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ABSTRACT

The author explores protein secondaty structure regularity from the
perspective of sequences. Regularity is "defined in terms of a schema
discovered by a cluster-based genetic-algorithm. Two steps taken to validate
the algorithm were a) finding the weightiness of cluster and b) comparing
the approach with data mining methods. Schemata were used to address
secondary structure predictions for residues that PSIPRED and PROF could
not predict. The results indicate that the proposed schemata can improve
prediction accuracy for these residues by approximately 40% and 60% for
the CB513 and RS126 data sets, respectively. Furthermore, schemata
combine the prediction results of PSIPRED and PROF to improve secondary
structure prediction. A bioinformatics teaching plan using a problem-based

approach is discussed.
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Chapter 1.

Introduction

1.1 Motivation

Protein sequences consist of different combinations of a four-letter DNA alphabet (A,
G, C and T) that is used to create a‘20-word vecabulary of native amino acids. Genes are
considered the blueprint or library of life, and proteins the machinery. Proteins are
macromolecules that perform all-important tasks in organisms, including the catalysis of

biochemical reactions, nutrient transport, and signal recognition and transmission.

Protein function is determined via a three-dimensional structure [1]. Researchers
know that determining protein structure in a laboratory is much more difficult than
identifying protein sequence. This explains why as of March 6, 2006 the Protein
Information Resource (PIR) database contained 2,826,393 protein sequence records while

the Protein Data Bank (PDB) contained only 35,343 protein structure records [2, 3].



Independent researchers and an organization known as the Critical Assessment of
Techniques for Protein Structure Prediction (CASP) currently support the practice of

predicting protein structure from previously known sequences [4, 5, 6, 7, §8].

Protein secondary structure is very valuable information for predicting 3D protein
structure. In many applications (e.g., identifying protein functions, classifying proteins,
establishing phylogenetic trees), protein structure knowledge requires information on
protein secondary structure. [9, 10, 11]. The present research—analyzing the natural
instincts of protein secondary structure and its potential for assisting in protein secondary
structure prediction—was motivated by the bottleneck that secondary structure researchers

are currently dealing with [12].

1.2 Study Importance

Protein secondary structure is considered crucial to understanding protein tertiary
structure [13, 14, 15, 16, 17]. However, even though secondary structure data is often used
for protein recognition and protein structure prediction [18, 19, 20, 12, 21, 22], few
attempts have been made to determine shared secondary structure patterns. Based on
studies describing statistical regularity between single amino acids and various secondary

structures [23], some researchers are suggesting that secondary structure formation may (at



least to a certain degree) be determined by sequential amino acid interaction [24]. At the
center of this thesis is a proposed representative schema for amino acid interactions as an

aid for analyzing their relationship with various protein secondary structures.

One challenge is uncovering schema details—that is, the regularity of protein
secondary structures. To avoid predictive deviation in the learning stages of various
methods, data sets such as RS126 or CB513 usually have low sequence identity for protein
secondary structure. The proposed solution to this problem described in this thesis involves
a cluster-based genetic algorithm, since traditional data mining methods (e.g., arm and

decision trees) cannot be used with'such kinds of data sets.

1.3 Thesis Organization

A review of related studies is presented in Chapter 2. The chapter will also include a
discussion concerning the construction of a data set from pdb_select list (except for RS126
or CB513), clustering methods, protein secondary structure prediction, and problem-based
learning. Details on the defined schema and the steady-state strategy that was incorporated
into the genetic algorithm are presented in Chapter 3, along with an analysis of the
proposed cluster-based genetic algorithm. Two applications (predicting protein secondary

structure and creating a teaching plan for bioinformatics) will be described in Chapters 4



and 5, respectively. Conclusions and suggestions for future research will be given in

Chapter 6.




Chapter 2.

Related Work

2.1 Data Sets

Rost and Sander (1993) selected 126 proteins for the training and testing of secondary
structure prediction algorithms [24]. Their definition of non-redundancy states that no two
proteins in a set share more than 25% sequence identity over a length of more than 80
residues. Unfortunately, the RS126 set contains protein pairs that are very similar in terms
of sequence according to methods considered more sophisticated than sequence identity
percentage. Cuff and Barton’s CB513 dataset [25], consisting of 513 chains with low
similarity, has been used to evaluate classifier accuracy. Almost all sequences found in the
RS126 set are included in the CB513 set. Both are non-homologous, but CB513 homology

measurement is more strict than for the RS126 set.



In addition to RS126 and CB513, we established a data set based on the PDB_select
protein chain list. The chain list is a representative of PDB chain identifiers that researchers
use in order to save considerable time and effort. The PDB_select protein chain list allows
for introductory browsing, protein architecture analysis, prediction method development,

and model building via modular construction [26].

2.2 Clustering (K-means)

K-means is one of the simplest unsupervised:learning algorithms capable of solving
the well-known clustering probléem [27]. Its-main idea is to define one k centroid for each
cluster. Care must be taken with céntroid placement-because different locations will lead to
different results. The best approach is to place them as far away from each other as
possible. The next step is to take each point belonging to a given data set and forge an
association between it and the nearest centroid. When no points are pending, the first step
is completed and an early groupage is performed. At this point it is necessary to

re-calculate k new centroids as barycenters of clusters produced in the previous step. The



appearance of k new centroids means that more binding must be performed between the

same data set points and the new set of nearest centroids. This generates a loop that allows

for the step-by-step observation of changes in k centroid locations until no more changes

are required (i.e., the centroids stop moving). This algorithm minimizes the chosen

distance between a data point and cluster center.

The algorithm consists of four steps:

1. Place K points into the space represented by the objects to be clustered. These

points represent initial group centroids.

2. Assign each object to the-group containing the closest centroid.

3. After all objects have been assigned, recalculate the K-centroid positions.

4. Repeat steps 2 and 3 until the centroids stop moving. This produces groups for

calculating the metric to be minimized.

Although the procedure always terminates at some point, the k-means algorithm does

not necessarily find the most optimal configuration that corresponds to a minimum global

objective function. The algorithm is also significantly sensitive to the initial cluster centers

that are randomly selected—though it can be run multiple times to reduce this effect. For



this reason, the k-means algorithm has been adapted for use with many problem domains

[28, 29, 30, 31, 32].

2.3 Genetic Algorithms

Holland’s original genetic algorithms [33] included a well-known heuristic algorithm
inspired by Darwin’s theory of evolution (“survival of the fittest”). Later efforts by
Goldberg and others have allowed genetic algorithms to be applied to optimization and
search problems in many fields [34, 35, 36, 37, 38, 39, 40]. Genetic algorithms do not
always find optimal solutions, biit in large search spaces they are more efficient than most

exhaustive search techniques in attaining near-optimal solutions.

For any given problem, genetic algorithms alternate between working on coding space
and solution space [41]. Coding space work involves the need to know how to transfer real
problems into chromosomes and to work with chromosomal evolution. These
chromosomes are evaluated in the solution space. The major parts of simple genetic

algorithm operations are shown in Figure 2.1.



Population
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Figure 2. 1: Genetic algorithm flowchart.

2.3.1 Initializing the Population

A population consists of a set number of chromosomes, with each chromosome
serving as a candidate solution. A chromosome consists of genes, with each gene serving

as a feature of a problem. The feature called genotype in a gene and phenotype in a



problem. At the beginning of the evolutionary process, a binary code or character is

randomly assigned to each gene in a chromosome. Through competition among

chromosomes in a population, either one or a set of chromosomes eventually satisfies

pre-established requirements.

2.3.2 Fitness Function

For a given problem, a specific fitness function must be designed to determine

whether a chromosome is a good candidate for survival [42, 43, 44]. In a genetic algorithm,

the fitness function plays a guiding role in.this détermination—in other words, the dual

purposes of the fitness functiofi is to consider problem characteristics and to assemble

domain knowledge [45, 46, 47, 48]:

2.3.3 Selection

Each chromosome has a fitness value (score) that is determined by the fitness function.

Chromosomes with higher fitness values are considered more fit for survival, have a higher

probability of producing offspring, and tend to dominate other chromosomes in a

10



population. However, higher scores do not guarantee that a chromosome contains good

genes only, nor do low scores indicate a complete lack of genes for positive characteristics.

Accordingly, the presence of niche chromosomes must be taken into account when

designing a genetic algorithm [49, 50, 51, 52, 53].

2.3.4 Crossover

Each pair of chromosomes has what is called a crossover rate—that is, a probability

for proceeding crossover. Based on a pre-assigned crossover rate, two chromosomes

randomly exchange their genetic information. [54, 55]. One-point or two-point crossovers

entail cutting and exchanging genes, wheteas uniform crossover genes are exchanged

according to a random template. Examples of theése crossover types (all commonly found

in genetic algorithms [56, 57, 58] are shown in Figure 2.2.

11



(a) one-point crossover

oft1]1fofr]1]t] CEEREN

:

(b) two-point crossover
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1
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0101010

peil . =
>
=1

Figu re:’_gf 2: T'hme_cl:ossovef examples.

"J-

2.3.5 Mutation

Each chromosome has a mutation probability called a mutation rate. Based on
pre-assigned mutation rates, individual genes are randomly chosen to change their value
from 0 to 1 or from 1 to 0 (Fig. 2.3a) [59, 60, 61]. An example of multi-point mutation is

shown in Figure 2.3b. In that figure, P1, P2, and P3 are three pre-assigned probabilities. P1

12



is much larger than the others and P2 is bigger than P3. In addition to avoids falling into

the local optima area, mutations also maintain chromosome diversity [62, 63].

(a) one-point mutation

o[1[1]o T 1]1] o[1]1]of0]1]1]

(b) multi-point mutation

p
o[1[1TofaT 1] 1 [o]1[+Jof01]1]

o[ 1A o[1[1[4] %o o[ 1]0] o] 1] 1]0]

Figure 2. 3: Two mutation examples.

2.4 Protein Secondary Structures

In 1951, biologists Linus Pauling and Robert Corey proposed two kinds of periodic

protein structures: alpha helix and beta sheet (Fig. 2.4) [64, 65]. In 1957 their proposal was

13



confirmed via x-ray diffraction [66, 67], which describes the chemical structure of a
protein based on the primary structure. Later research determined that protein secondary

structures express local spatial structure in certain linear segments.

(a) alpha helix

A

iy
’\R )

L

|
—

(b) beta sheet

ﬂ‘\‘ " -, 3 —
' {‘ ﬂ . : l — P

47 *.r!.r iﬂ"v*i

Figure 2. 4: lllustrations of alpha helix and beta sheet.

