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A STUDY ON CLASSIFICATION, SEGMENTATION AND
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Student: Ruei-Shiang Lin Advisor: Dr. Ling-Hwei Chen

Institute of Computer and Information Science
National Chiao Tung University

ABSTRACT

The recent emerging of multimedia and the tremendous growth of

multimedia data archives have made the effective management of multimedia

databases become a very important and challenging task. Digital audio is an important

and integral part of many multimedia applications such as the construction of digital

libraries. Thus, the demand for anséfficient method to automatically analyze audio

signal based on its content become urgent.

The major problems of “automatic audio -content analysis include audio

classification, segmentation and retrieval etc. In this dissertation, based on

spectrogram, we will propose three methods to address the problems of audio

classification, segmentation and content-based retrieval. Besides the general audio

types such as music and speech tested in existing work, we have taken hybrid-type

sounds (speech with music background, speech with environmental noise background,

and song) into account. These categories are the basic sets needed in the content

analysis of audiovisual data. First, a hierarchical audio classification method will be

presented to classify audio signals into the aforementioned basic audio types.



Although the proposed scheme covers a wide range of audio types, the complexity is

low due to the easy computing of audio features, and this makes online processing

possible. The experimental results of the proposed method are quite encouraging.

Next, based on the Gabor wavelet features, we will propose a non-hierarchical

audio classification and segmentation method. The proposed method will first divide

an audio stream into clips, each of which contains one-second audio information.

Then, each clip is classified as one of two classes or five classes. Two classes contain

speech and music; pure speech, pure music, song, speech with music background, and

speech with environmental noise background are for five classes. Finally, a merge

technique is provided to achieve segmentation. The experimental results demonstrate

the effectiveness of the method.

Finally, we will propose a method for content-based retrieval of perceptually

similar music pieces in audio documents. It allows the user to select a reference

passage within an audio file and retrieve perceptually similar passages such as

repeating phrases within a music piece, similar music clips in a database or one song

sung by different persons or in different languages. The experimental results

demonstrate the effectiveness of the method. The methods proposed in this

dissertation can be used as the basic components when developing an audio content

analysis system or a system used in a digital library application.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION AND APPLICATIONS

The recent emerging of multimedia and the tremendous growth of multimedia

data archives have made the effective management of multimedia databases become a

very important and challenging task. Therefore, developing efficient analysis

techniques for multimedia data based-on its content become very important and have

drawn lots of attentions recently:

Audio is an important and integral part of many multimedia applications such as

professional media production, audio archive management, commercial music usage,

content-based audio/video retrieval, and so on. Thus, developing some techniques to

treat audio signal can help analyze multimedia data. For example, audio classification

and segmentation techniques can be used to support video scene-change detection and

video classification. In general, neighboring scenes in video will have different types

of audio data. Thus, if we can develop a method to classify audio data, the classified

results can be used to assist scene segmentation. Furthermore, the availability of large

multimedia data archives has made content-based information retrieval become a very



popular research topic. Audio and especially music collections are also deemed as one

of the most important features when performing content-based information retrieval.

In recent years, due to the importance of audio analysis, techniques for audio

content analysis have started emerging as research prototypes [1-24] and devoting to

solve the audio related problems called Auditory Scene Analysis (ASA), such as audio

segmentation, audio classification, audio indexing and content-based audio retrieval

etc. Those are the fundamental processes of any type of auditory analysis. In this

dissertation, we will propose methods to deal with above-mentioned audio related

problems and will be described in the following.

1.2. STATE OF THE PROBLEMS AND RESEARCH SCOPE

In this dissertation, we will propose three methods to deal with the problems of

audio classification, audio segmentation and content-based audio retrieval. These

three problems are defined as follows:

(1) Audio classification: given an audio clip, to develop a method to classify it into

one of the common categories: music, speech, song, and etc. It is the most

important process for auditory analysis since different audio types require different

processing and have different significance to different applications.



(2) Audio segmentation: given an audio stream, to develop a method to automatically

detect when there are abrupt changes (segmentation boundaries) in the stream. For

example the change from music to speech is the example of the segmentation

boundary.

(3) Audio content-based retrieval: given an audio clip as query sample, to develop a

method to retrieve its perceptually similar clips in audio documents.

Actually, the three problems are logically sequenced. And the solutions to these

three problems can be used as the-basic components when developing an audio

content-based analysis system,-audio browsing system or a system used in a digital

library application. As mentioned above, most of research efforts have been spent on

these three problems. However, some points still remain to be solved and will be

described in the following.

1.2.1 Some Problems of Audio Classification and Segmentation

One problem of audio classification is the audio categories. Traditional

approaches for audio classification tend to roughly divide audio signals into two

major distinct categories: speech and music (two-way classification) [3-5]. In general,



speech and music have quite different properties in both time and frequency domains.

Thus, it is not hard to reach a relatively high level of discrimination accuracy.

However, two-way classification for audio data is not enough in many applications,

such as content-based video retrieval [12, 14]. For example, in documentaries,

commercials or news report, we can usually find the following audio types: speech,

music, speech with musical or environmental noise background, and song. This

indicates the need to take other kinds of audio into consideration.

Some problems are in those existing classification methods for more than two

audio categories. For example, Zhang and Kuo [14] provided a classifier, which

extracts some audio features including the short-time fundamental frequency and the

spectral tracks by detecting the peaks+from the spectrum. The spectrum is generated

by autoregressive model (AR model) coefficients, which are estimated from the

autocorrelation of audio signals. Then, the rule-based procedure, which uses many

threshold values, is applied to classify audio signals into speech, music, song, speech

with music background, etc. The method is time-consuming due to the computation of

autocorrelation function. Besides, many thresholds used in this approach are empirical,

they are improper when the source of audio signals is changed. In the dissertation, we

will propose two audio classification methods to address the above-mentioned

shortcomings.



The first proposed method is a hierarchical audio classifier, which will classify
audio data into five general categories: pure speech, music, song, speech with music
background, and speech with environmental noise background. These categories are
the basic sets needed in the content analysis of audiovisual data. From the hierarchical
viewpoint, these five categories are first roughly divided into two major distinct
categories: single-type and hybrid-type, i.e., with or without background components.
Then, the single-type sounds are further classified into speech and music; the
hybrid-type sounds are classified into speech with environmental noise background,
speech with music background,sand song. :Fig. 1.1 shows this hierarchical
classification scheme. In the first proposed method, we will use lesser features with
high differentiating power to achieve the classification purpose. However, the first
proposed method is not suitable for classification-based audio segmentation since the
features are extracted from the audio clips with larger length. To address this
shortcoming, in the dissertation, we will propose the other audio classification

methods to support classification-based audio segmentation.

