moreover, the number

of obtained bases might be infinite. Through efficient feature extraction we can reduce the

quantity of data and transform the original data into representative coefficients. Thus the

computational load can be decrease and the acquired data will be more applicable.

Morphological features

Evoked potentials are characteristic waveforms that are reproducible by time-locking

EEG to a stimulus over repeated trials. Because of the characteristics and typical delay of

EEG components the morphological features are calculated as follows [1].

tsmax = {t|s(t) = smax} , (3.6)

The latency (tsmax) and amplitude (smax) of each EEG epoch were computed as the mor-

phologic features which contain VEPs (with the time interval from 50 ms to 150 ms after

stimulus onset) and ERPs (with the time interval from 250 ms to 400 ms after stimulus

onset). Latency to amplitude ratios (LARs) also were measured as a morphologic features.

Fig. 3.5 depicts morphological features of averaged data acquired from different subjects,

it is discriminated despite being stimulated by the same task.
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Figure 3.5: The latency and amplitude of VEP and ERP of different subjects.

Frequency features

The spectral analysis has been used in signal processing of EEG for a few decade and

it also applied to person identification [7, 21]. EEG is composed of different wave bands,

often called as the rhythm of waves. The frequency spectrum mainly divide into five bands

termed delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-32 Hz). In this work we

focus on the frequency band from 5 Hz to 30 Hz. Because rhythmic delta and theta activity

related to sleep condition. The discrete Fourier transform (DFT) were used to compute the

power spectrum for each epoch.

X(k) =
N∑
j=1

x(j)w
(j−1)(k−1)
N , (3.7)

where

wN = e(−2πi)/N (3.8)

is an N th root of unity. In our case, N is equal to 500 (500 Hz*1 second after onset).

Stochastic modeling

Poulos and Rangoussi [22] have proposed to model the EEG signal by autoregressive

(AR) models and the parameters of the AR model are used for identification. The presented

work [17] utilized the coefficients of AR model as features and reached correct classifica-

tion scores at the range of 80% to 100%. Considering the EEG signal as an AR process,

we used the Yule-Walker equations to estimate the AR coefficients as the features. To fit a
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Figure 3.6: When the number of coefficients is 25 the result of classification achieve the

best.

pth-order AR model to the EEG data X(t), we minimize the following prediction error by

using the least squares regression:

X(t) =
P∑
i=1

a(i)X(t− i) + e(t) , (3.9)

where a(i) are the auto regression coefficients, e(t) represents the white noise, and the time

series can be estimated by a linear differential equation. Different number of parameters

depended on the order of models were used to calculate the results of classification Fig. 3.6.

Time-frequency model

The wavelet transform uses a set of time-scale basis to represent the original signal.

Fig. 3.7 shows the fundamental of discrete wavelet transformation. For one level of the

transform, signal S is divided in half which the approximation coefficients retain the rep-

resentative information of S and the detail coefficients include comparatively unimportant

information such as noise. Here we applied the Daubechies wavelets to transform the time-

domain EEG signals and obtained 250 coefficients as the time-frequency features.

3.5 Identification

For classifier design, we employed the support vector machine (SVM) and the k-nearest

neighbor (kNN) search method (k=9). Through the results of classification we can deter-
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Figure 3.7: The samples are decomposed through a low-pass filter for approximation and

high-pass filter for detail.

mine the feasibility of EEG-based person identification.

SVM

Support vector machine (SVM) [3] is a statistical-based classification method that finds

a hyperplane to separate the two different sets of data. Using the term hyperplane is due to

the data may be a high-dimensional information. Examples of two-dimensional data shows

in Fig. 3.8 that we attempt to find a line that will separate the red point and blue point and

distance of the border (margin) between these two sets is maximal. Assume there are a set

of training data {xi, yi}, i=1,...,n and xiεRd, yi denotes a known class label. The optimal

separating hyperplane can be solve as follow:

minimize
1

2
‖ w ‖2

subject to yi(w
Txi − b)− 1 ≥ 0 ∀i

(3.10)

