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Abstract--This paper presents a new method for estimating unbalance distributions of flexible shafts and 
constant eccentricities of rigid disks based on the transfer matrix method for analyzing the steady-state 
responses of rotor-bearing systems, in which the transfer matrix of a flexible shaft is derived in a continuous 
sense with any spatial unbalance distribution. Rotary inertia, gyroscopic and transverse-shear effects are also 
included. When deflections and deflection angles of one free end are measurable, the unbalance distribution of 
shafts and disks can be estimated under operating conditions by the proposed method. The main advantage of 
this identification technique is that only the state vector of the one free end of the rotating shaft need to be 
measured. Justification of the method is presented by numerical simulations. © 1997 Elsevier Science Ltd. All 
rights reserved. 
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cross-section area, diameter and density of the shaft 
Young's modulus, shear modulus and shear factor 
transverse and polar area moment of inertia of the shaft 
length of the shaft segment 
bending moment and shear force 
axial force and torque acting on the shaft 
eccentricity of the disk and projections, respectively, in X and Y directions 
eccentricity of the shaft and projections, respectively, in X and Y directions 
deflection in X and Y directions of fixed coordinates XYZ 
position and time coordinates, respectively 
slope in the XZ and YZ planes 
angular position of shaft unbalance in moving coordinates 
rotating speed 
the number of the term in Fourier series 
the number of the shaft with unbalance distribution 
the number of the disk with unbalance eccentricity 
the number of rotating speed 
the number of parameters in unbalance distribution 

Subscripts and superscripts 
b, t caused by bending moment, shear force 
c, s associated to cosine, sine terms 

h, p homogeneous solution, particular solution 
r, 1 right, left 

x, y components in X and Y directions 
~ labeled for column vector 

differentiation w.r.t. Z 

I N T R O D U C T I O N  

Rotor unbalance considered does not only cause vibration, it also transmits rotational forces to 
rotor bearings and to the supporting structure. The forces thus transmitted may damage the 
machine and shorten its working life. All rotors have residual unbalance during manufacturing 
because of machining tolerances and material inhomogeneity. Thus, it is necessary to balance these 
rotors, as carefully as possible, to ensure smooth running. 

Over the years, two major balancing techniques have commonly been employed; the modal 
balancing method, and the influence coefficients method. The modal balancing technique was 
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developed by Bishop [1] and further investigated by several researchers, such as Kellenberger [-2], 
Shimada and Miwa [-3], Shimada and Fujisawa [4] and Saito and Azuna [51. In this method, the 
critical speed mode shapes of the rotor must be known from either theoretical or experimental 
measurements. Also, mass distribution must also be determined from the geometry of the rotor. The 
accuracy of the method depends on the knowledge of the rotor mode shapes, which may become 
quite complex for modes higher than the second critical speed. The influence coefficients technique 
was presented by Goodman [6]. It has been improved and tested by several authors such as Lund 
and Tonneson [7], Tessarzik and Badgley [8], Tessarzik et al. [9, 10] and Everett [11], in the 
laboratory and acceptable balancing has been achieved. In general, this method requires an accurate 
measurement of vibration phase angle in order to produce acceptable results. Various field balanc- 
ing methods have also been developed, as discussed in detail in Ehrich [12]. 

The subject of balancing has been of interest to users of rotating machinery and further study in 
the theory and practice of balancing is still going on. Intuitively, it seems clear that the best way to 
balance a rotor is first to find the unbalance distribution and then add weights at given radial 
distances from the axis of rotation to compensate for it. However, due to deficiencies in methods for 
finding unbalance distribution, the concept of dynamic testing has long been emphasized. Conse- 
quently, we may not obtain the best quality of balance. 

The purpose of this paper is to present a method for estimating the unbalance distribution in 
flexible rotors. This article is an extension of the work of Lee [13], who first gave a complete analysis 
of a rotating shaft's continuous "state of unbalance". This method is based on the transfer matrix 
method (TMM) of analyzing the steady-state responses of rotor-beating systems. The rotor-bearing 
systems considered here are composed of flexible shafts with spatial unbalance distributions, 
multiple rigid disks with constant eccentricities and linear bearings. Each bearing can be represented 
by eight linearized parameters, i.e. four stiffness and four damping coefficients. Since the system 
considered here is driven by an unbalanced force, the steady-state of the rotor will only contain 
a synchronous frequency component. The rationale of the method is described as below. By 
transforming any continuously distributed shaft unbalance function into its Fourier series repres- 
entation, we can obtain the coefficients of the sine and cosine terms. Next, the overall transfer matrix 
including the shaft sections, bearings and disks is derived in terms of linear combinations of the 
unbalance parameters and the system parameters. Then, according to the boundary conditions, we 
formulate the normal equation by using the relations between these unknown coefficients and the 
known system parameters. Finally, identification can be realized from the simulated measured 
response data, i.e. the state variables of both displacements and angles measured at one free end in 
the shaft, induced by rotor unbalance using the least-squares method. The main advantage of this 
method is that only the states of one free end need to be measured, along with of course system 
parameters such as shaft geometry of shaft, material properties, rotating speed, bearing dynamic 
coefficients and so on. Justification of the method is given by numerical simulation. 

EQUATIONS OF DISPLACEMENT FUNCTIONS FOR THE UNBALANCED SHAFT 

In this section, the primary equations needed in this paper are given. For the detail derivation of 
them, the readers may refer to Lee et al. [13]. The governing equations of a rotating shaft 
considering the rotary inertia, gyroscopic, transverse shear effects and unbalance distribution can be 
derived as follows 
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Fig. 1. Geometries of a rotating shaft (or a disk) with unbalance mass. 

in X Z  plane and 
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in YZ plane, where q5 and r(Z) are shown in Fig. 1. 
Because the synchronous whirling orbit is elliptical in general, the steady-state solutions of the 

above two linear differential equations can be expressed as 

X(Z, t) = X¢(Z)coscot + Xs(Z)sincot 

Y(Z, t)= Yc(Z)coscot + Y~(Z)sincot (3) 

where Xo Xs, Yc and Ys are the displacement functions of steady-state responses. 
Since eccentricity function of shaft unbalance is assumed to be finite and piecewise continuous on 

each shaft section, its Fourier series representation can be uniquely determined, i.e. 

r(Z) ro + L F n~Z . ngZ~ = ,=~ k(rc),cos y + (rs), s l n y j  • (4) 

For the practical unbalance distribution of a rotor, convergence conditions (Wylie and Barret 
[14]) are always satisfied and would not cause any convergence problem. However, from the 
rigorously mathematical point of view, if the unbalance distribution does not converge at some 
points, the shaft can be cut at these points into several sections and then the solution can be obtained 
in a similar procedure. 