Speech with Noise Background

Hybrid-Type
Sounds Speech with Music Background
Audio Song
Signal
. Music
Smgle-Type<
Sounds Pure Speech

Fig. 1.1. The hierarchical classification scheme.



The second proposed method is a non-hierarchical audio classifier, which will
first divide an audio stream into clips, each of which contains one-second audio
information. Based on the classified clips with smaller length, the proposed method is
suitable and can be used to support classification-based audio segmentation.

Generally speaking, the spectrogram is a good representation for an audio signal
since it is often visually interpretable. By observing a spectrogram, we can find that
the energy is not uniformly distributed, but tends to cluster to some patterns. All
curve-like patterns are called tracks. Fig. 1.2(a) shows that for a music signal, some
line tracks corresponding to tOﬂQS,",Wii]éS(i&l on its spectrogram. Fig. 1.2(b) shows

some patterns including cIicks.ft'(broédbér']ld.',:-fsfhbft 'tii‘ne), noise burst (energy spread

over both time and frequency), éhﬂllfféd;heﬁé&;';éwe.éﬁé‘ in a song spectrogram. Thus, if

8_\ Noise Burst

Clicks

L& i

-~

Frequency

(b)

Fig. 1.2. Two examples to show some possible different kinds of
patterns in a spectrogram. (a) Line tracks corresponding to tones in a
music spectrogram. (b) Clicks, noise burst and frequency sweeps in a
song spectrogram.



we can extract some features from a spectrogram to represent these patterns, the
classification should be easy. Based on these phenomena, the proposed method will
adopt feature selection process to explore the features with the highest discriminative
ability to achieve classification purposes and will be used to do audio segmentation.
As for the audio segmentation, most of the existing approaches for audio
segmentation can be classified into two major paradigms: temporal segmentation and
classification-based segmentation. Temporal segmentation (see Fig. 1.3) is a more
primitive process than classification-based segmentation since it does not try to
interpret the data. By contrast, the classification-based segmentation divides an audio
sequence into semantic scenes-called “audio’scene™ and to index them as different
audio classes. That is, the approaches’via classification usually adopt classification
results to achieve segmentation purpose and the performance is dependent on the
classification result. In this dissertation, based on the proposed above-mentioned
classification method, we will present one classification-based segmentation method

to achieve segmentation purpose.

Segment Boundary

il T

Wh%‘r%ﬁw |’i r]"uH . I ,Hm‘l F||I|I[l "I |JP‘|llfi|l[||1ll'|lllfl'i‘lfl i iy rlrrlllll||1.

Fig. 1.3. Temporal segmentation.




1.2.2 Some Problems of Audio Retrieval

In recent years, techniques for audio information retrieval have started emerging

as research prototypes. These systems can be classified into two major paradigms [22,

34]. In the first paradigm, the user sings a melody and similar audio files containing

that melody are retrieved. This kind of approaches [18] is called “Query by

Humming” (QBH). It has the disadvantage of being applicable only when the audio

data is stored in symbolic form such as MIDI files. The conversion of generic audio

signals to symbolic form, called polyphonic transcription, is still an open research

problem in its infancy [16]. Another problem with QBH is that it is not applicable to

several musical genres such as-Dance music where there is no singable melody that

can be used as a query. The second paradigm [9, 15-17, 19-24] is called

“Query-by-Example” (QBE), a reference audio file is used as the query and audio

files with similar content are returned and ranked by their similarity degree. In order

to search and retrieve general audio signals such as the raw audio files (e.g. mp3,

wave, etc.) on the web or databases, only the QBE paradigm is currently applicable.

There are some disadvantages in the existing QBE audio-retrieval methods. For

example, the method proposed by Wold, et al. [9] is only suitable for sounds with a

single timbre. It is supervised and not adequate to index general audio content. An

approach provided in [15] has accuracy varying considerably for different types of



recording, and the audio segment to be searched should be known a priori in this

algorithm. Two MFCC-based (Mel-frequency cepstral coefficients) approaches [16,

21] are not suitable for melody retrieval (e.g. music) since the MFCC-based features

do not capture enough information about the pitch content, they characterize the broad

shape of the spectrum. Besides, most of the current works only deal with the

monophonic sources. Polyphonic music is more common, but it is also more difficult

to represent. To solve the above-mentioned shortcomings, in the dissertation, we will

present one method for content-based audio retrieval and will also consider

polyphonic music.

In the dissertation, we will develop our methods based on spectrogram. In the

following, we will give a brief review of the generation of the spectrogram.

1.3 AUDIO REPRESENTATION

We will develop our methods based on spectrogram that is a commonly used

representation of an acoustic signal in a three-dimensional (time, frequency, intensity)

space known as a time-frequency distribution (TFD) [29]. Traditionally, a

spectrogram is displayed with gray levels, where the darkness of a given point is

proportional to its energy. The vertical axis in a spectrogram represents frequency and



the horizontal axis represents time (or frame). To construct a spectrogram, the Short

Time Fourier Transform (STFT) is applied. In the following, we will give a brief

review of the theories of the Short Time Fourier Transform.

1.3.1 Short Time Fourier Transform

In general, the input audio signal is first divided into several frames. Each frame
contains consecutive n audio signal samples, and two neighboring frames will overlap
50%. Then, the Fourier transform,is applied toreach frame tapered with a window

function in succession (see “Fig:l.4). Let: s(t) -denote the audio signal and

STFT(r, ) be the result of STET, that'is

n-1

STFT (7, @) = 3 s(t +%n)r*(t)e*"“‘ ,

t=

(1.1)

where r’(t) is the window function, r stands for the frame number, n is the

window size and  is the frequency parameter. Then, the spectrogram, S(z, ), is

Fourier Transform

Mlasuth sound
[ressan
{relutive}
=

Fig. 1.4. Short Time Fourier Transform.

10



the energy distribution associated with the Short Time Fourier Transform, that is,

(| STFT (7, )|,

S(r, ) =10log,, )2, (1.2)

where M = max |STFT (r,®)| .

1.3.2 Multi-resolution Short Time Fourier Transform

Conventionally, in the Short Time Fourier Transform, the TFD is sampled
uniformly in time and frequency. However, it is not suitable for the auditory model
because the frequency resolution within the “human psycho-acoustic system is not
constant but varies with frequency [29]. By contrast, in the Multi-resolution Short
Time Fourier Transform (MSTFT), the TFD is perceptually tuned, mimicking the
time-frequency resolution of the ear. That is, the TFD consists of axes that are
non-uniformly sampled. Frequency resolution is coarse and temporal resolution is fine
at high frequencies while temporal resolution is coarse and frequency resolution is
fine at low frequencies [19].

