
PHYSICAL REVIEW B VOLUME 31, NUMBER 2 1S JANUARY 1985

Simple treatment of the enhancement of Raman scattering
due to a two-dimensional array of metallic spheroids
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A simple naive treatment of the enhancement of Raman scattering due to the presence of a two-
dimensional array of metallic spheroids has been worked out as an extension of the existing
particle-plasmon model. Calculated results, which are based on the r term of dipolar fields, con-
form to the experiment. Comparisons and discussions show that this treatment, rather complete
and accurate within the r regime, provides the basic understanding of the physics of the
spheroidal array experiment and also can serve to justify the existing single-spheroid approxima-
tions.

I. INTRODUCTION

It is well known that Raman scattering from some mol-
ecule adsorbed on a certain suitably roughened metal sur-
face will be greatly enhanced. ' This surface enhance-
ment of Raman scattering (SERS) has drawn much atten-
tion of scientists for a number of years. An important ad-
vance in characterizing and investigating the SERS would
be the experiments of Liao et al. , ' using lithographically
produced microspheroids of Ag, Au, and Al which are
regularly arranged as a two-dimensional (2D) array. To
explain the results, they employed the so-called particle-
plasmon (PP) model ' ' and simplified the treatment of
the 2D array of spheroids by considering only a single iso-
lated spheroid. The original PP model considers essential-
ly the excitation of the molecule by the incident light and
the local dipolar field of the spheroid as the first part
which may be called the local-field enhancement. The
second part, which may be called the Stokes field
enhancement, is the emission of Raman field at Stokes
frequency from the molecule and the single nearby
spheroid owing to the necessity of satisfying the Maxwell
boundary conditions at the spheroidal surface. The
dielectric constant as a function of incident light frequen-
cy and the morphology of the spheroid give the particle-
plasmon resonance and the lightening-rod effect, respec-
tively. When the authors applied this PP model to the
2D array of spheroids with the spheroidal volume V and
the depolarization factor AJ as adjustable parameters and
with the introduction of radiation damping, the resultant
excitation profile, i.e., the total enhancement of Raman
scattering versus incident frequency, is very satisfactory.
Meanwhile, Barber et al. used an electrodynamical ap-
proach to treat the SERS problem of the lithographically
produced micros pheroids and obtained desired results
over the peak position and linewidth broadening for the
SERS excitation profile. However, they still treated the
2D array as a simple isolated spheroid. To deal with the
system as a truly 2D arrangement, Inoue and Ohtaka re-
cently studied a 2D array of spheres rather than spheroids

and tried, as a partial purpose of their work, to explain
the SERS problem. Their results appear rather unsatis-
factory for the SERS and, as the authors claimed, the
spheroidal array problem is still two complicated to treat
at present.

The light scattering by a random distribution of 2D
metal hemispheroids on an infinite perfect conducting flat
surface was studied by Laor and Schatz. ' '" They con-
sidered clusters and random distributions of the hemi-
spheroids and used the long-wavelength approximation
and dipole fields among the hemispheroids. This calcula-
tion obtains a new phenomenon of multiple plasmon reso-
nances in an excitation profile and provided qualitatively
similar results to that of experiment. However, their
method, which was specially designed for random clus-
ters, is not applicable to the calculation of the uniformly
distributed spheroids in the arrangement of Liao et al. 3

Furthermore, the facts that their multiple resonance pat-
terns depend too strongly on the number of hemispheroids
and their calculated enhancement (10 —10 ) for SERS are
totally unsupported by experimental findings.