A randomly generated protein chain may have a loop structure. Achieving a stable
conformation requires a large number of weak bonds (e.g., hydrogen bonds, salt bridges
and van der waal interactions). Stable conformations are called protein secondary
structures. So far, there are 90% residues be located in alpha helix or beta sheet in the

database.
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2.4.1 Classification

Protein secondary structures have many classifications. The three most common are

DSSP, STRIDE, and DEFINE [68, 69, 70]. DSSP (Database of Secondary Structure in

Protein), a widely applied classification for protein secondary structure, includes a

computer program for defining various features of a protein via a PDB protein structure

file. DSSP files include data on secondary structure, molecular properties, and solvent

accessibility. Seven DSSP codes for protein secondary structures are shown in Table 2.1.

Table 2. 1: DSSP codes and their meanings

DSSP Code |Protein Structure
alpha helix

residue in isolated beta-bridge

extended strand, participates in beta ladder
3-helix (3/10 helix)

5-helix (pi helix)

hydrogen bonded turn
bend

W|HA|—|O|m|o|T

Protein secondary structures are usually predicted using three of the seven DSSP

codes: H (helix), E (sheet) and L (loop; this is sometimes referred to as C, coil) [71, 72, 73].

15



The five categories for the three kinds of DSSP codes are shown in Table 2.2; it is
important to note category choice has an important effect on protein secondary structure
prediction accuracy [71]. Jones [74] has shown that the fifth category in Table 2.2
performs best for protein secondary structure prediction, but the first category is more
commonly used for comparisons with the PHD approach. In 1999, Baldi proposed three

new categories: H (H, G, I), E (B, E) and C (T, S) [75].

Table 2. 2: Five categories of merged codes for the three DSSP codes.

H E L
1 H, G, I E B, T,S
2 H, G E, B , T, S
3 H, G E LB, T,S
4 H E, B Gl T, S8
5 H E G I,B T, S

2.4.2 Prediction

Most secondary structure prediction methods make use of the fact that segments of

consecutive residues have preferences for certain secondary structure states [76, 77]. The

16



prediction problem is thus transformed into a pattern-classification problem that can be

addressed by pattern recognition algorithms, with the guiding goal being to predict whether

the residue at the center of a segment of 13-21 adjacent residues has a helix, strand, or no

regular secondary structure (loop or coil).

Before the protein secondary structure hypothesis was proven and accepted, biologists

tried a variety of approaches to predict protein secondary structure, including the use of

protein sequences [78]. All of these methods can now be placed in three categories based

on their original assumptions [12]. These categories can also be described in terms of

generations.

Secondary structure prediction methodsTinthe first generation focused on four types

of residues: helix, sheet, loop former and ‘breaker. Protein secondary structure segments

were predicted by considering the characteristics of a single residue [79]. These methods

assume that when an amino acid forms a secondary structure, the amino acid acts

independently. However, we now know that amino acids are affected by their adjacent

amino acids, therefore, accuracy for this method is approximately 50-60%. Method names

include Chou & Fasman, GOR1, and Lim [79, 80, 81].

Second generation methods consider local information in residues 3-51, using a fixed

window size for a protein sequence and a sliding window for cutting several segments.

17



Secondary structures are retrieved from these segments. Second-generation method

accuracy is only about 60-65% due to a lack of long-distance information—for example,

information on the effect of hydrogen bonds between two amino acids separated by a long

distance. Method names include GOR3[82], Levin et al. [83], Nishikawe and Ooi [84],

Qian and Sejnowski [85], Holley and Karplus [86], Asai et al.[87], and Yi and Lander [88].

Third generation methods added evolution information to the second generation

concept [12]—that is, gene mutation occurs as part of the evolutionary process, meaning

that one amino acid can be replaced by another. Accordingly, proteins with similar

structures may have different amino acidsiin thé samie position. Almost all third generation

methods take into account multiple sequence alighment results when inputting data into a

learning model such as neural networks-or SVM. The best-known third generation method,

PHD, can reach 70% accuracy or higher for Q3 predictions and over 80% for helix

predictions.

Method names include Zvelebil et al. [89], PREDATOR [90, 91], NNSSP [92], DSC

[93], PHD [24], Jnet [94], PSIPRED [74], Baldi et al. [75, 95] and HMMSTR [96].
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2.4.3 Evaluation

Rost and Sander’s (1993) arrangement of evaluative methods for protein secondary

structure prediction is shown as Table 2.3. Its evaluative method parameters have been

placed in a 3x3 matrix (for three kinds of secondary structures).

Table 2. 3: Matrix for nine parameters of evaluative methods.

App | Apg

AHC

AEH AEE

AEC

ACH ACE

A

In the matrix, Ajj is the number of‘those tesidues that belong to secondary structure i

but are predicted for secondary structure j.

To sum up each element in the column, a;, is the predictive number for each

secondary structure.

@:ZAwmnzwac
vj

To sum up each element in the row, bj, is the number for each secondary structure.

19




b, =ZA”- ,fori=H,E,C
vj

To sum up all elements in the matrix, b, is the number of residues.
b=>a =>b
Vi Vi

For examples, the secondary structure H has (Ayy + Ane + Anc) residues, and there are

(Ann + Aen + Ach) residues predicted to H.

Overall 3-state accuracy, Q3, is a score for secondary structure prediction [97, 85, 12,

88, 98, 99]. It is the most populatr evaluative method and shown as follows,

> A

Q, :V‘TXIOO

On the other hand, we can simply discuss the evaluation for each secondary structure.
There are two kinds of evaluative methods for predictive accuracy discussed. One show the

predictive accuracy of secondary structure i,

Q =0 =%x100, fori=H,E C

20



The other show the percentage that how many residues are predicted correctly in the

predictive number of secondary structure i.

SA
Q™ =-4—x100,fori=H,E,C
a.

Matthew’s correlation coefficient, C, is also usually discussed when measure the

accuracy of secondary structure shown as,follows [100].

_ Pl =U;0;
VP, +u)Ep; F0,)(N, U (D +0,)

,fori=H,E, C

pi is those who residues are belong to secondary structure i, and the predictive result is

also i.

p,=A,,fori=H,EC

n; is those who residues are not belong to secondary structure i, and the predictive

result is not i.
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n=> > A, fori=HEC

Vj#i VK#i

Ui is those who residues are belong to secondary structure i, and the do not be

predicted to i.

u =Y A, fori=HEC

Vj#i

0; is those who residues are mot belong to secondary structure i, but the predictive

result is i.

0, =Y A; fori=H,EC

Vj#i
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Chapter 3.

Materials and Methods

3.1 Process data set

We established a data set according to the PDB_select protein chain list because it is
representative of PDB chain identifiers that help researchers save considerable time and
effort. The PDB_select protein chain list allows for introductory browsing, protein
architecture analysis, prediction method development, and model building via modular

construction [26].
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3.1.1 PDB_select Constraints

There are many versions, from which no two proteins have more than 25% sequence
identity to 95%, in the PDB_select list. Furthermore, it excludes chains according to the

following criteria:

+ length less than 30 residues;

« number of non-standard amino acid residues (including chain breaks) exceeds 5

percent of chain length;

+ resolution exceeds 3.5-angstroms;

« R-factor exceeds 30 percent;

« some chains are known to be of inferior quality;

« number of residues without side chain coordinates < 90 percent chain length;

« number of residues without backbone coordinates < 90 percent chain length;

« content of ALA plus GLY exceeds 40 percent of chain length; and

« data on resolution or R-factor (i.e., NMR-structures) are not available.
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3.1.2 Constraints

We separated the data set into two independent sets (training and testing) and used the

most stringent 25% PDB _select list (2,485 chains with 388,067 residues). Next, we located

the secondary structures of proteins in the 25% PDB select list from the Database of

Secondary Structure in Proteins (DSSP) of secondary structure assignments for all PDB

protein entries. However, due to problems with DSSP secondary structure information, we

eliminated some chains from the 25% list for the following reasons:

« incorrect PDB identification:in'the-25% list;

« no information in the DSSP files;

«  broken chains; or

+ inclusion of an unknown symbol X.

Our data set consisted of 1,600 chains with 248,984 residues. We randomly selected

1,200 chains for use as a training set for mining schemata; the remainders were used for

testing.
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3.1.3 Data Set Analysis

It was assumed that the distribution characteristics of the data set would affect the
experimental results. We used the data in Table 3.1 to inspect a) whether a relationship
exists between the amount of a schemata and the percentage of each amino acid in the data
set, and b) the individual tendencies of all amino acids in the data set. Data in the first
column of Table 3.1 are for 20 amino acids and second and third column data represent the
number of occurrences for each amino acid and their respective percentages. The final
column contains data on the corresponding amino acids, number of occurrences, and
percentage of secondary helix (H), sheet (E), and Coil«(L) structures. The first row presents
information on the number of occurrences and-percentages of each secondary structure in

the data set.
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Table 3. 1: Statistics for 20 amino acids in the PDB_select chain set. % is the percent
of each amino acid in the PDB_select: %H, E%. and L% is the percent of each
secondary structure respectively'in the, PDB:select
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H+« H%« E+ E%o+ L+ L%

