

國立交通大學

資訊管理研究所

碩 士 論 文

一個在雲端運算環境中的語意網路服務組合機制

A Novel Mechanism for Semantic Web Service Composition

in Cloud Computing

 研 究 生：林 冠 廷

 指導教授：羅 濟 群 教授

中華民國 一百 年 六 月

一個在雲端運算環境中的語意網路服務組合機制

A Novel Mechanism for Semantic Web Service Composition in Cloud

Computing

研 究 生：林 冠 廷 Student: Guan-Ting Lin

指導教授：羅 濟 群 Advisor: Chi-Chun Lo

國立交通大學

資訊管理研究所

碩士論文

A Thesis

Submitted to Institute of Information Management

College of Management

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Business Administration

in

Information Management

June 2011

Hsinchu, Taiwan, the Republic of China

中華民國 一百 年 六 月

I

一個在雲端運算環境中的語意網路服務組合機制

研究生: 林冠廷 指導教授：羅濟群 老師

國立交通大學資訊管理研究所

摘要

隨著雲端運算(Cloud Computing)環境的迅速發展，網路服務(Web Services)

的服務品質保證與可信賴度大為增加，因此會有越來越多樣化的網路服務被佈署

在雲端上，而當雲端運算環境後端的資料需要被組合運用時，就可以透過網路服

務組合的技術來達成。然而也因為網路將會充斥著各式各樣且大量的網路服務，

服務組合變成是一個複雜且難解的問題，本研究將針對雲端運算環境提出一個以

語意為基礎的網路服務組合方法，運用規劃圖(Planning Graph)的向後搜尋演算法，

來找出多組可行的解決方案，並在使用最少網路服務成本的基準下，推薦出較佳

的網路服務組合方案。最後本研究針對所提出的機制方法實作一個系統，藉由模

擬證實，本文所提出基於規劃圖之向後搜尋式服務組合演算法在三種網路服務產

生模型中，可以比傳統的服務組合方法降低 94%網路服務的使用成本。

關鍵字：網路服務組合、向後搜尋式規劃圖、語意網

II

A Novel Mechanism for Semantic Web Service Composition

in Cloud Computing

Student: Guan-Ting Lin Advisor: Dr. Chi-Chun Lo

Institute of Information Management

Nation Chiao Tung University

Abstract

With the rapid development of cloud computing, the quality and reliability of

web service increase greatly. Therefore, there will be more and more diverse web

services published in cloud. When the back-end data of cloud environment needs to

be composited to apply, it can be achieved by web service composition technology.

However, because of a very large number of web services in cloud, the problem of

service composition has become increasingly sophisticated and complicated. In this

thesis, we proposed a semantic web service composition mechanism based on

semantic in cloud environment. It utilizes Planning Graph based on backward search

to find multiple feasible solutions, and recommends the best composition solution by

the lowest using service cost. Finally, we implement a simulation environment to

validate the proposed mechanism. Through the simulation results, the proposed

algorithm based on backward planning graph reduced by 94% service cost in three

types of service generation model to compare with the traditional service composition

algorithm.

Keywords: Web Service Composition, Backward Planning Graph, Semantic Web

III

誌謝

首先要感謝我的指導教授羅濟群老師，交大兩年的師生情緣，老師帶給我的

不是隻字片語能夠形容，感謝老師給予我在課業上的諄諄教誨，以及生活上的各

種照顧，讓我在新竹的日子裡能夠從裡至外的蛻變。另外也感謝我的口試委員，

游張松教授、楊亨利教授還有劉敦仁教授，他們給予我的建議讓我得以從另一個

角度去思考問題，也讓我的論文更加完整。

再來要感謝實驗室裡的 Stan 學長、鼎元學長與志華學長，他們在課業上、

計畫上的各種指導、幫助與討論，讓我能夠有機會不斷的汲取各種新知並且茁壯

成長，同時了解做研究應有的態度與精神，使我進行碩士論文時能夠游刃有餘的

面對各種問題。

然後我還要感謝實驗室的學長姐─栩嘉學姊、俊傑學長、邦曄學長、元辰學

長、湘婷學姊、志健學長、世豪學長、致衡學長、冠儒學長，以及同學們─光禹、

哲豪、秉賢、慕均、棉媛、靜蓉、孟儒、芳儀，他們在學業上與生活上帶給我的

點點滴滴。當然也少不了學弟妹們─漢麟、彥似、淇奧、淳皓、御柔、佳蓁、雅

晴、馨瑩、雅芬與媛如，他們帶給我各式各樣的歡樂氣氛，讓我在苦悶的研究生

涯中依舊能保持愉快的心情。

最後要感謝我的爸媽與哥哥姊姊，他們給了我一個溫暖的家庭，讓我在外衝

刺學業時，不論遇到什麼挫折與困難，隨時都能夠有一個避風港，讓我拋開一切

煩惱，在交大完成學業。

IV

Table of Contents

摘要 .. I

Abstract .. II

誌謝 .. III

Table of Contents .. IV

List of Figures .. VI

List of Tables ... VII

Chapter 1 Introduction .. 1

1.1 Research Background and Motivation ... 1

1.2 Approach and Objective ... 2

1.3 Organization ... 2

Chapter 2 Related Works ... 3

2.1 Cloud Computing ... 3

2.2 Web Service and Web Service Composition .. 6

2.3 Semantic Web and Semantic Similarity ... 7

2.4 Planning Graph ... 9

2.5 Web Services Generation Tool for Service Composition 10

Chapter 3 A Novel Mechanism for Semantic Web Service Composition in Cloud

Computing .. 12

3.1 Problem Definition ... 13

3.2 Web Service Composition Mechanism .. 14

3.2.1 Overview of the proposed mechanism ... 14

3.2.2 Preprocessing .. 16

3.2.3 Service Pattern Matching Module .. 18

3.2.4 Web Service Composition Module ... 20

3.2.5 Search Optimal Solution Module .. 24

3.3 Discussion ... 26

Chapter 4 Simulation Results and Analysis .. 27

4.1 Simulation Environment .. 27

4.1.1 Simulation Design ... 27

4.1.2 Simulation Assumption ... 29

4.1.3 Performance Metrics .. 30

4.1.4 Simulation Cases ... 30

4.2 Simulation Results and Analysis ... 31

4.2.1 Case 1: Random network .. 31

4.2.2 Case 2: Small world network .. 32

4.2.3 Case 3: Scale-free network ... 33

V

4.2.4 Effectiveness and Efficiency .. 34

4.2.5 WSBen data set and general situation .. 42

4.3 Discussion ... 44

Chapter 5 Conclusions and future works ... 45

5.1 Conclusions .. 45

5.2 Future Work ... 45

Appendix I. Service Composition Algorithm .. 47

Reference ... 51

VI

List of Figures

Figure 1 .The flow diagram of the service composition mechanism 15

Figure 2. Capture web services into repository from cloud ... 17

Figure 3. Import semantic concepts from WordNet ... 18

Figure 4. The example of service pattern extraction .. 19

Figure 5. The simplified planning graph for the above example 22

Figure 6. The solution tree for the planning graph for the above example. 23

Figure 7. The Architecture of Simulation Platform ... 28

Figure 8. The average cost of finding solution with both methods in Random Network

.. 34

Figure 9. The average cost of finding solution with both methods in Small World

Network.. 35

Figure 10. The average cost of finding solution with both methods in Scale-Free

Network.. 35

Figure 11. Level of searching solution with both methods in Random Network 36

Figure 12. Level of searching solution with both methods in Small World Network . 37

Figure 13. Level of searching solution with both methods in Scale Free Network 37

Figure 14. Precision of searching solution with both methods in Random Network .. 38

Figure 15. Precision of searching solution with both methods in Small World Network

.. 39

Figure 16. Precision of searching solution with both methods in Scale Free Network

.. 39

Figure 17. Time of searching solution with both methods in Random Network 40

Figure 18. Time of searching solution with both methods in Small World Network .. 41

Figure 19. Time of searching solution with both methods in Scale-Free Network 41

Figure 20. The example of solution tree .. 43

VII

List of Tables

Table 1. The three layers of Cloud Computing Architecture ... 5

Table 2. The Definition of Notation ... 12

Table 3. The example of web services ... 22

Table 4. Simulation Platform Environment ... 27

Table 5. Results of random network with |W| = 10000.. 32

Table 6. Results of small world network with |W| = 10000 ... 32

Table 7. Results of scale-free network with |W| = 10000 .. 33

1

Chapter 1 Introduction

1.1 Research Background and Motivation

Recent years have seen growing importance placed on research in web service

composition due to its practical application. With the developing of cloud computing,

there will be many diverse web services published in cloud environment. As the

number of web services increases more and more, service composition has become

increasingly sophisticated. Therefore, flexible service composition in cloud to find the

right composition to satisfy the given goal is one of the more important issues.

