EE BB D R R IRE S

gt

A Novel Mechanism for Semantic Web Service Composition

in Cloud Computing

P S R § - =S

—_—

R R A E R®

3k TR o v S TR S S
- BAZHIERE Y 9%F

R RRIRIY e 8

A Novel Mechanism for Semantic Web Service Composition in Cloud
Computing

Student: Guan-Ting Lin

Advisor: Chi-Chun Lo

A Thesis
Submitted to Institute of Information Management
College‘of Management
National Chiao.Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Business Administration
in
Information Management
June 2011

Hsinchu, Taiwan, the Republic of China

BAZHTERRY 9 L FRIRBZEL B

Ly 4 HhEas

i}p %‘?I#)» TeiE EEF

2
|4
P
(=
A
%
)
e
o
Jh
it
ot
—F‘I_

#F &

¥ 2 #4:8 ¥ (Cloud Computing)sk 5 il i# 4 B - B JR7+(Web Services)

PRI RRE T AR A FIE] AR KAR SR T R IR G §

HE oA G RREERBCRAPTRFT R 6 P o7 LG ERRIR

RS R R F RN LR A R RIRGS

PRarie b %S - BATSE DREFRGOR R AP M 2 R H R - B

lehﬁgﬁmkypﬁﬂl‘pb_‘}z »3F

kP05 T FehfiAh & P A

7

SRR S 2 R o Bt AR 4
BEF A2 R DA RLIBZ

A4 AR > Tt B AR 8

* 2 2] @B(Planning Graph) e {8 3 [& %
Bt t Bt ERRIAS AR BT s R R
AR NS 2 R - Bk W
v S HOF IR L F N A2 BRRIRFA

= E R A% e LRI N F A o

MEETF @ BRI EE ~ v BHEFRIIE - F L

A Novel Mechanism for Semantic Web Service Composition

in Cloud Computing

Student: Guan-Ting Lin Advisor: Dr. Chi-Chun Lo

Institute of Information Management

Nation Chiao Tung University

Abstract

With the rapid development of cloud computing, the quality and reliability of
web service increase greatly. Therefore, there will be more and more diverse web
services published in cloud. When the-back-end data of cloud environment needs to
be composited to apply, it can be achieved by web service composition technology.
However, because of a very-large number of web services in cloud, the problem of
service composition has become increasingly sophisticated and complicated. In this
thesis, we proposed a semantic: web..service -composition mechanism based on
semantic in cloud environment. It utilizes Planning Graph based on backward search
to find multiple feasible solutions, and recommends the best composition solution by
the lowest using service cost. Finally, we implement a simulation environment to
validate the proposed mechanism. Through the simulation results, the proposed
algorithm based on backward planning graph reduced by 94% service cost in three
types of service generation model to compare with the traditional service composition

algorithm.

Keywords: Web Service Composition, Backward Planning Graph, Semantic Web

AR RSN B AT 4B E i g KA BN D

N
il
¥
™

\
o
W
N
\

JE R PEREA N AT P anigiiEo 2 4 F
FERRAE AR A G ATH NP AR SR T RS o F b S R e 24 F
PEEMNKE T JIRRERF FIRECKBE B PSS AT RBAT AT - B
ERILTRI & RATRG Y L R
L RER#HFTHRzA D Stan FL - A AT LB I EFETL - B iPAERE S
FEPOL B R FB BN AR B s

X E o e [EACVE B L BB > R ARG BN aET T} Apeh

RUSARBRHFI T NER —EF YL RF L pEEL A RS

TR AT -Fo 8 - $FE FR Sk CPAFE I H2E A EAD
BEELFE o R U A B de P mEs B AR e s d li;{ T
B BY T A B PSR LN ERTERF L AN LT RO

BERHMANIIEE R B YUY P A BRI RS E A A
P18 EP 0 23R8 D] ARITE FEL SEPF RS9 - B B SRR -

e hRARSEE .

Table of Contents
FE R oo |

ADSEIACT .t e e e e st e e e e e e e e e s abe e e e s rreeeeeaee Il
ot PSP 1]
Table Of CONENES c...eviiiiie et s esaa e e sareeeas v
[o ST ={ U LSS Vi
LISt OF TaDI@S ...ttt n Vi
(@0 =Y o] =1 gl A 0 o Yo [0 Tox o o TSP 1
1.1 Research Background and Motivation........ccccoeecciiiieeiei e, 1
1.2 Approach and ObjJECLIVE.uuiiiiee e 2
1.3 OFgaNIZAtION ..uuuuiiiiii s 2
Chapter 2 Related WOIKScoo ot e e e e e e e e 3
2 @ [0 TUTo I @o T 4o YU o TSRS 3
2.2 Web Service and Web Service COmpositioncoccccvviiieeeieiicciciiiieeeee e 6
2.3 Semantic Web and Semantic Similarity........cccceeeeieeeciiiiiieeee e 7
2.4 Planning Graph.... .. i ettt e e e e e e e e e e e e e e e e annes 9
2.5 Web Services Generation Tool for Service Compositioncccceeeecivveeennns 10

Chapter 3 A Novel Mechanism for Semantic'Web Service Composition in Cloud

(000 0101 o TUL A1 0¥ - S SO s B 12
3.1 Problem Definition s i i i e dbae ettt e e e e eiee e e 13

3.2 Web Service CompositionMechanismcc i e, 14
3.2.1 Overview of the proposed-mechanism.........ccccccoeeeciiiereeeeeniccccninneen. 14

R o (=T o] 0 Yol X1 [V- 16

3.2.3 Service Pattern Matching Moduleccevveeiiiieicceee e, 18

3.2.4 Web Service Composition Moduleccceveeeiiiicicciiieeeee e, 20

3.2.5 Search Optimal Solution Module.........cccuviiiieeiiiicceee e, 24

3.3 DlISCUSSION ettt ittt et e e ettt et e e e e ettt e e e e e e e s e aabbeteeeeeseessnbsaeaaeeesesssananes 26
Chapter 4 Simulation Results and ANalysis........cccceeeiieecciiiiiiee e, 27
4.1 Simulation ENVIFONMENTuiiiiiiiiieieiiiiee ettt e s 27
4.1.1 SIMUltion DESIZNeeeiiiiiiee et e e e e e e e e e e e e e e e 27

4.1.2 Simulation ASSUMPLION ...cceeiieiicciiiieee e e e e e 29

4.1.3 Performance IMELFICSuuveiiiieiee ettt 30

4.1.4 SIMUIQTION CASES .uuvveiiiiiiieeeiiitee ettt ettt e e e aae e e 30

4.2 Simulation Results and ANalysis........ccceeeieeiieicciiiieeeee e, 31
4.2.1 Case 1: RanNdom NELWOIKcuuiviiriuiiiiiiiiiee e 31

4.2.2 Case 2: Small world Networkoccvveviiniiieiiiie e 32

4.2.3 Case 3: Scale-free@ NEtWOIKcevvvciiieiiniiiieieeee e 33

v

4.2.4 Effectiveness and Efficiencycooecvveeeicciiei e 34

4.2.5 WSBen data set and general situation..........cccccceeeeeiieicciieeeee e, 42

4.3 DiSCUSSION . .uueieieteteeeeeseititteee e et e e e seer et e e e eeesesaunereeeeeeeeeseaanrebeeeeeeeessannnnrreneens 44
Chapter 5 Conclusions and future Works.........ccecuueeeeeciee i 45
5.1 CONCIUSIONS ..veieiiiiiee ettt ettt sttt e e e e e e st e e s s sabt e e e s snneeeesensneeesenans 45

5.2 FUBUIE WOTK ..ttt ettt st e et e e s ee s e 45
Appendix |. Service Composition Algorithmcooeviiiiiiii e, 47
RETEIENCE ettt ettt e e st e e s e e e sbe e e st e e e aaee s 51