4 Nume %oe

87690 | 352%+ | 55134+ | 21.1%+| 1l06la0<| 42.40%¢
Ao| 1B937e | TADMGe | 9278 | 40040 32160 1P fid4 3¢ 340
Re| 124690 | 501%« | 52340 | 42% 25850 | 0. T%he | 46500 | 37.3%e
Ne| 113350 | 455%e | 3093« | 273%e | 1579 | 13.9%%¢ | 66630 | S88%«
D«| 143000 | 57%e | 44410 | 311%e | 1629 | 11.4%e | 8230¢ | 57.06%¢
Co| 4487 1LE1%e | 1260¢ 28%e 12934 | 28 3% 1844e | 432080
Qe 16834e | 6.80%e | TE350 | 464% | 2830 | 16Te | 6256 I
Eeo| 998% | 4.01%¢ | 46580 | 406%« | 1643¢ 16.4%e | 3688 L
Go| 1T784e | T13%e | 29520 | 16.6%e | 25530 | 14.4%¢ | 12250 | G9%¢
He| 58574 | 235%e | 1978¢ | 33.8%¢ | 1254« | 214%¢ | 26250 | 448%¢
Io| 14136 | 5.68%¢ | 52470 | 371%e | 54850 | 388%«| 34040 | 24.1%#
Lol 216350 | 868%e | 100530 | 465%« | 5138 4% 6394e | 29 6%
Ka| 155870 | 6.26%¢ A5 0+ 38800 28370 18.2%%¢ 6700+ 43%. |
Md 55500 | 223%+ | 2373¢ | 428%¢ | 1174¢ | 21.2%¢ | 2003¢ | 36.1%¢
Fo| 1010% | 406%« | 3641e | 36% 32000 | 317 | 32670 | 32.3%0
Po| 112380 | 4.51%e | 1960e | 174%¢ | 1220 | 998%e | 81560 | 72.0%¢
S| 15481e | 622%e | 4193¢ | 271%e | 29240 | 18.3%e | B364e | 549
Te| 136230 | 54740 3684¢ e I5T6e | 26.2%0 | A363¢ | 40.7% |
Wd 37050 | 149%+ | 1339 | 360% | 11152 | 30.1%¢ | 1251¢ | 33.8%%¢
Yo| 8799 | 3530 | 29360 | 334%¢| 29590 | 336%+| 29040 | 33%¢
Vr| 1703% | 6345 | MeSe | 321%¢ | 6978r 41%* 45867 2T
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3.1.4 Making Training Sets

For every protein sequence, each amino acid can be viewed as a central amino acid in
a schema. We defined amino acids on both sides of a central amino acid as a “neighbor
pattern.” According to our size choice of 9 windows, neighbor pattern length = 8, or 4
amino acids on each side. To create the training set we placed the neighbor pattern into a
corresponding bucket according to the central amino acid and secondary structure; a
partially assigned training set is shown in Figure 3.1. A complete training set consists of
20%*3 buckets. Using the fifth amino aeid in the'LCTJA protein sequence as an example, the
neighbor pattern EADLLGKA should be put into bucket AH, since the central amino acid

is A and its secondary structure iS:H.
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PDB ID Length primary sequence secondary structure

1cTd 89" /
EADLALGKAVFDGNCAACHAGGGNAVIPDHTLQKAAIEQFLDGGFMIEAI. ./ ......
LLLHHHHHHHHHHAHLHHHHHHHLLLLLLLLLLLHHHHHHHLLLLLLHHHHH ..........
Bucket Name: "l (EADLLGKA)— (ALGKVFDG) —» (DGNCACHA) —» (GNCACHAG) —» Null

P £l Nl

L. Null

AL L

NH  H|-» (VFDGCAAC)» (DGGFIEAI) —» Null

NE "EL. Null

- "> (AGGGNVIP)—» (GGGNVIPD)—» Null

VH 'HL. (LGKAFDGN)_, Null

VE EL Null

VL || (GGNNIPDH) —» Null

Figure 3. 1: An example-of using sequence 1CTJ to make a training set.

3.2 Schema

Protein secondary structures are designated as H (alpha helix, 3/10 helix, pi helix), E
(beta bridge, beta ladder), or L (turn, bend) [76]. The regularity of secondary structures
(which consist of amino acids and one secondary structure) are usually discussed in terms
of factors that cause amino acids to combine in order to form a specific secondary structure.
An amino acid that plays a role in certain secondary structures are affected by neighboring

amino acids, while secondary structure sheets often require extra consideration for remote
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amino acids. In the same manner that many researchers de-emphasize the effect of remote
amino acids on protein secondary structure [88], we decided to underplay the remote effect

in order to simplify schema design.

Representation

We modified Holland’s (1975) one-dimensional schema format

schema se{1, 0, *}'

(where | is a fixed length and * is either O or 1) into a two-dimensional format:

schema se{an amino acid, *} %2 X {an amino acid} X {an amino acid, *} V"

—{H, E, L| one kind of secondary structures},

where | is a fixed length (an odd number) and * is don’t care.
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According to our proposed schema, the central amino acid plays a role that
corresponds to a specific secondary structure due to non-asterisk amino acids on each of its
two sides. In Figure 3.2, amino acid A is found in the first and last positions and amino
acid L is in the center position. Amino acid L is eventually categorized as having an H
protein secondary structure—in other words, L is only affected by the first position amino
acid on its left side and fourth position amino acid on its right. The other asterisk positions
(which have no affect on L) can consist of any amino acid. We focused on the 9 windows
in the front part of the schema, since that length is long enough to contain sufficient local

structural information for analysis [ 101].

Akt w5 H

Figure 3. 2: Schema example.

3.3 Cluster-based Genetic Algorithm

Average Q3 accuracy in studies of protein secondary structure prediction using
genetic algorithms is only 46 percent. Three issues are considered central to this problem:

data set selection, solution search space, and fitness function design. At first, for the data
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set in previous studies, RS130 cannot represent so far the whole known proteins. Moreover,

the number of similarities among DSSP protein families is considered too high. These

kinds of problems are not associated with PDB_select.

Based on the 9-window size of the schema we applied, search space size is

20*3*21*8. To reduce search time, the very important thing is let genetic algorithm can

search from good start. Therefore, once clustering was completed, we placed cluster

centers as chromosomes into the initial population (Fig. 3.3).
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Training Set
i Clustering
i AH bucket ‘ Initial assign cluster centers ‘
EL AE bucket .
L AL bucket > ‘ Distribute bucket entries "7
H NH bucket . .
— ‘ Assign new cluster centers |
[E NE bucket -
LT NL bucket ? Any
cluster center Yes
— has changed
LH™ VH bucket .
En VE bucket . e
LM VL bucket =

Figure 3. 3: Our proposed.clustering strategy.

The fitness function gives evolutionary direction to chromosomes [102]. When

designing our fitness function, we assumed that a good schema should have a strong

tendency toward a certain secondary structure. Furthermore, our fitness function states that

increased chromosome confidence in the training set also increases Q3 accuracy in the

protein secondary structure prediction.

As shown in Figure 3.4, our model includes evolutionary and application phases.

With the exception of standard GA steps, during the evolutionary phase we generated some
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initial chromosomes by clustering. The evolutionary process makes use of a steady-state

strategy. In each generation we placed certain high fitness chromosomes into our schemata

set. Chromosomes placed in the set were removed from the population; the population

consequently generated new chromosomes at random.

For protein secondary structure predictions we cut the sliding windows (9 window

lengths) to use as protein sequence patterns for testing. Each pattern aligns with all

schemata in the schemata set. After alignmenty the secondary structure of the most similar

schema was selected as the predictive result: 'When the fitness of the most similar schema

was insufficient, the pattern was aligned withrthe'neighbor patterns of cluster centers in the

training set. The final predictive result was the secondary structure that the most similar

cluster center belonged to. Our approach uses blosum62 as a substitution matrix for

alignment purposes.
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Training set

l

Application Phase Evolutionary Phase

refine :
| Clustering
| Testing | initialize
redict |
5 Set | SSGA
Population
v evaluate
Secondary High Fitness |, | extract —
i Offsprin
Structure Schemata f d
Evolutionary Operation —

Figure 3. 4: Our cluster-based genetic-algorithm for mining schemata and its
application for predicting-protein secondary structures.

3.3.1 Population and Evaluation

Our approach uses 20 populations for each amino acid. Each chromosome includes a
neighbor pattern and a secondary structure. Initial populations take on the neighbor pattern

of the cluster center; all other chromosomes are randomly generated.

To evaluate a chromosome, we used its neighbor pattern for alignment with neighbor

patterns in all secondary structure buckets. Alignment scores that exceeded a certain
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threshold were labeled as one hit. nH, nE, and nL are the respective hit numbers in the H, E,

and L buckets. Chromosome secondary structure is determined according to the maximum

hit number.

In the following equation,

confidence=nSS/(nH+nE+nL) (1),

nSS is defined as the maximum hit number among nH, nE, and nL. Confidence is

relative to Q3; one of our goals' was to -find schemata with distinct tendencies toward

certain secondary structures. We'defined-the diserimination rate (DR) as

DR=(nHighest-nSecond)/(nH+nE+nL) (2),

where nHighest is equal to nSS and nSecond is the second highest score among nH,

nE, and nL. As a result,

fitness=confidence*DR 3)
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3.3.2 Steady-state Reproduction

The initial step in the steady-state strategy shown in Figure 3.5 is to randomly select

two chromosomes, C1 and C2. Two offspring are generated by one-point crossover and

multi-point mutations of C1 and C2; a single S1 offspring is randomly selected from these

two offspring. Another chromosome (C4) is selected from the population for comparison

with the S1 offspring in terms of fitness. The best chromosome is used to replace C4 in the

population.
»| Population Randomly select | Chromosome C1
Randomly select Chromosome C2
Chromosome C4 !
“ GA Operator
FRemnmer Compete with fitness ———
Offspring 51 J* Mutation

Figure 3. 5: Steady-state strategy for our cluster-based genetic algorithm.
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3.4 Compare with Associate Rule

The training set consists of 124 protein sequences each of which has more than 80
amino acids in length, and the pairwise similarity is below 25% (similar to RS130 [24]).
They were used to train SSGA to find significant schemas associated with various protein
secondary structures. To obtain the confidence and support value, we tested SSGA on the
nr-PDB data set created by NCBI after removing those sequences used for training. If A =
B is the form of rules, and P(A & B) is a probability of both A and B. The confidence and

support value are defined as

confidence (A = B)=P(B|A)=

number of correct classifications “4)

number of schema matches

support (A= B)=P(AUB)=

number of correctclassifications (5)

number of secondarystructure matches
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To reduce time complexity, we adopt FP-growth algorithm for association rule mining

to avoid generating candidates from the frequent itemsets [103]. Before using the ARM

method for schema finding, we need to set two criteria (confidence and support). In our

training set, 124 protein sequences could be further sampled into 23,448 transactions

(obtained through sliding window sampling within the protein sequence, window size=9).

The support value in the worst case is 4.264e-5 (1/23448). In order to discover more

possible patterns, the support value could be set as 5e-5 in this experiment

A higher confidence value schema means it has a higher relationship between

sequence and structure (like the form shownin. figure 3.2) within the training data. Thus

we assume that such schema could have higher confidence in testing data. The result of

this assumption will be explained in the subsequent experiment. We run ARM with two

different confidence values. The confidence value of ARM30 is 30% and ARM®60 is 60%

in the training set. Table 3.2 illustrates the performance of ARM30 and ARM60 under the

testing set (nr-PDB). All 11 schemas of ARM30 fall within the bracket (0%-10%).

