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基於蛋白質自由能之預測 B細胞表位方法 

 

學生：黃韻潔    指導教授：胡毓志  博士 

 

 

國立交通大學 生醫工程研究所 

 

 

摘要 

 

 
在預防醫學中，抗體可藉由疫苗刺激免疫系統產生，進而提升人體免疫力。

胜肽疫苗，其抗原僅採用可誘發抗體之B細胞表位（B-cell epitope）胜肽片段刺

激免疫系統就可以產生具特異性及保護性的免疫能力，因此有效的預測B細胞表

位在預防醫學中扮演相當重要的角色。目前預測B細胞表位方法多數依賴由蛋白

質結構所衍生出之胺基酸量表（amino acid propensity scales﹞。這類型的方法利

用單一胺基酸序列做為預測B細胞表位之依據。然而大環境中病原不斷的演化，

演化過程中病原的生物基因快速突變，基因突變也造成胺基酸序列發生改變。因

此在病原快速演化的環境下，根據單一胺基酸序列所預測之B細胞表位做為疫苗

的抗原並不一定適用。 

在本研究中，我試著考慮一系列突變過後之胺基酸序列，並利用這一系列胺

基酸序列所對應的蛋白質自由能設計出三種與自由能相關的特徵。利用這三種特

徵配合 k-NN、 SVM 以及 ANN 這三種分類演算法，對於預測B細胞表位的預

測分別可達到74.3%、66.1%及80.0%的準確性，與目前的B細胞表位預測方法 ─

─ ABCPred、BCPred 和 AAP ── 相較，本研究所提出的方法可達到較好的

預測效果。 

 

關鍵字：B細胞表位、預測、突變、蛋白質自由能 
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Prediction of continuous B-cell epitopes using protein free energy 

associated with mutation-induced conformational changes. 
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ABSTRACT 

 

Identification of B-cell epitopes plays an important role in vaccine development. 

Current prediction algorithms mostly rely on amino acid propensity scales and their 

variants, the results of which depend on a single antigenic phenotype. That viral 

sequences undergo continuous genetic changes, promoting the emergence of drug 

resistant strains, renders current prediction methods impractical. In this study, a novel 

set of features are proposed based on the protein free energy associated with point-

mutated structures. To the best of our knowledge, this is the first attempt in this area to 

predict continuous B-cell epitopes based on protein free energy. I evaluated the novel 

features on k-nearest neighbor, support vector machine, and artificial neural network 

models, and achieved prediction accuracy of 74.3%, 66.1%, and 80.0% respectively. In 

comparison to current predictors, namely ABCPred, BCPred, and AAP, the energy-

based models demonstrated better performance. 
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1. Literature Review 

1.1 Protein epitope 

A profound understanding of the interaction between antibodies and epitopes provides basis for 

the rational design of preventive vaccines. Neutralizing antibodies are produced as a consequence 

of vaccination. The ability of antibodies to respond to an antigen, such as a virus capsid protein 

fragment, is dependent on the antibodies’ specific recognition of epitopes, which are sites of the 

antigen to which antibodies bind. Therefore, generation of potent antibodies through reversed 

immunological approach requires precise knowledge of the epitope. B cell epitopes are 

distinguished from T-cell epitopes as they are able to bind antibodies either in soluble form or as 

membrane-bound B-cell receptors, whereas T-cell epitopes are proteolytically cleaved peptides of 

the antigen that interact with the receptors of T cells. X-Ray crystallography studies of 

antigen-antibody interactions show that B-cell epitopes nestle in a cleft formed by the binding 

sites of the antibody. Thus, a B-cell epitope matches antibody much as a key matches a lock. 

When the antigen and antibody interlock, the antibody not only prevents antigens from entering 

or damaging the cells, but they also trigger destruction of antigens by stimulating other immune 

responses such as the complement pathway. 

Based on structure and interaction with the antibody, epitopes can be divided into two 

categories, conformational epitopes and continuous epitopes. A continuous epitope is formed by a 

continuous sequence of amino acids, whereas a conformational epitope is composed of 

discontinuous sections of the antigen’s primary sequence. The discontinuous sections are close 

together in three-dimensional space, and interact with the antibody. However, the distinction 

between continuous and conformational epitopes is not clear-cut since conformational epitopes 

often contain short segments of a few continuous residues that are able to bind to antibodies 
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raised against the protein, and the continuous residues could be given the status of continuous 

epitopes. Despite the lack of clear distinction between continuous and conformational B-cell 

epitopes, the rationale behind identification of antigenic regions is to facilitate the synthesis of 

peptides corresponding to segments in proteins that may stimulate the production of anti-peptide 

antibodies, and in turn cross-react with the native protein antigen.  

 

1.2 Experimental methods for B-cell epitope identification 

A number of methods are available for mapping epitopes on target proteins. The gold standard 

approach is X-ray co-crystallography, in which the specific arrangement of atoms within crystals 

is determined by striking the crystal with a beam of X-rays. The beam of light diffracts into many 

specific directions. Based on the angles and intensities of the diffraction, the three-dimensional 

picture of electron densities within the crystal, and consequently the mean positions of atoms in 

the crystal, can be determined. While X-ray crystallography allows direct visualization of the 

interaction between antigen and antibody, this approach requires purified crystals of high 

regularity to solve the molecular arrangement of atoms. Impurities or conformational flexibility 

in the molecules inhibit crystallization. Furthermore, it is difficult to determine good conditions 

for obtaining diffraction-quality crystal, which is the chief barrier in solving atomic-resolution 

structure.  

In a pepscan analysis, overlapping peptides designed and synthesized based upon a known 

amino acid sequence of the target antigen are tested for their ability to bind the antibody of 

interest [1]. The peptides are biotinylated and used in an ELISA [2] to screen immune sera from 

infected individuals. Specifically, the biotinylated peptides were coated directly onto micro titre 

plates. A continuous B-cell epitope is identified by a universal recognition of sera to the synthetic 

peptides which corresponds to a particular fragment of the antigen protein. This method is 
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relatively fast and inexpensive to identify the continuous antigenic determinants defined by a 

particular serum or monoclonal antibody. However, linear peptides often have as a drawback 

their inherent low stabilities, short half-lives, or high costs of manufacturing (compared to small 

molecules). 

Mutagenesis can provide detailed information on functional amino acid residues within an 

epitope fragment. Using this approach, systematic mutations of amino acids are introduced into 

an antigenic sequence, and subsequently its ability to bind the antibody of interest is measured in 

order to identify amino acids that comprise an epitope. Similarly, a cloning technique has been 

developed that introduce mutations to a library of clones. The technique uses a comprehensive 

mutation library, with each clone containing a unique amino acid mutation and the library covers 

every amino acid in the target protein. However, both mutagenesis approaches are labor-intensive 

and slow, thereby limiting analysis to small molecules or a small number of amino acid residues. 

The high cost and effort involved makes tradition approaches impractical for application on a 

genomic scale. Therefore, computational techniques have been introduced to offer a fast, scalable, 

and cost-effective approach for predicting B-cell epitopes. There is an on-going development of 

computational tools for reliable prediction of B-cell epitopes.  