List of Figures

Figure 1 .The flow diagram of the service composition mechanism.............cccccueun...e. 15
Figure 2. Capture web services into repository from cloud.............ccccceveveveevireiennenne. 17
Figure 3. Import semantic concepts from WOrdNet..........cccccveevevevieveseeseee e 18
Figure 4. The example of service pattern extraction.............ccecveveereeverceeseesieeeeseenes 19
Figure 5. The simplified planning graph for the above example.........c.ccoevevvvevenenne. 22
Figure 6. The solution tree for the planning graph for the above example.................. 23
Figure 7. The Architecture of Simulation Platformcccccevveveiiecicceceeeeee 28
Figure 8. The average cost of finding solution with both methods in Random Network
.. 34
Figure 9. The average cost of finding solution with both methods in Small World
INEEWOTK ...ttt st bbbttt e e e s e benbesbe e 35
Figure 10. The average cost of finding solution with both methods in Scale-Free
INEEWOTK. ...ttt ettt bt sae st et e s e ntenbesbe e 35
Figure 11. Level of searching solution with both methods in Random Network 36
Figure 12. Level of searching solution with both-methods in Small World Network .37
Figure 13. Level of searching solution-with both methods in Scale Free Network.....37
Figure 14. Precision of searching solution with both methods in Random Network ..38
Figure 15. Precision of searching solution with both methods in Small World Network
.. 39
Figure 16. Precision of searching solution with both’methods in Scale Free Network
.. 39
Figure 17. Time of searching solution with both methods in Random Network......... 40
Figure 18. Time of searching solution with both methods in Small World Network ..41
Figure 19. Time of searching solution with both methods in Scale-Free Network41
Figure 20. The example of SOIULION treecc.eevieeeiieeeeeee e 43

Vi

List of Tables

Table 1. The three layers of Cloud Computing Architectureccceevveveeveeveevesnnene. 5
Table 2. The Definition of NOTAtiONc..coiviriierieieeeeee e 12
Table 3. The example of WED SEIVICESceccveeieiieiieeeceee et 22
Table 4. Simulation Platform ENVIrONMEeNtccocveieienieneneneneseeeeeeeee e 27
Table 5. Results of random network with [W| = 10000..........cccceceeviieviereereeieseeseenee. 32
Table 6. Results of small world network with [W| = 10000..........cccceeereeveeveereenrenen. 32
Table 7. Results of scale-free network with [W| = 10000cccecvevvevieveeienieienee. 33

Vil

Chapter 1 Introduction

1.1 Research Background and Motivation

Recent years have seen growing importance placed on research in web service
composition due to its practical application. With the developing of cloud computing,
there will be many diverse web services published in cloud environment. As the
number of web services increases more and more, service composition has become
increasingly sophisticated. Therefore, flexible service composition in cloud to find the
right composition to satisfy the given goal is one of the more important issues.
However, the problem of service composition is still a complicated and error-prone

process until now [7].

Generally, the problem of web service composition can be described as a given
request which contains a set.of known input parameters.and a set of expected output
parameters [20], to compose multiple services to satisfy the request. There have been
numerous methods proposed for solving the problem of service composition, such as
workflow [17], Al planning, and so on. The planning graph, which is a kind of Al
planning technique, provides a compressed search space [20]. The problem of service
composition is transformed into the problem of planning graph, which could be

constructed in polynomial time, but with possible redundant web services.

However, service composition based on planning graph encounters several
drawbacks: (1) there are redundant web services existed in the solution of service
composition, and (2) that is lack of flexible search mechanism, which can recommend
the multiple solutions for the error-prone of service composition. User may have a
request which cannot be exactly solved by service composition. Or a request could

need a large amount of web service for solving service composition. In this thesis, we

concentrate on finding multiple service composition, which maybe physical solutions
or approximate solutions using fewer number of web services, to recommend a list

composition to user.

1.2 Approach and Objective

In this thesis, we proposed a web service composition algorithm based on
backward strategy to enhance web service composition mechanism, which can find
multiple solutions and recommend best one. Also, we can recommend the
approximate solutions which not totally correspond to user request, but it uses fewer
amounts of web services and less.levels of web service composition. In contrast,
composition algorithm based on forward strategy aim to minimizing the search time,
but there are not necessarily web services in its solutions. After experiment, we
proved that the composition algorithm based on backward strategy has better effective

than forward strategy, which had been proven as a-good composition method.

1.3 Organization

The rest of this thesis is structured as follows. Chapter 2 contains the literature
reviews which include cloud computing, web service composition, semantic web, and
planning graph. Chapter 3 describes the proposed service composition algorithm
based on backward strategy. Chapter 4 presents the details of experiment and its
results, and it also included a discussion about the result. Chapter 5 concludes this
work and proposes the future work. Eventually, the references and appendix are

attached at the end of the thesis.

Chapter 2 Related Works

In this thesis, we proposed a composition algorithm which enhances the
effectiveness of web service composition. The necessary research background and
relevant technologies includes: (1) Cloud Computing, (2) Web Service and Web
Service Composition, (3) Semantic Web and Semantic Similarity, (4) Planning Graph,
and (5) Service Composition Evaluation. We will introduce them in the following

sections.

2.1 Cloud Computing

The National Institute of Standards and Technology (2010) have defined that
“Cloud computing is a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources «(networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service-provider interaction” [19]. This cloud model promotes
availability and is composed of five essential characteristics: on-demand self-service,
broad network access, resource pooling, rapid elasticity, and measured service. Each

of characteristics is illustrated in the following.

1. On-demand self-service:
If the client firm access their needed cloud resources, such as web
applications, web services, computing, storage and network, they must be
available and automatic without human interaction with service providers.
Companies are beginning to utilize the cloud to deal with vital tasks, even
the everyday task such as sending an email and scheduling calendar. If the
service goes down, the operations of company may be suspended, and the

cloud provider would take the responsibility.

Broad network access

This point is the most vital characteristic of cloud computing. The cloud is a
massive resources based on internet whereby the clients are able to access
their resources over internet anytime and anywhere. And they can be
accessed through standard mechanisms that promote the usability by
different types of standardized platform (e.g., smart phones, mobile devices,

and desktop computers, etc.).

Resource pooling

The cloud provider pools computing resources including network
bandwidth, computing, memory, and storage, etc. to provide services for
clients. The numerous cloud clients shared. the cloud resources at same time,
and they pay for what they need: It means-that you don’t have to have
enough money to-build your own infrastructure for getting computing
power, and someone provides their infrastructure and resources to anyone

who is willing to pay for accessing,.-That is essentially an economy of scale.

Rapid elasticity

The aim of resource pooling is to avoid spending high capital expenditure
for building the infrastructure of network and computing. Those pooled
computing resources can be rapidly and elastically provisioned to scale up /
down based on client’s demand. By outsourcing to a cloud, the company

can significantly reduce the cost of IT and the risk of service interruptions.

Measured service
The cloud provider can control and measure the amount of provided
services. This is significant for billing to the client, control the accessing of

resources, and optimizing the usage of resources.

4

Cloud computing provides the computing power, the software services, and the
storage space for the clients via internet anytime and anywhere. It is a model of
supplement, consumption, and delivery for IT service, and also involves the provision
of dynamically scalable and virtualized resources [14][3]. Cloud computing
environment makes the business software and data stored on remote server
ease-of-access by the Internet [2]. That usually utilizes the web-based protocol to let
the client access through the web browser [9]. It includes three layers of service:
Infrastructure as a Service, Platform as a Service, and Software as a Service [16], as

the following Table 1.

Table 1. The three layers of Cloud Computing Architecture

Services | Description Example

SaaS | The user accesses .the cloud services published by | Gmail
service provider-via internet. If there is not the cloud | Salesforce
infrastructure for the services, application-services can | Gliffy.

only be called internet service.

