IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 3, MARCH 1985

197

A Graph Matching Approach to Optimal Task
Assignment in Distributed Computing Systems Using a
Minimax Criterion

CHIEN-CHUNG SHEN anNnD WEN-HSIANG TSAI, MEMBER, IEEE

Abstract — A graph matching approach is proposed in this pa-
per for solving the task assignment problem encountered in dis-
tributed computing systems. A cost function defined in terms of a
single unit, time, is proposed for evaluating the effectiveness of
task assignment. This cost function represents the maximum time
for a task to complete module execution and communication in all
the processors. A new optimization criterion, called the minimax
criterion, is also proposed, based on which both minimization of
interprocessor communication and balance of processor loading
can be achieved. The proposed approach allows various system
constraints to be included for consideration. With the proposed
cost function and the minimax criterion, optimal task assignment
is defined. Graphs are then used to represent the module re-
lationship of a given task and the processor structure of a distrib-
uted computing system. Module assignment to system processors
is transformed into a type of graph matching, called weak homo-
morphism. The search of optimal weak homomorphism cor-
responding to optimal task assignment is next formulated as a
state-space search problem. It is then solved by the well-known
A¥* algorithm in artificial intelligence after proper heuristic infor-
mation for speeding up the search is suggested. An illustrative
example and some experimental results are also included to show
the effectiveness of the heuristic search.

Index Terms —A* algorithm, distributed computing systems,
graph matching, interprocessor communication, load balancing,
minimax criterion, state-space search, weak homomorphism.

I. INTRODUCTION

ISTRIBUTED computing systems have become more

and more attractive and important in recent years due
to the advancement of VLSI and computer networking tech-
nologies. Distributed computing systems not only provide
the facility for utilizing remote computer resources or data
not existing in local computer systems but also increase the
throughput by providing facilities for parallel processing [1].
Furthermore, the modularity, flexibility, and reliability of
distributed computing systems make them attractive to many
types of applications. But there are some major problems that
prevent widespread use of the distributed computing system
[11,[2],[16]. One of the problems is the degradation in

Manuscript received November 9, 1983; revised May 7, 1984.
The authors are with the Institute of Computer Engineering, National Chiao
Tung University, Hsinchu, Taiwan 300, Republic of China.

0018-9340/85/0300-0197$01.00

throughput caused by the “saturation effect” due to excessive
interprocessor communication by data and control messages
transferred from one program module to another residing in
different processors [2].

Thus, the purpose of task assignment in distributed com-
puting systems is to reduce the job turnaround time and in-
crease the throughput. This can be done by maximizing and
balancing the utilization of resources while minimizing the
communication between processors [1]. While minimizing
interprocessor communication tends to assign the whole task
to a single processor, load balancing tries to distribute the
program modules of the task evenly among the processors.
Therefore, there exists conflict between these two criteria
and a compromise must be made to obtain an optimal policy
for task assignment.

Several approaches to task assignment in distributed com-
puting systems have been suggested [1]-[12], [16]. They can
be roughly classified into three categories, namely, graph-
theoretic [3]-[6], mathematical programming [2], [16], and
heuristic methods [1]. The graph-theoretic method uses a
graph to represent a task, and applies the minimal-cut
algorithm to the graph to get the task assignment with mini-
mum interprocessor communication. The mathematical
programming approach formulates task assignment as an
optimization problem, and solves it with mathematical pro-
gramming techniques. And the heuristic method provides
fast but suboptimal algorithms for task assignment, which are
useful for applications where an optimal solution can not be
obtained in real time.

Most of the above methods adopt some types of cost func-
tion to evaluate the effectiveness of task assignment algo-
rithms [1]-[12], [16]. The most commonly used cost function
is defined as the sum of the interprocessor communication
cost and the processing cost. But these two types of cost are
measured in different units, and it is difficult to give a reason-
able meaning to the resulting cost summation.

In this paper, we propose a new task assignment model for
distributed computing systems, based on a graph matching
approach and a more meaningful cost function for task as-
signment optimization. Each graph match corresponds to a
specific task assignment. Cost values are defined in terms of
a single unit, time. Minimization of cost functions is based on
a so-called minimax criterion. The proposed model allows
easy incorporation of most system constraints encountered in

© 1985 IEEE

198

applications. A state-space search method [15] is employed
for finding optimal task assignment corresponding to
minimum-cost graph matching. Useful heuristic information
to speed up the search is also suggested. Optimal solutions
guaranteed by the proposed approach are important for non-
real-time applications where the resulting assignment will
be repeatedly executed on a distributed computing system.
And speedup in solution search is useful for real-time
applications.