 

1.3 Computational approaches for continuous B-cell epitope prediction 

In 1981, Hopp and Woods were the first to propose the idea of using amino acid sequence to 

search for immunogenic regions in a protein [3]. Their method was based on the observation that 

epitopes are located in regions that are highly hydrophilic. Thus, a scale was constructed, and 

values, which characterize hydrophilicity, were assigned to each residue within a sequence. The 

values were successively averaged within a sliding window, thus generating a numerical 
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sequence. Based on protein sequences with known epitopes, the authors were able to show that 

the maximum values found within a sequence correlated with known epitope regions.  

Following Hopp and Woods’ finding, the application of alternative physicochemical 

properties in continuous epitope prediction has been evaluated. The physicochemical properties 

that were evaluated included hydrophobicity [4], solvent accessibility [5], secondary structure [6], 

antigenicity [7], and flexibility [8]. However, in 2005, Blythe and Flower analyzed a total of 484 

amino acid scales, and reported that predictions based on the best scales still produced poor 

correlation with experimentally confirmed epitopes [9, 10].  

 

1.4 Machine learning algorithms 

That amino acid scales could not be directly used for continuous epitope prediction prompted the 

use of machine learning approaches to improve the accuracy of prediction. Machine learning is a 

branch of artificial intelligence that is concerned with the design and development of algorithms 

to learn from existing data, and to perform accurately on new and unseen data. The reason that 

machine learning has become increasingly necessary in dealing with biological data is due to the 

availability of huge amounts of data, and the need for turning such data into useful information. 

Machine learning algorithms have the potential to uncover important data patterns or valuable 

knowledge embedded in the vast amount of data. The way that machine learning algorithms 

identify B-cell epitopes is by inferring a function from the training data that maps inputs to 

desired outputs. The inferred function, obtained after training on the finite dataset, can be applied 

to predict output values for new and unseen examples. As the training examples come from a 

certain probability distribution, the objective of the algorithm is to extract information about the 

distribution, which allows the algorithm to predict output values in a new dataset. Among the 

numerous machine learning algorithms, decision tree, nearest neighbor (k-NN), support vector 
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machines (SVM), and artificial neural networks (ANN) have been applied to the prediction of 

continuous B-cell epitopes. 

 

1.4.1 Decision tree 

Decision tree learning classifies an example using a tree-like structure, in which each interior 

node corresponds to a test on an attribute, and each branch represents an outcome of the test. 

Classification starts at the root node at the top of the tree, goes through a path determined by the 

values of input variables, and end up at a particular leaf node representing class of the test. There 

are several decision tree algorithms. Among them, the C4.5 algorithm builds decision trees from 

a training data set based on information entropy. At each node of the tree, C4.5 chooses the 

attribute with the highest information gain for splitting data into subsets. The chosen attribute 

splits the class attributes into the two purest possible groups of instances with lowest entropy. 

The process is performed recursively, where the attribute with the next highest information gain 

is chosen to make the next decision. 

 

1.4.2 k-Nearest Neighbor (k-NN) 

The k-NN algorithm belongs to the instance-based family of algorithms, which compares new 

and unseen examples with training examples. k-NN is sensitive to the local structure of the data, 

and it classifies new examples based on proximal training examples in the feature space. A new 

example is assigned class most common amongst its k nearest neighbors. If k=1, for instance, 

then the example is simply assigned to the class of its nearest neighbor. Commonly, Euclidean 

distance is used as the distance metric.  

 

1.4.3 Support Vector Machine (SVM) 



- 6 - 
 

SVM also performs classification in a feature space, where training examples are represented as 

points in space, mapped such that the examples belonging to different classes can be separated by 

a hyperplane or a set of hyperplanes. New examples are mapped into the sample space and 

assigned a predicted class based on which side of the hyperplane that they fall on. However, it is 

possible that linear hyperplanes are unable to separate data points of different classes. In such 

case, the original finite-dimensional space may be mapped into a higher-dimensional space in 

hope that in this higher-dimensional space the data could become more easily separated. The 

mapping is computed using a kernel function that is selected to suit the problem. The choice of 

kernel depends on the problem and the kind of information one expects to extract from the data. 

A polynomial kernel, for example, is suited for problems where all the training data is normalized. 

The radial basis function (RBF) models spherical hyperplanes in a multi-dimensional space. The 

effectiveness of SVM depends on the selection of kernel and the kernel’s parameters.  

 

1.4.4 Artificial Neural Network (ANN) 

ANN is a computational model inspired by the structure and operations of the biological neural 

networks. In the case of a biological neural network, neurons are connected to form a network, 

where each neuron collects input stimuli and sends an output signal to the next neuron within the 

network. In an ANN, artificial neurons, also referred to as nodes, are connected to form a 

network of nodes to simulate the neurological processing ability of a biological neural system, 

such as learning and determining a conclusion from experience. A simple ANN is composed of 

three layers of neurons – the input layer, hidden layer, and output layer. The input layer collects 

and sends data to the hidden layer via synapses. Each neuron in the hidden layer sums its input 

from the previous layer, and converts it to output activation. Subsequently, the data is passed to 

the output layer via more synapses, where the results are presented to users. The synapses 
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between neurons represent weights, which manipulate data in calculations. Depending on the 

interconnections between neurons, an ANN can be characterized by two classes. The first is a 

feed forward neural network (FNN), in which neurons in one layer are connected to those in the 

next layer, thus FNN does not involve any feedback. In the second type of network, the output of 

each neuron is fed back to itself, as well as other neurons, thus referred to as recurrent networks. 

In the supervised training process of an ANN, the network is initialized by putting small random 

weights on the synapses. The resultant output is compared with the observed data, and weights 

are adjusted by the network to minimize errors compared to the actual output. The learning 

method most frequently used is back propagation, where a gradient of error is calculated based on 

the network’s modifiable weights, and the gradient is used to find weights that minimize the error. 

When the model and learning algorithm are selected appropriately, ANN is powerful in its ability 

to manage adaptive, parallel, and non-linear processes. Its adaptive nature is demonstrated 

through adaptation of internal parameters, which in turn enables ANN to determine the 

relationship between different examples. In the parallel structure of ANN, the information 

processing occurs through a great number of computational neurons, each of which sends 

exciting or inhibiting signals to the other neurons in the network. Since the calculations are 

distributed among many neurons, if any of the neurons deviates from the expected behavior, it 

does not affect the behavior of the network. Beyond that, neurons in ANN can be linear or 

non-linear. An ANN formed by the interconnection of non-linear neurons, is itself non-linear, and 

it is able to process and present a non-linear behavior, which is presented in most of real 

situations. Taken together, the flexibility of ANN allows the network to provide solution to 

complex problems. 
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1.5 Machine learning approaches for the prediction of continuous B-cell epitopes 

1.5.1 Prediction method based on ANN 

A number of continuous B-cell epitope prediction methods based on machine learning 

approaches have been developed. ABCPred uses artificial neural networks for predicting 

continuous B-cell epitopes [11]. The method was trained and tested on epitopes derived from the 

Bcipep database [12], and reference peptides from the Swiss-Prot database. One of the constraints 

associated with machine learning techniques is that peptides needs to be adjusted to a fixed length, 

however, the length of B-cell epitopes vary from 5 to 30 amino acids. The authors tested a 

number of fixed lengths (10, 12, 14, 16, 18, 20 amino acids). In case where the peptide length 

was smaller than the specified length, the peptide was extended by adding amino acids on both 

sides, based on the corresponding complete antigen sequences. Alternatively, if the peptide was 

longer than the specified length, an equal number of amino acids were removed from both sides 

of the peptide. The dataset was divided into five-fold, where three parts were used for training, 

one for minimizing the error during learning, and one for testing. The best accuracy, 66% 

accuracy, was obtained using a recurrent neural network with 35 neurons in the hidden layer, and 

trained with window length of 16 amino acids. It was suggested that this method demonstrated 

improved accuracy, sensitivity, and specificity compared with the scale-based methods. 

