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Abstract—This paper presents a new method for estimating unbalance distributions of flexible shafts and
constant eccentricities of rigid disks based on the transfer matrix method for analyzing the steady-state
responses of rotor-bearing systems, in which the transfer matrix of a flexible shaft is derived in a continuous
sense with any spatial unbalance distribution. Rotary inertia, gyroscopic and transverse-shear effects are also
included. When deflections and deflection angles of one free end are measurable, the unbalance distribution of
shafts and disks can be estimated under operating conditions by the proposed method. The main advantage of
this identification technique is that only the state vector of the one free end of the rotating shaft need to be
measured. Justification of the method is presented by numerical simulations. © 1997 Elsevier Science Ltd. All
rights reserved.
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cross-section area, diameter and density of the shaft

Young’s modulus, shear modulus and shear factor

transverse and polar area moment of inertia of the shaft

length of the shaft segment

bending moment and shear force

axial force and torque acting on the shaft

eccentricity of the disk and projections, respectively, in X and Y directions
eccentricity of the shaft and projections, respectively, in X and Y directions
deflection in X and Y directions of fixed coordinates XYZ

position and time coordinates, respectively

slope in the XZ and YZ planes

angular position of shaft unbalance in moving coordinates

rotating speed

the number of the term in Fourier series

the number of the shaft with unbalance distribution

the number of the disk with unbalance eccentricity

the number of rotating speed

the number of parameters in unbalance distribution

Subscripts and superscripts

b, t
s
h,p

r,1
X,y

’

caused by bending moment, shear force
associated to cosine, sine terms
homogeneous solution, particular solution
right, left

components in X and Y directions
labeled for column vector

differentiation w.r.t. Z

INTRODUCTION

Rotor unbalance considered does not only cause vibration, it also transmits rotational forces to
rotor bearings and to the supporting structure. The forces thus transmitted may damage the
machine and shorten its working life. All rotors have residual unbalance during manufacturing
because of machining tolerances and material inhomogeneity. Thus, it is necessary to balance these
rotors, as carefully as possible, to ensure smooth running,

Over the years, two major balancing techniques have commonly been employed; the modal
balancing method, and the influence coefficients method. The modal balancing technique was
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developed by Bishop [1] and further investigated by several researchers, such as Kellenberger [2],
Shimada and Miwa [3], Shimada and Fujisawa [4] and Saito and Azuna [5]. In this method, the
critical speed mode shapes of the rotor must be known from either theoretical or experimental
measurements. Also, mass distribution must also be determined from the geometry of the rotor. The
accuracy of the method depends on the knowledge of the rotor mode shapes, which may become
quite complex for modes higher than the second critical speed. The influence coefficients technique
was presented by Goodman [6]. It has been improved and tested by several authors such as Lund
and Tonneson [7], Tessarzik and Badgley [8], Tessarzik et al. [9,10] and Everett [11], in the
laboratory and acceptable balancing has been achieved. In general, this method requires an accurate
measurement of vibration phase angle in order to produce acceptable results. Various field balanc-
ing methods have also been developed, as discussed in detail in Ehrich [12].

The subject of balancing has been of interest to users of rotating machinery and further study in
the theory and practice of balancing is still going on. Intuitively, it seems clear that the best way to
balance a rotor is first to find the unbalance distribution and then add weights at given radial
distances from the axis of rotation to compensate for it. However, due to deficiencies in methods for
finding unbalance distribution, the concept of dynamic testing has long been emphasized. Conse-
quently, we may not obtain the best quality of balance.

The purpose of this paper is to present a method for estimating the unbalance distribution in
flexible rotors. This article is an extension of the work of Lee [13], who first gave a complete analysis
of a rotating shaft’s continuous “state of unbalance”. This method is based on the transfer matrix
method (TMM) of analyzing the steady-state responses of rotor-bearing systems. The rotor-bearing
systems considered here are composed of flexible shafts with spatial unbalance distributions,
multiple rigid disks with constant eccentricities and linear bearings. Each bearing can be represented
by eight linearized parameters, i.e. four stiffness and four damping coefficients. Since the system
considered here is driven by an unbalanced force, the steady-state of the rotor will only contain
a synchronous frequency component. The rationale of the method is described as below. By
transforming any continuously distributed shaft unbalance function into its Fourier series repres-
entation, we can obtain the coefficients of the sine and cosine terms. Next, the overall transfer matrix
including the shaft sections, bearings and disks is derived in terms of linear combinations of the
unbalance parameters and the system parameters. Then, according to the boundary conditions, we
formulate the normal equation by using the relations between these unknown coefficients and the
known system parameters. Finally, identification can be realized from the simulated measured
response data, i.e. the state variables of both displacements and angles measured at one free end in
the shaft, induced by rotor unbalance using the least-squares method. The main advantage of this
method is that only the states of one free end need to be measured, along with of course system
parameters such as shaft geometry of shaft, material properties, rotating speed, bearing dynamic
cogfficients and so on. Justification of the method is given by numerical simulation.