In the remainder of this paper, we describe system assump-
tions, the cost function, and the minimax criterion in
Section II. In Section III, we formulate the graph matching
model, and in Section IV, we review the state-space search
algorithm and apply it to the search of optimal solutions. An
illustrative example and some experimental results are given
in Section V, followed by conclusive remarks in the last
section.

II. AsSUMPTIONS, CoSTS, AND OPTIMIZATION CRITERION

Various assumptions made about the distributed com-
puting system considered in this paper are first described in
the following. .

1) The processors in the system are heterogeneous. That
is, a single program module, if executed on different pro-
cessors, will require different amounts of running time,
which specify different degrees of preference of the module
on the processors.

2) Nonidentical communication links are used by the pro-
cessors for message transmission. That is, an identical
amount of message, if transmitted through different commu-
nication links, will require different amounts of transmission
time, which specify different degrees of preference of the
message on the links.

3) The processors in the system need not be fully con-
nected. But the link between any two processors is sym-
metric, i.e., the time to transmit a certain amount of message
from one processor to another is identical to that to transmit
the same message in the reverse direction.

4) There exists little or no precedence relationship or syn-
chronization requirement among the program modules so that
processor idleness is negligible during task execution, pro-
vided that module partition has been resolved satisfactorily.

Based on the above assumptions, the cost function and the

minimax criterion proposed for task assignment optimization

are described in the following. ;

After a task is partitioned into suitable modules, let ¢;(A)
denote the total time spent for module execution, and f,(A)
be the total time for interprocessor communication delay,
both in some processor p according to a certain task assign-
ment A. Let

1,(A) = t5;(A) + t5(A)

which is the total time spent in processor p for task assign-
ment A. We call #,(A) the processor turnaround time of p.
This turnaround time is different for each distinct processor.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 3, MARCH 1985

Let
t(A) = max 1,(A)
P

which we call the task turnaround time of A. It is easy to see
that £(A) is the total time required to complete the whole task
according to assignment A under the assumption of negligible
processor idleness. Therefore, ¢ (A) may be, from the point of
reducing total processing time, used as a cost measure for the
effectiveness of task assignment A. The smaller ¢(A) is, the
better A is. An optimal task assignment thus may be defined
as the one A, which minimizes the task turnaround time #(A4),
ie.,

t(A,) mAin t(A)

min n}uax ,(A).

This means that we want to minimize the maximum processor
turnaround time, resulting in the so-called minimax criterion.
t(A,) will be called the minimum task turnaround time.

III. GRAPH MATCHING MODEL

Graphs are of a type of very general data structure for
system representation. The graph matching problem is that of
finding an efficient algorithm to compare two given graphs to
see how well they match in a certain sense. A survey of such
problems and the algorithms for solving them can be found in
[13], [14]. Based on the purpose or the criterion of matching,
there are various types of graph matching. The type we con-
sider in this paper is weak homomorphism which is defined
as follows.

Definition 1: Let G, = (V,,E)) and G, = (V,, E;) be two
graphs where V; (i = 1, 2) are the vertex setsand E; (i = 1,2)
are the edge sets of G, and G,, respectively. G, is weakly
homomorphic to G, if there exists a mapping (possibly many-
to-one) M: V, — V, such that if edge (a, b) € E,, then edge
(M(a), M (b)) € E,, and we say that there is a weak homo-
morphism from G, to G,.

As mentioned before, a task submitted into a distributed
computing system is partitioned into suitable modules and
then assigned to processors. Each task thus can be repre-
sented by an undirected graph T = (Vr, Er), which we call
the task graph where 1) V; is a set of vertices each of which
represents a module of the task; 2) Er C Vr X Vris a set of
edges each of which represents the intermodule commu-
nication between the two modules at the ends of the edge.

Similarly, the processors in a distributed computing sys-
tem can also be represented by an undirected graph
P = (V, Ep), which we call the processor graph where 1) Vp
is a set of vertices representing the processors in a distributed
computing system; 2) Ep C V, X Vj is a set of edges repre-
senting the communication links between processors.

Because two related modules may be assigned to a single
processor, we add a self-looping edge to each vertex in the
processor graph to follow the weak homomorphism defini-
tion, as will be clear in the following discussion.