We utilized the linear type SVM as the classifier to train multi-class classifier for classifi-

cation and one-against-rest classifier for verification.

kNN

The other method of classification we compared to SVM is the k-nearest neighbor

(kNN), it is widely used in pattern recognition because of uncomplicated basis of clas-
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Figure 3.8: Two set of data we attempt to find a decision boundary (solid line) to separate

and the margin (dashed line) is maximal. Data locates on the margin is defined as support

vector.

sification. The training examples are vectors in a multidimensional feature space, each

with a class label. The training phase of the algorithm consists only of storing the feature

vectors and class labels of the training samples. The distance between instances is typically

determined by Euclidean distance. The classification accuracy often can be improved with

the larger value of ”k” because it reduce the effect of noise on the classification; however,

it will require a longer computing time. We set the value of k to be 9 (the same number of

neighbor k for LLE).

Cross-validation

Cross-validation, is a technical assessment of the results of statistical analysis will be

extended to an independent data set. It is mainly used to fairly estimate how accurately a

predictive model will perform.

The common type of the cross-validation are k-fold, repeated random sub-sampling and

leave-one-out. The disadvantage of repeated random sub-sampling is that some observa-

tions may never be selected in the validation sub-sample, whereas others may be selected

more than once. The leave-one-out cross-validation usually used in a small number of
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Figure 3.9: The 1/10 trials are picked as testing data, the other 9/10 trials are training data.

Repeat this way and use the next part of testing data each time.

analysed data. For these reasons, we choose k-fold cross-validation to measure our clas-

sification. The k-fold method that divides all data into k parts then one part picked as the

testing data. The remaining k-1 parts were trained by the classifier ( Fig. 3.9). The cross-

validation process is then repeated K times (the folds), with each of the K sub-samples

used exactly once as the validation data. We apply the 10-fold cross-validation to obtain

the average classification accuracy for person identification.

3.5.1 Classification

In the classification phase, the system recognizes an individual by a multi-class classi-

fier. A one-to-many comparison is established for individuals identity without the subject

having to claim an identity. This part can be regarded as negative recognition application

where the system establishes whether the person is who he/she denies to be. The purpose

of negative recognition is to prevent users from single person to use multiple identities. The

block diagrams of classification phase are depicted in Fig. 3.10.

Feature 
extraction

Multi-class 
classifier

(N matches) 

Training 
data

User EEG signal N subjects

Figure 3.10: Block diagrams of classification. The multi-class classifier obtained a one-

to-many comparison of testing data. For a N-class classifier, it will be N-classification

results.



3.5 Identification 31

3.5.2 Iterative verification

The purpose of the verification procedure is to reconfirm the best-matching result of

classification (Fig. 3.11).

Feature 
extraction

One-against-rest
classifier

(Accept / Reject)
Training 

data

User EEG signal

Best-matching  candidate  in classification

Subject N

Figure 3.11: Block diagrams of verification. The best-matching result of classification was

verified using the one-against-rest classifier.

For each of the eighteen subjects, we trained a binary classifier by using to groups of

training data, EEG data of the targeted subject and those of all others. We evaluate the

binary classifier for verification according to the accuracy rate and the error rate. The best-

matching subject from the classification procedure is verified by the corresponding binary

classifier.

In addition, we correct the false classified data in classification phase through iterative

verification. The confidence of SVM classifier makes a criteria for classification and deter-

mines whether the data have chance of being corrected. Only the correctly verified results

are approved whereas the failure results are regarded as impostors.
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Chapter 4

Experimental results
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Figure 4.1: Ten channels were used in our analysis.

4.1 Results of classification

4.1.1 Temporal characteristics in the acquired signals

We first verified whether the resting EEG or ERP is better for distinguishing subjects’

identities. By applying the SVM classifier to categorize the pre-stimulus (500 ms before

onset) EEG signals among the fifteen subjects with whole brain information, the classifica-

tion accuracy achieved 12.24%. When the post-stimulus (500 ms after onset) ERP signals

were used for person identification, the classification accuracy achieved 25.26%. Therefore

the ERP contains more information for person identification than resting EEG does and it

truly can improve classification.