EQUATIONS OF DISPLACEMENT FUNCTIONS FOR THE UNBALANCED SHAFT

In this section, the primary equations needed in this paper are given. For the detail derivation of
them, the readers may refer to Lee er al. [13]. The governing equations of a rotating shaft
considering the rotary inertia, gyroscopic, transverse shear effects and unbalance distribution can be
derived as follows

*X [ p WP X N p? 64X+pA62_X
0Z* K.G E)odz*ot*  K,GE ot* ' EI ot

E

0Z*0t KG ot

o/ @Y  p &Y\ P#PX Tp &HY
EI 6Z2 ~ EIK,G 0Z ot?

+_7_"_ 03_Y _p-Ar(Z) w? cos(wt + ¢) _pr'(Z) w?-cos(wt + @)
EI 073 EI K.G

+ p*1(Z) w*cost +¢)  T-r'(Z) p o sin(wt + ¢)
K.GE K,GEI



The unbalance distribution in flexible rotors 843

ececcentric distance of disk
Y r:eccentric distance of shaft
i G:geometric center
C:mass center
&+ ¢ phase angle

A
I~ Cu(
&)
BN
N Q'%, NN

; k') &\‘;}~

ry(esy GOU T S
G

0

Fig. 1. Geometries of a rotating shaft (or a disk) with unbalance mass.

in XZ plane and
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in YZ plane, where ¢ and #(Z) are shown in Fig. 1.
Because the synchronous whirling orbit is elliptical in general, the steady-state solutions of the
above two linear differential equations can be expressed as

X(Z,t) = X (Z)coswt + X (Z)sinwt
Y(Z,t) = Y(Z)coswt + Y (Z)sinwt 3)

where X, X,, Y, and Y, are the displacement functions of steady-state responses.
Since eccentricity function of shaft unbalance is assumed to be finite and piecewise continuous on
each shaft section, its Fourier series representation can be uniquely determined, i.e.

L

n=1

rZ)=ro+ i [(rc)ncos# + (), sin @} (4)

For the practical unbalance distribution of a rotor, convergence conditions (Wylie and Barret
[14]) are always satisfied and would not cause any convergence problem. However, from the
rigorously mathematical point of view, if the unbalance distribution does not converge at some
points, the shaft can be cut at these points into several sections and then the solution can be obtained
in a similar procedure.

Substituting Eqns (2) and (3) into Eqn (1) and separating the cos wt and sin ot terms, the four
ordinary differential equations can be obtained. The general solutions of the displacement
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function can be expressed into the sum of homogeneous and particular solutions as below.

X (Z)=X"+X?
X(Z)= X"+ X?
Y(Z)=Y!+ Y?P
Y.(Z)= Y+ Y7

where the homogeneous solutions can be written as

4
xXWz) = Z A;-e*%-cosh,Z +
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The coefficients a; and b; are, respectively, the real and imaginary part of the characteristic values

(details listed in Lee et al. [13]).
When ¢ = constant, the particular solutions can be expressed by

d nrnZ . nnZ
XP={(0+ Y (#En'cos— + pl,sin ——
n=1 L L

X2=(o+ 3, <u§n'cos———m + Ky sin >
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where coefficients {, u, v are listed in Appendix A of Lee et al. [13]. If the angular position of
unbalance varies along the shaft due to the mass center of shaft in three-dimensional space, we can
resolve r(Z) into the components r,(z) and r,(z), respectively, in X and Y directions, with ¢ = 0° for
r«(z) and ¢ = 90° for r,(z) for the shaft segment. Thus, we can obtain the particular solution of
¢ # constant by superposing those of ¢ = 0° for r.(Z) and ¢ = 90° for r,(Z) in the same manner as

¢ = constant.
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Differentiating Eqn (4) to yield the relationships of the real constants A; and B; of displacement
functions and their derivatives can be written in the following form

T
X, A

Y. |=[F] | B (8)
Y, 17x17
| 1

where X.=[X, X, X7 XU), X, =[X, X, X{ XY, Y. =[Y. Y. Y Y], Y,=[Y, Y,
Y Y"1, A=[4; A, A3 Ay As A6 A7 As],B=[B: B, By By, Bs B¢ B, Bg].
Then introducing Z = 0 into the previous relations, it follows