 

1.5.2 Prediction method based on C4.5 and k-NN 

In the method by Sollner and Mayer, amino acid scales, neighborhood matrices, and respective 

probability and likelihood values, were combined, then included in decision tree and nearest 

neighbor approaches to derive a classification algorithm [13]. The dataset used for training was 

derived from the public domain sources (Bcipep and FIMM [14] databases), and a proprietary 

dataset of experimentally determined epitopes. For each peptide in the epitope dataset, a 
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non-epitope peptide of the same length was selected randomly. The mean epitope length of 

peptides was found to be 13 amino acids, with a minimum of 6, and a maximum of 20 amino 

acids. The peptides were transformed into a parameter space. The parameters considered were 

grouped into three classes – amino acid propensity scales, sequence complexities, and 

neighborhood word probabilities. Based on the distribution of each parameter for the epitope and 

non-epitope datasets, a feature was selected if the parameter exhibited correct class assignment of 

at least 60%. Subsequently, the selected parameters were used as input for C4.5 decision tree and 

k-NN. The best performance, 72% accuracy, was attained using the nearest neighbor approach. 

While this approach demonstrated an improved accuracy over previous methods, the method used 

for representing peptides as input to the classifiers is not publicly available. 

 

 

1.5.3 Prediction method based on SVM 

In 2007, Chen et al. tried to improve prediction quality using a novel scale called the amino acid 

pair (AAP) antigenicity scale [15]. The author used epitopes derived from the Bcipep database 

and non-epitopes derived from the Swiss-Prot. The peptides were adjusted to different window 

sizes. Initial analysis of AAPs demonstrated that the frequencies of some pairs differed 

significantly in the epitope and non-epitope datasets.  Therefore, the average of all the AAPs in 

a peptide, as well as hydrophilicity, accessibility, flexibility, and antigenicity, were projected as a 

vector into feature space. A SVM classifier was used to assign an example to one of the classes 

{-1, +1}. The SVM, using a radial symmetric function as kernel, produced a prediction accuracy 

of 71%.  

BCPred is also based on a SVM, combined with a variety of kernel methods, namely string 

kernels, and the widely used radial bias function kernel, for continuous B-cell epitope prediction 
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[16]. The string kernels [17-20] are a class of kernel methods that have been used in a variety of 

text classification tasks [19-24]. Among them, the authors selected four string kernels in building 

the SVM, including the spectrum kernel, mismatch kernel, local alignment kernel, and 

subsequence kernel. The spectrum kernel maps an input example to feature space based on the 

function                , where    is the number of occurrences of the k-length 

subsequence α in the peptide x, defined on the alphabet A (e.g. 20 amino acids). The kernel 

captures the degree of similarity between two peptides by determining the number of common 

subsequences in them. The subsequence kernel and mismatch kernel are both alternations to the 

spectrum kernel. The subsequence kernel considers a feature space generated by all contiguous 

and non-contiguous subsequences, where gaps are penalized in non-contiguous subsequences. 

The mismatch kernel considers inexact matching in the comparison of substrings. The local 

alignment kernel is a string kernel specific for biological sequences [21], and it determines the 

level of similarity between two peptides by summing up scores obtained from gapped local 

alignments between the peptides. The authors used peptides of 20 amino acids long derived from 

the Bcipep database, and found that the maximum prediction accuracy, 74.57%, was obtained 

using a SVM trained with the subsequence kernel.  

 BEOracle [25] is a SVM that combines evolutionary information with various structural 

properties to predict B-cell epitopes. In total, the authors evaluated evolutionary conservation 

information, compositional and per residues probabilities for secondary structure, solvent 

accessibility, disorder, low-complexity, and structural properties as potential learning features to 

the SVM. The majority of features were calculated using the Open Life Science Gateway 

(OLSGW) [26], which is a grid computing resource that facilitates the computation of complex 

biological problems. The dataset used in this study was retrieved from Bcipep, AntiJen [27], and 
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immune epitope database (IEDB) [28], and the peptides were extended to a final length of 100 

amino acids in order to obtain accurate prediction of structural properties. Features extracted 

from the dataset were used as input to SVM trained with different kernel functions, including 

linear, polynomial kernels of degrees 2 and 3, RBF, and sigmoid kernels. The authors found that 

the best accuracy, 82.16%, was achieved with SVM trained with evolutionary information 

combined with secondary structural information, using a polynomial kernel of degree 3.  

 

 

1.6 Protein energy 

The majority of physicochemical properties, thus the machine learning methods that were derived 

from them, are based on the antigenic protein structure. A protein needs to fold into specific 

three-dimensional conformation to carry out its biological role. Protein folding is organized at 

various levels. The linear sequence of amino acids constitutes the protein primary structure. The 

primary sequence is held together by covalent or peptide bonds, which are made during the 

process of protein biosynthesis. The primary structure of a protein is encoded by the gene 

corresponding to the protein. A specific sequence of nucleotides in a gene segment is transcribed 

to mRNA, which is translated into protein by ribosomes. The primary sequence of a protein is 

exclusive to that protein, and determines the three-dimensional structure and function of the 

protein. 

Secondary structure refers to local substructures, such as alpha helix, beta strand or beta 

sheets. These secondary structures are held together by hydrogen bonds, which are one of the 

main factors in the stabilization of secondary structure in proteins.  Depending on the primary 

structure, hydrogen bonds form at specific places along the main chain peptide groups. Patterns 

and arrangement of hydrogen bonds define local secondary structures.  
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Tertiary structure is the three-dimensional structure of a single protein polymer that is 

created by bringing together the local secondary structures to form a compact globule. The 

folding is driven by the hydrophobic effect, in which nonpolar amino acids, such as alanine, 

valine, leucine, isoleucine, phenylalanine, tryptophan and methionine, cluster together within the 

protein for form a hydrophobic core. Exclusion of the hydrophobic core from water, while 

exposing charged and polar sides chains to the surface of protein, where they interact with 

surrounding water molecules, stabilizes the folded state of tertiary structure. Furthermore, 

formation of hydrogen bonds also helps to define the shape of a protein’s tertiary structure. 

Some proteins also possess a quaternary structure, which is the ensemble of multiple protein 

molecules or polypeptide chains in a multi-subunit complex. The subunits in a quaternary 

structure are stabilized by non-covalent interactions and disulfide bonds. Different subunits in a 

complex may have unique functions. For instance, in an enzyme complex such as the DNA 

polymerase, some subunits carry out regulatory functions, whereas others carry out catalytic 

activity. The different intermolecular bonds and forces play a very important role in keeping the 

shape of proteins. Proteins must fold into specific three-dimensional conformations in order to 

perform their biological functions.  