One example of the tiling in the time-frequency plane is shown in Fig. 1.5 and
Fig. 1.6 shows a schematic diagram of the TFD generating using the Multi-resolution

Short Time Fourier Transform.

11
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Fig. 1.5. Anexample of tiling in the time-frequency plane.

Selected

P1(t)

s

STFT

—Jp Band 1

[Fs/4-Fs/2]

Low-Pass

Filter P2(t)

>

STFT

Selected

. Band 2

[Fs/8-Fs/4]

Low-Pass

Filter 4 ¥ PO

L)

STFT

Selected

Band 3

[0-Fs/8]

Fig. 1.6. Aschematic diagram of the TFD generating details.

There are three parts in the TFD generating. In the first part, the N -point STFT
is applied to the original audio signal P;(t) to obtain a spectrogram S;(x,Yy). In the
second part, a low-pass filter is first applied to P;(t) and then the filtered result is
downsampled half size to obtain signal P, (t)and the N -point STFT is applied to
P, (t) to obtain a spectrogram S,(X,y). In the third part, a low-pass filter is first
applied to Pj(t) and then the filtered result is downsampled quarter size to obtain

signal Pz(t)and the N -point STFT is applied to P3(t) to obtain a spectrogram

12




S3(x,y) . The frequency resolution Af; and the analysis time interval T; in

Sj(x,y) can be calculated as follows:

Af._

L j=123. (1.3)

1 Bs_1
N Tj
Note that the window center at the kth time block in S;(x,y), t'j‘ , Is given by

ko .
tk =2 Tj i=123 (1.4)

Finally, based on Si(x,y), So(x,y), and S3z(X,y), a spectrogram I(x,y) is
obtained according to the following equation:

S1(x,y), if ye[Fg/4,Fg/2],x=01--N¢ —1;

S,(2i,y), if ye[Fg /8 Fg/4lyisx="2i2i+1., i=01---Ns/2-1;

I(x,y) =
S3(4i,y), if ye[ O ,Fg/8], Xx=4i»4i+3, i=01--N;/4-1;

(1.5)
where N is the frame number of Py (t). From Eq. (1.3), we can see that in 1(x.y),
frequency resolution is coarse and temporal resolution is fine at high frequencies
while temporal resolution is coarse and frequency resolution is fine at low frequencies.

This means that 1(x,y) meets the human psycho-acoustic system.

1.4 SYNOPSIS OF THE DISSERTATION
The rest of the dissertation is organized as follows. Chapter 2 describes the

proposed hierarchical audio classification method. The non-hierarchical audio

13



classification and segmentation method based on Gabor wavelets is proposed in

Chapter 3. The proposed method of audio retrieval based on Gabor wavelets is

described in Chapter 4. Some conclusions and future research directions are drawn in

Chapter 5.
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CHAPTER 2

ANEW APPROACH FOR CLASSIFICATION OF

GENERIC AUDIO DATA

2.1. INTRODUCTION

Audio classification [1-14] has many applications in professional media

production, audio archive management, commercial music usage, content-based

audio/video retrieval, and so on) Several ‘audio” classification schemes have been

proposed. These methods tend to.roughly divide audio signals into two major distinct

categories: speech and music. Scherier and Slaney [3] provided such a discriminator.

Based on thirteen features including cepstral coefficients, four multidimensional

classification frameworks are compared to achieve better performance. The approach

presented by Saunders [5] takes a simple feature space and is performed by exploiting

the distribution of zero-crossing rate. In general, speech and music have quite

different properties in both time and frequency domains. Thus, it is not hard to reach a

relatively high level of discrimination accuracy. However, two-type classification for

audio data is not enough in many applications, such as content-based video retrieval
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[11]. Recently, video retrieval has become an important research topic. To raise the

retrieval speed and precision, a video is usually segmented into several scenes [11,14].

In general, neighboring scenes will have different types of audio data. Thus, if we can

develop a method to classify audio data, the classified results can be used to assist

scene segmentation. Different kinds of videos will contain different types of audio

data. For example, in documentaries, commercials or news report, we can usually find

the following audio types: speech, music, speech with musical or environmental noise

background, and song.

Wyse and Smoliar [7] presented a methodte.classify audio signals into “music,”

“speech,” and “others.” The method was developed for the parsing of news stories. In

[8], audio signals are classified into speech, silence, laughter, and non-speech sounds

for the purpose of segmenting discussion recordings in meetings. The

above-mentioned approaches are developed for specific scenarios, only some special

audio types are considered. The research in [12-14] has taken more general types of

audio data into account. In [12], 143 features are first studied for their discrimination

capability. Then, the cepstral-based features such as Mel-frequency cepstral

coefficients (MFCC), linear prediction coefficients (LPC), etc., are selected to classify

audio signals. The authors concluded that in many cases, the selection of features is

actually more critical to the classification performance. More than 90% accuracy rate
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is reported. Zhang and Kuo [14] first extracted some audio features including the

short-time fundamental frequency and the spectral tracks by detecting the peaks from

the spectrum. The spectrum is generated by autoregressive model (AR model)

coefficients, which are estimated from the autocorrelation of audio signals. Then, the

rule-based procedure, which uses many threshold values, is applied to classify audio

signals into speech, music, song, speech with music background, etc. More than 90%

accuracy rate is reported. The method is time-consuming due to the computation of

autocorrelation function. Besides, many thresholds used in this approach are empirical,

they are improper when the source of audio signals is changed. To avoid these

disadvantages, in this chapter,-we will provide a method with only few thresholds

used to classify audio data into.five ‘general categories: pure speech, music, song,

speech with music background, and speech with environmental noise background.

These categories are the basic sets needed in the content analysis of audiovisual data.

The proposed method consists of three stages: feature extraction, the coarse-level

classification, and the fine-level classification. Based on statistical analysis, four

effective audio features are first extracted to ensure the feasibility of real-time

processing. They are the energy distribution model, variance and the third moment

associated with the horizontal profile of the spectrogram, and the variance of the

differences of temporal intervals. Then, the coarse-level audio classification based on
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the first feature is conducted to divide audio signals into two categories: single-type

and hybrid-type, i.e., with or without background components. Finally, each category

is further divided into finer subclass through Bayesian decision function [15]. The

single-type sounds are classified into speech and music; the hybrid-type sounds are

classified into speech with environmental noise background, speech with music

background and song. Experimental results show that the proposed method achieves

an accuracy rate of more than 96% in audio classification.

The chapter is organized as follows. In Section 2.2, the proposed method will be

described. Experimental results and-discussion.will be presented in Section 2.3.

Finally, the summary will be giveniin Section2.4.

2.2. THE PROPOSED METHOD

The system diagram of the proposed audio classification method is shown in Fig.