PaaS | The main provided service as application platform, the | Google GAE
application platform provides developers with quick | Microsoft

development and deployment. Azure.

laaS | The main provided service as IT infrastructure, it | Amazon AWS
shares IT infrastructure, such as servers and storage. | Joyent

The system administrator access those processes, | Nirvanix.
storage, and database from the cloud computing

provider.

2.2 \Web Service and Web Service Composition

Web services are internet based software components which have the capabilities
of cross-platform and cross-language. The W3C has defined “Web Service” that "a
software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format
(specifically Web Services Description Language WSDL). Other systems interact with
the web service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.” [4] The W3C has also pointed out that "We can identify two
major classes of web services, REST-compliant Web services, in which the primary
purpose of the service is to manipulate XML representations of Web resources using a
uniform set of stateless operations; and arbitrary \Web services, in which the service

may expose an arbitrary set of operations.” [22]

And the aim of web service composition (WSC) is to composite diverse web
services to accomplish the request ‘which cannot be satisfied by single web service.
The Web services composition have static or dynamic way to be done. The static web
service composition is constructed to solve the particular problem through identifying
manually the capability of web services. That is composited by a series of known web
services and a set of know data to obtain the expected results. Dynamic web service
composition is to automatically select web services and flexibly composite those web
services during the execution time. The aim is to build the automated service

discovery and execution mechanism.

The web service composition is commonly described by using the Web Services
Business Process Execution Language (BPEL) [21], it is defined by XML-based

language that provides particular functionalities for processes, such as define

6

variables, create conditionals, design loops, and handle exception. And it utilizes web
services as the model for the decomposition and the composition of the process.
However, BPEL promotes the developing of workflow and the integration of business

process.

Dynamic web service composition is the generation of dynamic composition of
multiple web services to satisfy the user’s requirements, which is one of the most
important areas of current web service research. Now most researches on web service
composition focus on developing new approaches based on Al planning. That
assumes the web services as actions, Al planning techniques are utilized for dynamic
service composition by solving the service composition as the planning problem.
Examples of the Al planning techniques include [18][10][8][13][15][6]. The task of
WSC usually assumed that. the - composition process generates a composition
workflow, which starts from-the known variables to the expected goal. As an example
in Al Planning Graph [18] utilizes graph algorithm based some strategy to generate
service workflow. It constructs ‘a compressed composition search space, and can
obtain a solution in polynomial time, but with redundant services. As examples, the
planning for WSC such as [10][13][6] , They utilize higher-level process models and
constraints to decompose the model to an atomic-level composition for solving WSC
problem. Web service composition techniques provide methodologies for compositing
multiple services to satisfy the user request, which cannot be achieved by one single

service.

2.3 Semantic Web and Semantic Similarity

The Semantic Web means a "web of data” that helps machines to understand the

information’s semantic and meaning on the World Wide Web [5]. It utilizes the
machine-readable metadata to describe the human-readable information. That makes
machines enable to infer the relation of the information. The machines process the
information more intelligently and more precisely. Berners-Lee published “The
Semantic Web” in Scientific American Magazine [1], which defined the Semantic
Web as "a web of data that can be processed directly and indirectly by machines”. It
described the evolution of Web, as that semantic web makes largely data and
information directly manipulate by machines without human interpretation. In the
article, Berners-Lee also introduced “ontology” into the semantic web. With ontology,
the machine has more capability of handling the meaning of lexical and semantic in

the web. It is utilized to define and reason about domain knowledge.

The aim of semantic similarity-is to measure the-similarity between concepts,
and it is different from measuring the similarity between words [12]. Semantic
similarity is based on the concept relationships:of ontology without additional corpus.
Ontology is formal specification of the-concept-model, which contains concept, entity
of objects, their property, restriction, and relation. It can use to describe the
knowledge of application field as a set of concepts and relationships between concepts.
With ontology, computer is more capable to process the lexical and semantic meaning.

The followings define ontology hierarchical structures.

1. Concept Semantic Distance: Calculate the shortest path length between two
concepts, denoted as I(c;, ¢;).

2. Concept Semantic Depth: Represent the depth of the concept from the top
node, denoted as h(c).

3. Concept Semantic Coincidence: From the common ancestor between two

concepts, calculate the number of intersection nodes and the number of

union nodes to obtain the ratio of the intersection to the union, denoted as

c(ci, ¢;). P(c) represent a set of concepts which is c is child concept. Than

|P(Ci)ﬂP(Cj)|
|P(Ci)UP(Cj)|

c(ci, ¢j) is presented as:C(c;, ¢;) =
4. Concept Semantic Density : From the layer of the closest common ancestor
between two concepts nodes, calculate the ratio of the number of child
concept nodes to the count of layers which those nodes cross, denoted as

d(Ci, Cj).

2.4 Planning Graph

Planning graph techniques are studied in-the Al planning domain. The planning
graph provides a very powerful search space to improve the efficiency of Al
algorithms. It is a layered graph whaose edges are only allowed to connect two nodes
from one layer to next layer. And the planning graph’s-layers are with an alternating
sequence of action layer and proposition.layer.-The proposition layer contains a finite
set of states, and the action layer contains a finite set of actions (the action has

preconditions, negative effects, and positive effects).

At the first layer of planning graph, P, is a proposition layer which contains the
initial states of the planning problem. The next layer, Aj, is a action layer which
contain a set of actions which preconditions can be satisfied by Po, and P; is the union
of the states of Py and the effects of all A;’s actions. Those preconditions of actions in
A; are connected to the state nodes in Pg by incoming arcs, and those positive or
negative effects in P; are connected to the state nodes in P; by outgoing arcs. The

process continues until it reaches the goal states or the fixed-point level of the graph.

2.5 Web Services Generation Tool for Service Composition

WSBen is a novel benchmark tool for web service composition and discovery,
which provides a set of functions to simplify the generation of web service test sets,
and build test environments including the testing requests [11]. The main
contributions is to provide three different types of network models such as “random”,
“small-world”, and “scale-free” network types. It also can generate diverse sizes of
test data sets based on the network type you specify. At higher perspective, a web
service can be assumed to be a transformation between two difference domains, which
could be regarded as clusters of parameters. The development of WSBen is based on
the above assumption. The network topology will be constructed as a directed graph
based on graph theory. Each node is represented as'a parameter cluster, and each edge
IS represented as a connecting-between twao different clusters, that will be regarded as

generation template of web service.

There is an input framewaork:that user can specify the generated web service and
the characteristics of network topology in "WSBen. The input framework xTS =

(I/1, Gy ,n, My, [W]). xTS is described in the following.
1. |J] is the total number of parameter cluster.

2. Grdonates a graph model to specify the topology of parameter cluster network.
The three types of network, which are “random”, “small-world”, and
“scale-free” complex networks, can be simulated by the three network model,

as following.

e Erdo-Renyi (|J],p):
The model has such a simple generation approach that it creates | J |

nodes in graph and chooses each of edges in the graph with probability p.

10

* Newman-Watts-Strogatz (|/|, k, p):
The initialization is a ring graph with k nodes. And then each node adds
to graph and construct edge connected others with probability p, until

there are | J | nodes in this graph

e Barabasi-Albert (|/|, m):
There are m nodes with no edges in the initial graph. Each node adds with
m edges, which are preferentially attached to existing nodes with high

degrees.

3. n donates the parameter condense rate. Users can control the density of partial

matching cases in generated web services.

4. M, donates the minimum number of parameters in a cluster. In other word,

each cluster has at least’ M,, parameters.

5. |W/| donates the total number of web services of a test data set.

11

Chapter 3 A Novel Mechanism for Semantic Web Service

Composition in Cloud Computing

In this chapter, we introduce our novel composition framework, a semantic web

service composition in Cloud. In Section 3.1 we identify our problem. In Section 3.2

we will introduce the overview of proposed service composition mechanism and each

step of mechanism. In Section 3.3, we have discussions about possible advantages and

disadvantages of proposed mechanism. In this chapter, we use some symbol to

express the proposed mechanism. That are illustrated and defined as following table.