While the correct three-dimensional structure is essential to function, the macromolecule is 

usually flexible and dynamic. It can rearrange its shape in response to local perturbations such as 

mutations. Current continuous B-cell epitope prediction methods identify a peptide as epitope or 

non-epitope based on features extracted from its sequence composition. However, genetic 

variability exists as a result of mutations, and two or more phenotypes of an antigen may exist 

simultaneously in a population. None of the published methods has systematically combined and 

compared protein properties associated with antigenic mutants. In view of the dependence of 

current prediction methods on sequence composition, occurrence of mutations in the antigenic 
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sequence may affect prediction performance. That epitope prediction methods based on 

computational methods aim to identify candidate peptides for the development of vaccine design 

makes the dependence of prediction results on a single antigenic phenotype particularly 

impractical. 
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Statement of the Problem 

One of the major challenges in the field of vaccine design is to identify continuous B-cell 

epitopes in an ever-evolving virus. Current prediction algorithms mostly rely on amino acid 

propensity scales and their variants. In view of the dependence of current prediction results on a 

particular sequence composition, existence of genetic variation in nature leads to variable 

prediction outcome. Each unique primary sequence composition leads to a unique set of 

intermolecular forces, which combine to produce total free energy that reflects the overall protein 

structure. While the majority of physicochemical properties are also related to protein structure, 

the performance of protein total free energy in continuous B-cell epitope prediction has not been 

evaluated. Features based on combining or comparing total free energy associated with antigenic 

mutants may be important in continuous B-cell epitope prediction and vaccine development. 

 

Hypothesis 

This study critically assesses point mutations and resultant protein energy in the prediction of 

continuous B-cell epitopes. It is proposed that features based on protein free energy associated 

with point mutations can be used to identify continuous B-cell epitopes through machine learning 

methods. 
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2.1  Introduction 

B-cell epitopes are antigenic determinants that are recognized and bound by antibodies on the 

surface of B-cells, also known as B lymphocytes. When an antibody binds to cognate antigens on 

the surface of invading microbes, the antibody can tag the microbe or infected cell for attack by 

other parts of the immune system, or can neutralize the microbe directly. Consequently, 

understanding and identification of B-cell epitopes is critical for the design of effective vaccines. 

Based on structure and interaction with the antibody, B-cell epitopes can be classified into two 

types, continuous epitopes and discontinuous epitopes. A continuous epitope is a short peptide 

that corresponds to a contiguous amino acid sequence fragment of a protein. A discontinuous 

epitope is composed of amino acids that are not contiguous in the antigenic sequence, but are 

close together in the folded antigenic structure. That an antibody and its cognate antigen possess 

complementary geometric shapes implies antibody-antigen interactions are also conformation 

dependent in the case of continuous B-cell epitopes. 

 Current continuous B-cell epitope machine learning methods are mostly based on 

physicochemical properties and their variants. However, a major problem associated with current 

methods is that they are based on a single sequence composition, and the results of these methods 

are affected by the occurrence of mutations. This is impractical considering that epitope regions 

are prone to mutations, possibly as a means to escape immune detection. In this study, I 

systematically introduced mutations along the length of proteins and determined the protein free 

energy associated with point-mutated sequences in folded state. The set of protein free energy 

was used to construct a novel type of features based on combining or comparing the protein free 

energy. This study is primarily concerned with patterns in protein free energy that contribute to 

the learning process of classifiers in continuous B-cell epitope prediction.  
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 A total of 44 energy-related features were proposed. The performance k-NN, SVM, and 

ANN trained with these features was analyzed. In order to identify features that are particularly 

relevant to continuous B-cell epitope prediction, performance of subsets of the features in 

bringing about good classification performance was analyzed. Since continuous B-cell epitopes 

exist in various lengths, I also checked the sensitivity of prediction performance to epitope length. 

In addition, the performance of publicly available B-cell epitope prediction methods was 

compared with each other, and with my method. I reported direct comparison of my method with 

ABCPred, BCPred, and the AAP method implemented by El-Manzalawy et al. The performance 

of the classifiers was validated on an independent dataset.  
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2.2  Methods 

Dataset 

B-cell epitopes were selected from Bcipep database [12]. We used a total of 200 epitopes 

distributed across 145 protein sequences for training and testing our classification methods. For 

energy estimation purposes, we retrieved antigenic sequences from Uniprot based on the 

accession number associated with each source antigen [29]. Non-epitope peptides were generated 

by randomly extracting segments from the 145 protein sequences while ensuring that the 

non-epitope peptides so obtained were not present in the epitope data set. This approach is 

certainly an approximation for non-epitope sequences, as the proteins involved have not been 

explicitly mapped. To avoid classification bias resulting from non-epitope peptides, I generated a 

total of 1000 non-epitope peptides. For each epitope in the training or testing dataset, a 

non-epitope peptide of the same length was randomly selected from the pool of 1000 non-epitope 

peptides.  

 

Blind dataset 

To evaluate the energy-related features on an independent dataset, a set of 85 epitopes distributed 

across 45 protein sequences was retrieved from the AntiJen database [27].  As a reference, a set 

of 100 non-epitope peptides was randomly selected from the protein sequences with the criterion 

that the selected non-epitopes were not the same as any one of the epitopes. 

 

Dataset for current continuous B-cell epitope prediction methods 

A number of current B-cell epitope prediction methods, such as BCPred, ABCPred, and the AAP 

method, require input peptides of specific lengths [11, 15, 16]. These methods demonstrated 
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superior performance with peptides of 16 amino acids in length. To compare the performance of 

the energy-related features to that of current prediction methods, the peptides in the 

aforementioned datasets were fixed to 16 amino acids in length. If the peptide length is less than 

16 amino acids, the peptide is extended by adding an equal number of amino acids to both ends 

based on the protein sequence of the source antigen. If the peptide length is shorter than 16 amino 

acids, the peptide is shortened by trimming amino acids from both ends.  

 

Energy estimation 

Protein structure modeling was performed using SWISS-MODEL [30-32], an automated protein 

structure homology-modeling server. First, antigenic protein sequences were submitted to 

identify known protein structures that resemble the structure of the antigen. Those antigenic 

sequences for which we did not find suitable templates from the structural database were not 

included in our data set. For sequences we identified suitable templates, the template with the 

lowest E-value was chosen. Subsequently, the template ID and antigenic protein sequence were 

submitted to the server for homology modeling, and the resultant PDB file was saved locally for 

further operations.  

Mutations in the PDB structures were initiated using Deepview [30], a molecular 

visualization package designed to interact with the SWISS-MODEL server, and the 

point-mutated structure was energy minimized and equilibrated using the 

Deepview-implementation of the GROMOS96 force-field [33]. Each site in the antigenic 

structure was mutated to each of the 20 naturally occurring amino acids. Following energy 

minimization, protein free energy (FE) associated with a particular point-mutated structure was 

recorded. Thus, a total of 20L FE was obtained for an antigen with sequence length of L. Note 

that we minimized FE with respect to bond lengths, bond angles, torsion energies, and improper 
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angles. While minimizing non-bonded interaction energy would certainly yield more accurate 

energy estimation, the search for a global minimum in energy is computationally expensive, due 

to the vast number of conformational variants analyzed in this study. Therefore, throughout this 

analysis, we make the assumption that conformation of a stable protein resulting from a single 

site substitution resembles that of the parent protein closely, with any tertiary structural changes 

localized in the neighborhood of the substitution. 

As a consequence of protein energy estimation, epitopes in the data set were selected based 

on the following conditions: (i) the accession number of source antigen is provided, (ii) there 

exists a template structure for the antigenic sequence, and (iii) the antigen-template alignment 

provides information about the spatial arrangement of the epitope. 