2.1. It is based on the spectrogram and consists of three phases: feature extraction, the

coarse-level classification and the fine-level classification. First, an input audio clip is

transformed to a spectrogram as mentioned in Short Time Fourier Transform section

(Chapter 1, Section 1.3.1) and four effective audio features are extracted. Figs.

2.2(a) — 2.2(e) show five examples of the spectrograms of music, speech with music
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background, song, pure speech, and speech with environmental noise background,
respectively. Then, based on the first feature, the coarse-level audio classification is
conducted to classify audio signals into two categories: single-type and hybrid-type.
Finally, based on the remaining features, each category is further divided into finer
subclasses. The single-type sounds are classified into pure speech and music. The
hybrid-type sounds are classified into song, speech with environmental noise
background and speech with music background. In the following, the proposed

method will be described in details.

L Feature Extraction
Audio Signal

Energy
Distribution

Temporal
Interval
(Variance)

Horizontal
Profile
(3rd moment)

Horizontal
Profile
(Variance)

| |
: : | I I Speech
! | ! ! with MB
| P N
_ |
: Hybrid-Type N - Phase 2 | 1 Song
! Sounds L
|
| | | Phasel :
| | ! : Speech
: Single-Type . : with NB
| Sounds o !
| | L] | Music
- | '
: grar;i.Liyel Do Fine-Level
| assirication [ | Classification | Pure
————————————————————————————— Speech

Fig. 2.1. Block diagram of the proposed system, where “MB” and “NB” are
the abbreviations for “music background” and “noise background”,
respectively.
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Fig. 2.2. Five spectrogram examples. (a) Music. (b) Speech with music background.
(c) Song. (d) Speech. (e) Speech with environmental noise background.
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Fig. 2.2. Five spectrogram examples. (a) Music. (b) Speech with music
background. (c) Song. (d) Speech. (e) Speech with environmental noise
background. (Continued)

2.2.1. Feature Extraction Phase

Four kinds of audio features are used in the proposed method, they are energy
distribution model, variance and the third moment associated with the horizontal
profile of the spectrogram, and variance of the differences of temporal intervals
(which will be defined later). To get these features, the audio spectrogram for an audio

signal is constructed first. Based on the spectrogram, these four features are extracted
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and described as follows.

2.2.1.1 The Energy Distribution Model

For the purpose of characterizing single-type and hybrid-type sounds, i.e., with or
without background components, the energy distribution model is proposed. The
histogram of a spectrogram is also called the energy distribution of the corresponding
audio signal. In our experiments, we found that there are two kinds of energy
distribution models: unimodel and.bimodel (see Figs. 2.3 (a) and 2.3 (b)), in audio
signals. In Fig. 2.3, the horizontal axis represents the spectrogram energy.

For a hybrid-type sound, its energy’distribution-model is bimodel; otherwise, it is
unimodel. Thus, to discriminate single-type sounds from hybrid-type sounds, we only
need to detect the type of the corresponding energy distribution model. To reach this,
for an audio signal, the histogram of its corresponding spectrogram, h(i), is
established first. Then, the mean x and the variance o® of h(i) are calculated. In
general, if 4 approaches to the position of the highest peak in h, h(i) will be a
unimodel (see Fig. 2.3 (a)). On the other hand, for a bimodel, dividing h(i) into two
parts from ., each part will be unimodel (see Fig. 2.3 (b)). Thus, if we find a local

peak in each part, these two peaks will not be close. Based on these phenomena, a
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model decision algorithm is provided and described as follows.

h(p)

h(v)

|
-0 MU H+o

| 1

I | T T T |

i -
Spectrogram Energy SpLéct?ogr%m E‘n’écrfgy
(a) (b)

Fig. 2.3. Two examples of .the energy distribution models. (a) Unimodel (the
histogram of the energy distribution of Fig. 2.2 (a)). (b) Bimodel (the histogram
of the energy distribution of Fig. 2.2 (c)).

Algorithm 2.1. Model decision Algorithm
Input:  The spectrogram S(z, @) of an audio signal.
Output: The model type, T, and two parameters T1, T2.
Step 1.  Establish the histogram, h(i),i =0,...,255, of S(r, w).
Step2. Compute the mean x and the variance o® of h(i).
Step 3. Find the position p of the highest peak in h(i) .
Step4. If |p—p/<5, T=unimodel, go to Step 9.

Else

Use u tosetthe searchrange R, as follows:
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- :{(,U,AHG], if p<p
* \lu-o,u), if p>u

End if.

Step 5. Find the position g of the highest peak h(q) within R .
Step 6.  Find the position v of the lowest valley h(v) in the range between p
and q.
Step 7. Set dst=|p—q.
Step 8. Set T = bimodel if the following two conditions are satisfied
Condition 1: dst > %.
Condition 2: h(q) Z%h(p) and h(q) 2gh(v).
Else T = unimodel.
Step 9. Output T and assign . t0" T, 7+ o to T2.

End of Algorithm 2.1.
Through the model decision algorithm described above, the model type for an

audio signal can be determined. Note that in the algorithm, except the model type

extracted, two parameters, T1 and T2, which will be used later, will be also obtained.
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2.2.1.2 The Horizontal Profile Analysis

In this section, we will base on two facts to discriminate an audio clip with or

without music components. One fact is that if an audio clip contains musical

components, we can find many horizontal long-line like tracks (see Figs. 2.2 (a) — 2.2

(c)) in its spectrogram. The other fact is that if an audio clip does not contain musical

components, most energy in the spectrogram of each frame will concentrate on a

certain frequency interval (see Figs. 2.2 (d) — 2.2 (e)). Based on these two facts, two

novel features will be derived and used to distinguish music from speech.

To obtain these features,-the horizontal profile of the audio spectrogram is

constructed first. Note that the horizontal profile (see Figs. 2.4 (a) — 2.4 (e)) is defined

as the projection of the spectrogram of the audio clip on the vertical axis. Based on the

first fact, we can find that for an audio clip with musical components, there will be

many peaks in its horizontal profile (see Figs. 2.4 (a) — 2.4 (c)), and the location

difference between two adjacent peaks is small and near constant. On the other hand,

based on the second fact, we can see that for an audio clip without musical

components, only few peaks can be found in its horizontal profile (see Figs. 2.4 (d) -

2.4 (e)), and the location difference between any two successive peaks is larger and

variant. Based on the above description, for an audio clip, all peaks, P, in its
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horizontal profile are first extracted; and the location difference, dP,, between any
two successive peaks is evaluated. Note that in order to avoid the influence of noise in
high frequency, the frequency components above Fs/4 are discarded, where Fs is the
sampling rate.