Substituting Eqns (2) and (3) into Eqn (1) and separating the coscot and sincot terms, the four 
ordinary differential equations can be obtained. The general solutions of the displacement 
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function can be expressed into the sum of homogeneous  and particular solutions as below. 

xo(z)  = x~ + x~ 

x ~ ( z )  = Xs ~ + x f  

Y~(z) = g? + rg 

5 ( z )  = r? + r? (5) 

where the homogeneous  solutions can be written as 

4 8 

X~(Z) = ~ Ai" e a'z'  cos biZ + ~, Ai" e a'z" cos b~Z 
i = 1  i = 5  

4 8 

Bi" e "'z" sin biZ + ~ Bi" e a'z" sin biZ 
i = 1  i = 5  

4- 

x ~ ( z )  = E 
i = l  

8 

A~" e "'z. sin b~Z + ~ A~. e "'z" sin b~Z 
i = 5  

+ 
4 8 

Bi" e "'z" cos biZ - ~ Bi" e a'z .cos biZ 
i = l  i = 5  

4 8 

Y~(Z) = - ~ Ai" e "'z" sin biZ + Y~ Ai" e "'z" sin biZ 
i = 1  i = 5  

4 8 

-- ~ Bi" e "'z" cos biZ - ~ Bi" e a'z" cos biZ 
i = 1  i = 5  

4 8 

Yh(Z) = ~, A i ' e a ' Z ' c o s b i Z -  ~ Ai 'e" 'Z'cosbiZ 
i = 1  i = 5  

4 8 

Bi" e "'z" sin biZ - ~ Bi" e "`z" sin biZ. (6) 
i = 1  i = 5  

The coefficients ai and bi are, respectively, the real and imaginary part  of  the characteristic values 
(details listed in Lee et al. [ 13]). 

When 4) = constant,  the particular solutions can be expressed by 

XP = (lo + #~.-cos --L-- + / ~ . .  sin 
n = l  

mrZ ~ . nrcZ) 
X~ (zo + L /~,-cos--L--- + --- .=1 ~s"' s i n - z - - )  

= + v~,- sin 
n = l  L 

= ,c . s sin --L-- Y~P (4o + v~,, cos + Vs,," (7) 
,=1 Z 

where coefficients (,/~, v are listed in Appendix A of  Lee et al. [13]. If  the angular  posit ion of  
unbalance varies along the shaft due to the mass center of  shaft in three-dimensional space, we can 
resolve r(Z) into the components  rx(z) and ry(z), respectively, in X and Y directions, with 4) = 0 ° for 
rx(z) and ~b = 90 ° for ry(z) for the shaft segment. Thus, we can obtain the part icular  solution of  
q5 ¢ constant  by superposing those of q5 = 0 ° for rx(Z) and ¢ = 90 ° for ry(Z) in the same manner  as 
~b = constant.  
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Differentiating Eqn (4) to yield the relationships of the real constants Ai and Bi of displacement 
functions and their derivatives can be written in the following form 

1 Fill = X s A 

{W} Y~ = IF]  
1 7 x 1 7  

(8) 

where Xc = [X c X'c X'~' X'~']', Xs = [Xs X; X's' X~"] t, Yc = [Y~ Y~ Y~' Yc"] t, Ys = [Is Y" 
Ys" Ys'"'] t, A = [A1 A2 A3 A4 A5 A6 A7 As] t, B = [B1 Be B3 B4 Bs B6 B7 Bs] t. 

Then introducing Z = 0 into the previous relations, it follows 

-xc(o)- 

{W(Z = 0)} = Yc(0) = [_M]_ . (9) 

Y~(O) 

1 

The deflections and their derivatives at Z = L can also be obtained from Eqn (7) and written in the 
following form 

- X c ( L ) -  

{W(Z = L)} = Yc(L) = [H]  . (10) 
Ys(L) 17×17 

1 

Combining two Eqns (8) and (9) results in 

{W(Z = L)} = [N] . {W(Z  = 0)} (11) 

where [N]  = [ H ] .  [M]-1 .  
We can also derive the following relations between the derivatives of the displacement functions 

and the state variables, represented in a matrix form 

{W} = [A] {S} (12) 
1 7 x 1 7  

where {W} = (Xc, X;, X~', X~", Xs, X's, X~', X~", Yc, Y;, Y¢", Y;", Y~, Is', Is", Is"', 1) t, {S} = {Xc, Xs, 
Yc, Ys, ac, as, tic, fls, Mxc, Mxs, Myc, Mrs, Q~c, Qxs, Qyc, Qys, 1)' and the elements of matrix A are 
referred to by Lee et al. [13]. 