  

Figure 2-1 – System control flow for energy-related features. 
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Energy features 

Three types of energy features were proposed in this study - FEavg, FEdiff, and FEss. I used 

Deepview [30] to calculate the FE used to generate the three types of features. For a sequence of 

length L, a total of 20L FE was determined. Based on the 20 FE associated with inducing the 20 

possible point mutations at a particular site, the minimum FE was determined and assigned to 

that site. As a result, an amino acid sequence is transformed into a numerical sequence, with each 

numerical value representing the optimal stability that results from inducing a point mutation on 

the corresponding site. The minimum FE from each sequence is subtracted from all the FE in that 

sequence. Given a peptide, the length of which is delineated by window size of w, a 1D FEavg 

feature was constructed by averaging the FE associated with each amino acid, denoted as    , 

where        .  

 

                                    
 

 
∑                                    (2.1) 

 

I used w of 6, 10, 14, 18, 22, 26, and 30 amino acids in length to generate different 1D FEavg 

features. The idea of 1D FEavg was further extended to a 3D perspective. For 3D FEavg, I 

considered a sphere S with center coordinate that correspond to the coordinate associated with the 

mid-index of the peptide in three-dimensional space. The size of S is defined by a specified value 

of radius r. By averaging the FE associated with    , where         , I obtained 3D FEavg.  

 

          
 

  
∑                

                    (2.2) 
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The radii used to generate 3D FEavg features were 3.0A, 5.0A and 10.0A. Examples of 1D and 3D 

FEavg features are illustrated in Figure 2-2a. 

A 1D FEdiff feature describes the difference between 1D FEavg and the weighted average of 

FE in upstream and downstream regions, where the weight of each equals 0.5. A large difference 

suggests an energy fluctuation between neighboring regions in proteins, whereas a minor 

difference indicates a consistent pattern in energy. I used window sizes of 3, 5, and 10 amino 

acids in length to define 1D upstream or downstream neighborhood.  

 

                             
                                        

 
     (2.3) 

 

In three-dimensional space, the peptide is extended to a sphere, as described previously, and the 

upstream and downstream peptides are extended to a shell surrounding the sphere. Given spheres 

    and                                   respectively, where    is greater than    ,    is their 

difference in volume. 3D FEdiff is defined by 

 

                  (   )                              (2.4) 

 

Table 2-1 summarizes the selected lengths for      and     . Examples of 1D and 3D FEdiff 

features are illustrated in Figure 2-2b.  

 In contrast to the previous two types of features, which analyze FE confined to the area 

surrounding the peptide, FEss features consider      of the peptide with respect to the full 

antigenic sequence. Using a sliding window approach, a total of L – w – 5       can be 

collected from a full sequence. Note that I removed three FE from each end of the sequence 
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where the peptide is relatively unstructured. If there exists a distribution for the set of FEavg 

collected from the full sequence, FEss is defined as the standard score of the FEavg associated with 

the peptide with respect to the set of FEavg collected from the full sequence. In other words, a 1D 

FEss feature compares the 1D FEavg of the peptide to the mean of the set of 1D FEavg successively 

averaged within a sliding window along the protein sequence. The comparison is expressed as the 

number of standard deviations of the 1D FEavg from mean.  

 

        
                       

  
                    (2.5) 

 

Similar to 1D FEavg features, I used window sizes of 6, 10, 14, 18, 22, 26, and 30 amino acids in 

length to generate 1D FEss features. From a three-dimensional perspective, I collected a set of 3D 

FEavg generated by successively setting the coordinate associated with each site along the full 

antigenic sequence as the center coordinate of   , and averaging the FE associated with    , 

where         , thus generating a set of 3D FEavg. The mean and standard deviation of the set 

of 3D FEavg were determined. 3D FEss feature is defined as 

 

        
                  

  
                     (2.6) 

 

The radii used to define 3D FEss features were 3.0A, 5.0A and 10.0A. In total, 44 energy-related 

features were constructed. Table 2-1 summarizes the choice of parameters used to define the 

features. 
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Figure 2-2. a) 1D FEdiff feature based on a neighborhood of 10 amino acids on both sides. The 

value of this 1D FEdiff feature is the difference in FE between the peptide and its neighborhood on 

both sides. b) 3D FEdiff feature defined by a central sphere with radius r1 and a shell with radius r2. 

The feature value is the difference in FE between the sphere and the shell.  
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Table 2-1. a) Parameters used to define 1D energy-related features. b) Radii used to define 3D 

energy-related features. 

a) 

1D FEavg features 

Peptide size 6, 10, 14, 18, 22, 26, 30 

Total 7 

1D FEdiff features 

Peptide size 6, 10, 14, 18, 22, 26, 30 

Neighborhood size 3, 5, 10 

Total 21 

1D FEss features 

Peptide size 6, 10, 14, 18, 22, 26, 30 

Total 7 

 

b) 

3D FEavg features 

r1 3, 5, 10 

Total 3 

3D FEdiff features 

r1 3, 5, 10 

r2 3, 5, 10   

Total 3 ( r2 > r1 in each pair of radii) 

3D FEss features 

r1 3, 5, 10 

Total 3 
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Existing methods 

We also implemented a number of existing methods for continuous B-cell epitope prediction to 

determine how these compare with the energy descriptors that we have developed. These 

parameters can be grouped into amino acid propensity scales, word probabilities [13], sequence 

complexity [13, 34], and the amino acid pair (AAP) antigenicity scale [15]. 

58 amino acid propensity scales were obtained from ProtScale 

(http://us.expasy.org/cgi-bin/protscale.pl; as of May 2012). These scales reflect physicochemical 

properties such as hydrophobicity, and secondary structure. Based on each propensity scale, the 

average value for a peptide was determined. Additionally, the pair wise difference between an 

amino acid and its neighbor was determined, then averaged over the length of the peptide.  

Word probabilities were calculated as described by Sollner and Mayer [13]. These features 

estimate if successions of certain amino acid patterns, or words, exhibit a higher prevalence in 

one of the two sequence sets considered. Specifically, a neighborhood matrix, which describes 

the probability of each possible amino acid pattern in the neighborhood, was created based on a 

set of training sequences. The matrix held frequencies for patterns of length 1-3 amino acids. 

Subsequently, the matrix was used to classify a peptide by assigning matrix values to 

neighborhoods surrounding the peptide of interest.  

Sequence complexity was calculated as described by Wootton and Federhen [34]. It 

describes the amino acid frequencies f(x) in epitope and control peptides, and the complexity C of 

a peptide is given by 

 

  ∑                                         (2.7) 
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Finally, we also implemented the AAP antigenicity scale developed by Chen et al. [15]. It 

has been reported that the AAP composition for epitopes is different from that of non-epitopes. 

Specifically, the AAP antigenicity is defined by 

 

         (
    
 

    
 )                          (2.8) 

 

where     
  and     

  are the observed frequencies of a given AAP in epitopes and non-epitopes, 

respectively. In my implementation, both     
  and     

  were derived from the training data set. 

In total, 178 parameters were constructed based on existing methods for continuous B-cell 

epitope prediction. 

Table 2-2. Features used in published continuous B-cell epitope prediction methods. 

 

Feature type Number of features 

Amino acid propensity scale 58 

Amino acid propensity scale (pair-wise 

difference) 
58 

Word probability 60 

Sequence complexity 1 

AAP 1 

Total 178 
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Feature normalization 

Since the novel FE features are based on the free energy of protein, the input matrix to classifiers 

was column-wise normalized so that each column has a zero mean and variance one. That is, 

features fit to a standard normal distribution after normalization. 