However, the problem of service composition is still a complicated and error-prone

process until now [7].

Generally, the problem of web service composition can be described as a given

request which contains a set of known input parameters and a set of expected output

parameters [20], to compose multiple services to satisfy the request. There have been

numerous methods proposed for solving the problem of service composition, such as

workflow [17], AI planning, and so on. The planning graph, which is a kind of AI

planning technique, provides a compressed search space [20]. The problem of service

composition is transformed into the problem of planning graph, which could be

constructed in polynomial time, but with possible redundant web services.

However, service composition based on planning graph encounters several

drawbacks: (1) there are redundant web services existed in the solution of service

composition, and (2) that is lack of flexible search mechanism, which can recommend

the multiple solutions for the error-prone of service composition. User may have a

request which cannot be exactly solved by service composition. Or a request could

need a large amount of web service for solving service composition. In this thesis, we

2

concentrate on finding multiple service composition, which maybe physical solutions

or approximate solutions using fewer number of web services, to recommend a list

composition to user.

1.2 Approach and Objective

In this thesis, we proposed a web service composition algorithm based on

backward strategy to enhance web service composition mechanism, which can find

multiple solutions and recommend best one. Also, we can recommend the

approximate solutions which not totally correspond to user request, but it uses fewer

amounts of web services and less levels of web service composition. In contrast,

composition algorithm based on forward strategy aim to minimizing the search time,

but there are not necessarily web services in its solutions. After experiment, we

proved that the composition algorithm based on backward strategy has better effective

than forward strategy, which had been proven as a good composition method.

1.3 Organization

The rest of this thesis is structured as follows. Chapter 2 contains the literature

reviews which include cloud computing, web service composition, semantic web, and

planning graph. Chapter 3 describes the proposed service composition algorithm

based on backward strategy. Chapter 4 presents the details of experiment and its

results, and it also included a discussion about the result. Chapter 5 concludes this

work and proposes the future work. Eventually, the references and appendix are

attached at the end of the thesis.

3

Chapter 2 Related Works

In this thesis, we proposed a composition algorithm which enhances the

effectiveness of web service composition. The necessary research background and

relevant technologies includes: (1) Cloud Computing, (2) Web Service and Web

Service Composition, (3) Semantic Web and Semantic Similarity, (4) Planning Graph,

and (5) Service Composition Evaluation. We will introduce them in the following

sections.

2.1 Cloud Computing

The National Institute of Standards and Technology (2010) have defined that

“Cloud computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction" [19]. This cloud model promotes

availability and is composed of five essential characteristics: on-demand self-service,

broad network access, resource pooling, rapid elasticity, and measured service. Each

of characteristics is illustrated in the following.

1. On-demand self-service:

If the client firm access their needed cloud resources, such as web

applications, web services, computing, storage and network, they must be

available and automatic without human interaction with service providers.

Companies are beginning to utilize the cloud to deal with vital tasks, even

the everyday task such as sending an email and scheduling calendar. If the

service goes down, the operations of company may be suspended, and the

cloud provider would take the responsibility.

4

2. Broad network access

This point is the most vital characteristic of cloud computing. The cloud is a

massive resources based on internet whereby the clients are able to access

their resources over internet anytime and anywhere. And they can be

accessed through standard mechanisms that promote the usability by

different types of standardized platform (e.g., smart phones, mobile devices,

and desktop computers, etc.).

3. Resource pooling

The cloud provider pools computing resources including network

bandwidth, computing, memory, and storage, etc. to provide services for

clients. The numerous cloud clients shared the cloud resources at same time,

and they pay for what they need. It means that you don’t have to have

enough money to build your own infrastructure for getting computing

power, and someone provides their infrastructure and resources to anyone

who is willing to pay for accessing,. That is essentially an economy of scale.

4. Rapid elasticity

The aim of resource pooling is to avoid spending high capital expenditure

for building the infrastructure of network and computing. Those pooled

computing resources can be rapidly and elastically provisioned to scale up /

down based on client’s demand. By outsourcing to a cloud, the company

can significantly reduce the cost of IT and the risk of service interruptions.

5. Measured service

The cloud provider can control and measure the amount of provided

services. This is significant for billing to the client, control the accessing of

resources, and optimizing the usage of resources.

5

Cloud computing provides the computing power, the software services, and the

storage space for the clients via internet anytime and anywhere. It is a model of

supplement, consumption, and delivery for IT service, and also involves the provision

of dynamically scalable and virtualized resources [14][3]. Cloud computing

environment makes the business software and data stored on remote server

ease-of-access by the Internet [2]. That usually utilizes the web-based protocol to let

the client access through the web browser [9]. It includes three layers of service:

Infrastructure as a Service, Platform as a Service, and Software as a Service [16], as

the following Table 1.

Table 1. The three layers of Cloud Computing Architecture

Services Description Example

SaaS The user accesses the cloud services published by

service provider via internet. If there is not the cloud

infrastructure for the services, application services can

only be called internet service.

Gmail

Salesforce

Gliffy.

PaaS The main provided service as application platform, the

application platform provides developers with quick

development and deployment.

Google GAE

Microsoft

Azure.

IaaS The main provided service as IT infrastructure, it

shares IT infrastructure, such as servers and storage.

The system administrator access those processes,

storage, and database from the cloud computing

provider.

Amazon AWS

Joyent

Nirvanix.

6

2.2 Web Service and Web Service Composition

Web services are internet based software components which have the capabilities

of cross-platform and cross-language. The W3C has defined “Web Service” that "a

software system designed to support interoperable machine-to-machine interaction

over a network. It has an interface described in a machine-processable format

(specifically Web Services Description Language WSDL). Other systems interact with

the web service in a manner prescribed by its description using SOAP messages,

typically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards." [4] The W3C has also pointed out that "We can identify two

major classes of web services, REST-compliant Web services, in which the primary

purpose of the service is to manipulate XML representations of Web resources using a

uniform set of stateless operations; and arbitrary Web services, in which the service

may expose an arbitrary set of operations." [22]

And the aim of web service composition (WSC) is to composite diverse web

services to accomplish the request which cannot be satisfied by single web service.

The Web services composition have static or dynamic way to be done. The static web

service composition is constructed to solve the particular problem through identifying

manually the capability of web services. That is composited by a series of known web

services and a set of know data to obtain the expected results. Dynamic web service

composition is to automatically select web services and flexibly composite those web

services during the execution time. The aim is to build the automated service

discovery and execution mechanism.

The web service composition is commonly described by using the Web Services

Business Process Execution Language (BPEL) [21], it is defined by XML-based

language that provides particular functionalities for processes, such as define

7

variables, create conditionals, design loops, and handle exception. And it utilizes web

services as the model for the decomposition and the composition of the process.