The aim .of this work is to attack the apparently com-
plicated 2D spheroidal array problem from a conceptually
simple picture. The idea of this treatment is simply an
extension of the formula of the PP model ' with the sin-
gle spheroid replaced by an array of spheroids. We feel it
important to calculate the array problem beyond the
single-spheroid approximation because the nearest-
neighboring spheroids are located within the range of one
wavelength of the incident light and their contributions
and interference effects should not be entirely overlooked.
Thus, although the present results of these single-spheroid
treatments are satisfactory, we would like to work on the
2P problem and understand the underlying physics. Our
simple formulation of the problem is given in Sec. II.
Calculated results and comparisons with experiment and
with some results calculated from Ref. 6 are' shown in
Sec. III. In Sec. IV we will discuss the results and draw
conclusions.
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II. FORMULATION OF THE CALCULATION

A. General description

Consider a system of a 2D array of identical spheroids
each with the same effective aspect ratio c/d as shown in

Fig. 1. The basic vectors a, b specify the spheroidal ar-

rangement. Assume a plane wave E; of light with fre-
quency coo, unit polarization vector eo, and unit propaga-
tion vector no is incident upon the spheroidal array. As
most of the authors have done in treating the SERS prob-
lems we restrict the consideration to only the dipolar os-
cillation of each spheroid with essentially only the near-
field dependence r, where r is the distance measured
from the dipole to the molecule. The molecule which
gives the Raman scattering is assumed sitting on the tip
of the spheroid at origin, i.e., with coordinates
r!=(0,0, —c). The molecule is considered as a classical
point dipole and assumed for simplicity to oscillate with
its electric dipole moment p only in z direction, i.e.,

p' =~.E;(P!~0» (5)

Ei!——Ed;(r, co) .

Here, we use the same polarizability tensor e and exclude

any chemical effect due to the nearby spheroids. Ed; is
the molecular dipole field due to p

' . Furthermore, we
assume for simplicity 8 as a scalar a and, with Eq. (1),
we have

!Om =CZmEpz('Y!. C00) ~ (7)

where Ep, is the z component of Ep. The SERS enhance-
ment factor f due to the presence of spheroids is then

Stokes fields Ez, Ez;, and E„,are evaluated at observation
point r and with Stokes frequency co. When the array is
absent, we have a sole molecule at r~ with its dipole mo-

ment p
' and Stokes field E!t, respectively, given by

where z is the unit vector along the Z axis. Now we have
two situations to compare one with the spheroidal ar-
ray arranged as Fig. 1 and the other without the array.
When the array exists we have the molecular dipole p
the primary electric field Ep, and the Raman shifted or
Stokes field E!t..

E„(r,~)f=
E ii ( r, co)

IE~(r ~) I' lE~(r ~) I'

I
Ea(» ~)I'

I
Id(r ~)I'

p

Ea(r ~)
I

p'

pm =cc'Ep(Yi~coo) ~

Np( Y! ~0) E'(Yl ~ 0+)Em (Y! ~0)

E!t(r,co) =Ed;(r, co)+E„(r,co),

(2)

(4)

Eit ( r, c0)

Ed;( r, co)

Epz( Y i,c00).

E;.(Yi,~o)

where a is the molecular polarizability tensor. E„, Ed;,
and E„are the fields arising from the spheroidal array,
the molecular dipole field, and the scattered field again
due to array of spheroids, respectively. We note that the

=fzf i

where E;, is the z component of E; and Eq. (7) has been
used. The local-field enhancement fi of incident-light
frequency c00 and the Stokes field enhancement f2 of
Stokes frequency co are defined, respectively, by

and

I E;.(Y!~0) I

'

(10)

B. Polarizability of a single spheroid

Assuming the ratio of spheroid volume V to the cube of
incident-light wavelength is small, i.e., V/A, «1, which
is reasonable for the experimental data, ' we have the
electrical field' inside the spheroid of the array:

z
FIG. 1. Arrangement of the 2D array of spheroids.