SHEN AND TSAIL: OPTIMAL TASK ASSIGNMENT

Fig. 1 shows a typical task graph and Fig. 2 shows a typi-
cal processor graph.

For a task assignment A to be acceptable, any two modules
a and b which communicate with each other must be assigned
either to a single processor X or to two processors X and Y
with a communication link between them. In terms of graph-
theoretic terminologies just defined and considering the task
assignment A as defining a mapping M from the task graph T
to the processor graph P, we see this requirement means that
if edge (a,b) € Er, then it must be true that edge
(X,X) € Ep, orthatedge (X,Y) € Ep. Edge (X, X) is always
included in the processor graph P as mentioned previously.
By Definition 1, this in turn means that there must exist a
weak homomorphism from 7 to P. Therefore, the task assign-
ment problem can be transformed into the problem of finding
a weak homomorphism from the task graph 7 to the processor
graph P with minimum task turnaround time. We call such a
weak homomorphism the optimal weak homomorphism from
T to P. Now, we have to discuss how task turnaround time
(i.e., the cost value) can be computed for each mapping or
weak homomorphism.

Definition 2: Vertex Transformation—Let T and P be
the task graph and the processor graph defined previously. If
M is a mapping from T to P defined by a task assignment A,
then we use a — M (a) to denote the assignment of mod-
ule a € Vy to processor M(a) € Vp, and call it a vertex
transformation.

Let C, be a nonnegative real-valued cost function defined
on all vertex transformations such that C, (@ — M (a)) de-
notes the execution time of module a on processor M(a).

Definition 3: Edge Transformation — Similarly, we use
(a,b) = (M(a), M (b)) to denote the assignment of module
communication between modules @ and b to the commu-
nication link between processors M (a) and M (b), and call it
an edge transformation.

Let C. be another nonnegative real-valued cost func-
tion defined on all edge transformations such that C.
((a,b) > (M (a), M (b))) denotes the communication time
between modules @ and b using the communication link
(M(a),M(b)). If M(a) is equal to M (b), i.e., if modules a
and b are assigned to the same processor, then the cost is
defined to be zero. For those edges (a, b) nonexistent in Er,
the costs for assigning them to any communication links are
also set zero.

If there are n modules m,,m,, -+, m, in a task and m
Processors pi, P2, * * * , P in a distributed computing system,
we can use an n by m matrix X to represent the mapping
M: Vo — V; where -

X, = {1’
ij 0,

Thus, the total execution time of all the modules assigned to
processor j is

if module i is assigned to processor j;

otherwise.

PT; = > [C,(m; — p;) - X;]. (D

i=1

Let L be an m by m matrix representing the configuration

199

T = (VT' ET) where

oS RO

ET=

T = {a, B, C, D, E, F},

{(a,B),(a,C),(a,F),(B,C),(B,D),

(B,E), (D,E), (C,E) }.

Fig. 1. Task graph.

= (Vp,Ep) where
vp = {X, v, 2},

Ep, = {(X,Y),(¥,2), (X,X),(Y,¥),(2,2) }.

Fig. 2. Processor graph.

structure of the processors in a distributed computing system
where

L;;

— 1’

- {0,
Let R be an n by n matrix representing the intermodule

communication relationship of a task where

R,‘j

-
0,

Thus, the total communication time spent in processor j is

if processors i and j are connected to each other;

otherwise.

if modules i and j communicate with each other;

otherwise.

= g 2 2 [Cc((my,m) — (p;, Pe)

: ij * th : Rst * ij] . (2)

In the above equation, X; and X, are included to indicate
whether m; is assigned to p; and whether m, is assigned to p.

According to (1) and (2) the processor turnaround time of
processor j is equal to

TA; = PT, + CT,. 3)

Recalling that the task turnaround time is just the maximum
of all the processor turnaround times, we can define the cost
of a mapping M defined by a task assignment to be

COSTM) = Plsjgi(n(TAj) . 4

According to the minimax criterion, our goal in this paper
now is to find an optimal mapping M* which is a weak
homomorphism such that

COST(M *) = mA}n COST(M) .

This optimal weak homomorphism M * not only minimizes
the interprocessor communication time but also achieves load

200

balancing and will be found by the state-space search method
described in the next section.