 

Classifier implementation 

I applied the WEKA [35] implementation of k-nearest neighbor (IBk), SVM (SVMlib) with RBF 

kernel, and ANN (Multilayer Perceptron). In each tenfold cross validation, the ten classifiers used 

the same set of parameters for learning. In other words, the classifiers were not optimized for 

individual test sets. Rather, they were optimized in order to get the best average accuracy.  
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2.3  Results 

Tenfold cross-validation 

I used stratified tenfold cross-validation tests. The data set was randomly divided into ten equal 

subsets such that the number of epitopes to non-epitopes was in a 1:1 ratio. Nine of the ten 

subsets were used for training the classifier, and the tenth subset was used for testing the 

classifier. This procedure was repeated ten times, with each subset used exactly once as the 

testing data. Results from five tenfold runs were averaged to produce a single value, which 

represents the estimated performance of classifier. 

 

Performance of energy-related features in selected classifiers 

In this study, 44 energy-related features were developed for continuous B-cell epitope prediction. 

First, the energy-related features were tested on learning algorithms that have previously 

demonstrated prominent performance in the prediction of continuous B-cell epitopes, namely 

k-NN, SVM, and ANN. Performance of the classifiers trained with energy-related features is 

shown in Table 2-3. The maximum performance was achieved by the ANN containing a single 

hidden layer of 23 hidden units, which demonstrated 68.6%, 66.7%, and 70.5% in accuracy, 

specificity, and sensitivity, respectively. During this initial evaluation of the energy-related 

features, I tested a number of options on the learning algorithms, but the accuracy did not 

improve further (data not shown).  
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Table 2-3. Performance of k-NN, SVM, and ANN trained with the energy-related features. 

Classifier Accuracy Specificity  Sensitivity  

k-NN 59.0 59.5 58.5 

SVM 60.7 63.4 58.0 

ANN 68.6 66.7 70.5 

 

 

Relevance of energy-related features 

To further assess the relevance of the three types of energy features that were designed, I trained 

and tested the classifiers with different subsets of energy-related features. As shown in Table 2-4, 

the extent to which classification performance was affected varied between k-NN, SVM, and 

ANN. However, FEdiff and FEss combined achieved accuracy similar to the accuracy obtained 

using all 44 energy-related features (FEavg, FEdiff, and FEss combined) in k-NN, SVM, and ANN. 

In fact, in the case of the ANN classifier, the accuracy achieved using FEdiff and FEss exceeded 

that achieved using all the energy-related features combined. The combination of FEdiff and FEss 

will be collectively referred to as FEbest for the rest of the study.  

I compared the performance of 1D FEbest features relative to 3D FEbest features as a first step 

to analyze the sensitivity of the classifiers to window size. The result of classification, based on 

1D or 3D FEbest features, is shown in Table 2-5. The accuracy achieved by the classifiers trained 

with 3D FEbest features was higher than that of the classifiers trained with 1D FEbest features. That 

the accuracy achieved with 3D FEbest features is comparable to the accuracy achieved using both 

1D and 3D FEbest features suggests the 3D FEbest features play an important role in epitope 

prediction. To further test the sensitivity of the classifiers to 3D window size, I performed an 

ablation study by removing one 3D FEbest feature at a time, and analyzing the performance of 
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classifiers trained with the remaining features (Table 2-9 in supplementary material). The result 

shows that the performance of the classifiers was not specifically influenced by removal of any 

one of the 3D FEbest features. Rather, the predictive performance was optimal when the classifiers 

were trained with the entire set of 3D FEbest features. This may be due to that fact that B-cell 

epitope do not have a fixed length. Therefore, continuous B-cell epitope predictions based on any 

specific window size may not be able to detect epitopes with a diversity of lengths. 

 

Table 2-4. Performance of k-NN, SVM, and ANN trained and tested with different subsets of 

energy-related features. 

 

k-NN 

Energy-related features Accuracy  Specificity Sensitivity 

FEavg 55.8 57.3 54.3 

FEdiff 64.5 58.2 64.7 

FEss 56.6 55.7 57.5 

FEavg + FEdiff 59.1 56.4 61.8 

FEavg + FEss 59.7 57.8 61.5 

FEdiff + FEss  60.0 59.5 60.5 

FEavg + FEdiff + FEss 59.0 59.5 58.5 

SVM 

Energy-related features Accuracy  Specificity Sensitivity 

FEavg 48.2 42.3 54.1 

FEdiff 61.4 62.8 60.0 

FEss 53.4 48.4 58.4 

FEavg + FEdiff 59.5 61.3 57.7 

FEavg + FEss 58.0 50.8 65.2 

FEdiff + FEss  61.9 65.7 58.0 

FEavg + FEdiff + FEss 60.7 63.4 58.0 



ANN 

Energy-related features Accuracy  Specificity Sensitivity 

FEavg 50.1 2.0 98.1 

FEdiff 63.4 58.9 67.8 

FEss 54.5 46.4 62.5 

FEavg + FEdiff 60.3 55.3 65.3 

FEavg + FEss 54.1 47.4 60.7 

FEdiff + FEss  72.6 72.9 72.3 

FEavg + FEdiff + FEss 68.6 66.7 70.5 

 

 

Table 2-5 - Performance of k-NN, SVM, and ANN trained with 1D or 3D FEbest features. 

 

k-NN 

Energy-related features Accuracy  Specificity Sensitivity 

1D FEbest 55.0 54.9 55.1 

3D FEbest 74.3 79.6 68.9 

SVM 

Energy-related features Accuracy  Specificity Sensitivity 

1D FEbest 56.1 60.7 51.5 

3D FEbest 66.1 76.7 55.5 

ANN 

Energy-related features Accuracy  Specificity Sensitivity 

1D FEbest 56.0 51.3 60.6 

3D FEbest 80.0 83.9 76.0 
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Comparison with previous features 

To demonstrate the significance of energy-related features, I compared them with other features 

that were previously used for prediction of continuous B-cell epitopes. I included 178 previously 

used features for comparison, as summarized in Table 2-2. They were derived from amino acid 

propensity scales, word probabilities, sequence complexity, and AAP antigenicity scales. In this 

comparative study, the classifiers were trained on the four different types of features, as well as 

the novel energy-related features. Among the previously developed features, k-NN, SVM, and 

ANN consistently demonstrated the best performance when trained with the AAP antigenicity 

scale, as shown in Table 2-6. The 3D FEbest features, and the AAP antigenicity scale, both 

achieved greater than 60% accuracy in k-NN, SVM, and ANN. When I combined the 3D FEbest 

and AAP antigenicty scale features, k-NN, SVM, and ANN produced accuracy of 77.2%, 78.6%, 

and 81.4%, respectively. The AAP antigenicity scale, and the 3D FEbest features, can work 

together in the identification of continuous B-cell epitopes, and the combination of features may 

even lead to a complementary effect, as observed in the SVM classifier. 