1
E!= (E;)&, j=x,y,z

1+(e—1)a,
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&ln
m +(m —1)'
m —(m —I)'~

m 1

2(m 1) 2(m 1) ~2

(12)

the calculation of f2 of Eq. (10).
Radiation damping may be regarded as a necessary pro-

cess for a finite-size oscillating dipole. ' Meier and
Wokaun expanded the Mie dipole coefficient and tried to
derive the radiation damping term. ' Since the spheroid is
treated as a point dipole of dipole moment pJ sitting at
the center of the spheroid the finite-size radiation effect
has to be taken into consideration, which simply requires
the replacement of the depolarization factor AJ by the ef-
fective depolarization factor:

1 m m +(m —I)'~
m —1 2(m —I )'~ m —(m —1)'~

AJ' =AJ. +i4mV. /3A, (19)

e—1
PJ. —— EJ .

4~ (14)

The electric dipole moment of the spheroid, pj, is the
product of its volume and the polarization PJ., viz. ,

(15)
J

which yields the diagonal polarizability tensor of the
spheroid pj'

(13)

where m =c/d; c,d, A„,Az, A, (Ref. 14), and e (Ref. 7)
are the semimajor and semiminor axes, depolarization fac-
tors along X, F,Z axes, and the dielectric constant of the
spheroid, respectively. The polarization of the spheroid
PJ 1S

where k and V are, respectively, the incident-light wave-
length and spheroidal volume.

There is another important deficiency in assuming the
point dipole sitting at the center of the spheroid. ' Clear-
ly, if the dipole is imagined to lie near the tip of the
spheroid instead of sitting at the center, the near field of
the dipole acting on the molecule would be much stronger.
Thus, the correct treatment should stem from the
Maxwell's equations and the boundary conditions at the
spheroidal surface, which is mainly the continuity at the
boundary of the normal component of displacement
current vector D. Since we want to treat an array of
many spheroids, the precise matching of boundary condi-
tion of all spheroids would be too tedious. Instead, we re-
place each spheroid by a point dipole at its center and
then introduce a frequency-dependent weighting function
W' „(co') to correct the deficiency. The integers m, n of
W „(co') denote the location (ma+nb) of the spheroid
in the 2D array. Conditions on W~„(co') would be

C. Dipole fields, radiation damping,
and the weighting function

1 ~ m ~ ll ))1
2

W „(co') 3
2 d

(20)

m=n=O

A point dipole of moment p
' oscillating with frequen-

cy co' will give rise to a near field at r (Ref. 13),

(21)

where the weighting function for the spheroid at origin
ikd r

E„,= [3n (n. p ') —p '] (17) —', (c/d) 1 —A, +i 3n—.

where n is the unit vector along r, kd =co'/co, and co is
the speed of light in that medium. This is essentially the
only dipolar field which is of concern. The far field of
the dipole, Ef,„

jicd P

Ef,=kd(n X p ') X n

is normally the source for the Stokes signal at the detector
region. However, as far as the enhancement 'factor f is
concerned, the r ' dependence would be canceled out in

I

is approximately the factor distinguished between the
enhancement due to a point dipole at center and that due
to matching of the correct Maxwell's boundary condi-
tions. The condition (20) means that, at far distances
from the spheroid under consideration, the dipole location
at the center or at the boundary of the spheroid should
give no difference. We take the distance variation of the
weighting function as that of dipolar near field. Thus, a
convenient form of W~„(co') is taken:

3 c
W (a)') = 1+mal 2

1 —A, +i ', m——1 c3 (m 2/2+n2b2+c2)3/2 (22)
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D. f~ and fq

Taking all these into consideration, we have, for the
primary field of Eq. (3),

ikpnp 1 IEi =~Moe
(23)

E&r( rt coo) =g W~n (coo)[ 3T ~„(T~„p~„)
m, n

ik~ Rmn~

D~„=p~ W~„(co) [3cu„(co)(max+nby)
IR „I

+ (3c2 —
I
R „ I

)u, (ro)z]

=Jm~ mn (34)

where

ikp
I

T'
n I

pmn I
T mn I

where x,y are the unit vectors alon. g X, Y axes. The
Stokes field enhancemept f2, thus, becomes

f2 — (n Xz) Xne '+ g (NXD' „)Xne
coo

o
co

Tmn Tmn+rI ~

T' „=ma+nb,

(24)