Consider the boundary conditions at Z -- 0 and Z = L, we have 

{W(Z = L)} = [A]{S(Z = L)} = [ A ] { S I }  

{w(z = 0)} = [A]  {S(Z = 0)} = [A]  {So}. (13) 

The substitution of the above equations into (10) yields 

{S,} = [A] - l  I N ]  [A] {So } = [Ts] {So }. (14) 

Thus, the transfer matrix [T~], with the size of 17, x 17, is constructed by considering the effects of 
shaft unbalance to fit the general whirl of the elliptical orbits. 
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Fig. 2. A general rotor-bearing system. 
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Fig. 3. Model of a bearing. 
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OVERALL TRANSFER MATRIX FOR THE WHOLE SYSTEM 

A typical rota t ing shaft as shown in Fig. 2 is composed  of shafts, disks and bearings. The disks are 
assumed to be rigid with constant  eccentricities and defined by rigid mass  elements with gyroscopic  
effects. F r o m  the equi l ibr ium and compat ibi l i ty  conditions,  the relations of  the state variables 
between the right side and left side of an unbalance disk is expressed as 

The dynamic  model  of the bearings may  be simplified as a linear element (see Fig. 3). F r o m  the force 
equil ibrium, the relat ionship of the state variables between the left and right sides can also be 
obta ined  as below 

Details of [Td]  and [Tb] are listed in Lee et al. [15]. The overall transfer matr ix  of the system (refer 
to Fig. 2) is the relat ion between two free ends of  the shaft, which can be derived by relating state 
variables f rom one end step by step to ano ther  end, or 

{sin} = [ w ] { s 0 }  

= [ T s m l [ T b p ] E T s ( r a _ l ) ] [ T d q ] ,  , . . , [ T d l ] F T s 2 1 [ T b l ] [ T s l ] { S o }  • (17) 
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Because the shear forces and bending moments are zero at both ends, Eqn (16) becomes is l [ 11 ..]Is!] 
= 14721 W22 ue (18) 

0 0 1 

where S = [Xc, Xs, Yc, Ys, ~c, ~s, tic, fl~]t 0 = [0, 0, 0, 0, 0, 0, 0, 0]'. The state variables of stages 
0 can be solved by Eqn (17) and the state of other stages are obtained by multiplying transfer 
matrices from stage 0 of left end step by step to the specific stage by using Eqn (16). 

F O R M U L A T I O N  FOR UNBALANCE I D E N T I F I C A T I O N  

In the matrix [F] of Eqn (7), the first 16 elements of the seventeenth column relating to the 
particular solutions of the displacement functions are influenced by the unbalance distribution and 
they can be represented as a linear relationship among the unbalance parameters of the shaft, i.e. 

I-F1,17 F2,17, • . . . . .  FI6 171116 1 [Ktl ',K2',t ,, t t . . . .  K16]  [Usl(4n+2)x 1 

= [Kf ]16× l ,n+2 i [Us] (4n+2)x l  (19) 
where the element of [Kf] are derived in Appendix A. Substituting Z = L into Eqn (18), we obtain 
the first 16 elements of the seventeenth column in the matrix [HI  of Eqn (9), or 

[H1, 17 H2,17, . . . ,  t (20) H16, 17116 x 1 = [-Kh] 16 x(4n+2)[Us](4n+2)x 1. 
Therefore, the matrix [H] can be written into the following form 

[ H I  = LF [H°]16 × 1601×16 [Kh]16x('t'n+2)[Us](gn+2)×l]l " 

Similarly, the first 16 elements of the seventeenth column in the matrix [M] of Eqn (8), can also be 
expressed in the following form by substituting Z = 0 into Eqn (18), 

[M1, 17 M2,17, . - . ,  M16,17]t16 x 1 ~--- [Km]16 x(4n+2)[Us](4n+ 2)x 1- (21) 

Then the inverse matrix of [M] in Eqn (8) can be written as follows 

[ M ] - I  = L[ [M°] 16 ×-01x16 16 [Kmll6×(4n+2)[Us]{4n+2)×l 1] 

= LI [ M I l l 6 ×  1 6 Q 1  x l 6 [-Mu] 16 x (4n + ~)- [-Ss](4n+ 2) x 1] (22) 

and [M.]  = ( -1) [MI][Km].  The matrix IN] of Eqn (10) can be sub- where [Mt] = [Mo]-  1 
sequently obtained as 

[ I-No] 16 x 16 FKn]16x(4n+ 2) ['Us](4n + 2)x i] (23) 
I-N] = [HI F~V~]-I = m _01x16 1 

where [No] = [Ho] [MI], [K.]  = [Ho] [Mu] + [Kh]. Finally, the matrix [Ts] in Eqn (13), repres- 
enting the relations of the state variables between the right side and left side of an unbalance shaft, 
can be obtained as 

[Ts] = [A ]  -1 [I~[] [A ]  

[ [Ao] ;L 16 
I 1×16 

= [ [rs0116× 16 
01x 16 

QI~×I] [ [ )~  0] _ [Kn][Us]] [[AO]16x16 i m Qlx16 -°16xi] 1 

[Ks]16×(4n+z)[Us](4n+2)×l 1 ]  (24) 

where [T,o]  = [ A o ] - l [ N o ]  [Ao]  and [ K , ]  = [Ao ] - - i  [Kn], 
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In summary, the transfer matrices of the shaft sections, bearings, and disks, respectively, can be 
expressed by the following form 

[T~I] = [ ['Ts0i]16×16 

1×16 

F [-Zboj116 x 16 IT.j] / 1×16 

[ [Td0k] 16 x 16 [Tdk] 
I_ 1x16 

[-Ksi] 16 ×(4n+ 2)EUsi](4n+ 1] 

_016x1]1 

l-Kdk116 x 2 [Udl2 × 1] 1 (25) 

where i is the ith element of the shafts, j is the j th  element of the bearings, k is the kth element of the 
disks. Kakt13,1) = Kdgta4,1) = male -)2, Kdkt15, 1) ---- Kak(16, 17 = - - m d  ~ 2  while the other elements of 
[Kdk] are zero and [Ud] = [ed~ eay] t. The overall transfer matrix [W] in Eqn (16), representing the 
relations between two free ends of the rotor, can be written as 

[ w ]  = [ T,.~] ITs . ]  [m,(~_ 1)] ITs,] ,  . . . ,  ITs1 ] [T,~] ITs1] ITs1 ] 

[ [Tsoml ['Tbopl FTso(m- l)l [Td0ql, -. - , FTdoll  [-Tso21 [Tbo 11 FTsol] 