IV. STATE-SPACE SEARCH METHOD

In this section, the problem of finding the optimal weak"

homomorphism between two graphs will be formulated as a
state-space search problem, and the well-known A* algo-
rithm in artificial intelligence will be used for solving this
problem [15]. With the A* algorithm, not only the optimal
weak homomorphism is guaranteed to be found, but the
search will also speed up. Note that this approach so far has
not been considered in any other investigation on task assign-
ment in distributed computing systems.

In a state-space search problem, each state description is
denoted by a node. Operators applicable to nodes are defined
for generating successors of nodes, called node expansion. A
solution path of a search problem is a path in the state space
defined by a sequence of operators which leads a start node
to one of the goal nodes [15]. In our case here, a solution path
defines the optimal weak homomorphism which is a weak
homomorphic mapping M with minimum COST(M). We
now formulate the state-space search method as follows.

1) State Description: Let ordered pair set K =
{(, %) |i € Vi, and x € V,} denote the partially developed
mapping M corresponding to a tree node n in the search
tree. Each ordered pair (i, x) means that module i is assigned
to processor x, i.e., M:i — x or x = M(i). Let Kg =
{i|(i,x) € K} and inax = maxiex, i.

2) Initial State: The initial state is K # @, the empty set.

3) Operators: An operator adds new valid pairs (j,y) to
K. The procedure is as follows. First, form a set of candidate
ordered pairs

D ={(j,y|j

Next, check all candidate pairs one by one for validity, using
vertex adjacency information in the task graph T and the
processor graph P. A candidate pair (j,y) € D is said to be
valid if for each (i, x) € K it is true that if edge (i,j) € Er,
then either edge (x,y) € Ep orx = y. This validity check is
necessary to preserve the property of weak homomorphism
(see Definition 1). Each candidate pair (j,y) represents a
possible additional assignment of module j to processor y, but
if j communicates with any other module i already assigned
to a processorx (i.e.,i € Kg), then j should also be assigned
either to processor x or to another distinct processor y which
has a communication link to x. Let D' be the set of all valid
pairs in D. Then the operator finally updates set X as the
union of old K and D'. "

Note: that the operator is defined in such a way that it
always expands the partially developed mapping M (as repre-
sented by K) by assigning the module with next larger index
number j = iy, + 1 (see the definition of D above) to each
of all the processors y in V5. It is in this way that developing
of partial mapping can be kept in order until all possible
module assignments are exhaustively considered (see Fig. 5
for an illustration).

= imax + 1’}7 € VP}

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 3, MARCH 1985

4) Goal State: Any state K with V; = K; is a goal
state; that is, the search stops when all modules are assigned
completely.

The above formulation just offers a search scheme for
finding a homomorphic mapping corresponding to a task
assignment; it does not include computation of cost values.
Next, we use the A* algorithm described in Nilsson [15] to
find optimal weak homomorphisms.

In an A * algorithm, an evaluation function is used to order
nodes for expansion, and is guaranteed to find a solution path
optimal in the sense that the path cost is minimized, if the
evaluation function is properly defined. More specifically,
according to Nilsson [15], if we define an evaluation function
as

f(n) = g(n) + h(n)

where g(n) is the minimum path cost from the start node to
node n in the state space, and i (n) is a lower-bound estimate,
using any heuristic information available, of the minimum
path cost 4 *(n) from node n to a goal node, then as long as
h(n) < h*(n) for all n (i.e., h(n) is consistent), the A* algo-
rithm using such an evaluation function will be guaranteed to
find an optimal solution path in the state space after expand-
ing fewer nodes during the search than any uninformed algo-
rithms. In other words, such a heuristic search algorithm can
speed up the search of an optimal weak homomorphism,
which is usually time consuming for graphs with large num-
bers of vertices and edges.

According to the previous formulation of task assignment
as the graph matching problem, a node » in the state space
denotes a partially developed homomorphic mapping which-
assigns part of the modules of a task to processors. Thus, we
can let the evaluation function at node ~ in the state space be

f(n) = g(n) + h(n) &)

where the value of g(n) is the total minimum cost of the
vertex and edge transformations included in the partially de-
veloped mapping M corresponding to n, and the value of the
heuristic function A(n) is an estimate of the value A*(n)
which is the minimum cost of the vertex and edge trans-
formations required to complete the partial mapping M.

To calculate g(n), we first set up the X and R matrices as
mentioned in the previous section for the partial mapping M
corresponding to node r, and then use (1), (2), (3), and (4) to
calculate the cost of a partial mapping M which defines g (n).