(25)

(26)

x[I(nxz)xzI'] '

in which

m, n

(35)

ikpnp T mn
pmn =pe (27)

n =(sinO, cosg„sinO, sing„cosO, ) (36)

fi= 1+ E„z
ikpnp- r I

o zEoe
(28)

where

no = (sinO cosP, sinO sing, cosO), (29)

eo ——(cosOcosg, cosOsing, —sin8) . (30)

With the spheroid dipole moment p induced by the in-
cident light given by Eq. (15), we consider only a p-
polarized wave which produces z-component local field at
(0,0, —c). Substitution of these into Eq. (9) yields the
local-field enhancement

denotes the direction of the observed Stokes signal at the
detector. The overall enhanced factor is obtained from
the product of f, and f2 as given in Eq. (8).

III. 'RESULTS AND COMPARISONS
0

We take a =b =3000 A to match the experimental
conditions and set the spherical angles for the 'direction of
the incident light 8=60,/=0', and those of the observer
at the detector 8, = 150',P, =180'. In Fig. 2 we show our
calculated results for Ag with the spheroidal radius
d =258 A and aspect ratio 4.0/1.0. The local-field
enhancement fi and the Stokes field enhancement f2 are
plotted for comparison. They are approximately coin-
cident for incident-photon energies around the peak. This
is similar to that of the single-spheroid calculation in

To calculate f2, we first obtain the secondary field E„
of Eq. (4). The molecule at r& after being excited by the
primary local field Ez of Eq. (3) oscillates and emits fields

E~„, again corrected with the weighting function .

W „(ro), to each lattice point (m, n) of the 2D array. The
E „polarizes in turn each metallic spheroid of polariza-
bility uJ of Eq. (16) at Stokes frequency co. The resultant

spheroid dipole moments D~„at all locations (m, n) give
rise the scattered fields E„and contribute to the final Ra-
man signal. Explicitly,

ikfR
E „=W „(ro)p [3R~„(R~„.z) —z

I
R~„ I ]

IR „I'

8
Z
LIJ

QJ

X
K
~ 2

0

where

(31)

+mn =Tmn r I ~

k =co/co

(32)

(33)

The spheroidal dipole moment 0 „ induced by E „
should take the form

l

2.OI
0 I ) I

l.76 2.26 2.5I 2.76
INCIDENT PHOTON ENERGY (eV)

FICx. 2. Normalized enhancement for Ag versus incident
photon energies: a =3000 A, c =1034 A, d =258 A, /=0',
P, = 180', 8=60, 0, = 150 . Solid line for the total enhancement

f; dashed line obtained from a formula of Ref. 6; circles for the
experimental data; dashed-dotted line for local-field enhance-
ment f&, and dashed —double-dotted line for Stokes field
enhancement f2.
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which these functions are identical. ' The solid line is the
calculated total SERS enhancement factor f of Eq. (8)
which shows excellent agreement with the experimental
data denoted by circles. The shift in the peak position of
f from the peak positions of fi and f2 results from the
difference between the laser frequency of fi and the
Stokes frequency of f2. Another comparison is made
with the results (dashed lines) calculated from a formula
given by I.iao et al. ' which assumes a single-spheroid
instead of a single-spheroid array. As seen clearly in the
figure, the peak value of f due to their result is 2.56)& 10
and that of our result is 2.74)& 10 . This slight discrepan-
cy between calculated results of the single-spheroid ap-
proximation and that of our more realistic model of ar-
rayed spheroids can be traced out as due to mainly the rel-
atively short-ranged r dipolar field used. To be more
specific to this point, one may estimate for a typical case,
the contribution from the first nearest spheroids to the z
component of the field Ez at the molecule site (0,0, —c)
using Eq. (23). The ratio of this contribution to that from
the central spheroid (m =O, n =0) is -0.01 due to the
rapidly diminishing dipolar-field dependence r alone.
The phase interference arising from these four nearest
neighbors further reduces the field at (0,0, —c) by a factor
of -0.1. Thus the field contribution due to the first
nearest neighbors is totally about 0.001 smaller than that
from the single central spheroid. Consequently, although
an infinite number of spheroids of the array could contri-
bute to the field, the enhancement factor, which is rough-
ly proportional to the fourth power of field strength, can
increase only slightly. For the long-range dipolar-field
terms r and r ', the contribution may be substantial.
However, that problem is beyond the scope of the r di-
polar field of this paper. It is being done and will be re-
ported elsewhere. Figure 3 gives the plots for Au with
'spheroidal radius d =270 A, and aspect ratio 4.1/1.0.