L Q 
I-KK] I -U]]  1 

= I  [ -TT]16x 16 [KK]16Xll[U]m'×l ] (26) 
1x16 

where ml = m(4n + 2) + 2q, [ K K ]  and [ U ]  are listed in Appendix B. Substituting Eqn (25) above 
into Eqn (17), we have 

[s l i ,,11 = LTT21 TT22AI6×I6 
01x16 

KK21 KK22~16xm, ]-U]m 1 x 1 

1 
(27) 

Eight rows of equations can be extracted from the above equation to show as below 

Q8×8 = [TTz1]s×8 So + [KK21 K22]S×m1[U]mlxl (28) 

where So is the state variables of the left free end, or, 

[CC]8 × m, [-U]m, x l = [ D D ] s  x l (29) 

where [CC]  = [KK21 K K 2 2 ] ,  [ D D ]  = - [ T T 2 1 ] s  x 8 So.  In the above equation, So represents the 
state vector of both displacements and angles measured at one free end in one shaft.The elements of 
[TT21 ] and [KK21 KK22] are dependent on the system's parameters, such as the geometry shape, 
the material properties, the rotating speed and so on and [ U ]  is the parameters representing the 
unbalance distribution function. This is, [CC]  is a 8 x ml known matrix, [ D D ]  is a 8 x 1 known 
vector and [ U ]  is a ml x 1 unknown vector. It can be shown that, for one rotating speed, there are 
five independent equations available in matrix Eqn (27), which may not be sufficient to solve the 
unbalance distribution function. In that case, the rotor system must be measured at several different 
rotating speeds, say k. Then, the equations can be expressed as below 

-CC(o)l)- -DD(~I)-- 

CC(~2)  

_ CC(~ok) _ 8kxm I 

rUJml  x 1 = 
DD(~o2) 

_ DD(~°D_ 8kx 1 

(30) 
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Fig. 4. A rotor-bearing system for numerical cases. 

Table 1. The details of case 1 

Shaft: 
E, G 2.07 x 1011N/'m 2, 8.1 x 101° N / m  z 
p, Ks 7750 Kg /m 3, 0.68 
L1 = 1.2 cm, L2 = 15cm, L3 = 15cm, L4 = 1.2cm 
diameters of all the shafts Df = 1 cm 

Disk: 
diameter of disk 5 cm 
disk thick h 0.5 cm 
disk mass Ma 0.0761 Kg 

Bearing: 
Kxx, Kyy, Kxy, Krx 2 .0x 106, 1.5 x 106, 0, 0 N / m  
Cx~, Cyy, Cxr, Cyx 200, 100, 0, 0 N .  s /m 

The unbalance of the disk: 
eax = 0.001 cm, ear = 0.001 cm. 

The unbalance distribution of the shafts: 
L2 projection in x -- z plane (¢ = 0 rad) 

r~(Z) = 0.001 cm; 
projection in y - z plane (4> = n/'2 rad) 

r~,(Z) = 0.001 cm; 
L3 projection in x - z plane (¢, = 0 rad) 

rx(Z) = 0.001 cm; 
projection in y - z plane (¢ = n/2 rad) 

ry(Z) = 0.001 cm; 
LI and L4 no unbalance. 

o r  

[ A A ] ~ , [ U ] ~ , ~ ,  = [ B B ] ~  t. (31) 

Consequently, we have 5k independent equations to solve for the ml unknowns and it will yield the 
estimated coefficient of [ U ]  by using least squares method only if we choose a suitable k such that 

5k t> ml. (32) 

Specifically, multiplying the matrix [AA] t at both sides of Eqn (30) simultaneously, we have 

[EEl . . . . .  [U ]  = [FF]m, ×a (33) 

where [EEl = [AA]t[AA],  [FF] = [AA] t [BB] and the parameters of the unbalance distribution 
function acquired are obtained by the following equation, 

[U]m, ×1 = [EE]mll×,~, [FF],,1 ×1. (34) 
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T a b l e  2. T h e  d e t a i l s  o f  c a s e  2 

T h e  u n b a l a n c e  o f  t h e  d i sk :  

ed~ = 0.001 c m ,  ear = 0.001 cm.  

T h e  u n b a l a n c e  d i s t r i b u t i o n  o f  t h e  sha f t s :  

L2 r~(Z) = O.O01"cos(r~z/L2) + O.O01-sin(zz/L2) 
ry(Z) = 0.001 - cos(fez~L2) + 0.001 - sin(nz/L2); 

L3 rx(Z) = O.O01"cos(rcz/L3) + O.O01.sin(rcz/L3) 
ry(Z) = 0.001 . cos(rtz/L3) + 0.001 .sin(fez~L3); 

L1 a n d  L 4  n o  u n b a l a n c e .  

T a b l e  3. T h e  d e t a i l s  o f  c a s e  3 

T h e  u n b a l a n c e  o f  t h e  d i sk :  

ed~ = 0.001 c m ,  edy = 0.001 c m .  

T h e  u n b a l a n c e  d i s t r i b u t i o n  o f  t h e  sha f t s :  

L2 rx(Z) = 0 . 0 0 1 '  sin(fez~L2) 
ry ( Z )  = - 0 . 0 0 1 '  s in(fez/L2);  

L3 r~(Z) = 0.001 .sin(nz/L3) 
ry(Z) = 0.001" sin(fez~L3); 

L I  a n d  L 4  no  u n b a l a n c e .  