However, ARM60 has a higher and broader confidence range (20%-50%).
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Table 3. 2: Test Results of ARM30, ARM60 and SSGA (in nr-PDB)

Totale confidences supporte
Mined«
Methods
Schema- 00 | 100 20 30 e 00 e | T | e | 0o | ao b
Numbers| % O T O T O B T ™ : =-3 )
e | 00| 300 400 00| 60¢| TOO | E0e | 900 | 100e | VT (%)¢
ARM30? 110 | pyge| 16 | 0] 00 00| 00 00| 00 | 0o | 0o | 0o | 00 | 00
ARM60D: 270 Miede | 0f | 00 Fe[ 170 3¢ 0| 0c | 00 | O | 00 | 3439 0718
] Schemas’ | ' ' ' '
SSGAe | 040 | Numbero| 1660 | 16¢) 20| 3e| d0e| dde| 93¢ | 1Me| e | 30 | 6151e| 8340

After the evolutionary process terminated, we checked each of the twenty converged
populations to get the most fréquent secondary structures for every amino acid. We
summarize the results in Table 3.3. It:shows-that most of the natural correlations between
amino acids (statistics from nr-PDB) and the preferred structures were also found in the
converged populations (evolved by SSGA) with one exception of amino acid Y. Note that
all the initial populations were randomly generated. The finding of similar correlations
between amino acid preferences toward particular structures in the final converged

populations certainly provides some confidence of the fitness function applied in SSGA.
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Table 3. 3: Tendencies of various amino acid secondary structure types

Ammo acide

A C. D E¢ Fo G Hi I» K« Le M N« P« Q¢ Re 5 Te Ve W Y.

nr-PDB- Hi L L- He H. L- L H H H H/ L« L- H« H: L- L« E-H H
Ed L« 0 La L

SSGA Hy L L4 H« H: L¢ L« H H| H¢ Hy L¢ Lq He Hy L¢ L¢ E< H| E

Populations E: E¢ L+ Ls

The learned schemas from the training set were later tested on the nr-PDB test set to

measure their confidence and support values. Finally, there are 904 total possible rules to

be found. The average confidence value15°61.51% and nearly half of mined rules are over

70%. Table 3.2 is the testing results of'ARM30, ARM60 and the SSGA approach. It could

be divided into three parts, the left-hand column shows the total mined schema number

from compared methods; the central part shows the number of schemas mined from

different confidence ranges (10% increments); and the right-hand part shows the aver-age

of confidence and support value. Hence, table 3.3 clearly shows that the average value of

confidence and support from the SSGA approach are significantly higher than the ARM

method.
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If the average support value of the significant schemas is 1%, then we need
approximately 9861 (986059*1%) significant schemas to handle all known proteins. So the

number of schemas are not enough to predict secondary structure in our results.

3.5 Experimental Results

3.5.1 Clustering-based SSGA

Since our approach uses a clustering strategy for the initial population, we ran several
trials using cluster numbers betweén 20 and 70 to predict protein secondary structures;

results are shown in Figure 3.6.

At 70 clusters our Q3 accuracy was 58.7 percent—approximately 12 percent better

than predictive results from studies using genetic algorithms only.
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Figure 3. 6: Q3 accuracy in different cluster numbers using our approach.

3.5.2 lllustrate Some Interesting Schemata

Table 3.4 presents a comparison:of ‘our Table 3.1 results with nr-PDB. Several
differences are observed when K, W, and Y are in both PDB_select and nr-PDB. This

underscores the importance of selecting a suitable data set.

Table 3. 4: Secondary structure tendencies for each amino acid in nr-PDB and
PDB_select chain sets.

AlR|N|D|C E|{G|H|T |LIE|M|F|P |5 |T|W|T|V

ntr-PDB H{H|L|L|L|H|H|L|L|H|HH H{L|L|L|H|H
E L L|L

FDB select |H|H|L|L|L|H|H|L|L|H|H|L|H|H|L|L|L|H|H|E
E E

L
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Selected schemata with interesting biological meaning and high fitness are displayed

in Table3. The central amino acid in the first schema is P; when its neighbor pattern is

D***pP**N, the central amino acid plays an L role in the secondary structure. Note that L is

the tendency for D, P, and N in Table 3.5.

Table 3. 5: Sample schemata of biological interest.

Schetna The tendency of secondary structure
Do **pP**pl_ =1 D,Pand Hareall L

TEFFNP**E =1, T. 5, P, and K are all L
FEFDP**C > K,P, and C are all L.

R ) Shl o B Pand M are all L

[k N SR S B Goand Poare all L

FFHEAXLAHH-H F, L, and H are all H

*EQMREQ*L*->H | E, Q M, and L are all H
E**KE*** ) = H E and Q are afl H

[¥*T* ¥ %Y = FE LV, and Yareal E

b Gt Vi Bl Do ¥, and E are all E
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Chapter 4.

Predictive Tools for Protein
Secondary Structure

Even though the protein folding process may require catalysts [104], it is widely
accepted that the three-dimensional structure of a protein is associated with its amino acid
sequence [105]. This implies the possibility of predicting protein structure from a sequence.
However, with the increasing number of amino acid sequences generated by large-scale
sequencing projects and the continuing shortage of data on crystallized homologous

structure, the need for reliable structural prediction methods is greater than ever.

Making accurate comparative assessments of different secondary structure
prediction methods is difficult because they use different learning process datasets and

different secondary assignments [106]. Still, a number of authors have designed methods
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with accuracies above the 70% threshold by taking advantage of multiple sequence
alignments [24, 92, 93, 107, 108] or selected alignment fragment pairs [91]. Most methods
do not take the long-distance (beta sheet) effect into consideration because it is difficult to
incorporate this feature into a model. Accordingly, secondary structure prediction accuracy
appears to have reached its current limits. Analyses of several predictive tools indicate that
approximately 12% of data set residues (dead areas) cannot be predicted. The complete
schemata for all proteins have not yet to be identified because of a need for additional
protein information. However, tests indicate that the schemata described in this paper can

improve dead area prediction accuracy by 40% t0 60%.

4.1 EVA

EVA (EValuation of Automatic protein structure prediction) is a plan for
evaluating protein structure predictive tools [109]. Its users can evaluate tools associated
with secondary structure, comparative modeling, and threading. EVA constantly
downloads the latest protein structure data from PDB. Structures are added to mySQL
databases; after sequences are extracted for each protein chain, they are sent to prediction
servers via META-PredictProtein (META-PP), which collects the results and sends them

to EVA. Each week EVA runs alignment programs for sequence searches and structure
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databases to determine homologues. Secondary structure predictions, inter-residue contact
predictions, and comparative modeling are evaluated by personnel at EVA satellites
(Columbia University, Rockefeller University, and CNB Madrid). Employees at the central
EVA site at Columbia University collect all assessments from the other two centers as well
as results from database searches, then publishes the information on its main web site.

Mirror web sites are maintained at the other EVA satellite locations.

EVA has evaluated at least 10 types of secondary structure predictive methods.
Two of these methods, PSIPRED and PROF, were selected for this experiment, based on

their proven predictive abilities and their accessibility. in terms of downloads.

4.2 PSIPRED and PROF

A two-stage neural network has been used to predict protein secondary structure
based on position-specific scoring matrices generated by PSI-BLAST. This approach,
proposed by Jones in 1999, is called PSIPRED. PSIPRED used a new test set based on 187
unique folds and three-way cross-validation based on structural similarity criteria rather
than previously favored sequence similarity criteria. Its predictive accuracy achieved an
average Q3 of 76.5% to 78.3%, depending on the definition of observed secondary
structure.
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The three stages of this prediction method are generating a sequence profile,

predicting an initial secondary structure, and filtering the predicted structure (Fig. 4.1). The

dual goals are to generate sequence profiles and to predict secondary structure. Standard

approaches to generating sequence profiles are considered cumbersome and

time-consuming. The PSI-BLAST method uses profiles as direct input to secondary

structure prediction rather than extracting sequences and creating an explicit multiple

sequence alignment as a separate step. The time-consuming multiple sequence alignment

task is eliminated by using PSI-BLAST profiles’.directly. The final position-specific

scoring matrix from PSI-BLAST is used.as neural network input. The matrix has 20 x M

elements, with M representing the target sequence length and each element representing

the log-likelihood of a particular residue substitution at a template position based on a

weighted average of BLOSUMG62 matrix scores for the given alignment position.
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Raw profile from PSI-BLAST Log File

s

1st Network
315 inputs
75 hidden units

3 outputs

4L

2nd Network
60 inputs

60 hidden units
3 outputs

L L

Final 3-state Prediction

Figure 4.11:*PSIPRED flowchart.

PSIPRED utilizes a standard feed-forward back-propagation network architecture

[110] with a single hidden layer. A window of 15 amino acid residues (producing an

overall Q3 score of 80.1%) is considered optimal, therefore the final input layer consists of

315 input units divided into 15 groups of 21 units each. A large hidden layer of 75 units

was used, with another three units (representing the three states of secondary

structure—helix, strand or coil) being used to create the output layer. As with previous

neural network secondary structure prediction methods [24], a second network is used to
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filter successive outputs from the main network. Since only three inputs are necessary for
each amino acid position, this network has an input layer of only 60 units divided into 15
groups of equal size. In this project, a smaller hidden layer of 60 units was used for this

network.

PROF is a method proposed by Rost [111]. However, the author has created a
downloadable version for predicting secondary structures. PROF is described as an
improved version of PHDsec—a profile-based neural network predictor of protein

secondary structure.

4.3 Experiment and Results

The two purposes of this experiment were to locate the shared bottleneck of the three
generation methods in predicting protein secondary structures—in other words,
determining if some residues exist that neither PSIPRED nor PROF can predict. The region
that contains these residues, known as the “dead area,” is shown in Figure 4.2. The second

purpose was to activate the dead area by inserting the proposed schemata.
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Dataset(RS126, CB513)

N

PSIPRED PROF

AB | ~(AB) | ~A~B | A~B | ~AB
dead area

Figure 4. 2: Flowchart for generating AB, ~AB, ~A~B, A~B, and ~AB classifications.

PSIPRED and PROF predictiverresults are’shown in-Table 4.1. The results were used to

define the following symbols:

A: successful PSIPRED prediction area,

~A: failed PSIPRED prediction area,

B: successful PROF prediction area,

~B: failed PROF prediction area.