X.(0
X,(0) A

Wiz=0}=| Y.0 [=[M | B | ©)
YS(O) x17
HEEN

The deflections and their derivatives at Z = L can also be obtained from Eqn (7) and written in the
following form

[ X(L) ]
X(L) A
W(Z=L}=| Yd{L) |=[H] | B | (10)
YS (L) 17x17
] 1 ——
Combining two Eqns (8) and (9) results in
(W(Z=1)} =[N]-{W(Z=0)} (11)

where [N] =[H]- [M] .
We can also derive the following relations between the derivatives of the displacement functions
and the state variables, represented in a matrix form

(Wi=[A] {$} (12)
17x17
where {W} = (Xch::’ XQ,X;”,XS, X;yX;/a X;”: Yca Yc’s YcN: cha Y's: Ys,> Ys”’ I/;l,/a 1)!3 {S} = {Xc, Xsa
Yo, Yo, e, s, Bos Bos Myes Myg, My, My, Qre, Qs Opes Oy, 1) and the elements of matrix A are
referred to by Lee et al. [13].
Consider the boundary conditions at Z = 0 and Z = L, we have

{W(Z = L)} =[Al{S(Z = L)} = [A]{S/}

{(W(Z =0} =[Al{S(Z =0)} = [A]{So}. (13)
The substitution of the above equations into (10) yields
{81} =[A1"'[N] [A]{So} = [T.1{So}. (14)

Thus, the transfer matrix [T,], with the size of 17,x 17, is constructed by considering the effects of
shaft unbalance to fit the general whirl of the elliptical orbits.
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Fig. 2. A general rotor-bearing system.

Fig. 3. Model of a bearing.

OVERALL TRANSFER MATRIX FOR THE WHOLE SYSTEM

A typical rotating shaft as shown in Fig. 2 is composed of shafts, disks and bearings. The disks are
assumed to be rigid with constant eccentricities and defined by rigid mass elements with gyroscopic
effects. From the equilibrium and compatibility conditions, the relations of the state variables
between the right side and left side of an unbalance disk is expressed as

S, S
-mal?] =

The dynamic model of the bearings may be simplified as a linear element (see Fig. 3). From the force
equilibrium, the relationship of the state variables between the left and right sides can also be

obtained as below
S, S
[ : ] = [To] [ 1‘]. (16)
17x17

Details of [T4] and [Ty ] are listed in Lee et al. [15]. The overall transfer matrix of the system (refer
to Fig. 2} is the relation between two free ends of the shaft, which can be derived by relating state
variables from one end step by step to another end, or

{Sn} = [W1{So}
= [T [ Top [ Tion- )1 [ Tag): - [ Tar [ T2 I To1 I T 1 {So }- (17)
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Because the shear forces and bending moments are zero at both ends, Eqn (16) becomes

Sm Wi Wi w So
0 = W21 sz u; 0 (18)
1 0 0 1 1

where S =[X,, X,, Y., Y, &, &, B, B.1, 0 =10,0,0,0,0,0,0,0]. The state variables of stages
0 can be solved by Eqn (17) and the state of other stages are obtained by multiplying transfer
matrices from stage 0 of left end step by step to the specific stage by using Eqn (16).

FORMULATION FOR UNBALANCE IDENTIFICATION

In the matrix [F] of Eqn (7), the first 16 elements of the seventeenth column relating to the
particular solutions of the displacement functions are influenced by the unbalance distribution and
they can be represented as a linear relationship among the unbalance parameters of the shalft, i.e.

[F1,17 F2,17,"'aF16,17]'16x1Z[Ktlz t2:I x16:]t|:l]s](4n+2)><1

= [Kf]16x(4n+2)[Us](4n+2)x1 (19)

where the element of [K;] are derived in Appendix A. Substituting Z = L into Eqn (18), we obtain
the first 16 elements of the seventeenth column in the matrix [H] of Eqn (9), or

[H1,17 H2‘177~~-7H16,17]t16x1 = [Kh]16x(4n+2)[Us](4n+2)x1- (20)

Therefore, the matrix [H] can be written into the following form

[H] :|:[HO]16><16 [Kh]16x(4n+2)[Us](4n+2)xI:I.
_O_1x16 1

Similarly, the first 16 elements of the seventeenth column in the matrix [M] of Eqn (8), can also be
expressed in the following form by substituting Z = 0 into Eqn (18),

[M1,17 M2,17a-~~’M16,17]t16x1 = [Km]16x(4n+2)[Us](4n+2)x1- (21)

Then the inverse matrix of [M] in Eqn (8) can be written as follows

[M]_l :|:[M0:]16x16 [Km]16x(4n+2)[Us](4n+2)x1i|
(_)1><16 1

- [[M[]16x16 [Mu]16x(4n+2)[Us](4n+2)xl] (22)