T a b l e  4. T h e  n u m e r i c a l  r e s u l t s  o f  c a s e  1 

E x a c t  ~1 - o)2(n = 2) o)l - ~o3(n = 3) col - ~o4(n = 4) o)1 - oJs(n = 5) 

ed~ 0.001 9 .99904  x 10 - 4  9 .99908 x 10 - 4  9 .99906  x 10 _4 9 .99904  x 10 - 4  
D i s k  

ed~. 0.001 9 .99910  x 10 - 4  9 .99912  × 10 . 4  9 .99910  x 10 - 4  9.99911 x 10 - 4  

c o n s t a n t  t e r m  0.001 9 .99937  x 10 - 4  9 .99936  x 10 4 9 .99955 x 10 - 4  9 .99962  x 10 . 4  

in  x-z p l a n e  

L 2  c o n s t a n t  t e r m  0.001 9 .99969  x 10 - 4  9 .99965  x 10 - 4  9 .99971 x 10 _4 9 .99977  x 10 . 4  

in  y-z p l a n e  

c o n s t a n t  t e r m  0.001 9 .99936  x 10 - 4  9 .99937  x 10 - 4  9.99950 x 10 _4 9.99957 x 10 - 4  

in  x-z p l a n e  
L3  

c o n s t a n t  t e r m  0.001 9 .99968 x 10 - 4  9 .99952  x 10 - 4  9 .99967  x 10 - 4  9 .99973 x 10 '~ 

in  y-z p l a n e  

A v e r a g e  e r r o r  ( % )  - -  6 .2667 x 10 . 3  6.5 x 10 . 3  5.683 x 10 - 3  5 .2667 x 10 3 

(uni t :  c m )  

T h e  m e a s u r e m e n t  s p e e d s  o91, c,z , . . . ,  ~05 a r e  c h o s e n  as  117, 188, 292,  362, 487  ( rpm) .  

T a b l e  5. T h e  n u m e r i c a l  r e su l t s  o f  c a s e  2 

E x a c t  (ol - m3(n  = 3) (J)l - m4(n  = 4) o91 - fos(n = 5) e) 1 - ~o6(n = 6) 

edx 0.001 1.19157 × 10 - 3  1 .07264 × 10 3 1.01795 × 10 3 1 .00236 X 10 - 3  
D i s k  

edy 0.001 1.08155 X 10 - 3  9 .95921 × 10 - 4  9 .93450  X 10 - 4  9 .99738  X 10 - 4  

c o n s t a n t  0 2 .2498 x 10 4 _ 8 .5479 x 1 0 - 5  _ 2.1201 x 1 0 - 5  _ 2 .8527 x 1 0 - 6  

x-z cos(fez/L2) 0.001 1.14877 x 10 - 3  1.05655 x 10 . 3  1.01403 x 10 _3 1 .00189 x 10 - 3  

sin(nz/L2) 0.001 1.23374 x 10 - 3  1.08878 x 10 - 3  1 .02202 x 10 3 1 .00296 x 1 0 - 3  
L2  

c o n s t a n t  0 --  9 .4315 x 10 - 5  5 .04926 x 10 - 6  7 .78023 x 10 . 6  3 .05806  x 10 -~  

y-z cos(~z/L2) 0.001 1.06212 x 1 0 -  3 9 .96614  x 10 4 9 .94842  x 10 - 4  9 .99798 x 10 - 4  

sin(fez/L2) 0.001 1.09824 x 10 3 9 .94804  x 10 4 9 .91931 x 10 - 4  9 .99682  x 10 - 4  

c o n s t a n t  0 - 1 . 9 6 2 6 x 1 0  4 _ 7 . 3 5 3 9 x 1 0 - 5  _ 1 . 7 8 6 4 x 1 0 - 5  - 2 . 1 8 8 6 x 1 0  6 

x-z cos(gz/L3) 0.001 8 .37735 x 10 - 4  9 .38702  x 10 4 9 .84932  x 10 - 4  9 .98059  x 10 4 

sin(Trz/L3) 0.001 1.17307 x 10 - 3  1.06437 x 10 . 3  1.01547 × 10 - 3  1 .00180 x 10 - 3  
L 3  

c o n s t a n t  0 - -  9 . 1 3 1 8 x  10 - 5  2 .70404  x 10 . 6  6 .19849  x 10 6 2 . 2 5 9 7 0 x  10 . 7  

y-z cos(~zz/L3) 0.001 9 .28883  x 10 4 1 .00306 x 10 - 3  1.00541 x 10 - 3  1 .00020 x 1 0 - 3  

sinOzz/'L3) 0.001 1.08474 x 10 - 3  9 .98411 x 10 - 4  9 .94806  x 10 4 9 .99818 × 10 - 4  

A v e r a g e  e r r o r  ( % )  - -  1 3 . 6 7 2 %  3 . 7 9 6 7 %  1 . 1 9 9 7 %  0 . 1 2 6 4 %  

(uni t :  c m )  

T h e  m e a s u r e m e n t  s p e e d s  ¢~1, c,)2, . . . ,  e)6 a r e  c h o s e n  a s  9560,  9580,  9640,  9700,  11000, 12000 ( rpm) .  
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N U M E R I C A L  E X A M P L E S  

In this section, three numerical examples are presented to illustrate the feasibility and applicability 
of the proposed method. As shown in Fig. 4, a rotor system with separately-mounted bearings near 
the free ends is given. It is assumed that only the two central elements of the shafts (i.e. L2 and L3) 
and the disk, are unbalanced. The differences among the three cases are the unbalance distributions 
of the shafts, details of which are listed in Tables 1-3. In case 1, all shaft unbalances are assumed to 
be uniform. There are six unbalance parameters to be estimated for the disk and the shafts in this 
case. By Eqn (31), we at least need to measure two rotating speeds (k/> 2) to estimate the six 
parameters. Arbitrary simulated speeds are chosen for k = 2 - k = 5 and listed in Table 4 along 
with simulation results. This table shows that good results are obtained where the average error 
ranges from 0.00527% to 0.0065%. In case 2, the spatial unbalance distribution curve is specified, i.e. 
two terms of the Fourier series representation of the unbalance distribution of the shaft projected 