Then the variance, vgp. , and the third moment, mgp. , of dP;s are taken as the
second and third features and used to discriminate audio clips with or without music
components. Note that variance and the third moment stand for the spread and
skewness of the location differences of all two successive peaks in the horizontal
profile respectively. For an audio,clip with musical components, variance and the
third moment will be small; however, for an‘audio clip without musical component,

these two features will be larger.
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Fig. 2.4. Five examples of the horizontal profiles. (a) — (e) are the horizontal
profiles of Figs. 2(a) - 2(e), respectively.
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Fig. 2.4. Five examples of the horizontal profiles. (a) — (¢) are the horizontal
profiles of Figs. 2(a) - 2(e), respectively. (Continued)

2.2.1.3 The Temporal Intervals

Up to now, we have provided three features. By processing the audio signals

through these features, all audio signals can be classified successfully except the

27



simultaneous speech and music category, which contains two kinds of signals: speech

with music background and song. To discriminate these, a new feature is provided.

One important characteristic to distinguish them is the duration of the music-voice.

The duration of music-voice is defined as the duration of music appearing with

human voice simultaneously. That is, two successive durations of music-voice is

separated by the duration of a pure music component. For speech with music

background, in order to emphasize the message of the talker, the signal energy

contribution of voice is greater than the contribution of the music. In general, it is

strongly speech-like, the difference between any two adjacent duration of music-voice

is variable (see Fig. 2.5 (c)). Conversely, song is usually melodic and rhythmic, the

difference between any two adjacent duration of music-voice in song is small and near

constant (see Fig. 2.5 ().

By observing the spectrogram in different frequency bands, we can see that

music-voice (i.e. speech and music appears simultaneously) has more energy in the

neighboring middle frequency bands, while music without voice will possess more

energy in the lower frequency band. These phenomena are shown in Fig. 2.5.
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Human Singing
Music without Voice

(a)

<=4 [ = el e ] |

Human Speaking
Music without \oice
(c)
Fig. 2.5. Two examples of the filtered spectrogram. (a) The spectrogram of song.

(b) The filtered spectrogram of (a). (c) The spectrogram of speech with music
background. (d) The filtered spectrogram of (c).
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(d)

Fig. 2.5. Two examples of the filtered spectrogram. (a) The spectrogram of song.
(b) The filtered spectrogram of (a). (c) The spectrogram of speech with music
background. (d) The filtered spectrogram of (c). (Continued)

Based on these phenomena, the property of the duration of each continuous part

of the simultaneous speech and.music-in-a sound is used to discriminate the speech

with music background from song. First;-a novel feature associated with the temporal

interval is derived. The temporal interval-is defined as the duration of a continuous

part of music-voice of a sound. Note that the signal between two adjacent temporal

intervals will be music without human voice. Based on the phenomenon of the energy

distribution in different frequency bands described previously, an algorithm will be

proposed to determine the continuous music-voice parts in a sound. Note that some

frequency noises usually exist in an audio clip, i.e., these noises will contribute to

those frequencies with lower energy in spectrogram. In order to avoid the influence of

frequency noise, a filtering procedure is applied in advance to get rid of those with

lower energy. The proposed filtering procedure is provided and described as follows.
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Filtering Procedure:
1) Filter out the higher frequency components with lower energy:
For the spectrogram of each frame 7 , S(r, w), find the highest
A
frequency @y, with S(z,®n)>T2.Set S(r,w)=0, Vo>woy;.
2)  Filter other components:

0, if S(r,w)<T1
S(r ,w), otherwise.

For o < wy, é\(T,a))={
Figs. 2.5 (b) and 2.5 (d) show the filtered spectrograms of Figs. 2.5 (a) and 2.5 (c),
respectively. In what follows, we will'be-interested in how to determine the temporal
intervals.

Note that an audio clip of the simultaneous speech and music category contains
several temporal intervals and some short periods of background music, each of ones
will separate two temporal intervals (see Fig. 2.5 (a)). To extract temporal intervals,
the entire frequency band [0, Fs/2] is first divided into two subbands of unequal width:
[0, Fs/8] and [Fs/8, Fs/2]. Next, for each frame, evaluate the ratio of the non-zero part
in each subband to the total non-zero part. If the ratio is larger than 10%, mark the
subband. Based on the marked subbands, we can extract the temporal intervals. First,

those neighboring frames with the same marked subbands are merged to form a group.
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If the higher subband (i.e., [Fs/8, Fs/2]) in a group is marked, the group will be
regarded as a part of music-voice (also called raw temporal interval). That is, a
temporal interval is a sequence of frames with higher energy in higher subband.

Since the results obtained after filtering procedure are usually sensitive to
unvoiced speech and slight breathing, a re-merged process is then applied to the raw
temporal intervals. During the re-merged process, two neighboring intervals are
merged if the distance between them is less than a threshold. Fig. 2.6 shows an
example of the re-merge process. Once we complete this step, we will obtain a set of
temporal intervals and the duration diff'é‘rencné""bétwreen any two successive intervals is

‘ %S
evaluated. Finally, the variance of these diﬁerences, Vgt , is taken as the last feature.

distance<threshold re-merge

(a) (b)
Fig. 2.6. An example of the re-merged process. (a) Initial temporal intervals. (b)
Result after re-merged process.
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2.2.2. Audio Classification

Since there are some similar properties among most of the five classes

considered, it is hard to find distinguishable features for all of these five classes. To

treat this problem, a hierarchical system is proposed. It will do coarse-level

classification first, then the fine-level classification is performed. To meet the aim of

on-line classification, features described above are computed on the fly with incoming

audio data.

2.2.2.1 The Coarse-Level Classification

The aim of coarse-level audio classification is to separate the five classes into

two categories such that we can find some distinguishable features in each category.

Based on the energy distribution model, audio signals can be first classified into two

categories: single-type and hybrid-type, i.e., with or without background components.

Single-type sounds contain pure speech and music. And hybrid-type sounds contain

song, speech with environmental noise background and speech with music

background.
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2.2.2.2 The Fine-Level Classification

The coarse-level classification stage yields a rough classification for audio data.
To get the finer classification result, the fine-level classifier is conducted. Based on
the extracted feature vector X, the classifier is designed using a Bayesian approach
under the assumption that the distribution of the feature vectors in each class w, isa
multidimensional Gaussian distribution Ny (m, ,Cy) . The Bayesian decision
function [15] for class w,, d, (X).+has the form:

d, (X) =InP(w.) —%In|Ck|—%(X “m ) CH(X-m,) , (2.3)
where m, and C, are the mean.vector and covariance matrix of X, and P(w,) is
the priori probability of class w, . For a piece of sound, if its feature vector X satisfies
d;(X)>d;(X) forall j=i,itisassigned toclass w;.