As to the heuristic function A (n) in (5), it can be defined by
several different approaches. The simplest way is to set
h(n) = 0 for all n, and the resulting search is a uniform-cost
search [15] which nevertheless is still guaranteed to find an
optimal weak homomorphism. To be more efficient in the
search, nonzero #(n) values, of course, should be used, and
this has been found possible as is discussed in the following.

Let M be the corresponding partial mapping at search tree
node n. When using (4) to find the cost of M, try to find the
k such that

COST(M)

COST(TA,)
max(7T4;) .

I<j<m

SHEN AND TSAIL OPTIMAL TASK ASSIGNMENT

That is, processor k is currently with the maximum processor
turnaround time in the partial task assignment. Let MK be the
set of modules assigned to processor k by the partial mapping
M, and MK’ be the set of all the remaining modules not
assigned by M. Then, define LK = {(a,b)|a € MK’,
b € MK, and (a, b) € E; (edge set of task graph)} which
denotes a set of the edges representing all the commu-
nications between the modules in MK and MK ', and define
B = {al(a,b) € LK} which denotes the set of those un-
assigned modules in MK' communicating with the modules
in processor k. The heuristic information useful for defining
h(n) is observed as follows. When the state-space search
process goes forward, each module @ in B will have to be
assigned either to processor £ or to a processor [connected
through a communication link to processor k so that commu-
nication between module a and those modules in k can be
accomplished. But these two different types of assignments
will result in different amounts of partial processor turn-
around time being increased at processor k. To keep A(n) as
alower bound of 4 *(n), we must find out the smallest amount
for each module ¢ in B and then sum up these amounts for all
the modules in B as the value ki (n), as is calculated in the
following algorithm.

Algorithm 1: Computation of 4 (n). M is the correspond-
ing partial mapping at search tree node n.

Step 1): Find the k such that

COST(M) = COST(TAy)
= lm_ax(TAj) .
=j=m
Step 2): Find the sets MK, MK', LK, and B as defined

previously. ,

Step 3): For each @ € B, find L, = {b|(a,b) € LK}
which is the set of the modules in processor kK communicating
with module a € B.

Step 4): Define AC, = min,<j=m[Zper, C.((b, a) =
(pr>p1))] where [denotes any processor connected to pro-
cessor k, and define AP, = C,(a — py). If there exists no
processor / connected to processor &, then AC, is set infinite.

Step 5): Let I, = min(AC,,AP,). Then compute the
heuristic function A (n) as

h(n) = D 1,.
a€B

It is not difficult to see that 4 (n) is a consistent lower bound
of h*(n) for all n, so the state-space search will be guaranteed
to find an optimal weak homomorphism using the algorithm
described in the following.

Algorithm 2: Find an optimal weak homomorphism be-
tween two graphs. .

Step 1): Put the initial node K = @ on a list called OPEN,
and set f(K) = 0 where f is an evaluation function defined
by (5).

Step 2): Remove from OPEN the node n with a smallest f
value and put it on a list called CLOSED. ,

Step 3): If n satisfies the goal state defined in the previous
section, then find out the corresponding graph mapping M as
the desired homomorphism and exit. Otherwise, continue.

201

T = (VT, ET) where

<
(]

(1,2,3,4},

o]
[l

= 1(1,2),(2,3),(3,4),(4,1),(2,4)).

Fig. 3. Task graph.

I~ P = (VP, EP) where
(2) v
e EP =

Fig. 4. Processor graph.

P ={ a,B,C},

{(a,B),(B,C), (A,R),(B,B), (C,C)}.

‘©

Step 4): Expand node n, using operators applicable to n,
and compute the value f(n') = g(n’) + h(n') for each suc-
cessor n’ of n where g(n') is computed according to (1),
(2), (3), and (4), and A(n') is computed according to
Algorithm 1. Put all the successors of n on OPEN.

Step 5): Go to Step 2).

In Step 4), if h(n') is always set O, then Algorithm 2 is a
uniform-cost search. Otherwise, it is an A* algorithm.

V. ILLUSTRATIVE EXAMPLE

Here, we give an example to illustrate the mapping be-
tween the task graph and the processor graph by the proposed
state-space search method. Task graph 7 and processor graph
P are shown in Figs. 3 and 4.

The intermodule communication time and the module
processing time are listed in Tables I and II.