Furthermore, we picked the channels which are related to the visual field and significant

activities of stimuli (frontal, frontal-central, parietal and occipital) [5]. The 10 electrodes

we selected were Fz, FCz, Cz, CPz, P3, Pz, P4, O1, Oz, O2 (Fig. 4.1). This process will

reduce the quantity of data and eliminate the activities which are not induced by the events.

The classification of the whole brain 30 channels is lower than the selected 10 channels

(29.28%) confirms the above statement.

4.1.2 The identification in classification phase

Because of the above result, the results of feature extraction (1000 ms post-stimulus

signals, 10 channels) demonstrated by classifying single trial and averaging data (Table

4.1). For the total number of 1144 data, the best result of classification is using power
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spectrum as the features in SVM classifier and the data which after averaging is 1126 trials

for smoothing noise is helpful to improve the classification. We increased the number of

averaged data and obtained the classification accuracy: 90.25% (avg:3), 88.26% (avg:4),

89.55% (avg:5), and 88.19% (avg:10) by using the power spectrum as features. The results

show that more average number of data does not improve the classification accuracy, and in

practical application we attempt to use fewer data to achieve better identification efficiency.

Table 4.1: Results of classification with different features. The data of each subject ac-

quired in the same experiment. The feature of power spectrum obtained the classification

rate of 91.61%.

SVM kNN

Feature Single trial Avg:2 Single trial Avg:2

Raw data 29.28% 80.82% 23.43% 76.38%

LLE 30.68% 86.32% 28.06% 83.39%

PCA 27.62% 83.21% 25.26% 81.17%

Latency 11.54% 35.17% 10.23% 33.57%

Amplitude 38.55% 50.80% 36.19% 45.20%

LAR 39.25% 52.66% 37.67% 47.51%

Power spectrum 72.03% 91.56% 60.05% 85.88%

AR 53.50% 62.52% 50.96% 60.57%

Wavelet 27.27% 85.35% 22.90% 77.26%

Fig. 4.2 shows the power spectrum at the frequency band from 5 Hz to 30 Hz of differ-

ent subjects. The spectrum is equivalent for each subjects while is different from another

subject.

In order to cover information of complementary domain we combined different fea-

tures. The features of different domains were normalized before combining with others.

xi =
xi − xmin
|xmax − xmin|

× I , 1 ≤ i ≤ n (4.1)

where n is the number of trials and the normalized features rang between 0 and 1. The I

is a constant to prevent the variance presented in data is too small, we set the I=10 in our



36 Experimental results

5 10 15 20 25 30
0

1

2

3

4
Subject1

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

5 10 15 20 25 30
0

2

4

6
Subject2

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

(|X
(f)
|2 )

Figure 4.2: The power spectrum in different 10 trials of two subjects (thick black line

represents the average value). Each trial show the averaging data in ten channels.

work. The results of combined features are shown in Table 4.2. It is improved compared

to unilateral features.

Table 4.2: Results of classification with combined features.

SVM

Combined feature Single trial Avg:2

Spectrum + Latency 73.43 91.47

Spectrum + Amplitude 73.69 91.65

Spectrum + LAR 78.32 92.10

Spectrum + PCA 82.17 96.00

Spectrum + LLE 85.31 96.36

Spectrum + AR 74.48 88.28

The best result of the features that combined spectrum and LLE that we chose to train

our classifier. In predictive analytics, a table of confusion, also known as a confusion matrix

to report the percentage of true negatives, false positives, false negatives, and true positives.
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The relationship among terms are shown as Table 4.3.

Table 4.3: Relationships among terms. Definitions of True positive (TP), False negative

(FN), False positive (FP) and True negative (TN).