(_)1x16 1

where [M;] = [M,]~ ! and [M,] = (—D[M;][K,]. The matrix [N] of Eqn (10) can be sub-
sequently obtained as

[N0]16>< 16 [Kn]lﬁx(4n+2)[Us](4n+2)>< 1] (23)

.(_)lxlf) 1

where [No] = [Ho1[M{], [K,] = [Ho1[M.] + [Ky]. Finally, the matrix [T,] in Eqn (13), repres-
enting the relations of the state variables between the right side and left side of an unbalance shaft,
can be obtained as

[T,]=[A]"'[N][A]

[[40)i6x16 Ousxr |[[Nol [KILUI][ [Aoliexts O1sx1
B (_)lx16 1 0 1 le16 1

[N]=[H][M]™' =[

— [[T50]16x16 [Ks]16x(4n+2)[U5:](4n+2)x1] (24)

O1x16 1
where [To] = [4o]™'[No][4o] and [K,] = [4o]7 ' [K,].
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In summary, the transfer matrices of the shaft sections, bearings, and disks, respectively, can be
expressed by the following form

[Ts,‘] _ _[TSOi]16x16 [Ksi]16x(4n+2)[Usi](4n+2)x1]
- le16 1
[ [Too;] 0
T. 7= jliex16 Yiex1
[ bj] | lelﬁ 1
i U
[Tdk] _ [TdOk]lﬁx 16 [de]16><2[ d]2x 1] (25)
L (_)leﬁ 1

where i is the ith element of the shafts, j is the jth element of the bearings, k is the kth element of the
disks. Kaxi3, 1) = Kavaa. 1) = ma®?, Kapas,1) = Karae,1) = —maw? while the other elements of
[Kai] are zero and [Uy] = [eqceqy 1" The overall transfer matrix [W] in Eqn (16), representing the
relations between two free ends of the rotor, can be written as

[W] = [Tsm] [pr] [Ts(m« 1)] [qu]’ reey [le] [TSZ:l [Tbl][Tsl:l

— [ [TSOM:I [TbOp] [TSO(m— 1)] [Tqu]’ s [Td01] [Tsoz] [Tb01] [T501] [KK] [U]:|
0 1

ZI:I:TT:IIGXIG [KK]lthml[U:]m,xl] (26)

le16 1

where m; = m(4n + 2) + 2¢q, [KK] and [ U] are listed in Appendix B. Substituting Eqn (25) above
into Eqn (17), we have

S, [TT11 Tle] [KK“ KKIZ:I [, ., S,
0 — TT21 TTZZ 16x16 KKZI KKZZ 16 xm, ' 0 . (27)
1 lem 1 1

Eight rows of equations can be extracted from the above equation to show as below
O0sxs =[TTr1)sx8 So + [KKz1 Kzz2]gxm [Ulmx1 (28)
where S, is the state variables of the left free end, or, -
[CClsxm [Ulm x1 =[DD]Jsx: (29)

where [CC] = [KK,; KK,,],[DD] = —[TT,;]sxsS0. In the above equation, S, represents the
state vector of both displacements and angles measured at one free end in one shaft. The elements of
[TT,;]and [KK,, KK,,] are dependent on the system’s parameters, such as the geometry shape,
the material properties, the rotating speed and so on and [U] is the parameters representing the
unbalance distribution function. This is, [CC] is a 8 x m; known matrix, [ DD] is a 8 x 1 known
vector and [U] is a my x 1 unknown vector. It can be shown that, for one rotating speed, there are
five independent equations available in matrix Eqn (27), which may not be sufficient to solve the
unbalance distribution function. In that case, the rotor system must be measured at several different
rotating speeds, say k. Then, the equations can be expressed as below

________ [U]mlxlz (30)

| CC(ox) _|8rxm, | DD(wi) _skx1
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Fig. 4. A rotor-bearing system for numerical cases.

Table 1. The details of case 1

Shaft:
E, G 2.07 x 10** N/m?, 8.1 x 10'° N/m?
p, K, 7750 Kg/m?, 0.68
Ll=12cm,L2=15cm, L3=15cm, L4=12cm
diameters of all the shafts D, = 1 c¢cm
Disk:
diameter of disk 5cm

disk thick h 0.5cm
disk mass M, 0.0761 Kg

Bearing:
Ko Ky, Koy Ky 20x 108, 1.5 x 108, 0, 0 N/m
C.x Cyy, Coy, €y 200, 100, 0, O N s/m

The unbalance of the disk:
eqx = 0.001 cm, ey, = 0.001 cm.
The unbalance distribution of the shafts:
L2 projection in x — z plane (¢ = O rad)
r.(Z)=0.001 cm;
projection in y — z plane (¢ = =/2 rad)
r(Z) = 0.001 cm;
L3 projection in x — z plane (¢ = 0 rad)
r(Z})=0.001 cm;
projection in y — z plane (¢ = n/2 rad)
ry(Z) = 0.001 cm;
L1 and L4 no unbalance.