PSIPRED and PROF predictive results were observed simultaneously and divided

according to five classifications:
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AB: areas where PSIPRED and PROF produced the same successful prediction,

~(AB): areas where PSIPRED and PROF produced the same failed prediction,

~A~B: areas where PSIPRED and PROF produced different predictions, both of them

failed,

A~B: areas that PSIPRED predicted successfully but PROF did not, and

~AB: areas that PROF predicted successfully but PSIPRED did not.

Table 4. 1: PSIPRED and PROF prediction‘accuracy percentages for the two data
sets.

RS126 | CB513

PSIPRED | 80.9% | 80.5%
PROF 76.3% | 76.1%

The percentages of these five classifications for data sets RS126 and CB513 are shown in

Table 4.2. The data indicate type AB percentages that exceed 70% for both sets, meaning

that third-generation secondary structure predictive methods that include evolution

information can improve accuracy to 70%. The percentage of the type A~B classification

was double that of type ~AB, meaning that PSIPRED outperformed PROF. Furthermore,
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the two methods made an identical but incorrect prediction—type ~(AB)—Iess than 1% of

the time, indicating a 98% prediction confidence when the same result was predicted by

both methods. The last type (~A~B) represents the dead area, which neither was able to

predict, but with different results; coverage for this area was 12%. Accordingly, the upper

boundary for secondary structure prediction accuracy for third generation methods is

approximately 88%.

Table 4. 2: Percentages of each prediction classification for the two data sets.

AB |~(AB) ~A~B| A~B | ~AB
RS126  |705%|1.0% |12.4% 10.3% |5.8%
CB513  |70.4% |1.0% |12.8% 10.1% |5.7%

The proposed schemata were applied to dead areas for the purpose of improving secondary

structure predictions. A schemata experiment flowchart is shown in Figure 4.3. In the first

part of the experiment, predictions were generated by PSIPRED and PROF for the RS126

and CB513 data sets. The two predictive results were compared for the purpose of defining

the dead area. The second part of the experiment focused on using the proposed

cluster-based genetic algorithm to derive schemata from PDB_select. Each case was run
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several times using different cluster numbers to predict RS126 and CB513 secondary

structures.

PDB_select

|

Cluster-based Genetic Algorithm

Dataset(RS126, CB513)

N

L PSIPRED PROF
Schemata

AB | ~(AB) | ~A~B | A~B | ~AB

Figure 4. 3: Schemata-generating flowchart for addressing dead areas.

Although the predictive ability of the proposed schemata did not surpass that of the

third-generation prediction methods, it did produce balanced predictive results according to

the five classifications described above. It is therefore suggested that the proposed

schemata can be used to assist PSIPRED and PROF in predicting secondary structures in

dead areas. We observe the accuracy of all data set and dead area only in the different
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parameter value of cluster number. Predictive accuracies for all RS126 and CB513

sequences produced by the proposed schemata are shown in Figure 4.4. The highest

prediction accuracy figures for RS126 (73%) and CB513 (60%) were achieved when

cluster number equaled 70. PSIPRED and PROF were capable of 80.9% and 80.5%

accuracy for RS126 and CB513, respectively, but neither method was capable of correctly

predicting any residues in dead areas—in other words, their predictive accuracy for dead

areas was 0%. Dead area prediction accuracies using the proposed schemata were 58% for

RS126 when the cluster number was 70 and 38% for CB513 when the cluster number was

60 (Fig. 4.5). Figure 4.6 presents data for when the proposed schemata were used to predict

all sequences and dead areas in RS126. As shown, in each case accuracy increased.

However, for CB513 the dead aréa prediction accuracy increased slowly as the predictive

accuracy for all sequences increased (Fig. 4.7).
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Figure 4. 4: Accuracy data for all sequences of the data sets at different cluster
numbers.
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Figure 4. 5: Accuracy data for the ~A~B:classification of the data sets at different
cluster numbers.
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Figure 4. 6: Accuracy data for all sequences and ~A~B classification for data set
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Chapter 5.

A Teaching Plan for Bioinformatics

Bioinformatics research requires input-from’ several different domains, but the
majority of bioinformatics learners ‘are”unfamiliar with specific biological issues. We
propose an approach that combines problem-based learning and concept map methodology
to realize and construct the biological problems. As part of the problem-solving process,
learners must gather materials and identify essential knowledge—thus creating a scenario
conducive to learner training. We believe this approach will be of great use to

non-biologist learners in the bioinformatics field.

The human genome project has attracted a large number of information science
researchers to work in the area of bioinformatics. Of particular interest to these researchers

is the development and refinement of algorithms for culling meaningful information from
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large bodies of data. However, information science experts have little understanding of

biology, and only a handful of biologists understand information algorithm requirements.

In this section, we will propose a problem-based learning approach that makes use of
concept maps for bioinformatics learning. Our goals are to a) create a process through
which information specialists can easily identify the core issues of biology problems, and b)

reduce research costs associated with applying information theory to biology problems.

5.1 Introduction

5.1.1 Bioinformatics

In 1989, the U.S. National Institutes of Health invited James D. Watson—Dbest known
for describing the double-helix structure of DNA—to establish a human genome research
center. The guiding objective for researchers from the United States and 17 other countries
has been to identify over 3 billion DNA sequences that make up the human genetic code.

The project has generated an enormous amount of data that needs to be organized and
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analyzed. This has lead to an explosion in research in the field of bioinformatics, which
combines the domains of information science and biology. Communication among

researchers in the two fields is critical to achieving research success.

5.1.2 Problem-Based Learning

Problem-based learning—an .idea that “originated in medical education in the
1960s—is learner-centered rather "than instructor-centered [112, 113, 114, 115]. It is
considered not only a curriculum ‘erganizing method; but also an instructional strategy and
learning process for dealing with poorly structured real world problems [116, 117].
According to Wegner et al. (1998), the process involves a) defining the problem, b)
determining whether information is lacking, c) collecting and categorizing related
information, d) identifying content and learning targets, e) examining methods for solving

the problem, and f) finding optimal solutions [118].
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Learners must train themselves in problem solving and communication skills in order
to manage and apply learning information [119]. Instructors are viewed as partners,

consultants, advisors, or trainers.

5.1.3 Concept Maps

Novak used the meaningful learhing theory of American cognitive psychologist David
Ausubel to establish a concept map instructional strategy [120]. The method emphasizes

the integration of old and new coneepts into newer concept skeletons.

5.2 Instructional Design

The five categories of bioinformatics applications are a) establishing and integrating
databases, b) analyzing sequences, c¢) analyzing structure and function, d) analyzing
experimental data, and e) managing knowledge [121]. Bioinformatics knowledge has four

properties: a) a database for storing raw or processed data from a biology experiment, b) a
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simulation that embodies molecules for easy observation and analysis, ¢) one or more tools

for solving specific problems, and d) a package in which related tools are integrated.

The primary goal of a problem-based learning approach is actively transmitting

information in a manner that encourages knowledge construction. It is an approach that is

well suited to teaching scientific principles and properties [122]. Learners construct

meaningful knowledge on their own. Cognition helps in terms of adaptability—the

integration of new data with previous experiences instead of the discovery of specific

entities. In other words, individuals build knowledge through an adaptation process [123,

124]. When constructing knowledge in interactive environments, learners must address and

resolve cognitive conflicts based on past experiences that have received repeated

confirmation.

Barrows (1985) lists the five primary characteristics of problem-based learning as:

1. Using problems as the starting point of learning.

2. Using problems that are not well structured and without standard answers.

3. Regarding problems as learning content.

4. Valuing small group learning over a teacher-centered approach.
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5. Helping learners understand that they must accept responsibility for their learning

[125]. Teachers serve as coaches who help learners practice cognitive skills.

Figure 5. 1 presents the process of our problem-based bioinformatics instruction approach

based on these characteristics are listed in Table 5.1.

problem problem data collection
development understanding and analysis
\ 4
implementation solution problem
and evaluation strategy analysis

A

Figure 5. 1: Implementation flowchart for problem-based approach to teaching

bioinformatics.
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Table 5. 1: Implementation table for problem-based approach to teaching

bioinformatics.

STEP | STEP NAME ELABORATION
1 Problem 1.1 Problem design: open-ended and poorly structured on a
development biological topic.
2 Problem 2.1 Hypothesis: pose and ponder question.
understanding 2.2 Construct concept maps: determine knowledge needed to solve
problem.
3 Data collection 3.1 Data sources: networks, books, magazines, specialists, and CDs.

and analysis

3.2 Sharing: small group discussion and evaluation of sources and

data.
4 Problem analysis 4.1 Thinking: Who, What, When, Where, Why and How.
5 Solution strategy 5.1 Evaluation: from correct and useful information.
6 Implementation 6.1 Display concept’maps: construct knowledge relationships and

and evaluation

propose problem strategy.

6.2 Propose result for biologists to evaluate and analyze.

We adopted three types of concept maps for our approach:

1. Spider-web Maps
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In spider web maps, links connect minor types of major concepts; each minor concept

can be extended in a manner that leads to a more complex map. The major concept in the

example presented in Figure 5.2 is protein structure, and each of its four minor concepts

represents one structure type.

Primary Secondary
Structure Structure

Protein Structure

Tertiary Quaternary

Structure Structure

Figure 5. 2: An example of a spider-web map.

2. Chain Maps

Each link in a chain map either leads to or enables next concept.. For example, a PHD

algorithm generates the predictive result of the secondary structure shown in Figure 5.3.
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Primary Protein Structure

A 4

PHD Algorithm

\ 4

Predictive Result of Secondary structure

Figure 5. 3: An example of a chain map.

3. Hierarchy Maps

Hierarchy maps are usually viewed as the means by which knowledge is organized in

the human cerebrum. A hierarchy map of structure alignment applications is shown in

Figure 5.4.
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Applications of Structure Alignment

Classification Drug Design Phylogenetic Tree

Protein Function Prediction

Figure 5. 4: An example of a hierarchy map.

5.3 A Bioinformatics Teaching Plan

The teacher may propose a biological question related on life and learners discuss that
question by a succession of group discussion in the experiment or the media. While
discussing, learner carries on the cooperative learning with others and develops his

analysis ability.

Objective: To build an understanding of the definition of four protein structures.
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Guidance Question: How do the following physiological reactions occur: enzyme

catalysis, protein transportation and storage, immunoreactions, nerve impulse generation

and propagation, and growth and differentiation?