Using the vertex and edge transformation notations de-
fined previously, we have

C,(1—>A) =10,
C,(1— B) = 20,
C,(1—C) =30,
C,(2—A) =140,
C,2—B)=5,
C,2—C)=10,

C,(3—> A) =170,
C,(3—~ B) =50,
C,(3—~C) =80,
C,(4— A) =50,
C,(4— B) = 80,
C,(4—C) =20,
and
C.((1,2) » (A4,B)) = C((1,2) — (B,C)) = 20,
C((2,3) > (A,B)) = C((2,3) = (B,C)) = 5,
C.((3,4) —> (A,B)) = C((3,4) - (B,C)) = 35,
C.((4,1) > (A,B)) = C.((4,1) > (B,C)) = 40,
C.((2,4) > (A,B)) = C.((2,4) = (B,C)) = 70.

Then, using Aigorithm 2 as an ordered-search algorithm,
we can find an optimal weak homomorphism M *: V; — V,
and compute the minimum task turnaround time. Fig. S

202 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 3, MARCH 1985

TABLE I
INTERMODULE COMMUNICATION TIME

module
1 2 3 4

—
o

20 0 40

m
o

d 2420 0 5 70
u

13 0 5 0 35
e

4 140 70 35 0

TABLE II
MODULE PROCESSING TIME
processor
A B c
m1l /| 10 20 30
[o]
d 2 | 40 5 10
u
13170 50 80
e
4 | s0 80 20

(START NODE)

R

RS (1,8) (1,0)
eh @, 2, (z.k.c) (2.(\(z,c)
0 7o
G 6,8 3,0 (3,5)/(3.@ (LA)%.C)X,B) (3,0
5] 103 0]

(4,B) (4,C)

(GOAL NODE)

Fig. 5. State-space search tree of the illustrative example (circled numbers indicate node expansion order, and squared numbers
indicate node costs).

shows the resulting search tree. The optimal weak homo- prove that such concentration is a result from utilizing the

morphism M *, as shown, is heuristics proposed previously, we further reuse Algorithm 2
as a uniform-cost algorithm (by setting A(n) zero for all
1-C nodes) to find the optimal weak homomorphism again. The
255 C resulting state-space search tree is too large to be included
M*: here as a figure. We only mention that totally 22 state-space
3—B nodes are expanded in the tree with 49 nodes generated.
4—C More experiments have been performed on a CDC CYBER

170/720 computer for some other cases to test the effective-
which defines the optimal assignment of task T to distributed ness of the heuristic function /(n) used in Algorithm 2. The
computing system P, and the minimum task turnaround time results [18] show that in most cases with module numbers and
of this assignment is 100. processor numbers less than 10, the number of generated

As shown in Fig. 5, totally only 9 state-space nodes are nodes by Algorithm 2 is about a half of that generated by the
expanded and 23 nodes generated before the goal node is uniform-cost algorithm. It is also found in these cases that the
found. The search concentrates rather well on the right path ~ complexity of Algorithm 2 as defined by the number of gen-
to the goal node with only a few branches elsewhere. To erated nodes is approximately to the order of N?, although

SHEN AND TSAI: OPTIMAL TASK ASSIGNMENT

optimal task assignment, like many other graph matching
problems, needs exponential time in the worst case [17].

VI. CONCLUSIONS

In this paper, we describe a graph matching approach to
task assignment optimization. Optimal task assignment is
transformed into the search problem of optimal weak graph
homomorphism, which is then solved by heuristic state-space
search using the A* algorithm. The approach uses the task
turnaround time as the cost measure and the minimax cri-
terion as the criterion for assignment optimization. This
approach allows various system constraints to be easily
included for consideration. It minimizes interprocessor
communication and optimizes load balancing by minimizing
the task turnaround time.

There are M" possible assignments to be considered in an
assignment problem with M processors and N modules, and
actual computation using an enumerative algorithm requires
time to the order of M" [10]. The state-space heuristic search
algorithm proposed in this paper is shown effective by an
illustrative example and some case studies for speeding up
solution search. Further research can be directed to the im-
provement of the proposed lower-bound estimate h(n) of
h*(n) in Algorithm 1 and the inclusion of precedence consid-
eration into the proposed algorithms.

REFERENCES

[1] K. Efe, “Heuristic models of task assignment scheduling in distributed
systems,” Computer, vol. 15, pp. 50-56, June 1982.

[2] W.W. Chu, L.J. Holloway, M. T. Lan, and K. Efe, “Task allocation in
distributed data processing,” Computer, vol. 13, pp. 57-69, Nov. 1980.