[AA]kamx [U]m1 x1 = [BB]Skx 1:

849

31

Consequently, we have 5k independent equations to solve for the m; unknowns and it will yield the
estimated coefficient of [ U] by using least squares method only if we choose a suitable k such that

Specifically, multiplying the matrix [AA]* at both sides of Eqn (30) simultaneously, we have

5k = m;y.

[EE]mlxm,[U] = [FF]m,xl

(32)

(33)

where [EE] = [AA]'[AA], [FF] = [AA]'[BB] and the parameters of the unbalance distribution
function acquired are obtained by the following equation,

[U]mlxl = [EE]r;llxml[FF]mlxl-

(34)
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Table 2. The details of case 2
The unbalance of the disk:
24x = 0.001 cm, ¢4, = 0.001 cm.
The unbalance distribution of the shafts:
L2 r(Z) =0.001-cos(nz/L2} + 0.001 -sin(nz/L2)
ry(Z) = 0.001 - cos(nz/L2) + 0.001 - sin(nz/L2);
L3 r.(Z) = 0.001" cos(nz/L3) + 0.001 - sin(nz/L3)
r,(Z) = 0.001- cos(nz/L3) + 0.001 - sin(nz/L3);
L1 and L4 no unbalance.
Table 3. The details of case 3
The unbalance of the disk:
eqx = 0.001 cm, ¢4, = 0.001 cm.
The unbalance distribution of the shafts:
L2 r (Z) = 0.001"sin(rz/L2)
r,(Z) = —0.001 sin(nz/L2);
L3 r{Z) = 0001 -sin(rz/L3)
r,(Z) = 0.001 - sin(nz/L3);
L1 and L4 no unbalance.
Table 4. The numerical results of case 1
Exact w; —my(n=2) wy; —w3(n=23) w, —wan=4) © —wsn=7=5)
) Cax 0.001 9.99904 x 104 9.99908 x 1074 9.99906 x 10™* 9.99904 x 104
Disk eay 0.001 999910 x 10™* 999912 x 1074 999910x 107*  9.99911 x 10~*
constant term 0.001 9.99937 x 104 9.99936 x 10~ * 9.99955 x 1074 9.99962 x 10~*
in x-z plane
L2 constant term 0.001 9.99969 x 10~# 9.99965 x 10™* 9.99971 x 1074 9.99977 x 1074
in y-z plane
constant term  0.001 9.99936 x 10~ + 9.99937 x 10~ 999950 x 107%  9.99957 x 10~*
in x-z plane
L3 constant term 0.001 9.99968 x 104 9.99952 x 107* 9.99967 x 10™# 9.99973 x 1074
in y-z plane
Average error (%) — 6.2667x 1073 6.5x1073 5.683x 1073 5.2667x 1073
(unit: cm)

The measurement speeds w,,®,, ..., ws are chosen as 117, 188, 292, 362, 487 (rpm).

Table 5. The numerical results of case 2

Exact Wy —wi(n=3) w—wyn=4) o —wsh=75 © — wsn=>06)
. ea 0.001 119157x 10™  1.07264x10°%  101795x10°>  1.00236x 10~°
Disk Cay 0.001 LO8ISSx107%  995921x10°*  9.93450x10™*  9.99738 x 10~*
constant 0 ~22498x10°%  —B85479x107° —2.1201x 1075 —28527x10°°
xz  cos(nz/L2)  0.001 114877x10°%  1.05655x10~%  1.01403x 103  1.00189x 10~3
sin(iz/L2)  0.001 123374x 10" 1.08878 1073  1.02202x 103  1.00296x 10~3
L2 constant 0 —94315%x 1075 504926x10°°  7.78023x10°°  3.05806x 10~7
yz  costnz/L2)  0.001 106212x10°3  996614x10*  9.94842x10™%  9.99798 x 10~ *
sin(nz/L2)  0.001 1.09824x10°>  9.94804x10°* 991931 x10°*  9.99682x 10~ *

constant 0 —19626x10°* —73539x10°° - 17864x10"5 — 2.1886x10°°
xz  cos(nz/L3)  0.001 837735x10°*  938702x10°*  9.84932x10™% 998059 x 10 *
sin(nz/L3)  0.001 117307 x 107 106437x107%  1.01547x 107>  1.00180 x 10~3
L3 constant 0 —9.1318x10°% 270404 x 107¢  6.19849x107¢  2.25970x 1077
yz  cos(nz/L3) 0001 9.28883x10°*  1.00306x10~3  1.00541x10°>  1.00020x 10~*
sin(nz/L3)  0.001 108474 x 107 998411x10°*  9.94806x 10~*  9.99818 x 10~*

Average error (%)

13.672%

3.7967%

1.1997%

0.1264%

(unit: cm)

The measurement speeds wy,w,, ..