First, learners will be guided to information on the importance of protein structure and

secondary protein structure prediction. They will rehearse the protein structure prediction

problem by using neural networks to design original solutions (Table 5.2).

Table 5. 2: Teaching plan design using a problem-based approach for secondary
protein structure prediction.

Topic Secondary Protein Structure Prediction.

Object Learn the four primary types of protein structure.

Keywords Protein structure, secondary structure prediction, neural networks.
Introduction Proteins play a prominent role in all biological reactions. Their main functions

include enzyme catalysis, transportation and storage, immunoreactions, nerve

impulse generation and propagation, and growth and differentiation control.

Guidance How to identify protein structure?
If it cannot be obtained from a biological experiment, it can be predicted by its

primary structure.

Goal Propose an algorithm for protein secondary structure prediction.
Practice 1. Difficulties involved in determining protein structure from a biological
experiment.

2. Understanding relationships between secondary and tertiary protein
structures.
3. Understanding relationships between secondary and primary protein

structures.

4. Perform a web-based protein structure search.
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5. Train and test datasets for neural networks.
6. Observe the capability and characteristics of neural networks for predicting
secondary protein structures.

7. Refine the neural networks approach.

Method Video media, small group discussion, brainstorming, problem solving.

Activity 1. Problem understanding.
a. Use key points for topic discussion.
b. Propose questions.
c. Ponder the problem.
2. Data search and analysis.
a. Gain deeper understanding of problem.
b. Display search results and identify references.
c. Share knowledge with other group members.
3. Problem analysis.
a. Brainstorm to check data and opinions for correctness.
b. Who, What, When, Where, Why and How.
4. Solution strategy.
a. Create strategy as a team.
5. Conclusion.
a. Identify fihal solution strategy.

b. Perform evaluation:

Reference Bioinformatics / Oxford University. Press

Teaching Bioinformatics: The Machine Learning Approach / Baldi, Pierre. /
Materials Brunak, Soren. / NetLibrary, Inc. / MIT Press

Website Protein Structure: NCBI: http://www.ncbi.nlm.nih.gov/Structure/
Reference Protein Database: PDB: http://www.rcsb.org/pdb/

DSSP: http://www.cmbi.kun.nl/gv/dssp/

Bioinformatics combines information science and biology—two fields with forms of

logic that are difficult to negotiate. Here we proposed a hybrid bioinformatics teaching

approach that uses problem-based learning techniques and concept maps. Problem-based

learning can be regarded as a knowledge development and learner guidance system based
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on well-constructed questions; and concept map construction can be used to make learning

meaningful. Using this approach, learners can construct biology knowledge and identify

important topics and the best potential solutions to a problem.
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Chapter 6.

Conclusions and Future Research

Identifying the best way to predict’ protein secondary structure is not a
winner-take-all race, but a slow process of identifymng ways to extract regularity among
sequence patterns. The contribution of this research is to add a clustering feature to a
steady-state genetic algorithm. Clustering not only generates initial genetic algorithm
populations, but also provides a solution when low-confidence schema cannot be applied
to a problem. The protein secondary structure prediction problem was used to test a lesion
study. By adding the clustering schema, predictive accuracy was improved by
approximately 12%. As part of the competitive study, an associate rule and decision tree

were also used to find schemata, but the cluster-based genetic algorithm is more capable of
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finding a larger number of schemata. The schemata found by the two methods can be

included with schemata identified by a cluster-based genetic algorithm.

Regarding schemata applications, results from third-generation methods of secondary

structure prediction were used to define dead areas that PSIPRED and PROF are not

capable of predicting. The schemata improved dead area prediction accuracy by between

40 and 60%. Accordingly, this model was used as an example for designing a teaching

plan using a problem-based approach.

There are several possible directions forsfutureresearch. First, although sequence schemata

are currently treated independently, they canbe combined for the purpose of characterizing

specific secondary structures. One goal isto-apply different composition operators (e.g.,

Boolean connectives) to combine schemata, or use higher-order models (e.g., HMM) to

establish more realistic representations of relationships among different schemata.

A second goal is to apply cluster-based genetic algorithms to commonly used protein data

sets to generate useful schemata as a feature of other protein secondary structure prediction

tools for verifying the effectiveness of learned schemata.

Another goal involves the paper cluster-based genetic algorithm that was used in this

research to find regularity in various protein secondary structures in terms of sequence

patterns. However, the application of a cluster-based genetic algorithm and the use of
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sequence patterns inevitably incur process and representation biases that can either help

identify useful inductive leaps or hinder the learning/mining process. These biases must be

evaluated in terms of usefulness for various protein domains.
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Appendix A

Schemata From PDB _select with cluster number: 70

A217 PSV*VDH T TIKL IRS*#*Q*H
IRS*%Q*H IRS*+QH *TS*KMH VER#**DE
T TIKL VER*#4DE #EFORGH F¥T**SNE
IRS*¥Q*H F¥T*#*SNE FCHs* VP 15 YFOKIKE
VER*#DE Y KIKE PSV:A#VDH VARSTEHL
Y#r#KIKE VA#***TEHL IRS*QFH (i
VA*TEHL T TIKL VER***DE #TSHKMH
T TIKL *TS*KMH FiT%+SNE S CHRGH
*TS*KMH R RGH Y#SKIKE FCHVPH
IRS*#*Q*H PSV**VDH VA*TEHL PSV#*VDH
VER*##DE IRS*4Q*H T TIKL IRS*#*Q*H
F¥T**SNE VER*##DE *TS#*KMH VER**DE
Y KIKE F*T**SNE #ErRGH F¥T**SNE
VA**TEHL Y#eKIKE FCH*VP*H Y#esKIKE
T TIKL VA**TEHL PSV#4VDH VA#*TEHL
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WE#VR*H
*AFHFHH
CHFFDH
II##4S*PH
SM#*TY*E
FYV*D*E
#N##*DKE
EXE*#*VME
*KFRARME
*QL#**RE
MY,
LWA*#C*L,
EW ML,
AL
KTK**QWRL
ALK#YKL
DRV*#WVL
WY#HRIDL
KPV#T*YH
MWP#5YH
WE*VR*H
*ARHFH
CHFHDHH
IS *PH
SM#TY*E
FYV*DE

E*E*5VME
*K R ARME
N#sNWAE
*QLFRE
MYTsiss],
LWA*SCHL
EWHM#L
T
KTK**QWRL
ALK#*YKL
DRV*WVL
WY#*RIDL
KPV#*T*YH
MWP#ssYH
WE#**VR*H
*ARHFRH
EW#FIWH
PVG*HM*H
CHFED*H
[P+ $*PH
SM#TY*E
FYV#D*E
N DKE
E*E**VME
SR ARME
NFHMWAHE
#QL#RE
SID***PRE
MY,
LWA*SCHL
EWHM
ST
KTK**QWRL
ALK#*YKL
DRV#WVL
WY#**RIDL
KPV#*T*YH

MWP#¥YH



WE**VR*H
*AEFRH
EW**EIWH
PVG*#*M*H
CHFFD*H
IS *PH
SM##*TY*E
FYV##4DAE
#N#DKE
E*E#*VME
*K#k AFME
N WHE
*QL*FRE
SID***PRE
MYT#sAL,
LWA®HCHL
EWHs5M#L
ST
KTK**QWRL
ALK***YKL
DRV*#WVL
WY*RIDL
KPV*T*YH
MWP##YH
WE**VR*H
*AFRFFH
EW*+FIWH
PVGH#M#*H
CHFF**DHH
I##+S*PH
SM##+TY+E
FYV##DE
##N##DKE
E*E***VME
*K e AME
NREMWHE
*QL#*HRE

SID***PRE

*WK**HIDE
MYs#sL,
LWA*##CHL,
EW#HM#L,
TR
KTK**QWRL
ALK*#*YKL
DRV**WVL
WY#*RIDL
KPV#*T*YH
MWP##¥+YH
WE*HVR*H
*AFHHIFH
EW**FIWH
PVG*HM*H
CHFFDH
IS *PH
SM#TY+E
FYV##D*E
##N#+*DKE
E*E***VME
FKFHARME
N#*HMWHE
*QL#**+RE
SID*#*PRE
*WK**HIDE
MYTs#sL
LWA*#C*L,
EW*HM#L,
#HTHHTIL
ALK*#¥YKL
DRV**WVL
WY##RIDL
KPV**T*YH
MWP#5YH
WE*HVR*H
*AFHIFFH

EW*FIWH

PVG***M*H
CHFFHDH
IS *PH
SM#TY+E
FYV#*D*E
#N#HDKE
EXE***VME
HKEHRARME
N MWHE
#QL¥**RE
V#Q#**NDE
SID***PRE
*WK**HIDE
MYTssL
LWA*CHL
FETHERT]L o

ALK##FYKL

DRV WVL -

WY ***RIDL

KRV TRy =

MWPsYH
WE**VR*]
EW*FIWH
PVGH##M*H
I##4S*PH
SM#*TYE
FYV#D*E
EXE***VME
V#Q#*NDE
SID***PRE

*WK**HIDE

MYT####EL
LWA*#*C*L
EW#*HFM*5L
FETHRFTIL
ALK***YKL
DRV***WVL
WY*#*RIDL
IC*¥**G*CH
KPV**T*YH
MWP#*#+YH
WE***VR*H
*ARFREFH
EW***F[WH
PVG***M*H
CxP#**D*H

[I*#*S*PH

FYViDE
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NEEMWE

V#Q#**NDE
SID*#*PRE
*WK**HIDE
MYI###L
LWA*CHL
EW ML,
#HTHTIL
ALK#**YKL
DRV##*WVL
WY##RIDL
KPV#T*YH
MWP##5YH
*ER***RH
WE#**VR¥H

EW***FIWH
PVGHHM#H
CHFFDH
II##4S*PH
SM###TY*E
FYV*+D*E
##N##*DKE
E*E***VME
*KFHARME
*QL#**RE
V#Q***NDE
SID*#*PRE
*WK**HIDE
MY
LWA*#C*L,
EW ML,
TR TIL
ALK#*¥YKL
DRV*#WVL