 

Table 2-6 – Performance of k-NN, SVM, and ANN trained with previously used features or the 

novel energy-related features.  

k-NN 

Feature Accuracy  Specificity Sensitivity 

Amino acid propensity scale 57.1 55.1 59.0 

Word probability 55.3 54.4 56.1 

Sequence complexity 52.0 52.5 51.4 

AAP 61.0 60.3 61.6 

3D FEbest 74.3 79.6 68.9 

3D FEbest + AAP 77.2 80.5 73.8 
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SVM 

Feature Accuracy  Specificity Sensitivity 

Amino acid propensity scale 62.9 64.6 61.1 

Word probability 52.8 54.2 51.4 

Sequence complexity 47.6 52.5 42.7 

AAP 70.1 69.7 70.5 

3D FEbest 66.1 76.7 55.5 

3D FEbest + AAP 78.6 79.8 77.4 

ANN 

Feature Accuracy  Specificity Sensitivity 

Amino acid propensity scale 57.5 55.1 59.9 

Word probability 50.9 29.4 72.3 

Sequence complexity 49.7 0.2 99.1 

AAP 70.8 62.8 78.8 

3D FEbest 80.0 83.9 76.0 

3D FEbest + AAP 81.4 80.8 82.0 

 

 

Comparison with existing continuous B-cell epitope prediction 

In addition to comparing energy-related features to previously used features, I also compared the 

k-NN, SVM, and ANN trained with 3D FEbest features with current epitope predictors, namely 

ABCPred [11], BCPred [16] and the AAP method [15, 16]. Table 2-7 shows the performance of 

the classifiers trained with 3D FEbest features, and the performance of prediction servers. Upon 

submission of testing examples to the trained servers, scores ranged between 0 and 1.0 are 

returned, where a higher score value indicates higher probability of the peptide to be predicted as 

B-cell epitope. The threshold was set at 0.5 for ABCPred, as suggested in the publication by Saha 

and Raghava [11]. For BCPred and the AAP method, the related publications did not indicate the 

optimal threshold values. In this study, the best performance was observed for BCPred and the 
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AAP method when the threshold was set at 0.9. Since BCPred and the AAP method both returned 

scores close to or equal to 1.0, both servers showed a higher sensitivity in prediction than the 

other classifiers, but both suffered severely in low specificity. The overwhelming false positive 

rate is especially impractical for vaccine development as the advantage through computational 

prediction, mainly the reduction of time and cost, is diminished when the prediction returns too 

many candidate peptides for further experimental screening. The k-NN and ANN classifiers 

trained with 3D FEbest features outperformed the current prediction servers available for 

continuous B-cell epitope prediction in terms of specificity, as well as accuracy, whereas the 

SVM trained with 3D FEbest features demonstrated comparable performance with respect to the 

current prediction servers. 

Table 2-7. Performance of k-NN, SVM, and ANN trained with 3D FEbest features, and 

performance of current epitope prediction servers ABCPred, BCPred and AAP method. 

 

Method Accuracy  Specificity Sensitivity 

k-NN 74.3 79.6 68.9 

SVM 66.1 76.7 55.5 

ANN 80.0 83.9 76.0 

ABCPred 52.3 67.5 37.0 

BCPred 67.2 36.4 98.0 

AAP method 65.1 30.1 100 

 

 

Testing on an independent dataset 

To evaluate the performance of classifiers trained with 3D FEbest features, I computed its 

predictive performance on an independent dataset that was retrieved from the AntiJen Database 
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[27]. To ensure that the testing dataset is independent of the training data set, protein epitopes 

were selected from the AntiJen database such that the epitopes do not overlap with those selected 

from the Bcipep database. The classifiers were trained with the data set retrieved from the Bcipep 

database, and tested on the data set retrieved from the AntiJen database. The k-NN, SVM, and 

ANN demonstrated 62.7, 61.0, and 67.5% in accuracy, respectively, as shown in Table 2-8. For 

the purpose of comparison, I also evaluated the performance of ABCPred, BCPred, and the AAP 

method. Similar to my method, ABCPred, BCPred method and the AAP method were trained on 

datasets obtained from the Bcipep database. The ABCPred server demonstrated an average 

accuracy of 47.2% using a threshold value at 0.5. The BCPred, and AAP method demonstrated 

58.5%, and 56.5% in accuracy, respectively, using threshold values at 0.9.  

In the classifiers trained with the 3D FEbest features, a possible reason for the observed drop 

in prediction performance may be due to the difference in epitope density in the two datasets. In 

the dataset retrieved from Bcipep, the 200 epitopes were distributed across 145 proteins, whereas 

in the dataset retrieved from the Antijen database, 85 epitopes were distributed across 45 proteins. 

Since the construction of FEdiff features is based on comparing the free energy of structures 

mutated in the epitope region and structures mutated in non-epitope regions, the higher epitope 

density (in the dataset retrieved from the Antijen database) affects the relevance of FEdiff features. 

In addition, the performance of the classifiers may be over-fitting the training dataset from the 

Bcipep database to some extent. That the published servers were trained with peptides from the 

Bcipep database, it is likely that these servers also over-fitted examples from the Bcipep database. 

Nonetheless, the result indicates that classifiers trained with 3D FEbest features have the ability to 

identify peptides as potential B-cell epitopes with reasonably high accuracy. 
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Table 2-8 – Performance of current servers, and k-NN, SVM, and ANN trained with 3D FEbest 

features on a data set retrieved from the AntiJen database. 

Method Accuracy  Specificity Sensitivity 

k-NN 62.7 63.7 61.6 

SVM 61.0 61.4 60.5 

ANN 67.5 68.6 66.4 

ABCPred 47.2 65.9 28.5 

BCPred 58.5 62.8 54.2 

AAP method 56.5 65.6 47.4 
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2.4  Discussion 

One of the challenges for developing reliable continuous B-cell epitope predictors is how to deal 

with epitope variability. While a number of approaches for continuous B-cell epitope prediction 

has been developed based on physicochemical properties of antigenic proteins, these studies were 

based on a single sequence composition of the antigen, from which the physicochemical 

properties were derived. Consequently, the effect of antibodies generated through reversed 

immunological approach is questionable since considerable variability exists in the epitopes. In 

this study, I explored the total free energy associated with 20L possible conformations resulting 

from a single site mutation in a protein structure with sequence length L. To the best of my 

knowledge, energy of the free antigenic structure has not been used in the context of B-cell 

epitope identification tasks. Based on free energy, I identified point mutations that are more 

likely to occur among the 20L point mutations. While mutations are randomly introduced to DNA, 

certain amino acid substitutions are rarely observed in nature because these point mutations can 

cause serious collisions in the amino acid side chains, which lead to thermodynamically unstable 

protein structures. Therefore, analysis of total free energy provided a way to eliminate mutations 

that are thermodynamically unstable, hence unlikely to be observed in nature. In total, I 

constructed 44 energy-related features, which can be grouped into three classes - FEavg, FEdiff, 

and FEss. I evaluated the performance of k-NN, SVM, and ANN trained with the novel 

energy-related features, and found that the FEdiff and FEss features, collectively referred to as 

FEbest features, are particularly relevant to the prediction of continuous B-cell epitopes. When I 

further evaluated the sensitivity of the classifiers to window size, the results indicate that the 

classifiers trained with 3D FEbest features outperform those trained with 1D FEbest features. In 

addition, the performance of 3D FEbest features was compared to that of previously used features 
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in continuous B-cell epitope prediction. The 3D FEbest features demonstrated comparable 

performance to the AAP antigenicity scale, and superior performance over the rest of the 

previously used features. Furthermore, k-NN, SVM, and ANN trained with 3D FEbest features 

outperformed current continuous B-cell epitope prediction servers, namely ABCPred, BCPred, 

and the AAP method.  