Prediction outcome

positive negative

Actual value
positive’ True Positive (TP) False Negative (FN)

negative’ False Positive (FP) True Negative (TN)

A good classification results on high proportion of true positive. Fig. 4.3 is the confu-

sion matrix of 18 subjects using combined features of power spectrum and LLE in 10-fold

cross-validation. The blue frames of the matrix is the positive predictive value gave 81-

100% and it happens to the best-matching for each subjects.
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4.2 Results of verification

4.2.1 Accuracy determination in verification phase

Through the results of classification phase we used the binary classifier to verified the

best-matching. It is aim to reconfirm the accuracy of classification and to exclude the

impostor. The best situation is high accuracy rate and low error rate obtained from verifi-

cation. Furthermore, we attempt to correct the false classified data in classification phase

in order to increase the initial classification.

Accuracy rate

The accuracy rate measures the percentage of the best-matching candidate in classifi-

cation that are accepted in binary classifier of verification. In other words, we verified the

data which displayed in blue frames in Fig. 4.3. Table 4.4 shows the accuracy rate of 18

subjects, the average could reach 98.89% accuracy.

Table 4.4: Accuracy rate of verification phase. The percentage of the best-matching candi-

date in classification that are accepted in verification.

Subject 1 2 3 4 5 6 7 8 9

Accuracy rate (%) 98.57 98.75 98.75 100 100 96.67 93.88 100 96.43

Subject 10 11 12 13 14 15 16 17 18

Accuracy rate (%) 100 100 100 98.55 100 94.83 100 100 100

Error rate

The error rate measures the percentage of the false classified data in classification that

are accepted in binary classifier of verification. In other words, we observed whether the

data which displayed in white frames in Fig. 4.3 will be rejected in the verification phase.

Table 4.5 shows the error rate of 18 subjects, all the false classified data were rejected in

verification phase.
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Table 4.5: Error rate of verification phase. The percentage of the false classified data in

classification that are accepted in verification.

Subject 1 2 3 4 5 6 7 8 9

Accepted/False classified 0/7 0/7 0/2 0/0 0/0 0/2 0/5 0/0 0/2

Error rate (%) 0 0 0 - - 0 0 - 0

Subject 10 11 12 13 14 15 16 17 18

Accepted/False classified 0/4 0/0 0/0 0/3 0/0 0/3 0/0 0/2 0/4

Error rate (%) 0 - - 0 - 0 - 0 0

Iterative verification

We attempt to correct the data that should be classified as subject i, but classified as

subject j in classification by the iterative verification. The criterion complied with the

confidence value when it higher than 80% compared to the maximum, if the data which

false classified have chance of being classified correctly the accuracy will be improved.

The confidence value of the SVM classifier makes a criteria for classification shown in

Fig. 4.4 determined whether the data have chance of being corrected. For the true positive

data in classification phase, the blue diamond is the maximum confidence value and it is

significantly large. While the false classified data shown in green triangles are smaller

compared to the true positive data and the confidence values of true classes (purple square)

have little difference from maximum confidence value. Table 4.6 illustrates the results of

iterative verification.

After iterative verification the overall accuracy of our system is 97.25% that is higher

than non-iterative verification (95.29%).
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Figure 4.4: Confidence value of the classification mainly divide into true positive data (blue

diamond) and false classified data (green triangle and purple square).

Table 4.6: Iterative verification. The row of False classified and Corrected indicate that

the number of false classified data which are corrected in the binary classifier of iterative

verification.

Subject 1 2 3 4 5 6 7 8 9

Corrected/False classified 0/0 0/0 0/0 1/1 5/5 0/0 1/1 0/0 0/2

Original accuracy (%) 100 100 100 97.50 92.86 100 98.00 100 93.33

New accuracy (%) 100 100 100 100 100 100 100 100 93.33

Subject 10 11 12 13 14 15 16 17 18

Corrected/False classified 0/0 1/2 4/8 1/1 0/0 1/2 1/11 1/1 6/7

Original accuracy (%) 100 97.14 86.67 98.57 100 96.67 81.67 98.00 88.33

New accuracy (%) 100 98.57 93.33 100 100 98.33 83.33 100 98.33
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4.3 Results of different days