The fine-level classifier consists of two phases. During the first phase, we take
(Vdpl Mg, ) as the feature vector X and apply Bayesian decision function to each of
the two coarse-level classes separately. For each audio signal of the single-type class,
we can successfully classify it as music or pure speech. And the classification is well
done without needing any further processing. For that of the hybrid-type sounds,

which may be speech with environmental noise background, speech with music
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background or song, the same procedure is applied. Speech with environmental noise
background is distinguished and what left in the first phase is the subclass including
speech with music background and song. An additional process is needed to do further
classification for the subclass. To do this, the Bayesian decision function with the

feature vy is applied. And we can successfully classify each signal in this subclass

as speech with music background or song.

2.3. EXPERIMENTAL RESULTS

In order to do comparison,-we have collected a set of 700 generic audio pieces of
different types of sound according te' the collection rule described in [14] as the
testing database. Care was taken to obtain a wide variation in each category, and most
of clips are taken from MPEG-7 content set [14, 17]. For single-type sounds, there are
100 pieces of classical music played with varied instruments, 100 other music pieces
of different styles (jazz, blues, light music, etc.), and 200 clips of pure speech in
different languages (English, Chinese, Japanese, etc.). For hybrid-type sounds, there
are 200 pieces of song sung by male, female, or children, 50 clips of speech with
background music (e.g., commercials, documentaries, etc.), and 50 clips of speech

with environmental noise (e.g., sport broadcast, news interview, etc.). These audio
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clips (with duration from several seconds to no more than half minute) are stored as

16-bit per sample with 44.1 kHz sampling rate in the WAV file format.

2.3.1 Classification Results

Tables | and Il show the results of the coarse-level classification and the final

classification results, respectively. From Table 1l, it can be seen that the proposed

classification approach for generic audio data can achieve an accuracy rate of more

than 96% by using the testing database. The training is done using 50% of randomly

selected samples in each audio-type, and the test'is operated on the remaining 50%.

By changing training set several‘times‘and evaluating the classification rates, we find

that the performance of the system is stable and independent on the particular test and

training sets. Note that the experiments are carried out on a Pentium Il 400

PC/Windows 2000, it needs less than one twentieth of the time required to play the

audio clip for processing an audio clip. The only computational expensive part is the

spectrogram, and the other processing is simple by comparison (e.g. variances, peak

finding, etc). In order to do comparison, we also like to cite the efficiency of the

existing system described in [14], which also includes the five audio classes

considered in our method and uses similar database to ours. The authors of [14] report
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that less than one eighth of the time required to play the audio clip are needed to

process an audio clip. They also report that their accuracy rates are more than 90%.

TABLE 2.1
COARSE-LEVEL CLASSIFICATION RESULTS.
Audio Type Number | Correct Rates
Single-Type | Pure Speech 200 100%
Sounds Pure Music 200 100%
Hybrid-type Song 200 100%
Sounds | Speech with MB 50 100%
Speech with NB 50 100%
TABLE 2.2
FINAL CLASSIFICATION RESULTS.
Audio Type Number Correct Rates
Single-Type|  Pure Speech 200 100%
Sounds Pure Music 200 97.6%
Hybrid-type Song 200 98.53%
Sounds | Speech with MB 50 96.5%
Speech with NB 50 100%
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2.4. SUMMARY

In this chapter, we have presented a new method for the automatic classification

of generic audio data. An accurate classification rate higher than 96% was achieved.

Two important and distinguishing features compared with previous work in the

proposed scheme are the complexity and running time. Although the proposed scheme

covers a wide range of audio types, the complexity is low due to the easy computing

of audio features, and this makes online processing possible.

Besides the general audio types such as-music and speech tested in existing work,

we have taken hybrid-type sounds “(speech with-'music background, speech with

environmental noise background, and song) into account. While current existing

approaches for audio content analysis are normally developed for specific scenarios,

the proposed method is generic and model free. Thus, our method can be widely

applied to many applications.
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CHAPTER 3

A NEW APPROACH FOR AUDIO CLASSIFICATION

AND SEGMENTATION USING GABOR WAVELETS AND

FISHER LINEAR DISCRIMINATOR

3.1. INTRODUCTION

In recent years, audio, as an important and integral part of many multimedia

applications, has been gained more.and more attentions. Rapid increase in the amount

of audio data demands for an efficient method to automatically segment or classify

audio stream based on its content. Many studies-on audio content analysis [1-14]

haven been proposed.

A speech/music discriminator was provided in [3], based on thirteen features

including cepstral coefficients, four multidimensional classification frameworks are

compared to achieve better performance. The approach presented by Saunders [5]

takes a simple feature space, it is performed by exploiting lopsidedness of the

distribution of zero-crossing rate, where speech signals show a marked rise that is not

common for music signals. In general, for speech and music, it is not hard to reach a

relatively high level of discrimination accuracy since they have quite different
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properties in both time and frequency domains.
Besides speech and music, it is necessary to take other kinds of sounds into
consideration in many applications. The classifier proposed by Wyse and Smoliar [7]

LN 11

classifies audio signals into “music,” “speech,” and “others.” It was developed for the
parsing of news stories. In [8], audio signals are classified into speech, silence,
laughter, and non-speech sounds for the purpose of segmenting discussion recordings
in meetings. However, the accuracy of the segmentation resulted using this method
varies considerably for different types of recording. Besides the commonly studied
audio types such as speech and music, the research in [12-14] has taken into account
hybrid-type sounds, e.g., the speech signal with the music background and the singing
of a person, which contain more than one basic audio type and usually appear in
documentaries or commercials. In [12], 143 features are first studied for their
discrimination capability. Then, the cepstral-based features such as Mel-frequency
cepstral coefficients (MFCC), linear prediction coefficients (LPC), etc., are selected to
classify audio signals. Zhang and Kuo [14] extracted some audio features including
the short-time fundamental frequency and the spectral tracks by detecting the peaks
from the spectrum. The spectrum is generated by autoregressive model (AR model)

coefficients, which are estimated from the autocorrelation of audio signals. Then, the

rule-based procedure, which uses many threshold values, is applied to classify audio
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signals into speech, music, song, speech with music background, etc. Accuracy of

above 90% is reported. However, this method is complex and time-consuming due to

the computation of autocorrelation function. Besides, the thresholds used in this

approach are empirical, they are improper when the source of audio signals is

changed.

In this chapter, we will provide two classifiers, one is for speech and music

(called two-way); the other is for five classes (called five-way) that are pure speech,

music, song, speech with music background, and speech with environmental noise

background. Based on the classification results; we will propose a merging algorithm

to divide an audio stream into some segments of different classes.

One basic issue for contént-based classification of audio sound is feature

selection. The selected features should be able to represent the most significant

properties of audio sounds, and they are also robust under various circumstances and

general enough to describe various sound classes. The issue in the proposed method is

addressed in the following: first, some perceptual features based on the Gabor wavelet

filters [15-16] are extracted as initial features, then Fisher Linear Discriminator (FLD)

[17] is applied to these initial features to explore the features with the highest

discriminative ability.