 Besides testing the energy-related features on k-NN, SVM, and ANN, I also tested the 

features on hierarchical learning algorithms, such as the C4.5 decision tree. However, the 

energy-related features are less effective in the prediction of continuous B-cell epitopes when 

they are considered within hierarchical classifiers (results shown in supplementary material, 

Table 2-10). In fact, when I analyzed the information gain of energy-related features, none of the 

features demonstrated superior relevance to the prediction of continuous B-cell epitopes. The 

energy-related features achieved enhanced predictive performance in classification systems that 

consider the overall set of input features, as observed with k-NN, SVM, and ANN. 

As with most current machine learning methods, the development of energy-related features 

required specification of peptide length. For instance, Chen et al. computed the AAP antigenicity 

scale for peptides that were 20 amino acids in length [15]. In addition, the ABCPred classifier 

developed by Saha and Raghava was trained with input peptides of fixed length, and the reported 

optimal performance was achieved with a data set consisting of peptides that were 16 amino acids 

in length [11]. In this study, two distance measures were considered; the 1D distance defined by 

amino acid length, and the 3D distance defined by Angstroms. The 1D distance measure intended 

to identify the center of a continuous B-cell epitope, whereas the 3D distance measure intended to 

identify the core of a three dimensional space, to which an antibody may interact with. The 1D 

and 3D features were combined to see if they could work together to determine the likelihood of 

a particular peptide to be identified as a B-cell epitope. Since the length of epitopes typically 
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range from 3 to 30 amino acids in length, I defined the 1D window from 6 to 30 amino acids with 

increments of 4 amino acids in between. The 3D window was defined as 3, 5, or 10 Angstroms. 

The results showed that the 3D features work better than 1D features in the identification of 

continuous B-cell epitopes. Furthermore, the results demonstrate that the performance of the 

classifiers was dependent on the combined information collected from variable window sizes, 

rather than from any specific window size. One of the reasons for this outcome is that B-cell 

epitopes do not have any fixed length, thus using a window of fixed length for prediction can 

misrepresent the peptide being analyzed, and reduce the overall prediction accuracy. The 

drawback of determining epitopes based on the information collected from variable window sizes 

is that the determined epitopes do not have correct boundaries. For the purpose of vaccine 

development, the overall improvement in accuracy outweigh the drawbacks as peptides of 

slightly different lengths may still be able to elicit the production of anti-peptide antibodies, 

which would in turn attack the native antigenic protein. Results of the study also indicated that 

the neighbors of B-cell epitopes also carry useful information that can help the classifier to 

identify epitopes. This is especially interesting given that the neighborhood region has been 

shown to play an important role in other continuous B-cell epitope prediction studies, such as the 

study by Sollner et al. [13], in which the authors showed that the neighborhood regions exhibit 

certain patterns in primary sequence. Furthermore, experimental studies have shown that 

mutating the neighborhood region of a B-cell epitope may alter the structure of the epitope, thus 

affect binding of the antibody [36]. Results of this study showed that free energy based on 

inducing point mutations in the epitopes and in the neighborhood regions adjacent to epitopes 

both contribute to the prediction of continuous B-cell epitopes.  
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2.5  Conclusion 

One of the major challenges in the field of vaccine design is the identification of B-cell epitopes. 

A number of amino acid propensity scales and their variants have been used in the prediction of 

continuous B-cell epitope prediction, yet the dependency of current prediction methods on a 

single antigenic sequence composition may affect prediction quality. In this study, I considered a 

set of point-mutated sequences, and used the free energy associated with these sequences in the 

design of three types of FE features, namely FEavg, FEdiff , and FEss. The primary findings are:   

1. Features based on point-mutated sequences, rather than a single sequence composition, may 

be applied to the prediction of continuous B-cell epitopes using machine learning methods. 

2. While previous prediction methods were mostly based on physicochemical properties derived 

from protein structure, protein energy has not been considered. This is the first study that 

introduces features based on protein energy. The results show that two types of features, 

namely 3D FEss and 3D FEdiff, are particularly relevant to the identification of continuous 

B-cell epitopes. 

3. k-NN, SVM, and ANN trained with these two types of features demonstrate competitive 

performance to previous features, and previous prediction servers. 

4. It would be helpful to compare the performance of the method developed in this study to 

additional existing methods, such as BEOracle [25]. Note that the OLSGW server [26] 

employed in the generation of features for the BEOracle server was malfunctioning as of July 

4, 2012. 

5. It is possible to apply the methods developed in this study for similar classification tasks, 

such as the classification of discontinuous B-cell epitopes. 
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2.6  Supplementary Material 

Table 2-9a - Performance of k-NN, SVM, and ANN classifiers trained with 3D FEbest features, 

from which the specified 3D FEss feature has been removed. 

k-NN 

Removed 3D FEdiff feature 

(window size in Angstroms) 

Performance of the rest of the features 

Accuracy  Specificity Sensitivity 

r1 = 3 65.2 68.1 62.3 

r1 = 5  76.4 82.6 70.2 

r1 = 10  76.2 79.9 72.4 

SVM 

Removed 3D FEdiff feature 

(window size in Angstroms) 

Performance of the rest of the features 

Accuracy  Specificity Sensitivity 

r1 = 3 58.9 62.3 55.4 

r1 = 5  66.5 77.9 55.0 

r1 = 10  66.8 77.3 56.2 

ANN 

Removed 3D FEdiff feature 

(window size in Angstroms) 

Performance of the rest of the features 

Accuracy  Specificity Sensitivity 

r1 = 3 61.0 53.0 68.9 

r1 = 5  78.4 81.3 75.4 

r1 = 10  74.8 77.4 72.1 
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Table 2-9b - Performance of k-NN, SVM, and ANN classifiers trained with 3D FEbest features, 

from which the specified 3D FEdiff feature has been removed. 

k-NN 

Removed 3D FEdiff feature 

(window size in Angstroms) 

Performance of the rest of the features 

Accuracy  Specificity Sensitivity 

r1 = 3  r2 = 5  73.3 79.5 67.1 

r1 = 3  r2 = 10  69.2 74.8 63.6 

r1 = 5  r2 = 10  73.7 77.7 69.6 

SVM 

Removed 3D FEdiff feature 

(window size in Angstroms) 

Performance of the rest of the features 

Accuracy  Specificity Sensitivity 

r1 = 3  r2 = 5  69.0 82.2 55.8 

r1 = 3  r2 = 10  64.6 75.6 53.6 

r1 = 5  r2 = 10  65.2 73.1 57.3 

ANN 

Removed 3D FEdiff feature 

(window size in Angstroms) 

Performance of the rest of the features 

Accuracy  Specificity Sensitivity 

r1 = 3  r2 = 5  74.8 72.1 77.5 

r1 = 3  r2 = 10  74.2 74.9 73.4 

r1 = 5  r2 = 10  75.2 74.3 76.0 
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Table 2-10 - Performance of C45 trained with the energy-related features. 

Features Accuracy Specificity  Sensitivity  

FEavg + FEdiff + FEss 57.9 68.7 47.0 

FEavg 49.9 77.6 22.2 

FEdiff 54.3 70.6 37.9 

FEss 50.0 86.3 13.7 

FEavg + FEdiff 55.1 68.6 41.5 

FEavg + FEss 50.5 72.1 28.9 

FEdiff + FEss  56.5 68.3 44.7 

1D FEbest 53.5 65.7 41.3 

3D FEbest 50.3 98.7 1.9 
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