(1) disk u n b a l a n c e  ectx=O.OOlcm 

c a s e  3 - 1  : 9.999112E-4 ( 1 e lement  in each shaf t  section) 
ca se  3 - 2 : 9 . 9 9 9 1 1 0 E - 4  (2 e lements  in each shaf t  section) 
case 3 - 3  : 9.999038E-4 (3  e lements  in each shaft section) 
(unit: cm) 
after balancing 

case 3-i : g.88E-8 ( I element in each shaft section) 

case 3-2: 8.90E-S (2 elements in each shaft sectioM 
c a s e  3 - 3 : 9 . 6 2 E - 8  ( 3  e lements  in each shaf t  section) 
(unit: cm) 

(2)  t h e  u n b a l a n c e  d i s t r i b u t i o n  of s h a f t  i n  xz p l ane  
x (era) 

(case 3-1 )  es t imated cons tan t  t e rm  
for 1 element in each shaft section 

x ¢(cm) 

5.92542 e -4  ~ i .e-3  5.92803 e-4 

Ii ' ' t I 
L2 '0 ' ' L 3 '  ' 

(case 3-2)  estimated constant term 

for 2 elemenLs in each shaft section 

(cm) 
x ~ l.e-3 

[ 5.7247e-4 ' 7.1386e-4 f 7,1324e-4 ' 5.7501e-4 I 

. . . .  i0 . . . .  12 L2 

(case 3 -3 )  es t imated cons tan t  t e rm 
for 3 elements in each shaft section 

x I '(cm) 

3i3348e-41 , ,  , 3.3~ 33e- .306T -4 3.3 2e-41 

[2 L3 
3 

(case 3 - I )  Lhe unbalance  d is t r ibut ion  af ter  balancing 

/Ncm) 
x ~ 8 . e -  4 

> 
Z 

Fig. 5. (a) The estimated unbalance distributions before and after balancing in x z  plane in case 3; (b) The 
estimated unbalance distr ibutions before and after balancing in yz  plane in case 3; (c) The compar isons  of the 

disk responses between original and balanced system in case 3. 

(case 3 -3)  the  unbalance  d is t r ibut ion  af ter  balancing 

x/~(cm) 

(ease 3-2)the unbalance distribution afLer balancing 

~(cm) 
x 1 8 . e - 4  

,,--'7/-/-/-~, F , ~  
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(1) disk unbalance  edr =O.OOlcm 
case 3 - 1 : 9 . 9 9 9 0 9 2 e - 4  (1 e lement  in each shaf t  section) 
c a s e  3 - 2 : 9 . 9 9 9 0 4 0 e - 4  ( 2  e lements  in each shaf t  sect ion) 
c a s e  3 - 3 : 9 . 9 9 9 0 4 3 e - 4  ( 3  e lements  in each shaf t  section) 
(unit: cm) 
af ter  balancing 
case 3 - 1 : 9 . 0 8 e - 8  (1 e l ement  in each shaf t  sect ion) 
case 3 - 2 : 9 . 6 0 e - 8  ( 2  e l ement s  in each shaf t  sect ion) 
case 3 - 3 : 9 . 5 7 e - 8  ( 3  e lements  in each shalL section) 
(unit: cm) 

(2) the  unba lance  d is t r ibut ion  of shaf t  in yz plane 
(era) 

Z ~ L2 / / / / ~ 0  L3 Z 

- O. O01sin(nz/].2) 

(case 3-1)  es t imated  cons t an t  t e rm  
for 1 e lement  in each shaf t  sect ion 

. (era) 

, , Y "I l'e-3, 5.93526e-4, I 

Z I 1.2 L3 Z 
H 

- 5,92303e-4 [- l .e-3 

(case 3 -1 )  the  unba lance  d is t r ibu t ion  af ter  balancing 

y,~(cm) 
/~ 8 . e - 4  

shaf t  L2 . e _ : h a f t  !.3 

(case 3 -2 )  es t imated  cons t an t  t e rm 
for 2 e lements  in each shaf t  sect ion 

. . . . .  Y 7151363e-4 L 5.7456e-4 

Z ] L,2 
L3 I i 

- 5.7236e-4 -7.1473e-4 l .e-3  

(case 3 -3 )  es t imated  cons t an t  t e rm 
for 3 e lements  in each shaft  sect ion 

(era) 

Y 

[ 1.2 
- 3 . S S 4 7 e - 4  

-1 .2611e-3  

1.2681e-3 
1.e-3 - -  

3.306e-4 ] 3.301e-4 

- - 1  
L3 

- l . e - 3  

(case 3 -2 )  the  unba lance  d is t r ibut ion  af ter  balancing 

-.,.. shaft t 
z z  t Z 

(ease 3-31 the unba lance  d is t r ibu t ion  af te r  balancing 

(c,~) 
Y 18.e-4  

zz \ z 

shaft L2 | shaft 1.3 

Fig. 5. (continued). 

onto the X Z  and Y Z  planes are given (see Fig. 4). In all, we have 14 variables to be estimated and by 
Eqn (31), we need at least three spin speeds. Three six is used for the value o fk  in Eqn (31) and the 
results are shown in Table 5. The simulation results show there is a 13.672% average error when 
k = 3. When k is increased to 6, the average error is reduced to 0.1264% and good results are 
obtained. 

In general, balancing is effeeted by adding weights or digging holes at given radial distances from 
the axis of rotation. Therefore, case 3 is focused on estimating the constant-term coefficients of the 
shafts and disk without a priori information about unbalance. The actual unbalance distribution of 
the shafts is assumed to be a sine waveform (see Table 3). In this case, we choose k =- 6 and have the 
same rotating speeds as Table 2. Each shaft is considered as having one to three sections to 
investigate the effectiveness of balancing. The simulation results are shown in Figs 5(a, b). Compari- 
sons of the responses before balancing and after balancing, are displayed in four curves in Fig. 5(c). 
Owing to the gyroscopic effect at high speeds, the first critical response is split into two peaks at 9580 
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0 
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0 
0 
0 

(5 

0.000 

v 

09 

0 

O 
0 
O 

0 

(5 

0 
0 
0 

d 

9000 

I I I 

O: before balancing 

- r-I: Case 3-1 
(af ter  balancing) 