For eight participants among all the subjects (three females and five males), EEG data

were acquired two times with an interval of more than one week. Because we would like to

know whether the EEG data is sufficiently constant even though the data were acquired in

different day. The day1 signal were used as training data and the day2 signal as testing data

for classification. We observed the power spectrum of different day (Fig. 4.5 to 5.12). The

power spectrum in different 10 trials of two subjects (thick black line represents the average

value). Each trial show the averaging data in ten channels. Although it is impossible that

the features of power spectrum are exactly the same they have a certain degree of similarity.
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Figure 4.5: Power spectrum of subject3

acquired from different day
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Figure 4.6: Power spectrum of subject5

acquired from different day
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Figure 4.7: Power spectrum of subject8

acquired from different day
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Figure 4.8: Power spectrum of subject9

acquired from different day
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Figure 4.9: Power spectrum of subject12

acquired from different day
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Figure 4.10: Power spectrum of sub-

ject13 acquired from different day
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Figure 4.11: Power spectrum of sub-

ject17 acquired from different day
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Figure 4.12: Power spectrum of sub-

ject18 acquired from different day

In addition to signal observation, we need to classify the data of different day by clas-

sification and verification. For classification phase, the confusion matrix of eight subjects

(the number of 436 data) shown in Fig. 4.13 and the features we used are the same as pre-

ceding section (power spectrum combine with LLE). The inter-class accuracy is 63.08%.

After iterative verification the overall accuracy of our system is 46.26% that is higher than

non-iterative verification (41.36%). The detail data of accuracy rate, error rate and results

of iterative verification are as follows. The results demonstrate that the performance de-

grades over days. We will discuss in detail in next chapter.
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Actual           Predicted 3 5 8 9 12 13 17 18

subject3 81.40% 2.33% 0.00% 0.00% 2.33% 0.00% 0.00% 13.95%

subject5 0.00% 97.30% 0.00% 1.35% 0.00% 0.00% 0.00% 1.35%

subject8 0.00% 1.67% 75.00% 0.00% 0.00% 0.00% 18.33% 5.00%

subject9 0.00% 0.00% 0.00% 0.00% 7.69% 23.08% 60.00% 9.23%

subject12 0.00% 5.66% 0.00% 0.00% 88.68% 1.89% 1.89% 1.89%

subject13 0.00% 0.00% 0.00% 0.00% 0.00% 29.63% 70.37% 0.00%

subject17 20.00% 0.00% 0.00% 5.71% 0.00% 14.29% 48.57% 11.43%

subject18 0.00% 1.92% 0.00% 0.00% 3.85% 1.92% 3.85% 88.46%

Figure 4.13: Confusion matrix of eight subjects with data of different day. An element in

row i and column j counts the percentage of subject i was classified as j. The blue frames

of the matrix is the positive predictive value.

Table 4.7: Accuracy rate of different day. The percentage of the best-matching candidate

in classification that are accepted in verification. The average value is 68.52% accuracy.

Subject 3 5 8 9 12 13 17 18

Accuracy rate (%) 37.14 97.22 100 0 80.85 25 17.65 26.09

Table 4.8: Error rate of different day. The percentage of the false classified data in classifi-

cation that are accepted in verification. The average is 46.84%.

Subject 3 5 8 9 12 13 17 18

Accepted/False classified 0/7 4/6 0/0 0/3 3/8 3/22 64/91 0/21

Error rate (%) 0 66.67 - 0 37.5 13.64 70.33 0

Table 4.9: Iterative verification. The row of False classified and Corrected indicate that the

number of false classified data which are corrected in the binary classifier of verification.

Subject 3 5 8 9 12 13 17 18

Corrected/False classified 0/8 0/2 6/15 0/65 0/6 14/38 1/18 0/6

Original accuracy (%) 81.40 97.30 75 0 88.68 29.63 48.57 88.46

New accuracy (%) 81.40 97.30 85 0 88.68 55.55 51.43 88.46
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4.4 Summary

The theoretical value of transfer time in our system is:

{
∞∑
n=0

1

16
× (

3

4
)n(n+ 2)(n+ 1)} ×N (4.2)

where N is two for average of two trials obtains 16 s for one identification. While the real

transfer time in our experiments is 15.68 s.