Notations are similar to those of Fig. 2 for Ag. The main
difference between Au and Ag is that the imaginary part
of dielectric constant of the former is remarkably larger
than that of the latter. This should account for all. the
differences between Figs. 2 and 3. In this figure we note
the relatively smaller shift in the peak position of the total
enhancement from that of f ~ or f2. The occurrence of a
shoulder at photon energy -2.19 eV would arise from the
feature of the dielectric constants and the frequency
difference between the laser frequency of fi and the
Stokes frequency of fq. The dashed line, which is calcu-
lated from the single-spheroid model as in Fig. 2, is still
almost as good as ours. In Fig. 4, we present another re-
sult for Au with spheroidal radius d =269 A and aspect
ratio 3.8/1.0, the same set of values used in Ref. 4. Our
calculated curve (solid line) is almost coincident with that
of Ref. 4 except in the region of photon energies -2.12
eV. Clearly, the experimental data are not as well sub-
stantiated by the calculated curves as those shown in Fig.
3. The only difference between these two figures lies in
the data of d and c, or more clearly the spheroidal radius
d and the aspect ratio (c/d). Comparison between these
two figures shows that the aspect'ratio 4.10/1.0 is more
appropriate than 3.8/1.0 for Au, because the semiminor
axis d used in the two figures differs only slightly. At
this point, we like to make a few remarks: (1) The aspect
ratio, which plays a very important role in these SERS
problems, should have some distribution around its mean
value. We have investigated the effects due to the aspect
ratio distribution and have reported them elsewhere. ' (2)
The radius or the semiminor axis d (270 A) for Au is
much smaller than the radius of the base of SiO2 core (500
A) as given in Fig. 1 of Ref. 3, which has been used in
Fig. 3 of Ref. 8. Calculations with such a larger radius
(500 A) based either on a single-spheroid model or on this
spheroid-array model all indicate that the very broad
linewidth, much smaller magnitude, and the peak position
of the enhancement factor simply cannot be verified by

I-
8

lU
X
Lal
C3ir

UJ

0
I.5l l.76 2.0I . 2.26

INCIDENT PHOTON ENERGY {eV)
FICx. 3. Normalized enhancement for Au versus incident

photon energies: a =3000 A, c =1107 A, d =270 A, /=0',
P, = 180', 8=60', 8, =150'. Solid line for the total enhancement

f; dashed line obtained from a formula of Ref. 6; circles for the
experimental data; dashed-dotted line for local-field enhance-
ment f~,

' and dashed —double-dotted line for Stokes field
enhancement fq.
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l.5I l.76 2.01 2.26

INCIDENT PHOTON ENERGY (eV)
FIG. 4. Normalized enhancement for Au versus incident

photon energies: a =3000 A, c =1020 A, d =269 A, /=0',
P, = 180', 8=60', 8, = 150'. Solid line for the total enhancement
f; dashed line obtained from a formula of Ref. 6.
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FIG. 5. Normalized enhancement for Ag versus incident
and observer polar angles 0 and O„respectively: a =3000 A,
c =1034 A, d =258 A, P =0, P, = 180', photon energy 2.55 eV.
Dash-dotted line for local-field enhancement fi with fixed
0, =150 and variable I9' from 0' to 90'; dashed —double-dotted
line for Stokes field enhancement f2 with fixed 0=30' and vari-

able 0, from 90' to 180'.