However, BPEL promotes the developing of workflow and the integration of business

process.

Dynamic web service composition is the generation of dynamic composition of

multiple web services to satisfy the user’s requirements, which is one of the most

important areas of current web service research. Now most researches on web service

composition focus on developing new approaches based on AI planning. That

assumes the web services as actions, AI planning techniques are utilized for dynamic

service composition by solving the service composition as the planning problem.

Examples of the AI planning techniques include [18][10][8][13][15][6]. The task of

WSC usually assumed that the composition process generates a composition

workflow, which starts from the known variables to the expected goal. As an example

in AI Planning Graph [18] utilizes graph algorithm based some strategy to generate

service workflow. It constructs a compressed composition search space, and can

obtain a solution in polynomial time, but with redundant services. As examples, the

planning for WSC such as [10][13][6] , They utilize higher-level process models and

constraints to decompose the model to an atomic-level composition for solving WSC

problem. Web service composition techniques provide methodologies for compositing

multiple services to satisfy the user request, which cannot be achieved by one single

service.

2.3 Semantic Web and Semantic Similarity

The Semantic Web means a "web of data" that helps machines to understand the

8

information’s semantic and meaning on the World Wide Web [5]. It utilizes the

machine-readable metadata to describe the human-readable information. That makes

machines enable to infer the relation of the information. The machines process the

information more intelligently and more precisely. Berners-Lee published “The

Semantic Web” in Scientific American Magazine [1], which defined the Semantic

Web as "a web of data that can be processed directly and indirectly by machines". It

described the evolution of Web, as that semantic web makes largely data and

information directly manipulate by machines without human interpretation. In the

article, Berners-Lee also introduced “ontology” into the semantic web. With ontology,

the machine has more capability of handling the meaning of lexical and semantic in

the web. It is utilized to define and reason about domain knowledge.

The aim of semantic similarity is to measure the similarity between concepts,

and it is different from measuring the similarity between words [12]. Semantic

similarity is based on the concept relationships of ontology without additional corpus.

Ontology is formal specification of the concept model, which contains concept, entity

of objects, their property, restriction, and relation. It can use to describe the

knowledge of application field as a set of concepts and relationships between concepts.

With ontology, computer is more capable to process the lexical and semantic meaning.

The followings define ontology hierarchical structures.

1. Concept Semantic Distance: Calculate the shortest path length between two

concepts, denoted as l(ci, cj).

2. Concept Semantic Depth: Represent the depth of the concept from the top

node, denoted as h(c).

3. Concept Semantic Coincidence: From the common ancestor between two

concepts, calculate the number of intersection nodes and the number of

9

union nodes to obtain the ratio of the intersection to the union, denoted as

c(ci, cj). P(c) represent a set of concepts which is c is child concept. Than

c(ci, cj) is presented as:C(𝑐𝑖, 𝑐𝑗) =
|P(𝑐𝑖)∩P(𝑐𝑗)|

|P(𝑐𝑖)∪P(𝑐𝑗)|

4. Concept Semantic Density：From the layer of the closest common ancestor

between two concepts nodes, calculate the ratio of the number of child

concept nodes to the count of layers which those nodes cross, denoted as

d(ci, cj).

2.4 Planning Graph

Planning graph techniques are studied in the AI planning domain. The planning

graph provides a very powerful search space to improve the efficiency of AI

algorithms. It is a layered graph whose edges are only allowed to connect two nodes

from one layer to next layer. And the planning graph’s layers are with an alternating

sequence of action layer and proposition layer. The proposition layer contains a finite

set of states, and the action layer contains a finite set of actions (the action has

preconditions, negative effects, and positive effects).

At the first layer of planning graph, P0, is a proposition layer which contains the

initial states of the planning problem. The next layer, A1, is a action layer which

contain a set of actions which preconditions can be satisfied by P0, and P1 is the union

of the states of P0 and the effects of all A1’s actions. Those preconditions of actions in

A1 are connected to the state nodes in P0 by incoming arcs, and those positive or

negative effects in P1 are connected to the state nodes in P1 by outgoing arcs. The

process continues until it reaches the goal states or the fixed-point level of the graph.

10

2.5 Web Services Generation Tool for Service Composition

WSBen is a novel benchmark tool for web service composition and discovery,

which provides a set of functions to simplify the generation of web service test sets,

and build test environments including the testing requests [11]. The main

contributions is to provide three different types of network models such as “random”,

“small-world”, and “scale-free” network types. It also can generate diverse sizes of

test data sets based on the network type you specify. At higher perspective, a web

service can be assumed to be a transformation between two difference domains, which

could be regarded as clusters of parameters. The development of WSBen is based on

the above assumption. The network topology will be constructed as a directed graph

based on graph theory. Each node is represented as a parameter cluster, and each edge

is represented as a connecting between two different clusters, that will be regarded as

generation template of web service.

There is an input framework that user can specify the generated web service and

the characteristics of network topology in WSBen. The input framework 𝑥𝑇𝑆 =

〈|𝐽|, 𝐺𝑟 , 𝜂, 𝑀𝑝, |𝑊|〉. 𝑥𝑇𝑆 is described in the following.

1. |𝐽| is the total number of parameter cluster.

2. Gr donates a graph model to specify the topology of parameter cluster network.

The three types of network, which are “random”, “small-world”, and

“scale-free” complex networks, can be simulated by the three network model,

as following.

 Erdo-Renyi (|𝐽|, 𝑝):

The model has such a simple generation approach that it creates | J |

nodes in graph and chooses each of edges in the graph with probability p.

11

 Newman-Watts-Strogatz (|𝐽|, 𝑘, 𝑝):

The initialization is a ring graph with k nodes. And then each node adds

to graph and construct edge connected others with probability p, until

there are | J | nodes in this graph

 Barabasi-Albert (|𝐽|, 𝑚):

There are m nodes with no edges in the initial graph. Each node adds with

m edges, which are preferentially attached to existing nodes with high

degrees.

3. 𝜂 donates the parameter condense rate. Users can control the density of partial

matching cases in generated web services.

4. 𝑀𝑝 donates the minimum number of parameters in a cluster. In other word,

each cluster has at least 𝑀𝑝 parameters.

5. |𝑊| donates the total number of web services of a test data set.

12

Chapter 3 A Novel Mechanism for Semantic Web Service

Composition in Cloud Computing

In this chapter, we introduce our novel composition framework, a semantic web

service composition in Cloud. In Section 3.1 we identify our problem. In Section 3.2

we will introduce the overview of proposed service composition mechanism and each

step of mechanism. In Section 3.3, we have discussions about possible advantages and

disadvantages of proposed mechanism. In this chapter, we use some symbol to

express the proposed mechanism. That are illustrated and defined as following table.

Table 2. The Definition of Notation

Notation Description

w Web Service w has a set of input parameters win = *i1, … , in+ and

a set of output parameters wout = *o1, … , on+

r Composition Request r is a pair of 〈rin, rout〉, where rin is a set of

input parameters and rout is a set of output parameters

slu Solution slu has a set of initial states sluin = *i1, … , in+, a set of

web service sluw = *w1, … , wn+ and a parent solution, which

means composition solution is a list from this to the top solution.

wp Web Service Pattern wp has a set of input parameters wpin =

*i1, … , in+ , a set of output parameters wpout = *o1, … , on+, and a

set of web service wpws = *w1, … , wn+

pg Planning Graph pg consists of a set of action level *A1, … , An+

and a proposition level *P1, … , Pn:1+, Ai is a set of web services

pattern where input parameters are nodes in Pi;1

13

∩ s1s2 The amount of same concepts between s1 and s2, where s1 and s2

both are sets of concepts.