Table 2:The Definition-of Notation

Notation Description

w Web Service' w has a set of input parameters w;, = {iy, ..., i,} and
a set of output parameters wyu:-= {04,"..,0n}

r Composition Request r-is.a-pair of *(r;,, rout), Where r;, is a set of
input parameters and r,,; is a set of output parameters

slu Solution slu has a set of initial states slu;, = {iy, ...,i,}, a set of
web service sluy, = {wy,...,w,} and a parent solution, which
means composition solution is a list from this to the top solution.

wp Web Service Pattern wp has a set of input parameters wp;, =
{iy, ...,in} , @ set of output parameters wpy,t = {04, ..., 0}, and a
set of web service wpy,s = {wy, ..., wp}

pg Planning Graph pg consists of a set of action level {A4, ..., A}
and a proposition level {P;,...,P,41}, A; is a set of web services
pattern where input parameters are nodes in P,_;

12

N s;S, The amount of same concepts between s; and s,, where s; and s;
both are sets of concepts.

U s;S, The amount of different concepts between s; and s,, where s; and
s, both are sets of concepts.

a The variable a represents the weight on parameter matching in
matching score.

KM KM Represent Kuhn-Munkres algorithm which solves the
assignment problem in polynomial time. That assigns the output
parameters of one service to input parameters of another service.

Sim(cy,c,) | The similarity value between two concepts.

3.1 Problem Definition

In this thesis, our main goal is to solve the existed problems of service

composition. Our focused problems-include that.service composition is essentially an

error-prone process, the solution of service composition is always complex, and the

request is hard to find the exact solution. Those problems are described in the

following.

1.

When the request is more complex, it always takes much time and finds the
solution which is quite complex and resource-consuming. It means that the

solution uses very large amount of services to satisfy the request.

Sometimes, there is no solution which exactly corresponds to the request. It
is lack of flexibility to provide an approximate solution. If the solution is

complicated, whether can find approximate solutions instead.

13

3. The problem of service composition is an error-prone process. It needs an
effective mechanism which can provide multiple solutions to avoid that. To
recommend a list of suited service compositions for selection or to evaluate

from those solutions.

Thus, service composition algorithm may encounter above situations, and those

problems are our focused issues.

3.2 Web Service Composition Mechanism

In this section, we will introduce the proposed service composition mechanism
which includes four steps, such as preprocessing, service pattern matching, service
composition, and search optimal solution. Those modules will be described in
following subsections. At first we will‘introduce the overview of the mechanism, and

then we will introduce each step-of the mechanism:

3.2.1 Overview of the proposed mechanism

For improve the current web service composition mechanisms based on forward
strategy, we proposed the framework including Service Pattern Matching Module,
Web Service Composition Module, and Search Optimal Solution Module. Figure 1
shows that the flow diagram of the proposed mechanism. Service matching module is
used to provide services for the query of service composition module. Service
composition module provides multiple solutions for Search optimal solution to choice

the best suited solution.

14

Goal

Cloud

Web | We.b
. Service
Service .
Repository
Service Web Service Secirch
Pattern . Optimal
X Composition .
Y Matching Module Solution
Module Module
Semantic
WordNet Similarity | |7
Module

Composition Feedback

Repository

Figure 1 .The flow diagram of the service composition mechanism

The flow diagram of the proposed mechanism is shown in Figure 1. The flow

diagram has the following 4 steps:

1. There are two parts in this step. One-is the web service repository, and the
other is semantic similarity module. The web service repository will search
web service form distributed UDDIs in Cloud and store those service to
repository database. All web services in repository will be updated regularly.
Semantic Similarity Module pre-calculates the semantic similarity values
between any two concepts and stores the similarity values into semantic

similarity database for querying.

2. Service Pattern Matching Module utilizes Web Service Repository and
Semantic Similarity Module to select the suited web services corresponding
to the query, and group them by similarity of web services. It will provide a

set of service groups for service composition.

15

3. Service Composition Module will query Service Pattern Matching Module
to get services which are required by composition algorithm. Service
Composition Module will generate multiple service composition solutions

according to the goal.

4. According to the given goal, Search Optimal Solution Module will calculate
the score of each solutions and choice the most suited web service

composition from these found solutions

Those steps are the progress of our mechanism. The following subsection will
explain how to get solutions by Service Composition Module and how to choice the

best solution by Search Optimal Solution.

3.2.2 Preprocessing

In web service composition, the times of querying services is a great quantity. If
you query web services registered in distributed ‘UDDIs at runtime of service
composition, the processing efficiency is obviously lower than web services stored in
one centralized database. All web services will be stored to the structured Web
Service Repository. Otherwise, the calculation of semantic similarity between
concepts is time-consuming, that will be preprocessed by Semantic Similarity Module.
Service Pattern Matching Model according the repository and the relationships of

concept similarity to response the query.

The preprocessing includes two parts:

1. Web Service Repository
The aim of service repository is to virtualize service discovery. We query

web services registered in distributed UDDIs in cloud and parse the WSDL

16

of web services to store into repository database, as shown in Figure 2. It
will search regularly web services from distributed UDDIs and analyzes the
structure to update database. The structure includes a set of input parameters,
a set of output parameters, and service name. It is helpful and flexible to

composite web service.

Semantic Similarity Module

The semantic module is for discovering the relationship between web
services. According to the definition of lexicon and classification on
WordNet, transform it into the concept and relationship of Ontology, as
shown in Figure 3. And we calculate the similarities between concepts. The
calculation of semantic. similarity 1s-described in Chapter 2. Through these
functions, we can~obtain—semantic similarity values between semantic
concepts. Those value’s ranges are between 0-and 1, and the higher value
represents higher similarity..\\We pre-calculate those similarity values, and

store into database.

Y
S

: ° Web Service
° Repository

&y —
I

Figure 2. Capture web services into repository from cloud

17

entity

Physical abstract

thing object matter Semantic
Similarity

Module
living thing stuff food
life being cell meat fish
animal person plant

Figure 3. Import semantic concepts from WordNet

3.2.3 Service Pattern Matching Module

This section will introduce service selection mechanism. In Cloud, there are so
many similar web services, it.causes that solution space-expands quickly, so we could
consider that similar web services as-one..“Service pattern” is a concept that we
proposed in this algorithm, which means that group those web services by the
similarity of the input parameters and output parameters. A service pattern includes a
set of web services and those included web services can be presented by this pattern.

This module will provide service patterns according to the request.

Service pattern matching algorithm includes three steps:

1. Semantic Parameter Expansion
Semantic expansion is based on sematic similarity module (SSM), which
records relationships between semantic concepts. Querying the SSM
according to the request, it will get a set of concepts which are similar with

the request. Add those similar parameters to quest set of web service.

18

Query Web Service Repository

From previous step, we will have a set of parameter query. We query the
services, whose output parameters can provide one of query parameter set,
from repository. Then we can find web services which provide the expected

output.

Extract Web Service Pattern

In the step, we collect a set of web services from previous step. We group
those web services, and each group can be represented by one service in its
group. The extraction rule of service pattern is “effect(w) C effect(wp) A

precond(w) 2 precond(wp)”. For example as following Figure 4, there are

five services, W1 have i , B, C, D) and output parameters

(1, J), and W4 have d output parameters (I, J, K}.
W4 uses fewer in s, then we can say that W4

contains W1, and s he search space of solutions.