/x : Case 3-2 
(af ter  balancing) 

+ : ea se  3-3 

9500 10000 

r o t a t i n g  s p e e d  ( r p m )  

~ E n l a r g e r n e n t  

p e a k  ( e m )  

before balancing :0 .8529  

c a s e  3 - 1  :0.1637 

case 3 - 2  : 7 . 5 0 2 7 e - 2  
case 3 - 3  : 2 . 4 3 0 4 e - 2  

J L_ 
1.000E+04 

r o t a t i n g  s p e e d  ( r p m )  

2.000E+04 

Fig. 5. (continued). 

and 9680 rpm. It is noted that the peak response is not proportional to the net integrated area of 
unbalance distribution because the effects of unbalances at different locations on the response are 
not equal• From this figure, we find that the peak response in case 3-1 is about 19.193% of the 
original response before balancing. When one shaft is divided into three sections, the peak response 
is reduced to 2.850% of the original peak and it shows a good balance. 

A more complex rotor-bearing system in which the shaft has distinct diameters can be considered 
in the same manner; the shaft can be cut into several sections and the solution obtained. 

C O N C L U S I O N  

Balancing plays an important role in rotating machinery, especially in high-speed rotor-bearing 
systems. If the exact unbalance distribution can be found, then better balancing can be achieved. In 
the past, before Lee et  al. [13], there was no method for describing the continuous "state of 
unbalance" in a flexible rotor shaft. This is the first paper to propose a theoretical model and 
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e s t i m a t i o n  t e c h n i q u e  for f ind ing  the u n b a l a n c e  d i s t r i b u t i o n  func t i on  in  a r o to r  shaft. Th ree  s imple  

n u m e r i c a l  cases are  g iven  a n d  g o o d  a p p r o x i m a t i o n s  are  ob t a ined .  I t  m a y  be a new  s tar t  for ach iev ing  

the  be t t e r  ba l an ce  in  ac tua l  sys tems in  the  future.  

Acknowledgements This study was supported by the National Science Council, Republic of China, under contract number 
NSC 81-0401-E-009-08. 
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A P P E N D I X  A 

F1 17 = X~ = (~o + 
/ nTzZ n/~Z~ 

' . = L ~ "  cos T + ~ "  = ' sin---L-- ) [ P I ] [ V I ]  

F2,17 = (FI,1Q' = [P2] [VI]  

F3,17 = (F2,17)' = [P3] [Vt]  

Fa. 17 = (F3.17) ' =  [P , ] [VI]  

Fs.l? = X~ = [P1]EV2] 

F6,17 = (F5,17)' = [P2]EV2] 

F7,17 = (F6,17)' = [P3][V2]  

F8,13 = (/;'7,17)' = [e4]  IV2] 

E~,,; = Yf = [PI][V3] 

Flo. 17 = (eg, 17)' = [P21 IV3] 

FI,.,, = (60.,~)' = [P~] IV3] 

F12,17 = (Fl,.17)' = [P4] [V3] 

F~3.17 = r ~  = [ P d  [ v ~ ]  

FI4. I 7 = (F13.17)' = [P2] IV4] 

F,  5. ,  7 = (F14,17)' = [P3] IV4] 

FI6.17 = {F15.17)' = [/:'4] [I/4] (A1) 
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where 

I 2$Z nT~z . r17£.~ 1 
[P1 ] = I cos  ~ s in  -~L . . . . .  cos  ~ - -  sm  

[ P 2 ] =  0 - -~sinnz ~_cosnZ .., ___nnsm" __nnz __nncos~_ 
L L L L '" L L L 

g Z  n / ' ~  2 / 1 7 ~ Z  sin 
[ P 3 ] = [ 0  - ( L ) Z C O S L  - ( L ) Z s i n ~  . . . . .  - ( - ~ - )  cos L ( L )  z nLz ] 

[ P 4 ] = [ O  ( L ) 3 s i n L -  \L/(n~3c°snzL . . . . .  ( L )  3sinnn-'fz \ ~ /  ~ - J  

E V i l  = E¢lO ]~eel ~Sl . . . . .  lffcCn ,aSn] 1, IV2]  = [~20 ,//sCl ~ 1  . . . . .  ,/'/sen #~n] t 

l-V3] = [~3o v'gl vgt . . . . .  v~. v~.]', [V*] = [ff*o v~l v~l . . . . .  v~. v~.] t. 

The relations between the nth term of the Fourier series representing the unbalance function (see Eqn (3)) and the nth term 
of the particular solution in Eqn (6) can be obtained as below 

_ _  m 

#L 
,c 

~cn 
s 

Vcn 
~, c n 

i v~. 

= ~7 n " 

m 

A. 0 

0 A. 

0 0 

0 0 

0 - C .  

C. 0 

B. 0 

0 - B. 

al l )n  al2)n 

a21)n a22)n 

a31) .  a32) .  

a41)n a . 2 ) .  

a~l). a~2). 

a61)n a62)n 

a71) .  a72)n 

a~).  as~). 

0 0 0 C. - B. 0 

0 0 -- C. 0 0 - B. 

A.  0 B. 0 0 C. 

0 A.  0 B. - C. 0 

B. 0 A. 0 0 0 

0 B. 0 A.  0 0 

0 - C .  0 0 A.  0 

C. 0 0 0 0 A. 

- 1  - -  

?'on COS ~b 

rsn COS 

- r~. sin 0 

- r~. sin q5 

r0. sin 0 

r~. sin 4~ 

rcn COS ~b 

Psn COS 

E;::] ,A2, 

where 

By substituting n = 1 to 

O- n 
2 2 t92 4 2 4 p ' A ' t o  2 pm f n n ~  o 2p 09 T Tpo92 

KZ -i' d= lK-- 

pro 2 po) 2 P p2(O4 p" A" co 2 2pm2 k = 2p2~°4 

f l = - ' - f f - + K ~ - - E ~ '  g - K~G'--~ E1 h =  E K~G~ ' 

( L )  2 B . =  - h  +k ,  (7) (7/ C . = d  - -c  - -  . 

n = n into the above equation, those equations can be rearranged into the following four forms 

m - -  m 

~1o ¢'1 

~1 0 

#~1 0 

#~2 0 

~2 0 

#L 0 

0 0 0 0 ... 0 0 

a l l h  alz)l  0 0 ..- 0 0 

a21) l  a22)1 0 0 . '-  0 0 

0 0 a l l ) 2  a12)2 -'- 0 0 

0 0 a21)2 a22)2 . . .  0 0 

0 0 0 0 "'" a l l ) .  a12). 