∪ s1s2 The amount of different concepts between s1 and s2, where s1 and

s2 both are sets of concepts.

𝛼 The variable 𝛼 represents the weight on parameter matching in

matching score.

𝐾𝑀 KM Represent Kuhn-Munkres algorithm which solves the

assignment problem in polynomial time. That assigns the output

parameters of one service to input parameters of another service.

Sim(c1, c2) The similarity value between two concepts.

3.1 Problem Definition

In this thesis, our main goal is to solve the existed problems of service

composition. Our focused problems include that service composition is essentially an

error-prone process, the solution of service composition is always complex, and the

request is hard to find the exact solution. Those problems are described in the

following.

1. When the request is more complex, it always takes much time and finds the

solution which is quite complex and resource-consuming. It means that the

solution uses very large amount of services to satisfy the request.

2. Sometimes, there is no solution which exactly corresponds to the request. It

is lack of flexibility to provide an approximate solution. If the solution is

complicated, whether can find approximate solutions instead.

14

3. The problem of service composition is an error-prone process. It needs an

effective mechanism which can provide multiple solutions to avoid that. To

recommend a list of suited service compositions for selection or to evaluate

from those solutions.

Thus, service composition algorithm may encounter above situations, and those

problems are our focused issues.

3.2 Web Service Composition Mechanism

In this section, we will introduce the proposed service composition mechanism

which includes four steps, such as preprocessing, service pattern matching, service

composition, and search optimal solution. Those modules will be described in

following subsections. At first we will introduce the overview of the mechanism, and

then we will introduce each step of the mechanism.

3.2.1 Overview of the proposed mechanism

For improve the current web service composition mechanisms based on forward

strategy, we proposed the framework including Service Pattern Matching Module,

Web Service Composition Module, and Search Optimal Solution Module. Figure 1

shows that the flow diagram of the proposed mechanism. Service matching module is

used to provide services for the query of service composition module. Service

composition module provides multiple solutions for Search optimal solution to choice

the best suited solution.

15

Figure 1 .The flow diagram of the service composition mechanism

The flow diagram of the proposed mechanism is shown in Figure 1. The flow

diagram has the following 4 steps:

1. There are two parts in this step. One is the web service repository, and the

other is semantic similarity module. The web service repository will search

web service form distributed UDDIs in Cloud and store those service to

repository database. All web services in repository will be updated regularly.

Semantic Similarity Module pre-calculates the semantic similarity values

between any two concepts and stores the similarity values into semantic

similarity database for querying.

2. Service Pattern Matching Module utilizes Web Service Repository and

Semantic Similarity Module to select the suited web services corresponding

to the query, and group them by similarity of web services. It will provide a

set of service groups for service composition.

Web Service

Composition

Module

Search

Optimal

Solution

Module

Composition

Repository

Goal

Preprocessing

Web

Service

Repository

Semantic

Similarity

Module

Cloud

Web

Service

WordNet

Service

Pattern

Matching

Module

Feedback

16

3. Service Composition Module will query Service Pattern Matching Module

to get services which are required by composition algorithm. Service

Composition Module will generate multiple service composition solutions

according to the goal.

4. According to the given goal, Search Optimal Solution Module will calculate

the score of each solutions and choice the most suited web service

composition from these found solutions

Those steps are the progress of our mechanism. The following subsection will

explain how to get solutions by Service Composition Module and how to choice the

best solution by Search Optimal Solution.

3.2.2 Preprocessing

In web service composition, the times of querying services is a great quantity. If

you query web services registered in distributed UDDIs at runtime of service

composition, the processing efficiency is obviously lower than web services stored in

one centralized database. All web services will be stored to the structured Web

Service Repository. Otherwise, the calculation of semantic similarity between

concepts is time-consuming, that will be preprocessed by Semantic Similarity Module.

Service Pattern Matching Model according the repository and the relationships of

concept similarity to response the query.

The preprocessing includes two parts:

1. Web Service Repository

The aim of service repository is to virtualize service discovery. We query

web services registered in distributed UDDIs in cloud and parse the WSDL

17

of web services to store into repository database, as shown in Figure 2. It

will search regularly web services from distributed UDDIs and analyzes the

structure to update database. The structure includes a set of input parameters,

a set of output parameters, and service name. It is helpful and flexible to

composite web service.

2. Semantic Similarity Module

The semantic module is for discovering the relationship between web

services. According to the definition of lexicon and classification on

WordNet, transform it into the concept and relationship of Ontology, as

shown in Figure 3. And we calculate the similarities between concepts. The

calculation of semantic similarity is described in Chapter 2. Through these

functions, we can obtain semantic similarity values between semantic

concepts. Those value’s ranges are between 0 and 1, and the higher value

represents higher similarity. We pre-calculate those similarity values, and

store into database.

Figure 2. Capture web services into repository from cloud

UDDI

UDDIUDDI

UDDI

UDDI

WS

WS

WS

WS

WS

WS
WS

WS

WS

Web Service

Repository

18

Figure 3. Import semantic concepts from WordNet

3.2.3 Service Pattern Matching Module

This section will introduce service selection mechanism. In Cloud, there are so

many similar web services, it causes that solution space expands quickly, so we could

consider that similar web services as one. “Service pattern” is a concept that we

proposed in this algorithm, which means that group those web services by the

similarity of the input parameters and output parameters. A service pattern includes a

set of web services and those included web services can be presented by this pattern.

This module will provide service patterns according to the request.

Service pattern matching algorithm includes three steps:

1. Semantic Parameter Expansion

Semantic expansion is based on sematic similarity module (SSM), which

records relationships between semantic concepts. Querying the SSM

according to the request, it will get a set of concepts which are similar with

the request. Add those similar parameters to quest set of web service.

entity

Physical abstract

objectthing matter

living thing stuff food

life being cell

animal person plant

meat fish

Semantic

Similarity

Module

19

2. Query Web Service Repository

From previous step, we will have a set of parameter query. We query the

services, whose output parameters can provide one of query parameter set,

from repository. Then we can find web services which provide the expected

output.

3. Extract Web Service Pattern

In the step, we collect a set of web services from previous step. We group

those web services, and each group can be represented by one service in its

group. The extraction rule of service pattern is “effect(w) ⊆ effect(wp) ∧

precond(w) ⊇ precond(wp)”. For example as following Figure 4, there are

five services, W1 have input parameters (A, B, C, D) and output parameters

(I, J), and W4 have input parameters (A, B) and output parameters (I, J, K}.

W4 uses fewer inputs and get the same outputs, then we can say that W4

contains W1, and so on. It helps us to reduce the search space of solutions.

Figure 4. The example of service pattern extraction

20

3.2.4 Web Service Composition Module

In the section, we will introduce composition mechanism we proposed in this

thesis. In our proposed algorithm we use planning graph based on backward strategy

to solve the problem of huge search space. The aim of backward search is to find the

initial states, so we propose an algorithm for solution extraction of planning graph,

which help us to find the initial state. Web service composition module includes four

steps:

1. Expand the planning graph

In this step, we will expand the planning graph to one more action level

with backward search. From the last proposition level in planning graph, we

can get a list of expected parameters, and then query service pattern

matching module (SPMM) to get service patterns. Add those service

patterns to new action level, and arrange new proposition level. The

Algorithm ExpandBasedOnBackward is shown in Appendix.

2. Extract solutions from the planning graph

From previous step, we can get planning graph which contains one more

level. We need to trace the possible solutions from the planning graph. So

we keep those lists of service composition, and we extend those

compositions with that new level. We find out the service combinations to

extend the service compositions from the action level. That is for finding

solutions which correspond to the initial state of the request. The Algorithm

ExtractSolutions is shown in Appendix.