O=O

Figure 4. The example of service pattern extraction

19

3.2.4 Web Service Composition Module

In the section, we will introduce composition mechanism we proposed in this

thesis. In our proposed algorithm we use planning graph based on backward strategy

to solve the problem of huge search space. The aim of backward search is to find the

initial states, so we propose an algorithm for solution extraction of planning graph,

which help us to find the initial state. Web service composition module includes four

steps:

Expand the planning graph

In this step, we will expand the planning graph to one more action level
with backward search. From the last proposition level in planning graph, we
can get a list of expected parameters, and then query service pattern
matching module (SPMM)-to" get service patterns. Add those service
patterns to new action level,”and arrange new proposition level. The

Algorithm ExpandBasedOnBackward is shown in Appendix.

Extract solutions from the planning graph

From previous step, we can get planning graph which contains one more
level. We need to trace the possible solutions from the planning graph. So
we keep those lists of service composition, and we extend those
compositions with that new level. We find out the service combinations to
extend the service compositions from the action level. That is for finding
solutions which correspond to the initial state of the request. The Algorithm

ExtractSolutions is shown in Appendix.

20

3. Reduce solutions
We have a set of service compositions from extracting solutions, And we
will utilize two strategies to reduce solutions. One of the strategies is that
remove the solutions which utilize service more than threshold in the new
extended level. The other is to remove the similar solution. They help us to
decrease the complexity and quick growth of solutions. The Algorithm

ReduceSolutions is shown in Appendix.

4. Validate solutions whether correspond to user request
From the previous step, we will have a set of solutions to calculate the score
to find the best solution. If there is not solution correspond to user request,
then expand the planning graph to next level. Repeat the above steps until
find at least one solution.-The Algorithm ValidateSolution is shown in

Appendix

Here we give another example to explain-our proposed composition mechanism.
Assume a user request which has been a set of input parameter r;, = {A, B,C, D} and
a set of output paramters ry,; = {M, N}. And there are nine web services in our web
service repository. The following Table 3 shows the details of example web service

repository.

21

Table 3. The example of web services

Web Service Input Parameters Output Parameter
W1 AB,C E.F

W2 AB H

W3 D.E |

W4 E.,F J

W5 K,L

W6 G I

W7 H M

W8 1,J,K M,N

W9 L N

Through the expansion ‘algorithm; based on backward strategy, of web service
composition, we will get the planning graph-which has user request at the first

proposition level and the last proposition level. The following Figure 5 shows the

result.

P1 Al

P2 A2

P3 A3

Figure 5. The simplified planning graph for the above example

22

{A, B, C, D} and {M, N} are the input and output parameters of the composition
request. At first, we search web service which can output {M, N}, then we get
{w,, wg, wo} which can support the proposition 4, our goal. Those three web service
will be involved in action 3. We collect input parameters of web service in action 3,
and we will get proposition 3. The rest of proposition and action are like this, and so

forth.

From the previous step, we have a planning graph, and it needs us to extract
solutions. We utilize our proposed algorithm to extract solutions, and will get a tree
structure, which is for tracing solution. Through the extracting solution of web service
composition, we can get a solution tree. For every leaf node in solution tree, it means
that there is a solution from leaf node to root. Theresult is in the following Figure 6.
We can discover that there are many kinds of initial state in the tree, which is one of
advantages of backward strategy, so that we can find-multiple solutions for user

request.

W3,W4,W5

Figure 6. The solution tree for the planning graph for the above example.

23

{M, N} are the output parameters of user request. It is located in proposition 4,
so we need to find the combinations of web services in action 3, which can
correspond to {M, N}. And we will get two combinations, which are {W7, W9} and
{W8}. Those combinations will be added to the root as its child. Now there are two
nodes at second level. The solution node composited by {W7, W9} requires a set of
input parameters {H, L}, so we need to find the combinations of web services in
action 2, which can correspond to {H, L}. So we get {W2, W5} and {W2, W6}, and

so forth.

3.2.5 Search Optimal Solution Module

After establishing the solution tree, we get service composition solutions which
possibly satisfy user request..In this section we will introduce search optimal solution

mechanism how to score those solutions and pick up the highest score solution.

At first, we calculate how precise-the solutions correspond to the user request.
We utilize the ratio of the number of intersection to the number of union, where are
between the solution’s initial states and the user request’s inputs. The precision

equation is in the following.

N s1S,

Precise(sy,s,) = (1)

U $;Sy

Equation (1) shows the precision. Ns;s, represents the amount of same
concepts and N s;s, represents the amount of all different concepts, where S1 and
S2 both are lists of concepts. This equation evaluates how precise between the goal

and the solution and how different between two lists of concepts.

24

After previous step, we have the precise of solutions. For calculation of the score
of each solution, we need to calculate how matching between the levels of the

solution. The matching equation is in the following.

Mat(sl, Sz) = (KM - (X(U S1S» —N 5152))

where KM = KM((Sim(cy,c,)) (c; € sq,¢5 € 53) (2)

Equation (2) shows the matching score. In above equation, KM represents
classical Kuhn-Munkres algorithm which solve the assignment problem, and Sim
represents the similarity between any two_concepts in s; and s,. This equation is to

evaluate the matching score of two solutions.

With the previous two formulas, we can calculate the solution score. It sums the
matching scores between levels of the solution and divides by the number of levels to
get the average. Than we get the-average of matching score, and multiple by the

precision of the solution and the request. The score equation is in the following.

Sz Mat(s1,s2)
n

Score(slu) = Precise(slu.in,r.in)

(3)

Equation (3) shows the solution score. Solution slu is a list of nodes from node
leaf to the root, which represent each level of service composition, and the number of
levels represents as n. The Precision is to calculate how precise between the input
parameters of the request r and the input parameters of the solution. The equation is to

evaluate at the score of service composition solution.

25

3.3 Discussion

Our proposed mechanism is suitable for service composition due to the problems
that service composition is an error-prone process, and the solution is always
complicated. In this thesis, we designed the mechanism suited for finding multiple
service compositions to overcome the above problems. Sometimes the exact solution
IS not existed or more complicated, and our proposed mechanism still can recommend
approximate solutions. Therefore, our proposed service composition mechanism can

recommend the most suited solution from multiple solutions.

On the other hand, In order to provide multiple solutions, it must need to trace
each possible solution. Our proposed mechanism can limit and reduce the growth of
tracing solution to avoid exponential growth. If the growth is beyond the capability of

our algorithm, that will growth exponentially.

26

Chapter 4 Simulation Results and Analysis

In this chapter, we introduce our simulation environment and present the
simulation results. At first, we describe simulation environment, design, assumption,
and performance metrics. Then, the simulation results include effectiveness and
efficiency analysis, by implementing the proposed mechanism. Moreover, there is a

discussion in the end of this chapter.

4.1 Simulation Environment

The simulation platform environment is described first in section 4.1, and then to
show that how the simulation is designed. Finally, assumptions, definition of cases,

and performance metrics are introduced.
4.1.1 Simulation Design

We established a simulation platform by the proposed mechanism for validating
our algorithm. In this platform; we utilize WSBen[11], which is widely used to
evaluate the efficiency and effectiveness in ' web service discovery and composition, to
generate different test sets for validating our algorithm. The simulation platform will
carry out the algorithm according to the test data set and request from WSBen. The
following Table 4 describes the environment details of the simulation platform.

Table 4. Simulation Platform Environment

Hardware Intel Core i3 CPU 530 @ 2.93Ghz 2.93Ghz
Environment 3.84 GB RAM

Microsoft Windows 7

Software Visual Studio 2010
Environment Microsoft .NET Framework 4
Python 2.7

27

Web Services Request

Figure 7. The Architecture of Simulation Platform

The architecture of simulation platform is shown in Figure 7. WSBen build the
test data for WSC algorithm;: including a set of web services and a set of feasible
requests. In our simulation, we parse the web service generated from WSBen, then
store information into the webrservice repository. The information is including service
name, input parameters, and output parameters. Service pattern matching module
takes charge web services selection according to the service query from web service
composition module. In addition, it also groups the selected web services as web
service patterns for composition algorithm. Each of web service patterns includes a
list of web services, which can be expressed by one pattern reducing similar services.
Web service composition module conducts the composition algorithm according to
the composition request, which interacts with service matching module during the
processing until getting solutions. It will generate a list of candidate solutions of web
service composition. Search optimal solution module calculates each score of

candidate solution, and generates a recommendation list.