Note that FLD is a tool for multigroup data classification and dimensionality
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reduction. It maximizes the ratio of between-class variance to within-class variance in

any particular data set to guarantee maximal separability. Experimental results show

that the proposed method can achieve an accuracy rate of discrimination over 98% for

a two-way speech/music discriminator, and more than 95% for a five-way classifier

which uses the same database as that used in the two-way discrimination. Based on

the classification result, we can also identify scene breaks in audio sequence quite

accurately. Experimental results show that our method can detect more than 95% of

audio type changes. These results demonstrate the capability of the proposed audio

features for characterizing the perceptual contentrof an audio sequence.

The rest of the chapter is organized as follows. In Section 3.2, the proposed

method is described in details. Experimental results and discussion are presented in

Section 3.3. Finally, in Section 3.4, we give a summary.

3.2. THE PROPOSED METHOD

The block diagram of the proposed method is shown in Fig. 3.1. It is based on

the spectrogram and consists of five phases: time-frequency distribution (TFD)

generation, initial feature extraction, feature selection, classification and segmentation.

First, the input audio is transformed to a spectrogram, I(x,y), as mentioned in
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Multi-resolution Short Time Fourier Transform section (Chapter 1, Section 1.3.2).

Second, for each clip with one-second window, some Gabor wavelet filters will be

applied to the resulting spectrogram to extract a set of initial features. Third, based on

the extracted initial features, the Fisher Linear Discriminator (FLD) is used to select

the features with the best discriminative ability and also to reduce feature dimension.

Fourth, based on the selected features, classification method is then provided to

classify each clip. Finally, based on the classified clips, a segmentation technique is

presented to identify scene breaks in each audio stream. In what follows, we will

describe the details of the proposed,method.

Two-way
segmentation

Two-way
feature f
selection

and
classification

Five-way
TFD Initial feature
* feature »| selection Five-way
generation extraction and segmentation
classificationy

Fig. 3.1. Block diagram of the proposed method, where “MB” and “NB” are the
abbreviations for “music background” and “noise background”, respectively.
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3.2.1 Initial Feature Extraction

Generally speaking, the spectrogram is a good representation for the audio since
it is often visually interpretable. By observing a spectrogram, we can find that the
energy is not uniformly distributed, but tends to cluster to some patterns (see Fig. 3.2
(@), 3.2 (b)). All curve-like patterns are called tracks [31]. Fig. 3.2 (a) shows that for a
music signal, some line tracks corresponding to tones will exist on its spectrogram.
Fig. 3.2 (b) shows some patterns including clicks (broadband, short time), noise burst
(energy spread over both time andfreiqUency)and frequency sweeps in a song

spectrogram.

Noise Burst

Clicks
—

Frequency -

Fig. 3.2. Two examples to show some possible different kinds of patterns in
a spectrogram. (a) Line tracks corresponding to tones in a music spectrogram.
(b) Clicks, noise burst and frequency sweeps in a song spectrogram.
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Thus, if we can extract some features from a spectrogram to represent these

patterns, the classification should be easy. Smith and Serra [32] proposed a method to

extract tracks from a STFT spectrogram. Once the tracks are extracted, each track is

classified. However, tracks are not well suited for describing some kinds of patterns

such as clicks, noise burst and so on. To treat all kinds of patterns, a richer

representation is required. In fact, these patterns contain various orientations and

spatial scales. For example, each pattern formed by lines (see Fig. 3.2 (a)) will have a

particular line direction (corresponding to orientation) and width (corresponding to

spatial scale) between two adjacentines; each pattern formed by curves (see Fig. 3.2

(b)) contains multiple line directions and a particular-width between two neighboring

curves. Since Gabor wavelet transform provides-an optimal way to extract those

orientations and scales [27], in this chapter, we will use the Gabor wavelet functions

to extract some initial features to represent those patterns. The detail will be described

in the following section.

3.2.1.1 Gabor Wavelet Functions and Filters Design

Two-dimensional Gabor kernels are sinusoidally modulated Gaussian Functions.

Let g(x,y) be the Gabor kernel, its Fourier Transform G(u,v) can be defined as
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follows [28]:

1 ~1 x> y? .
g(x.Y) = (——)exp[ - ("5 + 1) +27 jox], (3.1)
2noy0oy 2 ox oy

-1 (u —a))2 v2

Gu,v) =exp(—[———+—1). (3.2)
27 i oy
where o, = L and o, = and @ is the center frequency.
270, 270,

Gabor wavelets are sets of Gabor kernels which will be applied to different
subbands with different orientations. It can be obtained by appropriate dilations and

rotations of g(x,y) through the following generating functions [28]:

Omn (X, ¥) =a~ Mg (xs¥"), a>1, m;n = integer,

x'=a ™(xcosd + ysing), and y'=a ™ (—xsind + ycosb), (3.3)
1
a= ()51, (3.4)
oy = ((@-Dw,)(a+1)2In2), (3.5)
2 2 9l (3.6)
—tan(Z Vo —2In 28T 212 (2IN2)° ~0d 173
oy=tan(y, )lop-2In (a’h)][ n wrzl ]

where @ :n?” , n=01---,K-1., m=0,1---,S-1., K is the total number of
orientations, S is the number of scales in the multi-resolution decomposition, @y,
and @, are the highest and the lowest center frequency, respectively. In this chapter,

we set a)|:%4, a)h:34, K=6 and S=7.
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3.2.1.2 Feature Estimation and Representation

To extract the audio features, each Gabor wavelet filter, gmn(X,y), is first
applied to the spectrogram (X, y) to get a filtered spectrogram, Wy, (x,Y), as
Winn (6 ¥) = [ 1(X= %1, ¥ = 1) @ o Ok Y1) dxadys (3.7)
where * indicates the complex conjugate. The above filtering process is executed by
FFT (fast Fourier Transform). That is
Winn (%, ) = F~HF{gmn 06 )} FALG W) (38)
Since peripheral frequency .analysis inthe ear system roughly follows a
logarithmic axis, in order to keep with this way, the entire frequency band [0, Fs/2] is
divided into six subbands of unequal width: F1=[0, Fs/64], F2=[Fs/64, Fs/32],
F3=[Fs/32, Fs/16], FA=[Fs/16, Fs/8], F5=[Fs/8, Fs/4], and F6=[Fs/4, Fs/2]. In our
experiments, high frequency components above Fs/4 (i.e., subband [Fs/4, Fs/2]) are
discarded to avoid the influence of noise. Then, for each interested subband F;, the
directional histogram, H;(m,n), is defined to be

N;j(m,n)

Hi(m,n)ZS—, i:0,"',4, (39)
D Nj(m,n)
n=0
| 1, ifW_(xy)>T, andyeF
Won (%, ¥) = {0 | . gt)h:rwiszn g ' (3.10)
N;(m,n)=> > W, (xY), (3.11)
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where m=0,---,6. and n=0,---,5.. Note that Nj(m,n) is the number of pixels in
the filtered spectrogram W, (x,y) at subband F;, scale m and direction n with

value larger than threshold Ty,. Ty issetas

Tm=#m+om. 3.12)
where
1
5 S 2 2
Um = 2 ZZWmn(X,y) Nm , om=| X ZZ(\Nmn(X’y)_ﬂm) /Nm )
n=0xy n=0xy

and N, isthe number of pixels over all the 6 filtered spectrogram W, (x,y) with

scale m.