21

3. Reduce solutions

We have a set of service compositions from extracting solutions, And we

will utilize two strategies to reduce solutions. One of the strategies is that

remove the solutions which utilize service more than threshold in the new

extended level. The other is to remove the similar solution. They help us to

decrease the complexity and quick growth of solutions. The Algorithm

ReduceSolutions is shown in Appendix.

4. Validate solutions whether correspond to user request

From the previous step, we will have a set of solutions to calculate the score

to find the best solution. If there is not solution correspond to user request,

then expand the planning graph to next level. Repeat the above steps until

find at least one solution. The Algorithm ValidateSolution is shown in

Appendix

Here we give another example to explain our proposed composition mechanism.

Assume a user request which has been a set of input parameter rin = *A, B, C, D+ and

a set of output paramters rout = *M, N+. And there are nine web services in our web

service repository. The following Table 3 shows the details of example web service

repository.

22

Table 3. The example of web services

Web Service Input Parameters Output Parameter

W1 A,B,C E,F

W2 A,B H

W3 D,E I

W4 E,F J

W5 K,L

W6 G I

W7 H M

W8 I,J,K M,N

W9 L N

Through the expansion algorithm, based on backward strategy, of web service

composition, we will get the planning graph which has user request at the first

proposition level and the last proposition level. The following Figure 5 shows the

result.

Figure 5. The simplified planning graph for the above example

A

B

C

D

M

N
W8

H

I

J

K

L

W1

W3

W4

A

B

D

E

F

G
W5 W9

W6

W7

W2

A1 A2 A3 P1 P2 P3 P4

23

{A, B, C, D} and {M, N} are the input and output parameters of the composition

request. At first, we search web service which can output {M, N}, then we get

*w7, w8, w9+ which can support the proposition 4, our goal. Those three web service

will be involved in action 3. We collect input parameters of web service in action 3,

and we will get proposition 3. The rest of proposition and action are like this, and so

forth.

From the previous step, we have a planning graph, and it needs us to extract

solutions. We utilize our proposed algorithm to extract solutions, and will get a tree

structure, which is for tracing solution. Through the extracting solution of web service

composition, we can get a solution tree. For every leaf node in solution tree, it means

that there is a solution from leaf node to root. The result is in the following Figure 6.

We can discover that there are many kinds of initial state in the tree, which is one of

advantages of backward strategy, so that we can find multiple solutions for user

request.

Figure 6. The solution tree for the planning graph for the above example.

M,N

W7,W9 W8

W3,W4,W5W2,W5

W1A,B,D

A,B,C,D

W2,W6

A,B,D,G

24

{M, N} are the output parameters of user request. It is located in proposition 4,

so we need to find the combinations of web services in action 3, which can

correspond to {M, N}. And we will get two combinations, which are {W7, W9} and

{W8}. Those combinations will be added to the root as its child. Now there are two

nodes at second level. The solution node composited by {W7, W9} requires a set of

input parameters {H, L}, so we need to find the combinations of web services in

action 2, which can correspond to {H, L}. So we get {W2, W5} and {W2, W6}, and

so forth.

3.2.5 Search Optimal Solution Module

After establishing the solution tree, we get service composition solutions which

possibly satisfy user request. In this section we will introduce search optimal solution

mechanism how to score those solutions and pick up the highest score solution.

At first, we calculate how precise the solutions correspond to the user request.

We utilize the ratio of the number of intersection to the number of union, where are

between the solution’s initial states and the user request’s inputs. The precision

equation is in the following.

Precise(s1, s2) =
∩ s1s2

∪ s1s2
 (1)

Equation (1) shows the precision. ∩ s1s2 represents the amount of same

concepts and ∩ s1s2 represents the amount of all different concepts, where S1 and

S2 both are lists of concepts. This equation evaluates how precise between the goal

and the solution and how different between two lists of concepts.

25

After previous step, we have the precise of solutions. For calculation of the score

of each solution, we need to calculate how matching between the levels of the

solution. The matching equation is in the following.

Mat(s1, s2) = (KM − α(∪ s1s2 −∩ s1s2))

where KM = KM(〈Sim(c1, c2)〉 (c1 ∈ s1, c2 ∈ s2) (2)

Equation (2) shows the matching score. In above equation, KM represents

classical Kuhn-Munkres algorithm which solve the assignment problem, and Sim

represents the similarity between any two concepts in s1 and s2. This equation is to

evaluate the matching score of two solutions.

With the previous two formulas, we can calculate the solution score. It sums the

matching scores between levels of the solution and divides by the number of levels to

get the average. Than we get the average of matching score, and multiple by the

precision of the solution and the request. The score equation is in the following.

Score(slu) = Precise(slu. in, r. in)
∑ Mat(s1, s2)slu

s1,s2

𝑛
 (3)

Equation (3) shows the solution score. Solution slu is a list of nodes from node

leaf to the root, which represent each level of service composition, and the number of

levels represents as n. The Precision is to calculate how precise between the input

parameters of the request r and the input parameters of the solution. The equation is to

evaluate at the score of service composition solution.

26

3.3 Discussion

Our proposed mechanism is suitable for service composition due to the problems

that service composition is an error-prone process, and the solution is always

complicated. In this thesis, we designed the mechanism suited for finding multiple

service compositions to overcome the above problems. Sometimes the exact solution

is not existed or more complicated, and our proposed mechanism still can recommend

approximate solutions. Therefore, our proposed service composition mechanism can

recommend the most suited solution from multiple solutions.

On the other hand, In order to provide multiple solutions, it must need to trace

each possible solution. Our proposed mechanism can limit and reduce the growth of

tracing solution to avoid exponential growth. If the growth is beyond the capability of

our algorithm, that will growth exponentially.

27

Chapter 4 Simulation Results and Analysis

In this chapter, we introduce our simulation environment and present the

simulation results. At first, we describe simulation environment, design, assumption,

and performance metrics. Then, the simulation results include effectiveness and

efficiency analysis, by implementing the proposed mechanism. Moreover, there is a

discussion in the end of this chapter.

4.1 Simulation Environment

The simulation platform environment is described first in section 4.1, and then to

show that how the simulation is designed. Finally, assumptions, definition of cases,

and performance metrics are introduced.

4.1.1 Simulation Design

We established a simulation platform by the proposed mechanism for validating

our algorithm. In this platform, we utilize WSBen [11], which is widely used to

evaluate the efficiency and effectiveness in web service discovery and composition, to

generate different test sets for validating our algorithm. The simulation platform will

carry out the algorithm according to the test data set and request from WSBen. The

following Table 4 describes the environment details of the simulation platform.

Table 4. Simulation Platform Environment

Hardware

Environment

Intel Core i3 CPU 530 @ 2.93Ghz 2.93Ghz

3.84 GB RAM

Software

Environment

Microsoft Windows 7

Visual Studio 2010

Microsoft .NET Framework 4

Python 2.7

28

Figure 7. The Architecture of Simulation Platform

The architecture of simulation platform is shown in Figure 7. WSBen build the

test data for WSC algorithm, including a set of web services and a set of feasible

requests. In our simulation, we parse the web service generated from WSBen, then

store information into the web service repository. The information is including service

name, input parameters, and output parameters. Service pattern matching module

takes charge web services selection according to the service query from web service

composition module. In addition, it also groups the selected web services as web

service patterns for composition algorithm. Each of web service patterns includes a

list of web services, which can be expressed by one pattern reducing similar services.

Web service composition module conducts the composition algorithm according to

the composition request, which interacts with service matching module during the

processing until getting solutions. It will generate a list of candidate solutions of web

service composition. Search optimal solution module calculates each score of

candidate solution, and generates a recommendation list.