Classification phase

• By the observation of original signal we confirmed that the task dependent data is

advantageous in classification.

• The inter-class accuracies of confusion matrix range from 81 to 100% by using com-

bined feature of power spectrum and locally linear embedding (LLE) which is a

method of dimension reduction.

Verification phase

• The accuracy rate attain 98% that measures the percentage of the best-matching can-

didate in classification that are accepted in binary classifier of verification.

• In addition to a high accuracy rate, the error is 0% indicates that the system has a

good effect against impostors. Through iterative verification the data false classified

in classification phase could be corrected and the overall accuracy of our system

could reach 97.25%.
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Feature selection
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Figure 5.1: Steps of forward selection. The process of feature combination in order to find

the best one.

For the feature selection we used the forward and backward selection to find the best

combination of different features [11]. A forward selection method first finds the best fea-

ture among all features, then the rest of the features combined with it sequentially (Fig. 5.1).

In our work, we firstly combined power spectrum with other features separately and found

the best combination. After the combination of two features the other features added se-

quentially according to the classification results. Through this process we can find that

which combination is helpful to improve the classification and which feature will depress

the accuracy.

The result of forward selection shown in Fig. 5.2, the most obvious finding is that the

feature of AR depress the accuracy. Therefore, we inferred that AR is not suitable for

combining with other features. Furthermore, the results also reveal LLE dominates an

important role of the combined features. Summing up the above results and considering

computing time, we chose the combined feature of power spectrum and LLE to train the

classifier.
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Figure 5.2: Results of forward selection. Different features are combined with the feature

of power spectrum according to the classification results.

Reason for bad classification

Although the performance of our person identification system can reach more than 95%

accuracy, some misclassification of cases still exist. The reasons which will impact the ac-

curacy of classification include external and internal interference. The external interference

is caused by signal quality, during different EEG acquisitions the results of the instrument

measurement will have a range of error and the environmental factors such like noise will

impact on signal quality. The internal interference is difficult to determine and eliminate,

the main factor is the state of subject. Different degree of concentration, tension or tired-

ness will impact on signal quality. However those cognitive factors are difficult to quantify

we just can make a reasonable conjecture according the results.

By confusion matrix of 18 subjects(Fig. 4.3) we can clearly realize the classification of

each one. We used the correlation to discuss those classifications. The Fig. 5.3 shows the

detail of correlation between different subject and the Fig. 5.4 is the averaging data. Those

subject have high correlation with the others are usually misclassified. For instance, many

people were wrongly assigned to subject1 and its correlation is high indeed (like a common

face). The subject5, subject12 and subject18 which with high correlation are more often

misclassified as others.
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Figure 5.4: The averaging data of correlation between different subjects.

In addition, we interest in the correlation between data of different day. Compared to

the correlation between subject it is higher (the red square shown in Fig. 5.4 and the detail

in Table 5.1). The results illustrate that the EEG data of same individual is steady as

opposed to data of different individuals.

Table 5.1: The correlation obtained from the eight subjects with data of different day.

Subject 3 5 8 9 12 13 17 18

Correlation 0.494 0.741 0.422 0.311 0.658 0.672 0.518 0.612

Adaptive classifier comparison

Although the EEG acquired from different day is steady from the results of correlation,

we attempt to adapt the classifier using data of different day as training set. The classifier

consequently more conform to each subjects. The inter-class accuracy of adaptive classifier

upgrade from 63.08% to 97.66%, accuracy rate from 68.52% to 92.11%, and error rate

decrease from 46.84% to 10% (Table 5.2). After iterative verification the overall accuracy

of our system is 90.65% that is higher than non-iterative verification (89.95%). The results

improve significantly using the adaptive classifier (46.26%→ 90.65%).
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Actual           Predicted 3 5 8 9 12 13 17 18