28

4.1.2 Simulation Assumption

The assumptions in data sets for simulation have to describe in advance. First is
that there are three types of network in the simulation, which are random, small-world,
and scale-free types. And each of networks is assumed as parameter cluster network,
and web service is a transformation between two clusters. Each cluster contains
parameters, and it is also called domain. WSBen provides a set of functions to
simplify the generation of test data for WSC algorithm. It generates web services
according to the parameter cluster network which user specify. In our simulation, we
assume that there are 100 clusters in network and the parameter condense rate is 0.8.

Three types of network models (mentioned in Chapter 2) are as follows:

1. Random Network: Barabasi-Albert (100,.0.06)
The model creates 100 nodes in graph-and chooses each of edges in the
graph with probability 0.06.

2. Small-World Network: Newman-Watts-Strogztz (100, 6, 0.1)
The initialization is a ring graph with 6 nodes. And then each node adds to
graph and construct edge connected others with probability 0.1, until there
are 100 nodes in this graph

3. Scale-Free Network: Erdo-Reyi (100, 6)
There are 6 nodes with no edges in the initial graph. And then each node
adds with 6 edges until reach 100 nodes. Each added edge is preferentially

attached to existing nodes with high degrees.

For each network, there are 10 different sizes in each of test data types, which
sizes are 10,000 to 100,000, respectively. Thus, there are 30 test sets (three

frameworks multiplied by ten different test sizes) in our simulation.

29

4.1.3 Performance Metrics

Effectiveness, efficiency, and feasibility are three evaluations, which used to test
our proposed approach. We use diverse sizes of web services and three types of web
service networks to measure how scalability and robust our approach is. The

evaluation metrics are as follows.

1. #T: It measures how long an algorithm spends to find a physical solution or
approximate solution. In other word, this is a measure of computational
efficiency.

2. #C: The number of web services in a solution of web service composition
problem. This is a measure of effectiveness.

3. #L: The number of levels of web services in a solution of web service
composition problem. This is also a measure of effectiveness.

4. #P: It measures how precise an-algorithm finds solution corresponding to
the request. It meansthat a solution is physical solution if it has precision
100 precision, otherwise itis an approximate solution. Precision (described

in Equation 1) is a measure of effectiveness.

4.1.4 Simulation Cases

Three cases are designed in the experiment to observe our proposed mechanism
in comparison with traditional forward graph planning approach for web service
composition problem. The different dataset types of web service generation for 3
cases are case 1) random network, case 2) small world network, and case 3) scale-free
network. Besides, we also give statements and comparisons for the most two
important evaluations, effectiveness and efficiency, of proposed mechanism in

experiment results. One is the effectiveness evaluation which includes the cost, the

30

number of level, and the precise. The other is the efficiency evaluations which

compare by the time of finding solution.

4.2 Simulation Results and Analysis

In section 4.2, we show the efficiency, effectiveness, and feasibility of out
proposed algorithm in three cases. We utilize diverse sizes of web services and
different type of network topology to observe the scalability and robustness of our
proposed algorithm. Some related results are illustrated in the below sections. The
three test data sets of our experiments deal with the networks of random, small, and
scale-free type. We compare backward strategy with forward strategy to observe the

results. The results are shown in the following tables.

4.2.1 Case 1: Random network

The following Table 5 shows the results of five requests of random network with
10,000 web services. Backward and Forward both can find solutions in all cases.
Regarding #Level, Backward and Forward have no difference to find solution.
Although Backward takes more time than Forward, in the number of web services,
our proposed Backward outperforms the Forward. We use less 20 services to fulfill
the request in all cases, but the Forward use more than 200 web services to find

solution.

31

Table 5. Results of random network with |W| = 10000

test Backward Forward

request #L #C #T #P #L #C #T #P
rl 8 18 2.725 1 8 262 1.033 1
r2 8 14 3.028 1 8 237 1.05 1
r3 7 9 1.916 1 7 220 1.066 1
r4 7 10 2.191 1 7 245 1.072 1
r5 9 16 4.141 1 9 241 1.062 1
Avg. 7.8 13.4 2.8 1 7.8 241 1.056 1

4.2.2 Case 2: Small world network

The following Table 6 shows the result of five test request of small world network

with 10,000 web services. Both.our proposed Backward and the Forward still can find

solutions in all cases. Regarding. #Level, the Result of Backward is as good as the

Forward. Our proposed Backward take more a. little time than the Forward, but in

terms of #WS shows much better performance than the Forward. It means that using

our proposed algorithm you can take more time to obtain much better solutions in

small world network.

Table 6. Results of small world network with [W| = 10000

test Backward Forward

request #L #C #T #P #L #C #T #P
rl 14 14 1.599 1 14 183 0.863 1
r2 11 11 1.016 1 11 175 0.769 1
r3 12 12 1.985 1 12 156 0.746 1
r4 10 10 2.419 1 10 174 0.716 1

r5 16 16 1.854 1 16 181 0.903 1
Avg. 12.6 12.6 1.776 1 12.6 173.8 0.8 1

32

4.2.3 Case 3: Scale-free network

The following Table 7 shows the result of five test request of scale free network

with 10,000 web services. The Forward still can solved all request, but use more than

200 web services to obtain solution. In the more complex scale-free network, although

we cannot find the physical solution in some cases, we can find the approximate

solution, which use much less services to satisfy the request.

Table 7. Results of scale-free network with |W| = 10000

test Backward Forward

request #L #C #T #P #L #C #T #P
rl 4 11 1.232 0.933 4 244 2.48 1
r2 4 6 3.151 1 4 343 1.654 1
r3 5 11 2.886 0.778 5 356 2.824 1
r4 - - - - 4 313 1.414 1
r5 4 10 0.203 0.814 4 281 2.122 1
Avg. 4.25 9.5 1.868 0.8812 44 316 2.3808 1

From above experiments, we use diverse test data sets to understand how

different network to influence the performance of service composition. In general our

proposed algorithm have much better performance in term of #WS. To compare

diverse sizes of test data sets, we use charts to express the results, which are shown in

the following.

33

4.2.4 Effectiveness and Efficiency

There are two parts in section 4.2.4. The one is result for effectiveness, and the
other is result for efficiency. We compare the proposed mechanism with the traditional
service composition mechanism to observe the proposed mechanism. Those two parts

will be described in the following.

(1) Effectiveness

The major experiment metrics are #C, #L, and #P. We utilize diverse test data
sets to observe our proposed algorithm based on backward strategy, to understand

how diverse sizes of data sets to influence the effectiveness of service composition.

450

400

350

300

AR

o '7“\-\//\\/ ~—,

200

== Backward

== Forward
150

100

50
0 | ————o—o——————+

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
(Wi

Figure 8. The average cost of finding solution with both methods in Random Network

34

450

400

350

300

250

#C
200 M .\I’.\././\, =&—Backward
== Forward

150

100

50
0 T T T T T T F T T T 1
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Wi

Figure 9. The average cost of finding:solution with both methods in Small World
Network

450

400

A [N\
o o N A [

250
#C
200 = Backward
== Forward
150
100
50

0 T T T T T I*H T T
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
(Wl

Figure 10. The average cost of finding solution with both methods in Scale-Free
Network

As shown in Figure 8, Figure 9, and Figure 10, we can observe that our proposed

algorithm have much better usage of web services to obtain the solution in above all

35

cases. Because of the aim of Forward algorithm, which is to reach the goal as quick as
possible, it expands the services as it can despite of the redundancy of web services.
Our backward algorithm have no redundant web service existed in the solution,
because its backward strategy search what it needs to reach the initial state. Figure 10
shows average cost of searching solution in Scale Free Network. It can be observed
that the forward algorithm represent an unstable circumstances in Scale Free Network,
when the size of a test data set become large. However, our backward algorithm is
still to appear stable and effective results. On average, our algorithm reduces the 94%

service cost for finding the solutions.