WY***RIDL

F 162

LW GH
DQM##*YH
M#5VELL
LW GH
*V§#*RSH

DQM###+YH
M#H5VELL
LW GH
*V§#4RSH

DQM###YH
M#H5VELL
LW GH
*V§#4RSH

DQM##*YH

M5 VELL

LW GHH
#V§*RSH
DQM#*#YH
M##5VELL
LW GHH
#V§#RSH
DQM#*¥+YH
M VELL
T+ GRL
LW*eGHH
#V§*RSH
DQM#*#+YH
F*A*LAWL
M#*VELL
T+ GRL
LW GHH
#V§*#RSH
DQM#*#+YH
F*A*LAWL
M#*HVELL
T4 GRL
LWk GHH
#V§©RSH
DQM#*#+YH
L CME
F*A®LAWL
M#*VELL
T###4 GRL
LW GHH
#V§©RSH
DQM#**+YH
L CME
F*ARLAWL
M#*VELL
T#4 GRL
LW GHH
#V§*#*RSH

DQM###*YH



FFARFLFWL
M##VELL
T+ GRL
LWL
*VSHRSH
DQM##xYH
SRR CME
FFARFLFWL
M##VELL
T+ GRL
LWHss:GFH
FVSHHRSH
DQM##xYH
s COME
FEASLAWL
M##VELL
T+ GRL
LWk G
*VS*+RSH
DQM#*#xYH
AMFRFVECE
SRR COME
P ARSLFWL
M####VELL
T#4 GRL
HLRRESEH
LWssksGrH
#VS##RSH
DQM#*#+YH
MV ACE
HH**CME
FEARSLFWL
GQE**QAL
M####VELL
T#4 GRL
SR

#VS#H+RSH
DQM#*##xYH
EMFEFVECE
L CME
B AR WL
GQE***QAL
MEsssVELL
T*++ GRL
LRRRSEAL
LWk GHE
*VS*H+RSH
DQM*##*YH
AMHVACE
#sH s CME
FrA* ¥ WL
GQE***QAL
Mk VELL
T#=LGRL
GHVHFRYHL
HLRRRSEAL
LWk GHE]
*VSHEEERSH
*C##*LPLH
DQM##xYH
AMFRVECE
LR CME
FrAF WL
GQE***QAL
MR VELL
TH+LGRL
GHFVHsRYHL
FL RSB
LWistskGHH
#VS#HRSH
*C#LPLH
DQM*##xYH
HM###VACE

FHHHCME

A *WL
GQE***QAL
M##+VELL
T#***LGRL
GHVFFFYH],
KSR
SH***VRVH
LW GHH
#V SRR SH
*C***LPLH
DQM*##¥YH
“MF#HVACE
P AR W
GQE***QAL
M5 VELL
T4 GRLy
G*V**;&*L
*L**XSE*L

$##+*VRVH

Y SRRRRSI
+Ce+ PLH
#*QT**NDH
DQM#sYH
AMFVHCE
sH e CME
P AR W
GQE**QAL
M##+VELL
T#+LGRL
GrVHERY [

] QR

T 236

#YR*#\HE

PVA kg
GK***L*LH
LD**LLRH
*YR***¥MHE
PVA kg

IP*#**MMHL
GK**#*L*LH
LD**LLRH
*YR*#*¥MHE
PVA kg

IP***MMHL
GK**#*L*LH
LD**LLRH
*CS*FRVDE

#YR***¥MHE

PV A##s#ERRE

5 QLIFFFVHL

P #;MMHL

LD***LLRH
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*YR***MHE

QLI##+V*L,
IP#*MMHL
GK#**L*LH
LD**LLRH
*CSHFVDE

*YR*VHE
PV AR

QLI¥#+V*L,

IP#**MMHL
GK***L*LH
LD**+LLRH
THM*CVH
#CS#RVDE

Y R*VHE

PVA#ski4E
QLIF#¥VHL,
IP#MMHL
GK***LH
LD***LLRH
T#M#*CVH
*HRKLH
*CS*+¥VDE
*YR***MHE
PV AR
QLIF## VAT,
IP#MMHL
GK** L H
LD***LLRH
T*M***CVH
MK**#VR*H
“*RESKLH
*CSERVDER
*YR***MHE
FME*G*E
PVA#ski4E
QLI¥#*V*],
IP*MMHL
GK* L H
LD***LLRH
T*M***CVH
MK*##VR*H
#*RESKLH
*CS*#*VDE
*YR***MHE
FEM**+G*E
PV As#s5E
QLIF#5VA],
IP*+MMHL
GK**+ *LH
LD***LLRH

T*M###CVH

MK***VR*H
*CS##*VDE
*YR*MHE
FHEM# s GHE
PV A##iss#E
FMFF*EGE
QLIF#VHL
TP+ *MMHL
GK*#*H
LD**LLRH
T*M#***CVH
MEK***¥VR*H
SR KLH
*CS**VDE
*YR**MHE
FEM*GHE
PVA*#s##5E
FMFF*EGE
QLI¥#*V*],
IP*MMHL
GK*#**H
LD***LLRH
T*M#**CVH
ME# 5 VR*H
SRR H
*CS*#*VDE
Y R**MHE
FEMEGHE
PVA*#s##5E
FMFR*5GE
QLI¥#*V*],
IP***MMHL
GK*L¥LH
LD**LLRH
T*M##**CVH
ME*VRAH



*CS*#*VDE
*YR*#*MHE
YD#*ML*E
FAM#HGHE
PVA#sE
HIMFAGE
QLI#HVHL,
IP**MMHL
GK***L*LH
LD**LLRH
T*M#+CVH
MK**-VR*H
#HREHKLH
*CS*#VDE
*YR**MHE
YD#*ML*E
FHM#HGHE
PVA#SE
HMFHHGE
QLIF*HVAL
IP***MMHL
GK***L*LH
LD**LLRH
THM##+CVH
MK#**VR*H
#HRFHKLH
*CS*H¥VDE
*YR***MHE
SWP##ME
YD***ML*E
FHM#HGHE
PVA®HHE
HMFH4GE
QLIF#HVAL
IP#+MMHL
GK***L*LH
LD#*LLRH

TH*M***CVH

MK**VR*H
#R#EHKLH
*CS#*VDE
*YR*MHE
SWPHHME
YD#MLAE
FAM#GHE
PV A
HMFEGE
QLIF##VHL
IP#*MMHL
GK**LFLH
LD***LLRH
T*M#*#CVH
MK**VR*H
*CS**VDE
*YR*MHE
SWPHHME
YD#MLAE
PV A
HMFGE
QLIF##VHL
NRL#*#]L,
IP#*MMHL
FTF<HEL
GK**L*LH
LD***LLRH
T*M#**CVH
MK**VR*H
R EHKLH
*CS*H*VDE
*YR*MHE
SWPHsME
YDEMLAE
FAM#GHE

PV A###kFE

WS THEE
HM#GE
QLIF*#VAL
NRL###IL,
IP***MMHL
FTF*+HEL
GK***L*LH
LD***LLRH
T#M#**CVH
MK#**VR*H
#RiKLH
#CS¥HVDE
*YR**MHE
SWP#H*ME
YD#*#*ML¥E
FAM##5GHE
PVA*#HE
WegHkTHEE
il

NRLAHHIL
IP#+MMHL
FTF#*HEL
GK##*L¥LH
LD*#LLRH
T*M*#5CVH
MK**-VR*H
H#eFMMH
#R*KLH
#CS**VDE
*YR**MHE
SWPHsHME
YD#*#*ML*E
FEM#HGHE
VAR
WS THEE

RDA*##*VL,
QLI¥*#*V*L
NRL####]L
[P***MMHL

FTF***HEL

W 368
FS**R*LH
*DFFESA*H
THEE*YHE
D*K**+]KE
*GK***GGE
*AM**VYPL
PDL***QQL

DR A

THGKHHGGE
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*AMFFVYPL

 PDL***QQL

GHHHMY*L
KFM##HLAL
VD THHH
FS***R*LH
*DFFSAYH
THH*YH[E
*Hi#sWCYE
D¥K#*4IKE
*GK**GGE
*AM*¥VYPL
PDL*#*QQL
GH*HMY*L
KFM##4LAL
SNQ¥HKAL

FS*#*R*LH
*DFFSAYH
THH*YHE
*H#**WCYE
D*K**#IKE
*GK**GGE
*AM**VYPL
PDL##QQL
GHHMY L
KAM#LAL
SNQ#KAL
VDT H
ES**R*LH
*DFFSAYH
THr*YH[E
*H#**WCYE
D*K**#IKE
*GK**GGE
*AM*FVYPL
PDL##+QQL
GHHMY L
KAM#HLAL
SNQ¥K AL
VDT
FS**R*LH
*DFHSATH
e Y*[E
*H#*WCYE
D*K**IKE
*GK**GGE
*AM*VYPL
PDL#*+QQL
GH oMY AL
KAM#HLAL
SNQHKAL
VDT
FS**R*LH

TorxY (B
*HE*WCYE
D*K**+IKE
*GK**GGE
*AM**VYPL
PDL#*QQL
GHMY AL
KAM#HLAL
SNQ*##K L
*NI**MHKL
VD#HT#
FS**R*LH
*DF*HSARH
THH*Y[E
#He*WCYE
D*K#**#IKE
*GK***GGE
*AM**VYPL
PDL#*QQL
GHMY AL
S*E**HHLL
KAM#HLAL
SNQ##K L
VSA®THL
*NI**MHKL
VD T#5H
ALQ***SDH
FS**R*LH
*DFHSATH
THH*YH[E
“Ho*WCYE
D*K#**+IKE
*GK***GGE
*AM#*VYPL
PDL**QQL
GHHMY AL
S*E**HHLL



SNQ#K*L,
VSAHTHL
*NI*MHKL
VD##T#5H
ALQ##*SDH
FS#*R*LH
*DHerSARH
Ty H[E
HoWCYE
D#K*IKE
*GK#*GGE
*AM#*VYPL
PDL##:QQL
GHHRMY AL
S¥E#HHLL
KEM#LAL
SNQ#HKHL,
VSAHSTAL
*NI**MHKL
VD#ETH5H
ALQ***SDH
FS***R*LH
*DFRHSARH
Ty H[E
*HHWCYE
D¥K**IKE
*GK#**GGE
*AM#*VYPL
PDL#**QQL
GHMY*L
S¥E**HLL
KEM##LAL
P*S*+HTL
TDCHHAL
SNQ#HKHL
VSA#HTAL
AWK AL,