Web Services

Composition

Solution

Request

29

4.1.2 Simulation Assumption

The assumptions in data sets for simulation have to describe in advance. First is

that there are three types of network in the simulation, which are random, small-world,

and scale-free types. And each of networks is assumed as parameter cluster network,

and web service is a transformation between two clusters. Each cluster contains

parameters, and it is also called domain. WSBen provides a set of functions to

simplify the generation of test data for WSC algorithm. It generates web services

according to the parameter cluster network which user specify. In our simulation, we

assume that there are 100 clusters in network and the parameter condense rate is 0.8.

Three types of network models (mentioned in Chapter 2) are as follows:

1. Random Network: Barabasi-Albert (100, 0.06)

The model creates 100 nodes in graph and chooses each of edges in the

graph with probability 0.06.

2. Small-World Network: Newman-Watts-Strogztz (100, 6, 0.1)

The initialization is a ring graph with 6 nodes. And then each node adds to

graph and construct edge connected others with probability 0.1, until there

are 100 nodes in this graph

3. Scale-Free Network: Erdo-Reyi (100, 6)

There are 6 nodes with no edges in the initial graph. And then each node

adds with 6 edges until reach 100 nodes. Each added edge is preferentially

attached to existing nodes with high degrees.

For each network, there are 10 different sizes in each of test data types, which

sizes are 10,000 to 100,000, respectively. Thus, there are 30 test sets (three

frameworks multiplied by ten different test sizes) in our simulation.

30

4.1.3 Performance Metrics

Effectiveness, efficiency, and feasibility are three evaluations, which used to test

our proposed approach. We use diverse sizes of web services and three types of web

service networks to measure how scalability and robust our approach is. The

evaluation metrics are as follows.

1. #T: It measures how long an algorithm spends to find a physical solution or

approximate solution. In other word, this is a measure of computational

efficiency.

2. #C: The number of web services in a solution of web service composition

problem. This is a measure of effectiveness.

3. #L: The number of levels of web services in a solution of web service

composition problem. This is also a measure of effectiveness.

4. #P: It measures how precise an algorithm finds solution corresponding to

the request. It means that a solution is physical solution if it has precision

100 precision, otherwise it is an approximate solution. Precision (described

in Equation 1) is a measure of effectiveness.

4.1.4 Simulation Cases

Three cases are designed in the experiment to observe our proposed mechanism

in comparison with traditional forward graph planning approach for web service

composition problem. The different dataset types of web service generation for 3

cases are case 1) random network, case 2) small world network, and case 3) scale-free

network. Besides, we also give statements and comparisons for the most two

important evaluations, effectiveness and efficiency, of proposed mechanism in

experiment results. One is the effectiveness evaluation which includes the cost, the

31

number of level, and the precise. The other is the efficiency evaluations which

compare by the time of finding solution.

4.2 Simulation Results and Analysis

In section 4.2, we show the efficiency, effectiveness, and feasibility of out

proposed algorithm in three cases. We utilize diverse sizes of web services and

different type of network topology to observe the scalability and robustness of our

proposed algorithm. Some related results are illustrated in the below sections. The

three test data sets of our experiments deal with the networks of random, small, and

scale-free type. We compare backward strategy with forward strategy to observe the

results. The results are shown in the following tables.

4.2.1 Case 1: Random network

The following Table 5 shows the results of five requests of random network with

10,000 web services. Backward and Forward both can find solutions in all cases.

Regarding #Level, Backward and Forward have no difference to find solution.

Although Backward takes more time than Forward, in the number of web services,

our proposed Backward outperforms the Forward. We use less 20 services to fulfill

the request in all cases, but the Forward use more than 200 web services to find

solution.

32

Table 5. Results of random network with |W| = 10000

test

request

Backward Forward

#L #C #T #P #L #C #T #P

r1 8 18 2.725 1 8 262 1.033 1

r2 8 14 3.028 1 8 237 1.05 1

r3 7 9 1.916 1 7 220 1.066 1

r4 7 10 2.191 1 7 245 1.072 1

r5 9 16 4.141 1 9 241 1.062 1

Avg. 7.8 13.4 2.8 1 7.8 241 1.056 1

4.2.2 Case 2: Small world network

The following Table 6 shows the result of five test request of small world network

with 10,000 web services. Both our proposed Backward and the Forward still can find

solutions in all cases. Regarding #Level, the Result of Backward is as good as the

Forward. Our proposed Backward take more a little time than the Forward, but in

terms of #WS shows much better performance than the Forward. It means that using

our proposed algorithm you can take more time to obtain much better solutions in

small world network.

Table 6. Results of small world network with |W| = 10000

test

request

Backward Forward

#L #C #T #P #L #C #T #P

r1 14 14 1.599 1 14 183 0.863 1

r2 11 11 1.016 1 11 175 0.769 1

r3 12 12 1.985 1 12 156 0.746 1

r4 10 10 2.419 1 10 174 0.716 1

r5 16 16 1.854 1 16 181 0.903 1

Avg. 12.6 12.6 1.776 1 12.6 173.8 0.8 1

33

4.2.3 Case 3: Scale-free network

The following Table 7 shows the result of five test request of scale free network

with 10,000 web services. The Forward still can solved all request, but use more than

200 web services to obtain solution. In the more complex scale-free network, although

we cannot find the physical solution in some cases, we can find the approximate

solution, which use much less services to satisfy the request.

Table 7. Results of scale-free network with |W| = 10000

test

request

Backward Forward

#L #C #T #P #L #C #T #P

r1 4 11 1.232 0.933 4 244 2.48 1

r2 4 6 3.151 1 4 343 1.654 1

r3 5 11 2.886 0.778 5 356 2.824 1

r4 - - - - 4 313 1.414 1

r5 4 10 0.203 0.814 4 281 2.122 1

Avg. 4.25 9.5 1.868 0.8812 4.4 316 2.3808 1

From above experiments, we use diverse test data sets to understand how

different network to influence the performance of service composition. In general our

proposed algorithm have much better performance in term of #WS. To compare

diverse sizes of test data sets, we use charts to express the results, which are shown in

the following.

34

4.2.4 Effectiveness and Efficiency

There are two parts in section 4.2.4. The one is result for effectiveness, and the

other is result for efficiency. We compare the proposed mechanism with the traditional

service composition mechanism to observe the proposed mechanism. Those two parts

will be described in the following.

(1) Effectiveness

The major experiment metrics are #C, #L, and #P. We utilize diverse test data

sets to observe our proposed algorithm based on backward strategy, to understand

how diverse sizes of data sets to influence the effectiveness of service composition.

Figure 8. The average cost of finding solution with both methods in Random Network

0

50

100

150

200

250

300

350

400

450

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#C

|W|

Backward

Forward

35

Figure 9. The average cost of finding solution with both methods in Small World

Network

Figure 10. The average cost of finding solution with both methods in Scale-Free

Network

As shown in Figure 8, Figure 9, and Figure 10, we can observe that our proposed

algorithm have much better usage of web services to obtain the solution in above all

0

50

100

150

200

250

300

350

400

450

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#C

|W|

Backward

Forward

0

50

100

150

200

250

300

350

400

450

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#C

|W|

Backward

Forward

36

cases. Because of the aim of Forward algorithm, which is to reach the goal as quick as

possible, it expands the services as it can despite of the redundancy of web services.

Our backward algorithm have no redundant web service existed in the solution,

because its backward strategy search what it needs to reach the initial state. Figure 10

shows average cost of searching solution in Scale Free Network. It can be observed

that the forward algorithm represent an unstable circumstances in Scale Free Network,

when the size of a test data set become large. However, our backward algorithm is

still to appear stable and effective results. On average, our algorithm reduces the 94%

service cost for finding the solutions.