0 0 0 0 "'" a21)n az2~  

ro 

rcl  

rsl  

rc2 

/'s2 

/'cn 

rsn 
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p m 

v 
g20 

#h  

/zg2 

m 

c2 0 0 

0 aal}l a32)1 

0 a41)l  a42)1 

0 0 

0 0 

0 0 

0 0 

m 

0 0 --. 0 0 

0 0 ... 0 0 

0 0 .-. 0 0 

0 a31)2 a32)2 ..- 0 0 

0 a4l)2 a42)2 ' "  0 0 

0 0 0 " "  a31)n a32)n 

0 0 0 "'" a41)n a42)n 

ro 

rcl 

rsl 

rc2 

rs2 

rcn 

rsn 

m m 

v 
k.3o 

,s 
Vcl 
,c 

¥c2 

v~2 

,¢ 
Vcn 

v~. 

C 3 0 0 0 0 " "  0 0 

0 a51)1 a52)1 0 0 --. 0 0 

0 a61)l  a62)1 0 0 --. 0 0 

0 0 0 a51)2 a52)2 --. 0 0 

0 0 0 a61)2 a62)2 --- 0 0 

0 0 0 0 0 "'" a s l j ,  as2), 

0 0 0 0 0 " "  a61)n a62)n 

- -  w 

ro 

rcl 

rsl 

rc2 

rs2 

rcn 

rsn 

m m 

g4o 
,¢ 

Vsl 
,s 

~sl 
,¢ 

~s2 

Y~2 

c4 0 0 0 

0 a71) l  a72)1 0 

0 as1)1 a82)l 0 

0 0 

0 0 

0 0 

0 0 

0 -.. 0 0 

0 ... 0 0 

0 ... 0 0 

0 a71)2 a72)2 --" 0 0 

0 a81)2 a82)2 .." 0 0 

0 0 0 "'" aT1) .  avz)n 

0 0 0 ""  aSl)n asz)n 

r 0 

rcl 

rsl 

re2 

rs2 

rcn 

r s n  

where 

C 1 : - -  ~- 9 E1 K~GE f 

1 ( -- p ' A ' o ) 2 ' s i n ( b  p2 • ~04 • sin ~b) 

9 \ E1 KsGE 

1 ( p -  A - eft. sin q5 p2. ~04 sin qS~ 
C 3 = - -  ~- y e t  X-~6-~ ; 

1 (p'A'ooZ'cos(p p2 " f-O4" COS ~b.~ 
C4 = - 4 9 El K~GE } 

For simplicity, the above four equations can be written as below 

[ v , ]  = [ Y I ] [ G ]  

IV2] = [Y2] [U~] 

[V3] = [Y~][U~] 

[V4] = [Y4] [Us] 

where [U,]  = [ro r¢l r~l re2 rsz . . . . .  re, rs,]'. 
Introducing (A3) into Eqn (A1), the elements of [Kf] can be acquired. 

A P P E N D I X  B 

[Tbl] [-T~I ] m 0--1×16 1 _0J×16 1 

L --01×16 1 

(A3) 
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Successively, we have 

I [-Ts02] 16x 16 [Ks2]16×(4n+;,[Us2](4n+2)×l][[Tbol][oTsoll 
[Ts2][Tbl][Tsl] = L __Olx 16 

= [ [T~o2] [Tbo,] [~o l ]  [S3]~Z3] ] 

L o,~,6 

where 

and 

where 

Then, 

[$3116×(8n+4 ) = [ITs02116 x 16[Tbolll6 × 16[Ksl]16×{4n+2) I [Ks2]16×(4n+2i] 

[ Z 3 ] ( s . + , * ) ×  1 ' ' = [Us2]{4n+2)× i ]  t [-[Usl l(~l.n + 2)× 1 I I 

[Tdl][T'2][Tbl][Tsl] =L O-L~16 

=I[Tdol][Ts02][O zbO1][TsOl] [$4]~Z4] I 

[-Tb011 ]-Ksl ] [Usl ] I 

[$4316×18n+4-+2) = [[Ydol l[Yso2][YboL l[Ksl ll6×(4n+ 2) l [Taol][K~2]16×~a.+ 2) ll [Kdl]16×2] 

I_Z4]{12n+6) x 1 = [[Usl]i4n~,2)×l l [Us2]t~4.+2)× 1 { [Ual]2× L]t. 

where mL = m(4n + 2) + 2q, 

[-$3 ]~ Z31 ] 

and 

[T~.] [TbA [T.~_ ~,] [Td.] ..... [Tal] [%2 ] [T~ ] [T.~ ] 

FET, o.3 [ T.o.3 [~o,~- ,,] ..... [Tso=] [Tbol ] [T~o 1 ] 

L _o 
[KKIeU] ] 

x [T~o~] [Tbo. ]  [ ~ 0 ~ . -  . ]  [Tdo~] . . . . .  [ T d d  [%03]  [Ks2]~6 ×~.+ 2~ ', 

x [T~om] [Tb0v] [T,o~,~- I) ]  [Taoq] . . . . .  [Ka l  ] 16 × 2 ', " "  ', 

x [ T .o . ]  [ Tbo~] [ T ~ . _  ~ ]  [ K ~ ]  ~ ~ = I 

..... [u~ ]  t', [u~c~ ld", [u~] ' ] '  