[3] H.S. Stone and S.H. Bokhari, “Control of distributed processes,”
Computer, vol. 11, pp. 97-106, July 1978.

[4] H.S. Stone, “Multiprocessor scheduling with the aid of network flow
algorithms,” IEEE Trans. Software Eng., vol. SE-3, pp. 85-93,
Jan. 1977.

[5] T.C.K. Chow and J. A. Abraham, “Load balancing in distributed
systems,” IEEE Trans. Software Eng., vol. SE-8, July 1982.

[6] S.H. Bokhari, “Dual processor scheduling with dynamic reassignment,”
IEEE Trans. Software Eng., vol. SE-5, July 1979.

[7] ——, “On the mapping problem,” /EEE Trans. Comput., vol. C-30,
pp. 207-214, Mar. 1981.

[8] H.S. Stone, “Critical load factors in two-processor distributed systems,”
IEEE Trans. Software Eng., vol. SE-4, pp. 254-258, May 1978.

[9] G.S. Rao, H.S. Stone, and T. C. Hu, “Assignment of tasks in a distrib-
uted processor system with limited memory,” /EEE Trans. Comput.,
vol. C-28, pp. 291-299, Apr. 1979.

[10] C.C. Price, “The assignment of computational tasks among processors in
a distributed system,” in Proc. Nat. Comput. Conf., May 1981,
pp. 291-296.

[11] L. Kleinrock and A. Nilsson, “On optimal scheduling algorithms for
time-shared systems,” J. ACM, vol. 28, no. 3, pp. 477-486, July 1981.

[12] Y.C. Chow and W. Kohler, “Models for dynamic load balancing in a
heterogeneous multiple processor system,” [EEE Trans. Comput.,
vol. C-28, pp. 354-361, May 1979.

203

[13] W.H. Tsai, “Graph matching problems: A survey and a tutorial,” in
Proc. Ist Conf. Comput. Algorith., Hsinchu, Taiwan, China, July 1982.

[14] W.H. Tsai and K. S. Fu, “Subgraph error-correcting isomorphisms for
syntactic pattern recognition,” IEEE Trans. Syst. Man, Cybern.,
vol. SMC-13, pp. 48-62, Jan./Feb. 1983.

[15] N.J. Nilsson, Problem Solving Methods in Artificial Intelligence.
York: McGraw-Hill, 1971.

[16] P.R. Ma, E.Y.S. Lee, and M. Tsuchiya, “A task allocation model for
distributed computing systems,” [EEE Trans. Comput., vol. C-31,
pp- 41-47, Jan. 1982.

[17] R.C. Read and D.G. Corneil, “The graph isomorphism disease,” J.
Graph Theory, pp. 339-363, 1977.

[18] C.C. Shen and W. H. Tsai, “A graph matching approach to optimal task
assignment in distributed computing systems using a minimax criterion,”
Inst. Comput. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan, Republic
of China, Tech. Rep., July 1983.

New

Chien-Chung Shen was born in Taiwan, Republic
of China, on July 15, 1960. He received the B.S. and
M.S. degrees in computer engineering from Na-
tional Chiao Tung University, Hsinchu, Taiwan, in
1982 and 1984, respectively.

From 1982 to 1984, he served as a Teaching and
Research Assistant in the Institute of Computer
Engineering, National Chiao Tung University. His
research interests include artificial intelligence,
pattern recognition, graph theory, database design,
and computer-aided design of VLSI.

Wen-Hsiang Tsai (S’79-M’80) was born in Tainan,
Taiwan, Republic of China, on May 10, 1951. He
received the B.S. degree from National Taiwan Uni-
versity, Taipei, Taiwan, in 1973, the M.S. degree
from Brown University, Providence, RI, in 1977,
and the Ph.D. degree from Purdue University, West
Lafayette, IN, in 1979, all in electrical engineering.

From 1973 to 1975, he served in the Chinese Navy
as an Electronics Officer. From 1977 to 1979, he
worked as a Research Assistant in the Advanced
Automation Research Laboratory, School of
Electrical Engineering, Purdue University. Since November 1979, he has been
on the faculty of the Institute of Computer Engineering at National Chiao Tung
University, Hsinchu, Taiwan. His current research interests are image process-
ing and pattern recognition, computer vision applications in robotics and auto-
mation, and parallel processing and multiprocessor systems.