From the above charts, we have a simple deduction that the backward search will

continue display the stable and smooth results in different types of network topology,

even if the sizes of web services continues to increase.

Figure 11. Level of searching solution with both methods in Random Network

4

6

8

10

12

14

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#L

|W|

Backward

Forward

37

Figure 12. Level of searching solution with both methods in Small World Network

Figure 13. Level of searching solution with both methods in Scale Free Network

As shown in Figure 11 and Figure 12, it can be observed that there are same

results which use the same number of levels to obtain the solutions in above two cases.

In addition in Figure 13, there are slightly different in |W|=30000 and |W|=80000, and

4

6

8

10

12

14

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#L

|W|

Backward

Forward

4

6

8

10

12

14

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#L

|W|

Backward

Forward

38

the others are almost same number of levels. The forward search aims to minimize the

number of composition level to reach the goal, it means that the solution can be

solved at least number of levels. Figure 11 and Figure 12 both get the same result in

Random Network and Small World Network. It means that our backward algorithm

also get the least number of levels to obtain the solutions. But in more complex Scale

Free Network we use a little bit more number of levels to obtain solution. Although

our backward algorithm uses a little bit more levels to get solution, we can obtain the

solutions which use much less number of web services.

From the above three charts, shown in Figure 11, Figure 12, and Figure 13, we

have a simple conclusion that the backward search in more complex network could

obtain a little bit more levels of service composition. But it is acceptable that use a

little bit more levels in exchange for low cost of services. The results in increasing

web service are represented the stability as the forward algorithm.

Figure 14. Precision of searching solution with both methods in Random Network

50%

60%

70%

80%

90%

100%

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#P

|W|

Precision

Backward

39

Figure 15. Precision of searching solution with both methods in Small World Network

Figure 16. Precision of searching solution with both methods in Scale Free Network

As shown in Figure 14 and Figure 15, it represent that our proposed algorithm

can find the physical solutions in above two cases. In addition in Figure 16, in

50%

60%

70%

80%

90%

100%

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#P

|W|

Precision

Backward

50%

60%

70%

80%

90%

100%

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#P

|W|

Precision

Backward

40

complex Scale Free Network our backward algorithm could not find the physical

solutions in some requests. We observe the composition in Scale Free Network and

find out the solutions which have less number of levels and much more number of

services. Our algorithm aims to avoid the situations which have much complex

services in one level. Based on the above aim, we may ignore the exact solutions in

our algorithm, but our algorithm still can obtain approximate solutions in the complex

network, which still have high precision.

(2) Efficiency

We utilize the same data set to observe our proposed algorithm based on

backward strategy, to understand the influence of performance by increasing the

number of web service. And we compare our algorithm with the algorithm based on

forward strategy with three different types of network topology. It is shown in the

following figures.

Figure 17. Time of searching solution with both methods in Random Network

0

100

200

300

400

500

600

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#T

|W|

Backward

Forward

41

Figure 18. Time of searching solution with both methods in Small World Network

Figure 19. Time of searching solution with both methods in Scale-Free Network

As shown in Figure 17, Figure 18 , and Figure 19, it represents that the backward

algorithm takes more time than forward to obtain the solutions in all cases. We

0

100

200

300

400

500

600

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#T

|W|

Backward

Forward

0

100

200

300

400

500

600

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

#T

|W|

Backward

Forward

42

observe that different network types start to growth exponentially in Random

Network and Scale Free Network, when the number of web services increases to

certain number. It can divide into two parts, one is the number of web service less

than 50,000, and the other is more than 50,000. We observe a liner growth in the part

less than 50,000, and the other part is an exponential growth. But in Small World

Network we can clear see that they both are liner. We go deep into study why the

exponential growth at the number of web service more than 50,000. We find out that

the space of solution quickly growth more than our algorithm can shrink. However,

when the sizes of web service are less than 50,000, our backward algorithm had better

effectiveness and nearly efficiency in all cases.

4.2.5 WSBen data set and general situation

WSBen[11] can build the test data for WSC algorithm, including a set of web

services and a set of feasible requests. It is designed to generate the hardest solved

request to validate the WSC Algorithm. That does not make the advantage of the

proposed mechanism prominent. It is dedicated to find the approximate solution

instead, which not exactly corresponds to the request but takes less service cost.

Therefore, we design an example to explain the proposed mechanism in general

situation. In the real world, people who composite services focus on what they want to

know rather than what they can give. The advantage of backward search is to find the

diverse initial states, which possibly match the user request. To find out what initial

state can reach the goal, which user expects to know. We use the following Figure 20

to explain some situation which traditional composition mechanism cannot solve.

43

Figure 20. The example of solution tree

In Figure 20, there are two requests, which can represent the advantage,

described in the following. One request is that the known input parameters are {A, B,

C, D} and the expected output parameters are {L, M}. The traditional mechanism

based on planning graph only can obtain the single path from the initial state {A, B, C,

D} to the Goal {L, M}, which costs nine services to obtain the solution. The proposed

mechanism based on backward can find out multiple paths which can reach the goal,

as the above solution tree. In the mechanism, we can stop searching in finding the

initial state {A, B, C, E}, if the user wants to find the approximate solution which

have lower service cost and can give the expected output. The other request is that the

known input parameters are {A, B, C} and the expected output parameters are {L, M}.

According to the solution tree, there is no existed solution which can satisfy the

request. The traditional composition mechanism can find the solution in this case, but

the proposed mechanism can find the approximate solution instead.

We have proven that the proposed mechanism have better effectiveness than the

44

traditional mechanism. From the above example, we can observe that the proposed

finds many approximate solutions before finding the exact solution. If the

composition requester can accept approximate solutions, the proposed mechanism

does not take the total time for finding the exact solution. Also we can find

approximate solutions at lower number of composition level. In the exponential

growth composition space, if we could decrease one composition level, the time of

obtaining solutions will dramatically decrease. From above example, we explain that

the proposed mechanism can take less time to find acceptable approximate solution.

4.3 Discussion

In our experiments, we utilize three type of network topology and diverse sizes

of web services to observe those two algorithms. The main findings about our

proposed algorithm from the experiments are given as follows.

1. Effectiveness. The experiment results show our proposed backward

algorithm has 94% better effectiveness compared to forward algorithm

almost all cases. At few cases we use more little levels to obtain the solution,

but we get low-cost solutions. As confirmed by the experiment results, our

proposed algorithm also can get very high precise solutions almost all cases.

2. Efficiency. Although forward algorithm has better performance than

backward algorithm, the cost of solution is high. Our proposed backward

algorithm has nearly efficiency when the sizes of web service are less than

50,000. Also in random and small world network we can observe that our

proposed algorithm do not growth exponentially when the size of test data

increases.

45

Chapter 5 Conclusions and future works

This thesis emphasizes issues about service composition based on backward

planning graph strategy. In this chapter, we summarize our studies and discuss our

possible future work.

5.1 Conclusions

In this thesis, we proposed a semantic web service composition mechanism

based on semantic in cloud environment. It utilizes planning graph based on backward

search to find multiple feasible solutions, and recommends the best composition

solution by the lowest using service cost. We also validated the proposed algorithm

can improve the error-prone problem of service composition and the redundant web

service involved in service composition. Therefore, the algorithm based on backward

planning graph search, which is capability of recommending multiple service

composition and remove the redundant services. As we can see the experiment results

in chapter 4, we proved that our proposed backward algorithm had a better

effectiveness than the forward search algorithm. The proposed algorithm is able to

recommend approximate solutions of service composition using very few web

services, because it has higher quality of relationships between services. In other

words, we can decrease the amount of cost of web services and remain acceptable

planning graph levels and execution time.