*NI**MHKL

VDT
ALQ***SDH
FS**R*LH
*DF*SATH
THH*Y[E
*HF¥WCYE
D*K#**+IKE
*GK***GGE
*H#**RAHE
*AM**VYPL
PDL#**QQL
GHHMY AL
S*E**HHLL
KAM#FHLAL
P*S*#¥HTL
SNQ##K L
VSA®HTAL
AWK####L
*NI**MHKL
VD## T H
ALQ***SDH
FS**R*LH
*DF**SATH
THH*Y[E
HE*¥WCYE
D*K#**#IKE
*GK***GGE
*Hi**R¥HE
*AM**VYPL
PDL#*QQL
GHMY AL
SYE**HLL
KAMFLAL
P#S*#¥HTL
SNQ#KAL
VSA®HTAL

INU G

*NI**MHKL
WK=K *HH
VDTS
ALQ***SDH
FS**R*LH
DR SAYH
Tk Y 5[E
A WCYE
DHK*HKE
*GK**GGE
*H#R*HE
*AM#*VYPL
PDL##+QQL
GHeMY L
SHEFEFHLL
KAMELAL
P#S##HTL
SNQHEKF,
VSA# T

NI *MHKL ; :

WHKHHGHHH
ALQ#**SDH
FS*R*LH
Tk Y*[E
SHEHWCYE
D*K**#IKE
*GK#**GGE
*AM#**VYPL
PDL#***QQL
S*E***HLL
PrS*HHTL

SNQ#K AL

VSA®HTHL
AWK
*NI**MHKL
WHKHKHH
VDT
F¥V#*RCWH
ALQ***SDH
VYE#HsYH
QKI**RKPH
FS***R*LH
*DFHSARH
THHYHIE
*H*+WCYE
D¥K**4IKE
*GK**GGE

J FAMFVYPL

DPDL#+QQL

SFEHHEL
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PASHYHTL
SNQ#HKHL
VSA#HTHL,
AWK
*NI**MHKL
WHKK*HH
VD THHH
F¥V#*RCWH
ALQ***SDH
VYE##¥YH
QKI**RKPH
FS***R*LH
*DFHSAYH
THH*YH[E
*H***WCYE
D#K**IKE

*GK***GGE

*H**R¥HE
*AM#**VYPL
PDL#**QQL
GHoMY*L
E*DEKL
S¥E#**HLL
KEM#LAL
PS#*¥HTL
SNQ#HKAL
VSAHTHL
AWK#3L,
*NI**MHKL
WHKHK*HH
VD# T4l
F*V**RCWH
ALQ*#*SDH
VYE#**YH
QKI**RKPH
FS**R*LH
*DF¥SATH
Ty H[E
D#K**IKE
*GK**GGE
*H*oRHE
*AM#**VYPL
PDL#**QQL
GH MY L
E*DEKL
SYE**HLL
KEM#eLAL
PS#*¥HTL
SNQ#KAL
VSAHTAL
AWK
*NI*MHKL
WHKCHKFHH
VD#E T4

F*V*#*RCWH

ALQ***SDH
VYE###YH
QKI**RKPH
FS#**R*LH
*DFRRSAYH
TH**YH[E
D¥K**KE
*GK#**GGE
*HFHRAHE
GGT#+C*NL
*AM*VYPL
PDL#**QQL
GHHsMY*L
E#**DEKL
S¥E**HLL
KFM#LAL
PrS*HHTL
SNQ#HKHL
VSA##ITHL,
NG
*NI**MHKL
WHKHKHH
VDT
F*V#*RCWH
ALQ***SDH
VYE###YH
QKI**RKPH
FS##*R*LH
*DFHRSARH
TH*+Y[E
D#K**IKE
WDH#**F*AE
*GK##*GGE
*H*+R¥HE
GGT#+C*NL
*AM*VYPL
PDL##*QQL



E*DEKL
S¥E#HLL
KEM#eLAL
PrS*eHTL
SNQ#K*L,
VSAHTAL
AWK
*NI*MHKL
WHKCHKFHH
VD#RTH5H
F*V#*RCWH
ALQ#**SDH
VYE#*YH
QKI**RKPH
FS#*R*LH
*DFerSARH
Ty H[E
D#K**IKE
WDH#**F*AE
*GK#**GGE
*H#HRAHE
GGT#**C*NL
*AM*VYPL
PDL#**QQL
GHMY*L
E###*DEKL
S¥E**HLL
KEM##LAL
PrS*HHTL
SNQ#HKHL
VSA#®THL,
AWK

*NI**MHKL

Y 247
#pr#+QRTH
T*V**YYH

G*M**QGH

PWD#*$#+E
DN#**#[*NE
M##HIKHL
MTK# %5
#Pi#QRTH
T*V#*4YYH
G*M***QGH
PWD#*$#+E
DN#**#[*NE
kPQ**«kP*L
M##HIKHL
MTK# %
#Pi#+QRTH
T*V#*4YYH
G*M***QGH
PWD#*$#+E
DN#**#[*NE
TFQ***VHE
M##HIKHL
#Pi*+QRTH
THV#*YYH
G*M***QGH
PWD#*$#+E
DN#*4[*NE
TFQ***VHE
#M##*VTHL
M#HIKL
#PisQRTH
THV#*YYH
G*M***QGH
PWD#*$#+E
DN#**4[*NE

TFQ***VHE

MV THL
*pQFEPHL
M#HKHL
MTK##5H
#pri+QRTH
THVH*YYH
G*M**+QGH
PWD#*S*E
DN##HT*NE
TEQ***VHE
MV THL
*pQEPHL
M#HKHL
MTK##5H
#p#i+QRTH
THVH*YYH
G*M*+QGH
PWDHHE
DNF**[4NE

*PQ***P*L
M****iK*L
MTK*##**%H
*PrE*QRTH
T*V#**YYH
G*M***QGH
PWD#**S**E
[*#***ECPE
DN#**[*NE
TFQ***VHE
*M*#FVTHL
KPP
MF#FFK*L
MTK**##*H
*prEEQRTH
T*V**YYH

G*M*QGH

PWD*S#E
[+ ECPE
DN##4[#NE
TFQ***VHE
VEM**M*EL
SNV THL
HPQEHPAL,
MoK
MTK# 55
#prrsQRTH
TV YYH
G*M***QGH
PWD*S#E
[#+ECPE
DN##4[*NE

TFQ***VHE

5 VEM#M¥EL

MY THL

#PQHHPAL
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*PHREORTH

CTEVERYYH

G*M#**+*QGH
PWD**S*+E
I#+#+ECPE
DN#*#[*NE
TFQ***VHE
VEM**M*EL
*MF#FVTHL
*PQIHFPHL
M#HHIKFL
MTK#*#H
*p#*QRTH
THV¥HYYH
G*M#**QGH
PWD#*S#+E

[#+#+ECPE

DN#**[*NE
TEQ***VHE
VEM#**M*EL
#M##*VTHL
FPQIHFPHL
M#HIKHL
*pi#QRTH
TH*V**YYH
G*M#**+QGH
PWD*S#E
[##*4ECPE
DN#**[*NE
TEQ***VHE
VEM#*M*EL
*M##*VTHL
FPQIHFPHL
M#H KL
MTK#*%H
*PiQRTH
THV**YYH
G*M#*+QGH
PWD#*S#4E
[#*%ECPE
MQ#**RAFE
DN#*4[*NE
TEQ***VHE
VEM#*M*EL
*M##*VTHL
FPQIHFPHL
M KL
MTK#*#0H
*PiQRTH
T*V*eYYH
G*M#*+QGH
PWD#S#E
[+ ECPE

MQ***RAFE

DN##+[*NE
TEQ#**VHE
VEM#**M*EL
#M#V THL
M#HHK AL
MTK#*#4H
*p##+QRTH
T*V*erYYH
GHM#QGH
PWD#$#4E
[##4*ECPE
MQ#***RAFE
DN##+[*NE
TFQ*VHE
VEM*M#EL
#M##*VTHL
QAP
M#HHK AL
MTK*#4H
#pi#*QRTH
T*V*eYYH
G*M#QGH
PWD#S#4E
[##4*ECPE
MQ#***RAFE
DN##+[*NE
TFQ***VHE
VEM#M#EL
#M##*VTHL
M#HK AL
MTK*#54H
H##GHSH
#Pi#*QRTH
T*V*eYYH
G*M*+QGH

PWD**S**E



[##%*ECPE
MQ***RAFE
DN#*#[*NE
TEQ***VHE
VEM#**M*EL
#M#eVTHL
HPQIHPAL
M#HHKAL
MTK #5551
H##GHSH
#ptQRTH
THV**YYH
G*M**QGH
PWD*#S*E
[##*ECPE
MQ**RAFE
DN##+[*NE
TEQ***VHE
VEM#*M*EL
#M##:VTHL
*PQEFHPAL
M#HHK AL
MTK##4H
H##G*SH
*FKF*HCHH
*p##+QRTH
T*V*eYYH
G*M#**QGH
PWD#S#E
[##4*ECPE
MQ***RAFE
DN##+[*NE
H¥K#HKE
TFQ**VHE
VEM*M*EL
“M##*VTHL
*PQEFHPAL

MTK e 5H
H###G#SH
SFK*CHH
#Pri*QRTH
THV*eYYH
G*M##*QGH
PWD*S*4E
[#ECPE
MQ#RAFE
DN*T#NE
TFQ***VHE
VEM*MAEL
#M##*VTHL
#PQHHPAL

V 205
TK***A*GH
*DI***RRE
AN#¥TKYL
TK***A*GH
Q¥T#*CLE
*DI***RRE
AN#¥TKYL
TK***A*GH
Q¥T¥*CLE
W HKLKE
*DI***RRE
AN#¥TKYL
TK***A*GH
Q¥T#*CLE
Wr#KLKE
*DI***RRE
AN#TKYL
*RK**DH
TK***A*GH

Q¥T#CLE

WHKLKE
*DI***RRE
AN#TKYL
#RK**+DH
TK#***A*GH
Q*T***CLE
WHEHKLKE
*DI**RRE
AN#TKYL
#RK**++DH
TK***A*GH
Q****CLE
WHEHKLKE
*D[**RRE
AN#=*TKYL
TK#**A*GH;
Q*I*‘**bLE
W‘ﬂ;***KLKE

*DI+*RRE

VOP##+ QWL

AN%**TKYL
TK***A*GH
Q¥T¥CLE
WK LKE
*DI***RRE
VQP#HCWL
AN®STKYL
HLKTL
*RK***DH
TK#***A*GH
Q¥T¥*+CLE
WK LKE
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