0
I 80

the experimental results. We are, then, led to conclude
that the effective or equivalent radius of the actual
spheroid under consideration must be much less than the
nominal value 500 A. (3) The local radius of curvature
near the tip of a spheroid, which could be largely distorted
in shape and size from that of the geometric spheroid,
would be the truly effective radius in producing the SERS
effect. Thus, both the semiminor axis d and the aspect
ratio c/d should be regarded as the effective values rather
than their formal numbers.

The angular dependence of the total enhancement on
the orientation of the incident light and that of the Stokes
light at the detector is shown in Fig. 5 (for Ag at fixed

IO ——

8—2
LtJ
X
UJ
C3z', 6—
LJJ

Cl
QJ

X
CC0Z

~ ~ ~

~ ~ ~ ~

0
0-

I 80

INCIDENT POLAR ANGLE e
22.5 45 67.5 90

I r I i I 1 I

I57.5 I 35 I I 2.5 90
OBSERVER POLAR ANGI E eo

FIG. 6. Normalized enhancement for Au versus incident
and observer polar angles 0 and H„respectively: a =3000 A,
c =1107A, d =270 A, / =0', P, = 180', photon energy 2.11 eV.
Dash-dotted-line for local-field enhancement fi with fixed
8, =150 and variable 0 from 0 to 90'; dashed —double-dotted
line for Stokes field enhancement f2 with fixed 8=30' and vari-
able 8, from 90' to 180.

photon energy 2.55 eV) and Fig. 6 (for Au at fixed photon
energy 2.11 eV). For the upper curve (denoted by the
dash-dotted line) of both figures, the orientation of the in-
cident light, specified by the spherical angles (8,$), is tak-
en to vary 8 froin 0' to 90' while the orientation (8„$,) of
the Stokes light at the detector is kept fixed at 8, = 150'.
Since the system of the spheroid array has azimuthal sym-
metry, we may arbitrarily set /=0', $, =180'. For the
lower curves (denoted by the dash-double-dotted line) the
orientation of the incident light is kept fixed at 0=30
while the orientation 8, is taken to vary from 90' to 180'.
The general feature of the enhancement f curve appears to
be flat over nearly the whole available range of polar an-
gles 8 and 8, for both Ag and Au. This weak dependence
on angles is in accord with the experimental observation.

IV. DISCUSSIONS AND CONCLUSIONS

This simple calculation has neglected the mutual in-
teractions among the spheroids as well as the multireflec-
tions among these spheroids. The mutual interaction
(referring to the change in the dipole moment due to the
presence of a neighboring dipole) is basically a dipole-
dipole interaction and therefore should behave like r
with the spatial separation r between two neighboring
spheroids. As stated in Sec. III the short-range dipolar
field (r ) contributes only -0.01 from a neighboring
spheroid to the central one. The dipole-dipole contribu-
tion ( r) -from a nearest-neighbor spheroid would ac-
cordingly affect the field at the tip of the central spheroid
by a factor -0.0001. This should give a negligible effect
to the overall enhancement f, which is roughly propor-
tional to the fourth power of the field. As to the multiple
reflections among the arrayed spheroids we note that each
reflection by a certain spheroid would reduce the field
magnitude at least by -0.01 due to the short-range r
dipolar field. For example, assume an incident light from
the central spheroid to a nearest neighbor is reflected back
to the central one. The contribution in the electric field at
the central spheroid would be at most -0.0001 of the
original field magnitude. Consequently, the neglect of the
dipole-dipole mutual interaction and multiple reflections
is justifiable in our simple calculation.