5.2 Future Work

In the future, we can study how to improve proposed greedy algorithm to expand

the solution tree. To obtain right combinations is a very important issue for algorithm

design. It can not only help to decrease wrong combinations, but also to improve the

effectiveness and efficiency of algorithm. Moreover, we can add more predictable

46

restrictions to prune the huge combination tree nodes for our algorithm efficiency. If

there are some more predictable restrictions and composition information, that will

help us to make more right decision to find the solutions. In semantic experiments,

our current experiments are lack of environment that can help us to validate semantic

association of service compositions. To Design a semantic experiment environment

should be undertaken to determine how the semantic influences the effectiveness of

service composition.

47

Appendix I. Service Composition Algorithm

In this appendix, we represent the proposed algorithms which are described in

above sections. Algorithm “Composition” is the main web service composition

algorithm using planning graph based on backward search. The input parameters of

Algorithm “Composition” are A, s0, and g, where A is a set of actions, s0 is the known

initial state, and g is a set of expected goal. The rest of algorithms are invoked by it.

All algorithms will be represented as following.

Algorithm Compose(𝐀, 𝐬𝟎, 𝐠)

Notes about the algorithm:

G = 〈P0, A1, P1, … , Ai, Pi〉 is a simplified planning graph.

S = *s1, … , sn+ is a set of solution candidates.

i ← 0, P0 ← s0, G ← P0

repeat

G ← ExpandBasedOnBackward(G)

S ← ExtractSolutions(G, S)

S ← ReduceSolutions(S)

i = i + 1

until (ValidateSolution(S, g))

if S contains valid solution then

Output(SearchOptimalSolution(S))

else

Output(SearchSimilarSolution(S))

48

Algorithm ExpandBasedOnBackward(〈𝐏𝟎, 𝐀𝟏, 𝐏𝟏, … , 𝐀𝐢, 𝐏𝐢〉)

Notes about the algorithm:

valid(a): action a can be used in the algorithm;

invalid(a): action a can not be used in the algorithm again.

W: *w1, … , wn+ is a set of web services.

WP = *wp
1
, … , wp

n
+ is a set of web service patterns.

for a ∈ A do

if valid(a) ∧ (effect(a) ∩ Pi ≠ NULL) then

W ← W ∪ a

invalid(a)

for w ∈ W do

for wp ∈ Wp do

if effect(w) ⊆ effect(wp) ∧ precond(w) ⊇ precond(wp) then

wp ← wp ∪ w

if effect(w) ⊇ effect(wp) ∧ precond(w) ⊆ precond(wp) then

wp ← wp ∪ w

effect(wp) ← effect(w)

precond(wp) ← precond(w)

If not be filled with Service Pattern then

WP ← WP ∪ new wp

Ai:1 ← WP

return 〈P0, A1, P1, … , Ai, Pi〉

49

Algorithm ExtractSolutions(〈𝐏𝟎, 𝐀𝟏, 𝐏𝟏, … , 𝐀𝐢, 𝐏𝐢〉, 𝐒)

Notes about the algorithm:

inputs(s): a set of input parameters of solution s.

parent(s): the parent node of solution s.

available(a): it records action a whether available or not.

for s ∈ S do

for a ∈ Ai do

available(a) ← true

S ← S ∕ s

do

required ← inputs(s)

ns ← new solution

parent(ns) ← s

for a ∈ Ai do

if available(a) ∧ required ∩ effect(a) ≠ NULL then

required ← required ∕ effect(a)

available(a) ← false

ns ← ns ∪ a

if required = NULL then

S ← S ∪ ns

break

while(required = NULL)

return S

50

Algorithm ReduceSolution𝐬(𝐒)

Notes about the algorithm:

initial(s): a set of initial input parameters of solution s.

count(s): a number of web services of solution s.

ServiceThreshold: a number of max service used in one solution.

for s ∈ S do

if count(s) > 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

S ← S ∕ s

for s ∈ S do

if initial(s) ⊃ *initial(s2)|s2 ∈ S+) then

S ← S ∕ s

return S

Algorithm ValidateSolution(𝐒, 𝐠)

Notes about the algorithm:

initial(s): a set of initial input parameters of solution s.

precise(s): the precise of solution s that correspond to user request.

PreciseThreshold: The threshold of solution precision.

finished ← false

for s ∈ S do

intersection ← Count(initial(s) ∩ initial(g))

union ← Count(initial(s) ∪ initial(g))

precise(s) ← intersection/union

 if PreciseThreshold ≤ precise(s) then

finished ← true

return finished

51

Reference

[1] T. Berners-Lee, et al., "The semantic web," Scientific American, vol. 284, pp.

28-37, 2001.

[2] C. Computing, "Clash of the clouds," The economist, 2009.

[3] G. Gruman and E. Knorr, "What cloud computing really means," InfoWorld, p. 2,

2008.

[4] H. Haas and A. Brown, "Web services glossary," W3C Working Group Note, vol.

11, 2004.

[5] I. Herman, "W3C Semantic Web Frequently Asked Questions". W3C. Retrieved

March 13, 2008.

[6] U. Kuter, et al., "Information gathering during planning for web service

composition," The Semantic Web–ISWC 2004, pp. 335-349, 2004.

[7] B. Medjahed, A. Bouguettaya, and A. Elmagarmid, "Composing web services on

the semantic web," The VLDB Journal - The International Journal on Very Large

Data Bases, vol. 12, pp. 333-351, 2003..

[8] E. Martinez and Y. Lesperance, "Web service composition as a planning task:

Experiments using knowledge-based planning," 2004, p. 62¡V69.

[9] P. Mell and T. Grance, "The NIST definition of cloud computing," National

Institute of Standards and Technology, vol. 53, 2009.

[10] S. McIlraith and T. C. Son, "Adapting golog for composition of semantic web

services," 2002, pp. 482-496.

[11] S. C. Oh and D. Lee, "WSBen: A Web Services Discovery and Composition

Benchmark Toolkit1," International Journal of Web Services Research (IJWSR),

vol. 6, pp. 1-19, 2009.

[12] P. Resnik, "Using information content to evaluate semantic similarity in a

52

taxonomy", in Proc. of the 14th Int’l Joint Conf. Artificial Intelligence,

Montereal, 1995.

[13] E. Sirin, et al., "HTN planning for web service composition using SHOP2," Web

Semantics: Science, Services and Agents on the World Wide Web, vol. 1, pp.

377-396, 2004.

[14] H. Stevens and C. Pettey, "Gartner Says Cloud Computing Will Be As

Influential As E-business," Gartner Newsroom, Online Ed.

[15] P. Traverso and M. Pistore, "Automated composition of semantic web services

into executable processes," The Semantic–ISWC 2004, 2004.

[16] D. C. Wyld, "The Utility of Cloud Computing as New Pricing – And

Consumption – Model for Information Technology", International Journal of

Database Management Systems (IJDMS), Vol.1, No.1, November 2009.

[17] S. Wang, W. Shen, and Q. Hao, "Agent based workflow ontology for dynamic

business process composition," 2005, pp. 452-457.

[18] Y. Yan and X. Zheng, "A Planning Graph Based Algorithm for Semantic Web

Service Composition," 2008, pp. 339-342.

[19] "NIST.gov – Computer Security Division – Computer Security Resource Center".

Csrc.nist.gov. Retrieved 2010-08-22.

[20] X. Zheng and Y. Yan, "An efficient syntactic web service composition algorithm

based on the planning graph model," in IEEE International Conference on Web

Services, 2008, pp. 691-699.

[21] (2006). OASIS Web Service Business Process Execution Language 2.0.

Available: http://www.oasis-open.org/committees/wsbpel/

[22] (2011). Relationship to the World Wide Web and REST Architectures. Available:

http://www.w3.org/TR/ws-arch/#relwwwrest