subject3 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

subject5 0.00% 97.14% 0.00% 1.43% 0.00% 0.00% 0.00% 1.43%

subject8 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

subject9 0.00% 0.00% 0.00% 98.33% 0.00% 0.00% 1.67% 0.00%

subject12 2.00% 0.00% 0.00% 2.00% 90.00% 0.00% 4.00% 2.00%

subject13 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

subject17 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

subject18 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.00% 96.00%

Figure 5.5: Confusion matrix of different day with adaptive classifier

Table 5.2: Accuracy rate, error rate and results of iterative verification

Subject 3 5 8 9 12 13 17 18

Accuracy rate (%) 95 100 100 98.31 97.78 100 100 97.92

Accepted/False classified 0/1 0/0 0/0 0/2 0/0 0/0 1/5 0/2

Error rate (%) 0 - - 0 - - 20 0

Corrected/False classified 0/0 1/2 0/0 1/1 1/5 0/0 0/0 0/2

Original accuracy (%) 100 97.14 100 98.33 90 100 100 96

New accuracy (%) 100 98.57 100 100 92 100 100 96
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Robustness against impostor

A robust person identification system needs to prevent the invasion of imposter. In

there we demonstrate the results of three impostors which have 148 EEG data. Fig. 5.6

shows that the impostors were classified as different in classification phase. The overall

true rejection rate (TRR) of our system is 76.55% that is slightly lower than non-iterative

verification (79.31%). It is high that means the data of impostors will be rejected after this

person identification system.

Actual                       Predicted 11 15 16 17

impostor1 6.45% 48.39% 3.23% 41.94%

Actual                       Predicted 13 16 18

impostor2 4.55% 78.79% 16.67%

Actual                       Predicted 1 3 11 13 15 17 18

impostor3 9.80% 1.96% 5.88% 5.88% 68.63% 5.88% 1.96%

Figure 5.6: Confusion matrix of impostors

Influence of ERP signal

The present studies of EEG-based person identification mostly use alpha band which

evoked by eye closing and VEPs by visual stimuli. Our experiment designed for acquiring

VEPs like the present studies while the acquired data contain P300 by the proportion of

different stimulus. We compared the classification of small and large disk trials which

correspond to pure VEPs and ERPs separately. For the raw data of different trial shown

in Fig. 5.7 we observed that the signal of small disk (left) is dull and has no significant

potential in the period of 300 ms compared to the large disk (right).
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Figure 5.7: The raw data of small and large disk trials from subject1.

For the classification, we chose the same number of trials as the large one to train the

classifier that the raw data of small disk obtained 71.31% accuracy which used the SVM

classifier and average data with the combined feature of power spectrum and LLE obtained

80.20% accuracy. The classification accuracies are less than big disk (80.82% and 96.36%

displayed in Table 4.1 and Table 4.2).



Chapter 6

Conclusion
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We have proposed a person identification system using visual-evoked EEG signals. In

experiments we used the visual stimuli to evoke VEP and ERP (P300) through the oddball

paradigm. The methods of feature extraction include dimension reduction and time and

frequency domain analysis. According to our experimental results, we concluded that the

combination of power spectrum and LLE can extract informative features for distinguish-

ing subjects. The person identification system contains the classification and verification

phases. In the classification phase, we use a multi-class classifier to perform a one-to-many

comparison for each acquired data. In the verification phase, the best-matching candidates

are furthered verified sequentially by binary classifiers according to their matching levels.

Moreover, we tried to correct those misclassified data through iterative verification. The

results revealed that EEG data with individual differences can reach a high accuracy in per-

son identification. Combining classification with verification the reliability of the system

could be increased. In the discussion, compared with the inter-subject correlation the intra-

subject correlation between EEG trials acquired at different times is higher. This result

illustrate that EEG is beneficial used as a biometric.

Although there are some drawbacks in the practical application aspect, such as long

preparation time required and the signal is susceptible to environmental impact. We can

improve the situation by the advance in hardware facilities (e.g. dry electrode).
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