Another thing we must mention is the phase retarda-
tion. It accounts for the effect due to the phase change
within a wavelength of incident hght that acts on an ob-
ject of size comparable to the wavelength. Within the
particle-plasrnon model which was originally an electro-
static calculation, Gersten and Nitzan, Laor and
Schatz, ' and Liao et al. ' have not given such an ac-
count. Only in the electrodynarnical calculation given by
Barbar et al. , which treated a single-spheroid instead of
2D spheroidal array, have the effects of phase retardation
been explicitly disclosed. It produces a reduction in the
magnitude of SERS enhancement, a relatively large
broadening of linewidth, a shift of peak position of
enhancement toward longer wavelength, and an additional
multipole peak in the excitation profile. This calculation
was for a spheroid of radius of 500 A, of which the results
are not in agreement with experiment. For a much
smaller spheroid of radius 258 A for Ag and 270 A for
Au (less than 10% of the incident-light wavelength), such
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as the cases of this paper, the electrodynamic phase retar-
dation effects should be much less pronounced. Our cal-
culation is a corrected long-wavelength approximation of
an electrodynamical approach which takes into considera-
tion the effect of phases as given in Eq. (23) and Eq. (34)
but not of the phase retardation (i.e., long-wavelength ap-
proximation) from different locations of the spheroid, nor
the full effects of r ' and r dipolar fields. Yet we add
the radiation damping as a correction tertn following the
works of Wokaun et al. and Meier and Wokaun. ' Ac-
cording to the latter reference of a single-sphere calcula-
tion, the phase retardation effect is manifested mainly as
the dynamical depolarization and the radiation damping.
However, since the effect of dynamical depolarization is
important only for very small particle sizes, ' the radia-
tion damping effect is dominant in our cases. So we be-

lieve our treatment has included the main feature of a
complete electrodynamic treatment ever found for the 2D
regular array of metal spheroids.

In conclusion we have given, for the first time, a
method of calculation for a 2D array of spheroids. the
idea of the method appears simple, naive, and elegant.
The calculated results, although only slightly improving
those numerical results of Liao et al. ' which have al-
ready conformed well to experiment, can serve as well to
justify the validity of the single-spheroid approximations
and provide the basic understanding of the underlying
physics of the spheroidal array problem.

ACKNOWLEDGMENT

This work was financially sponsored by the National
Science Council of the Republic of China.

IM. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Chem.
Phys. Lett. 26, 163 (1974).

zR. K. Chang and T. E. Furtak, Surface Enhanced Raman
Scattering (Plenum, New York, 1982).

P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. .

Melngailis, A. M. Hawryluk, and N. P. Economou, Chem.
Phys. Lett. 82, 355 {1981).

4P. F. Liao and M. B. Stern, Opt. Lett. 7, 483 (1982).
5J. Gersten and A. Nitzan, J. Chem. Phys. 73, 3023 (1980).
A. Wokaun, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett. 48,

957 (1982).
7P. B.Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
P. W. Barber, R. K. Chang, and H. Massoudi, Phys. Rev. Lett.

50, 997 (1983).

Masaahiro Inoue and Kazuo Ohtaka, J. Phys. Soc. Jpn. 52,
1457 {1983).

oU. Laor and G. C. Schatz, Chem. Phys. Lett. 82, 566 (1981).
U. Laor and G. C. Schatz, J. Chem. Phys. 76, 2888 (1982).

2M. Kerker, D.-S. Wang, and H. Chew, Appl. Opt. 19, 4159
(1980).

t3C. J. F. Boettcher, Theory of Electric Polarization, 2nd ed.
(Elsevier, New York, 1973), Chap. 2.

&4J. A. Osborn, Phys. Rev. 67, 351 (1945).
~5J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1975), pp. 395 and 783.
M. Meier and A. Wokaun, Opt. Lett. 8, 581 {1983).

~7L. C. Chu and S. Y.' Wang, J. Appl. Phys. 55, 2776 (1984).