., g are chosen as 9560, 9580, 9640, 9700, 11000, 12000 (rpm).
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NUMERICAL EXAMPLES

In this section, three numerical examples are presented to illustrate the feasibility and applicability
of the proposed method. As shown in Fig. 4, a rotor system with separately-mounted bearings near
the free ends is given. It is assumed that only the two central elements of the shafts (i.e. L2 and L3)
and the disk, are unbalanced. The differences among the three cases are the unbalance distributions
of the shafts, details of which are listed in Tables 1-3. In case 1, all shaft unbalances are assumed to
be uniform. There are six unbalance parameters to be estimated for the disk and the shafts in this
case. By Eqn (31), we at least need to measure two rotating speeds (k = 2) to estimate the six
parameters. Arbitrary simulated speeds are chosen for k =2 — k = 5 and listed in Table 4 along
with simulation results. This table shows that good results are obtained where the average error
ranges from 0.00527% to 0.0065%. In case 2, the spatial unbalance distribution curve is specified, i.e.
two terms of the Fourier series representation of the unbalance distribution of the shaft projected

(1) disk unbalance edx=0.001cm
case 3—1: 9.999112E-4 ( 1 element in each shaft section)
case 3-2 1 9.999110E-4 (2 elements in each shaft section)
case 3-3: 9.999038E-4 (3 elements in each shaft section)
(unit: cm)
after balancing
case 3—1: 8.88E-8 ( 1 element in each shaft section)
case 3-2: 8.90E-8 (2 elements in each shaft section)
case 3~-3: 9.62E-8 (3 elements in each shaft section)
(unit: cm)

(2) the unbalance distribution of shaft in xz plane

x  {em)
%1-3‘3 0.001sin{nz/L3)
z ) 'o L3 7
(case 3-1) estimated constant term (case 3-1) the unbalance distribution after balancing
for 1 element in each shaft section
x (lcm)—a (cm)
5.92542 e—4 [+€79 592803e-4 X |ge4
{
| |
z L2 0 L3 zZ Z 2 13 z
—B.e—-4

(case 3-2) estimated constant term
for 2 elements in each shaft section

(case 3—2) the unbalance distribution after balancing

% (em) (cm)
1.e-3 X |ge-4
I—-——J&.,zﬁe_‘t 7.1388e—~4 741324e—4\—°—]5'7501e_4 e o~
z 12 0 13 7z L2 0 13 z
—-B.e~4

(case 3-3) estimated constant term
for 3 elements in each shaft section
(case 3-3) the unbalance distribution after balancing

X (cm)
1.2804e-3 1.2681e~3 L /Nem)
F1.e-3 Be—d
e
3.3348e-4 3.3533¢-43.308e—4 3.302e-4
e !
[ ] B | |
Z 2 0 L3 YA L— L— Z
3 -8.e~4
L2 L3

Fig. 5. (a) The estimated unbalance distributions before and after balancing in xz plane in case 3; (b) The
estimated unbalance distributions before and after balancing in yz plane in case 3; (c) The comparisons of the
disk responses between original and balanced system in case 3.
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(1) disk unbalance ey =0.00lcm
case 3—1: 9.999092e—4 (1 element in each shaft section)
case 3-2: 9.999040e-4 (2 elements in each shaft section)
case 3—3: 9.099043e—4 ( 3 elements in each shaft section)
(unit: cm)

after balancing ) ]
case 3—1: 9.08e—8 (1 element in each shaft section)

case 3—-2: 9.60e—8 (2 elements in each shaft section)
case 3-3: 9.57e-8 ( 3 elements in each shaft section)

(unit: em)