From the above charts, we have a simple deduction that the backward search will
continue display the stable and smooth-results-in‘different types of network topology,

even if the sizes of web services continues-to-increase.

14

12

10

#L
==@==Backward

== Forward

4 T T T T T T T T T 1
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W]

Figure 11. Level of searching solution with both methods in Random Network

36

14
o1 /\ A
. \ / \'\./'/ \i
HL
V =@ Backward

8 == Forward
6
4 T T T T T T T T T 1

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

IwW|

Figure 12. Level of searching solution-with both methods in Small World Network

14
12
10
#L
=@ Backward
8 == Forward
6
4 i T T T T T T T T T
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
W]

Figure 13. Level of searching solution with both methods in Scale Free Network

As shown in Figure 11 and Figure 12, it can be observed that there are same
results which use the same number of levels to obtain the solutions in above two cases.

In addition in Figure 13, there are slightly different in |W|=30000 and |W|=80000, and
37

the others are almost same number of levels. The forward search aims to minimize the
number of composition level to reach the goal, it means that the solution can be
solved at least number of levels. Figure 11 and Figure 12 both get the same result in
Random Network and Small World Network. It means that our backward algorithm
also get the least number of levels to obtain the solutions. But in more complex Scale
Free Network we use a little bit more number of levels to obtain solution. Although
our backward algorithm uses a little bit more levels to get solution, we can obtain the

solutions which use much less number of web services.

From the above three charts, shown in Figure 11, Figure 12, and Figure 13, we
have a simple conclusion that the backward search in more complex network could
obtain a little bit more levels of service composition. But it is acceptable that use a
little bit more levels in exchange for-low cost of services. The results in increasing

web service are represented the stability as the forward algorithm.

Precision
100% —& <> <> <> > > > > > 4—

90%

80%

#P
70% =—Backward

60%

50% T T T T T T T T T 1
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Wl

Figure 14. Precision of searching solution with both methods in Random Network

38

100%

90%

80%

#P

70%

60%

50%

Precision

—® g g g g g g g g —

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
W]

== Backward

Figure 15. Precision of searching'solution with both-methods in Small World Network

100%

90%

80%

#P

70%

60%

50%

Precision

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
W]

== Backward

Figure 16. Precision of searching solution with both methods in Scale Free Network

As shown in Figure 14 and Figure 15, it represent that our proposed algorithm

can find the physical solutions in above two cases. In addition in Figure 16, in

39

complex Scale Free Network our backward algorithm could not find the physical
solutions in some requests. We observe the composition in Scale Free Network and
find out the solutions which have less number of levels and much more number of
services. Our algorithm aims to avoid the situations which have much complex
services in one level. Based on the above aim, we may ignore the exact solutions in
our algorithm, but our algorithm still can obtain approximate solutions in the complex

network, which still have high precision.

(2) Efficiency

We utilize the same data set to_observe our proposed algorithm based on
backward strategy, to understand the influence of ‘performance by increasing the
number of web service. And"we compare our algorithm with the algorithm based on
forward strategy with three ‘different types of network topology. It is shown in the

following figures.

600

500

400

#T 300
==@==Backward

== Forward
200

100 /

O I T - T T T T T L
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Wl

Figure 17. Time of searching solution with both methods in Random Network

40

600

500

400

#T 300

«@—Backward

== Forward
200

100

o-—I——I—Mﬁ

10000 20000 30000 40000 50000 60000 70000 80000 50000 100000
Wi

Figure 18. Time of searching solution:with both methods in Small World Network

600

500 /”
400 /
#T 300
=== Backward
== Forward
200)_/
100

10000 20000 30000 40000 50000 60000 70000 80000 S0000 100000
(Wl

Figure 19. Time of searching solution with both methods in Scale-Free Network

As shown in Figure 17, Figure 18 , and Figure 19, it represents that the backward

algorithm takes more time than forward to obtain the solutions in all cases. We

41

observe that different network types start to growth exponentially in Random
Network and Scale Free Network, when the number of web services increases to
certain number. It can divide into two parts, one is the number of web service less
than 50,000, and the other is more than 50,000. We observe a liner growth in the part
less than 50,000, and the other part is an exponential growth. But in Small World
Network we can clear see that they both are liner. We go deep into study why the
exponential growth at the number of web service more than 50,000. We find out that
the space of solution quickly growth more than our algorithm can shrink. However,
when the sizes of web service are less than 50,000, our backward algorithm had better

effectiveness and nearly efficiency in all cases.

4.2.5 WSBen data set and general situation

WSBen[11] can build the test data for WSC algorithm, including a set of web
services and a set of feasible requests. It is-designed to generate the hardest solved
request to validate the WSC Algorithm. That-does not make the advantage of the
proposed mechanism prominent. It is dedicated to find the approximate solution
instead, which not exactly corresponds to the request but takes less service cost.
Therefore, we design an example to explain the proposed mechanism in general
situation. In the real world, people who composite services focus on what they want to
know rather than what they can give. The advantage of backward search is to find the
diverse initial states, which possibly match the user request. To find out what initial
state can reach the goal, which user expects to know. We use the following Figure 20

to explain some situation which traditional composition mechanism cannot solve.

42

$5,56,57

$12,513

Figure 20. The example of solution tree

In Figure 20, there are two requests, which can represent the advantage,
described in the following. One request is that the known input parameters are {A, B,
C, D} and the expected output parameters are {L, M}. The traditional mechanism
based on planning graph only can obtain.the single path from the initial state {A, B, C,
D} to the Goal {L, M}, which costs nine services to obtain the solution. The proposed
mechanism based on backward can find out multiple paths which can reach the goal,
as the above solution tree. In the mechanism, we can stop searching in finding the
initial state {A, B, C, E}, if the user wants to find the approximate solution which
have lower service cost and can give the expected output. The other request is that the
known input parameters are {A, B, C} and the expected output parameters are {L, M}.
According to the solution tree, there is no existed solution which can satisfy the
request. The traditional composition mechanism can find the solution in this case, but

the proposed mechanism can find the approximate solution instead.

We have proven that the proposed mechanism have better effectiveness than the

43

traditional mechanism. From the above example, we can observe that the proposed
finds many approximate solutions before finding the exact solution. If the
composition requester can accept approximate solutions, the proposed mechanism
does not take the total time for finding the exact solution. Also we can find
approximate solutions at lower number of composition level. In the exponential
growth composition space, if we could decrease one composition level, the time of
obtaining solutions will dramatically decrease. From above example, we explain that

the proposed mechanism can take less time to find acceptable approximate solution.

4.3 Discussion

In our experiments, we utilize three type of network topology and diverse sizes
of web services to observe those two algorithms. The main findings about our
proposed algorithm from the experiments-are given as follows.

1. Effectiveness. The “experiment results ~show our proposed backward
algorithm has 94% better effectiveness compared to forward algorithm
almost all cases. At few cases we use more little levels to obtain the solution,
but we get low-cost solutions. As confirmed by the experiment results, our
proposed algorithm also can get very high precise solutions almost all cases.

2. Efficiency. Although forward algorithm has better performance than
backward algorithm, the cost of solution is high. Our proposed backward
algorithm has nearly efficiency when the sizes of web service are less than
50,000. Also in random and small world network we can observe that our
proposed algorithm do not growth exponentially when the size of test data

increases.

44

Chapter 5 Conclusions and future works

This thesis emphasizes issues about service composition based on backward
planning graph strategy. In this chapter, we summarize our studies and discuss our

possible future work.

5.1 Conclusions

In this thesis, we proposed a semantic web service composition mechanism
based on semantic in cloud environment. It utilizes planning graph based on backward
search to find multiple feasible solutions, and recommends the best composition
solution by the lowest using service cost. We also validated the proposed algorithm
can improve the error-prone problem of service composition and the redundant web
service involved in service composition. Therefore, the-algorithm based on backward
planning graph search, which is capability of recommending multiple service
composition and remove the redundant services. As we can see the experiment results
in chapter 4, we proved that®our -proposed backward algorithm had a better
effectiveness than the forward search algorithm. The proposed algorithm is able to
recommend approximate solutions of service composition using very few web
services, because it has higher quality of relationships between services. In other
words, we can decrease the amount of cost of web services and remain acceptable

planning graph levels and execution time.

5.2 Future Work

In the future, we can study how to improve proposed greedy algorithm to expand
the solution tree. To obtain right combinations is a very important issue for algorithm
design. It can not only help to decrease wrong combinations, but also to improve the

effectiveness and efficiency of algorithm. Moreover, we can add more predictable

45

restrictions to prune the huge combination tree nodes for our algorithm efficiency. If
there are some more predictable restrictions and composition information, that will
help us to make more right decision to find the solutions. In semantic experiments,
our current experiments are lack of environment that can help us to validate semantic
association of service compositions. To Design a semantic experiment environment
should be undertaken to determine how the semantic influences the effectiveness of

service composition.

46

Appendix I. Service Composition Algorithm

In this appendix, we represent the proposed algorithms which are described in
above sections. Algorithm “Composition” is the main web service composition
algorithm using planning graph based on backward search. The input parameters of
Algorithm “Composition” are A, s0, and g, where A is a set of actions, s IS the known
initial state, and g is a set of expected goal. The rest of algorithms are invoked by it.

All algorithms will be represented as following.

Algorithm Compose(A, sy, g)
Notes about the algorithm:
G =(Py, A, Py, ..., A, P;) isasimplified planning graph.

S= {sq,...,s,} Isasetof solution candidates.

1 < 0,P) «59,G Py
repeat
G « ExpandBasedOnBackward(G)
S « ExtractSolutions(G, S)
S < ReduceSolutions(S)
i=i+1
until (ValidateSolution(S, g))
if S contains valid solution then
Output(SearchOptimalSolution(S))
else

Output(SearchSimilarSolution(S))

47

Algorithm ExpandBasedOnBackward({Py, A1, Py, ..., A;, P;))
Notes about the algorithm:

valid(a): action a can be used in the algorithm;

invalid(a): action a can not be used in the algorithm again.

W: {wy,...,w,} isa set of web services.

WP = {wp,,...,wp,} is asetof web service patterns.
for a € A do
if valid(a) A (effect(a) N P; # NULL) then
W WuUa
invalid(a)
for w € W do
for wp € Wp do
if effect(w) € effect(wp) A precond(w) 2 precond(wp) then
wWp <« wp U w
if effect(w) 2 effect(wp) A precond(w) S precond(wp) then
wWp <« wp U w
effect(wp) « effect(w)
precond(wp) « precond(w)
If not be filled with Service Pattern then
WP <« WP U new wp
Ajy1 < WP

return (Py, A, Py, ..., A;, P;)

48

Algorithm ExtractSolutions({Py, A4, Py, ..., Aj, P;), S)
Notes about the algorithm:
inputs(s): a set of input parameters of solution s.
parent(s): the parent node of solution s.

available(a): it records action a whether available or not.

for s € S do
for a € A; do
available(a) « true
S<S/s
do
required « inputs(s)
ns « new solution
parent(ns) < s
for a € A; do
if available(a) A required M effect(a) = NULL then
required « required / effect(a)
available(a) « false
ns<—nsyva
if required = NULL then
S < SUns
break
while(required = NULL)

return S

49

Algorithm ReduceSolutions(S)

Notes about the algorithm:
initial(s): a set of initial input parameters of solution s.
count(s): a number of web services of solution s.

ServiceThreshold: a number of max service used in one solution.

for s € S do
if count(s) > ServiceThreshold then
S« S /s
for s € S do
if initial(s) D {initial(s2)|s2 € S}) then
SeS /s

return S

Algorithm ValidateSolution(S, g)
Notes about the algorithm:
initial(s): a set of initial input parameters of solution s.
precise(s): the precise of solution s that correspond to user request.

PreciseThreshold: The threshold of solution precision.

finished « false
for s € S do
intersection <« Count(initial(s) N initial(g))
union < Count(initial(s) U initial(g))
precise(s) « intersection/union
if PreciseThreshold < precise(s) then
finished « true

return finished

50

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

Reference

T. Berners-Lee, et al., "The semantic web," Scientific American, vol. 284, pp.
28-37, 2001.

C. Computing, "Clash of the clouds," The economist, 2009.

G. Gruman and E. Knorr, "What cloud computing really means,” InfoWorld, p. 2,
2008.

H. Haas and A. Brown, "Web services glossary,” W3C Working Group Note, vol.
11, 2004.

I. Herman, "W3C Semantic Web Frequently Asked Questions”. W3C. Retrieved
March 13, 2008.

U. Kuter, et al., "Information gathering during planning for web service
composition,” The Semantic Web=ISWC 2004, pp.-335-349, 2004.

B. Medjahed, A. Bouguettaya, and A. Elmagarmid, "Composing web services on
the semantic web," The VLDB Journal - The International Journal on Very Large
Data Bases, vol. 12, pp. 333-351,:2003..

E. Martinez and Y. Lesperance, "Web service composition as a planning task:
Experiments using knowledge-based planning,” 2004, p. 62{V69.

P. Mell and T. Grance, "The NIST definition of cloud computing,” National

Institute of Standards and Technology, vol. 53, 2009.

[10] S. Mcllraith and T. C. Son, "Adapting golog for composition of semantic web

services," 2002, pp. 482-496.

[11] S. C. Oh and D. Lee, "WSBen: A Web Services Discovery and Composition

Benchmark Toolkitl," International Journal of Web Services Research (IJWSR),

vol. 6, pp. 1-19, 20009.

[12] P. Resnik, "Using information content to evaluate semantic similarity in a

51

taxonomy", in Proc. of the 14th Int’l Joint Conf. Artificial Intelligence,
Montereal, 1995.

[13] E. Sirin, et al., "HTN planning for web service composition using SHOP2," Web
Semantics: Science, Services and Agents on the World Wide Web, vol. 1, pp.
377-396, 2004.

[14] H. Stevens and C. Pettey, "Gartner Says Cloud Computing Will Be As
Influential As E-business,” Gartner Newsroom, Online Ed.

[15] P. Traverso and M. Pistore, "Automated composition of semantic web services
into executable processes,” The Semantic—ISWC 2004, 2004.

[16] D. C. Wyld, "The Utility of Cloud Computing as New Pricing — And
Consumption — Model for Information Technology"”, International Journal of
Database Management Systems (1JDMS), Vol.1, No.1, November 20009.

[17] S. Wang, W. Shen, and Q. Hao, “Agent based workflow ontology for dynamic
business process composition, 2005, pp. 452-457.

[18] Y. Yan and X. Zheng, "A Planning Graph Based Algorithm for Semantic Web
Service Composition," 2008, pp. 339-342.

[19] "NIST.gov — Computer Security Division — Computer Security Resource Center".
Csrc.nist.gov. Retrieved 2010-08-22.

[20] X. Zheng and Y. Yan, "An efficient syntactic web service composition algorithm
based on the planning graph model," in IEEE International Conference on Web
Services, 2008, pp. 691-699.

[21] (2006). OASIS Web Service Business Process Execution Language 2.0.
Available: http://www.oasis-open.org/committees/wsbpel/

[22] (2011). Relationship to the World Wide Web and REST Architectures. Available:

http://www.w3.0rg/TR/ws-arch/#relwwwrest

52