(2) the unbalance distribution of shaft in yz plane

(em)
Y T1e-3 0.001sin(nz/L3)
z L2 lo L3 z
-0.001sin(nz/L2)
(case 3-1) estimated constant term . {case 3—1) the unbalance distribution after balancing
for 1 element in each shaft section
(em)
cm)
Y p1e-3 5g3526e-4 Y ge-a
|z
z L2 10 L3 Z Q Z
shaft L3
| shaft L2 _Be-4
- 5,92303e-4 S
(case 3-2) estimated constant term (case 3-2) the unbalance distribution after balancing
for 2 elements in each shaft section
(em) v (cm)
. rle-3 8.e—4
[T g | shaft L2 T
z L2 0 L3 zZ S~ 0 shaft L3 z
-56.7236e-4 _7 1470e-4 | ~B.e—4
’ -1l.e-3
(case 3-3) estimated constant term
for 3 elements in each shaft section (case 3-3) the unbalance distribution after balancing
{em)
y \ 1.2681e—3 (cm)
-31:;28_ 4 3.301e-4 y ]B'e""
R - N e
| — 1]
7z | 12 0 13 22 | | L— z
-3.3347e—4 [ aas3zas Be—4
[ —1.e-3 shaft L2 shaft L3
~1.2611e-3

Fig. 5. (continued).

onto the XZ and YZ planes are given (see Fig. 4). In all, we have 14 variables to be estimated and by
Eqn (31), we need at least three spin speeds. Three—six is used for the value of k in Eqn (31) and the
results are shown in Table 5. The simulation results show there is a 13.672% average error when
k =3. When k is increased to 6, the average error is reduced to 0.1264% and good results are
obtained.

In general, balancing is effected by adding weights or digging holes at given radial distances from
the axis of rotation. Therefore, case 3 is focused on estimating the constant-term coefficients of the
shafts and disk without a priori information about unbalance. The actual unbalance distribution of
the shafts is assumed to be a sine waveform (see Table 3). In this case, we choose k = 6 and have the
same rotating speeds as Table 2. Each shaft is considered as having one to three sections to
investigate the effectiveness of balancing. The simulation results are shown in Figs 5(a, b). Compari-
sons of the responses before balancing and after balancing, are displayed in four curves in Fig. 5(c).
Owing to the gyroscopic effect at high speeds, the first critical response is split into two peaks at 9580



The unbalance distribution in flexible rotors 853

1.000

(:before balancing
_D:Case 3-1

(after balancing)
A :Case 3-2
—  (after balancing)
| +:Case 3-3
(after balancing)

response (cm)
0.500

rotating speed (rpm)

Enlargement

o

=)

<

Ll

- peak (cm)
- before balancing :0.8529

— case 3—-1 :0.1637
g i case 3-2 :7.5027e-2
~ o F case 3-3 :2.4304e-2

=]
[V
&SI
Q n
0,
7]
Q -
~

o

S |-

<

© 1 | R L L e I

0.000 1.000E+04 2.000E+04
rotating speed (rpm)

Fig. 5. (continued).

and 9680 rpm. It is noted that the peak response is not proportional to the net integrated area of
unbalance distribution because the effects of unbalances at different locations on the response are
not equal. From this figure, we find that the peak response in case 3—1 is about 19.193% of the
original response before balancing. When one shaft is divided into three sections, the peak response
is reduced to 2.850% of the original peak and it shows a good balance.

A more complex rotor-bearing system in which the shaft has distinct diameters can be considered
in the same manner; the shaft can be cut into several sections and the solution obtained.

CONCLUSION

Balancing plays an important role in rotating machinery, especially in high-speed rotor-bearing
systems. If the exact unbalance distribution can be found, then better balancing can be achieved. In
the past, before Lee et al. [13], there was no method for describing the continuous “state of
unbalance” in a flexible rotor shaft. This is the first paper to propose a theoretical model and
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estimation technique for finding the unbalance distribution function in a rotor shaft. Three simple
numerical cases are given and good approximations are obtained. It may be a new start for achieving
the better balance in actual systems in the future.
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NSC 81-0401-E-009-08.

REFERENCES

1. Bishop, R. E. D. and Gladwell, G. M. L., The vibration and balancing of an unbalanced rotor. Journal of Mechanical
Engineering Science, 1959, 1(1) 66-77.

2. Kellenberger, W., Should a flexible rotor be balanced in n or {(n + 2) planes? ASME Journal of Engineering for Industry,
1972, 94(2) 548-560.

3. Shimada, K. and Miwa, S., Balancing of a flexible rotor. Bulletin of the JSME, 1980, 23(180) 938-944.

4. Shimada, K. Fujisawa, F., Balancing method of multi-span, multi-bearings rotor system. Bulletin of the JSME, 1980,
23(185) 1894-1898.

5. Saito, S. and Azuma, T., Balancing of flexible rotors by the complex modal method. ASME Journal of Vibration,
Acoustics, Stress and Reliability in Design, 1983, 105, 94—-100.

6. Goodman, T. P., A least-squares method for computing balance corrections. ASME Journal of Engineering for Industry,
Series B, 1964, 86(3) 273-279.

7. Lund, J. W. and Tonnesen, J., Analysis and experiments on multi-plane balancing of a flexible rotor. ASME Journal of
Engineering for Industry, 1972, 233-242.

8. Tessarzik, J. M. and Badgley, R. H., Experimental evaluation of the exact point-speed and least-squares procedures for
flexible rotor balancing by the influence coefficient method. ASME Journal of Engineering for Industry, Series B, 1974,
96(2) 633643

9. Tessarzik, J. M., Badgley, R. H. and Anderson, W. J., Flexible rotor balancing by the exact point-speed influence
coefficient method. ASME Journal of Engineering for Industry, Series B, 1972, 94(1) 148—158.

10. Tessarzik, J. M., Badgley, R. H. and Fleming, D. P., Experimental evaluation of multiplane-multispeed rotor balancing
through multiple critical speeds. ASME Journal of Engineering for Industry, 1976, 988—998.

11. Everett, L. J., Two-plane balancing of a rotor system without phase response measurements. ASME Journal of Vibration,
Acoustics, Stress and Reliability in Design, 1987, 109, 162—167.

12. Ehrich, F. F., Handbook of Rotordynamics. McGraw-Hill, New York, 1992.

13. Lee, A. C., Shih, Y. P. and Kang Y., The analysis of linear rotor-bearing systems: a general transfer matrix method. ASME
Journal of Vibration and Acoustics, 1993, 115, 490-497.

14. Wylie, C. R. and Barrett, L. C., Advanced Engineering Mathematics. McGraw-Hill, New York, 1982, Chapter 7.

15. Lee, A. C., Kang, Y. and Liu, S. L., A modified transfer matrix method for the linear rotor-bearing system. ASME Journal
of Applied Mechanics, 1991, 58, 776-783.

APPENDIX A

il nnZ . nnZ
Far=Xl=0o+ Y, <H§n'COS—L— +ﬂ§n'SIHT) =[P 1]
n=1

Foir=(F,17) =[P1["]
Fy 17 = (F7) = [P3][V1]
Fa 19 =(F12) =[Pa]V]
Fs =Xt =[P ][V2]
Fo.r7 = (Fs17) = [P 1[V2]
F07 = (Fg 17) = [P3][V:]
Fo17 = (Fr17) = [P V2]
Foi7=Y2 =[P ][V3]
Fio17 = (F 1) = [P211V3]
Fiy i = (Fio.0) = [P31[V5]
Fiy 19 = (Fiy 1) = [P41[V3]
Fia =YF=[P][Vi]
Fiaaq =(F3,47) = [P1[V.]
Fis17=(Fia,17) = [P3]1[Va]
Fie.in = (Fi5,17) = [Pa][Va] (A1)
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where
i nzZ . 7wz nrz | nnz
[P;]=]|1 cos— sin— ,..., COS— SIn—
B L L L L
B n . onzTW nz WK . nmz nm nrz
[P,]=|0 ——=sin— —cos~— ,..., ——sSIn—— — COS —
L L L L L L L L L

i )2 nz a\* . =mz nm\? nnz nr\? |
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B L L L L L L L L
[Vil=[lio Hé1 M51 »---s Mn Wil Vo]l =1[ls0 #s1 U5y 5--5 Hen 5
V3l =[ls0 va Vit -s ¥ Vand, [Val = [0 Va1 Virs «oos Vi Vel
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The relations between the nth term of the Fourier series representing the unbalance function (see Eqn (3)) and the nth term

of the particular solution in Eqgn (6) can be obtained as below

[ue | — 4, 0 0 0 0 C -B, 0 7' racosé |
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_all)n alZ)n_
dz1)s G22)n
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By substituting n = 1 to n = n into the above equation, those equations can be rearranged into the following four forms

o | [ 0 0 0o o0 0o 0
Ha 0 an) anh 0 0 0 0
M 0 ax)y anh 0 0 0 0
Hez _ 0 0 0 ay1); i) 0 0
Wo || 00 0 @) an) 0o 0
Hen 0 0 0 ande Qradn

_HZn_ LO 0 0 0 0 <t e A22)n
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For simplicity, the above four equations can be written as below
[(Vi1=[Y10UJ
[V21=1[Y:1LU.]
[Val=[Ys1[U.]
[Val=[Ys][Ui] (A3)
where [U,] = [Fo Fer Fot Tea Tezs --os Fon Fsnl™

Introducing (A3) into Eqn (A1), the elements of [K;] can be acquired.

APPENDIX B
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Successively, we have
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