An initial feature vector,= fi;is now constructed using H;(m,n) as feature

components. Recall that in our: experiments, we use seven scales (S=7), six
orientations (K=6) and five subbands, this will result in a 7x6x5 dimensional
initial feature vector

f =[H(0,0),Hp(0.),+ Ha(65)]" . (3.13)

3.2.1.3 Feature Selection and Audio Classification

The initial features are not used directly for classification since some features

give poor separability among different classes and inclusion of these features will
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lower down classification performance. In addition, some features are highly

correlated so that redundancy will be introduced. To remove these disadvantages, in

this chapter, the Fisher Linear Discriminator (FLD) is applied to the initial features to

find those uncorrected features with the highest separability. Before describing FLD,

two matrices, between-class scatter and within-class scatter, will first be introduced.

The within-class scatter matrix measures the amount of scatter between items in the

same class and the between-class scatter matrix measures the amount of scatter

between classes.

Forthe i class, the within-class scatter fatrix S\i,v Is defined as
Sw= > (=)0 <) | (3.14)
XII( e Xj

the total within-class scatter matrix Sy is-defined as

c
Sw=_Sw, (3.15)
i=1

and the between-class scatter matrix Sy, is defined as

C
Sp = 2 Ni (ui — )i — 1) (3.16)
i-1

where g; is the mean of class Xj, Nj isthe number of samples in class Xj, xli(
is the kth sample in X, and C is the number of classes.

In FLD, a matrix Vop =1{V1,V,--,Vc_1} is first chosen, it satisfies the
following equation:
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TSV

vTis,Vv|

Vopt = argmax (3.17)

\

In fact, {vi,v,,--,Vc_;1} is the set of generalized eigenvectors of S, and S,
corresponding to the C —1 largest generalized eigenvalues {/li|i:1,2,...,C—1} [17],
.e.,

Sp Vi =4 Sy V- (3.18)
Note that in this chapter, two classes and five classes (i.e., C=2 and C =5) are

used and one-second audio clip is taken as the basic classification unit.

Based on Vgp, the initial feature vector for each one-second audio clip in the

training data and testing data is projected to the space generated by Vg to geta new

feature vector f with dimension G-1.“f is-then used to stand for the audio clip.
Before classification, it is important;to give a good similarity measure. In our
experiments, the Euclidean distance worked better than others (e.g., Mahalanobis,
covariance, etc.). For each test sample, x; with feature vector fJ the Euclidean
distance between the test sample and the class center of each class in the space
generated by Von is evaluated. Then the sample is assigned to the class with
minimum distance. That is, x;j is assigned as class C'j according to the following
criterion:

C'j =arg miani—yi'H,izl,Z,'--,C,, (3.19)

|

where ,Ui' is the mean vector of the projected vectors of all test samples in class i.

50



Fig. 3.3 shows an example of using a two-way speech/music discriminator. In the

figure, “x” stands for the projected result of an music signal, “0” stands for the

projected result of a speech signal. From this figure, we can see that through FLD,

music and speech samples can be easily separated. Fig. 3.4 outlines the process of

feature selection and classification.

Two problems arise when using Fisher discriminator. First, the matrices needed

for computation are very large. Second, since we may have fewer training samples

than the number of features in each sample, the data matrix is rank deficient. To avoid

the problems described above, it is,possible to solve the eigenvectors and eigenvalues

of a rank deficient matrix by using;a generalized singular value decomposition routine.

One simple and speedup solution[33] is takenin this chapter.

1 1 |
0.1 0.05 | -0.05 -0.1 -0.15 -2

Fig. 3.3.  Anexample of using FLD for two-way speech/music discriminator.
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Audio
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Initial Computation The projection
feature Sb and Sw matrix Vopt
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Signal

2

Classification Di

based on the Mlstance PR A model for
minimum easure each class
distance

Fig. 3.4. A block diagram of feature selection and classification using

3.2.1.4 Segmentation

The segmentation is to divide an*audio Seguence into semantic scenes called
“audio scene” and to index them as different audio classes. Due to some classification
errors, a reassigning algorithm is first provided to rectify these classification errors.
For example, if we detect a pattern like speech-music-speech, and the music
subpattern lasts a very short time, we can conclude that the music subpattern should
be speech. First, for each one-second audio clip, the similarity measure between the
audio clip and the center of its class is defined as

Similarity _q__ Uistmin dist,, = mindist, (3.20)

5 . i
ijldlst J
where dist; is the Euclidean distance between the clip and the jth class center in
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the feature space. If the similarity measure is less than 0.9, mark the clip as

ambiguous. Note that ambiguous clips often arise in transition periods. For example,

if a transition happens when speech stops and music starts, then each clip in the

transition will contain both speech and music information. Then, each ambiguous clip

will be reassigned as the class of the nearest unambiguous clip. After the reassignment

is completed, all neighboring clips with the same class are merged into a segment.

Finally, for each audio segment, the length is evaluated. If the length is shorter than

the threshold T (T=3 second), each clip in the segment is reassigned as the class of one

of its two neighboring audio segments with the least Euclidean distance between the

clip and the center of class of the selected neighboring segment.

3.3. EXPERIMENTAL RESULTS

In order to do comparison, we have collected a set of 700 generic audio pieces

(with duration from several seconds to no more than one minute) of different types of

sound according to the collection rule described in [14] as the testing database. Care

was taken to obtain a wide variation in each category, and some of clips are taken

from MPEG-7 content set [23]. The database contains 100 pieces of classical music

played with varied instruments, 100 other music pieces of different styles (jazz, blues,
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light music, etc.), 200 pieces of pure speech in different languages (English, Chinese,

Japanese, etc.), 200 pieces of song sung by male, female, or children, 50 pieces of

speech with background music (e.g. commercials, documentaries, etc.), and 50 pieces

of speech with environmental noise (e.g. sport broadcast, news interview, etc.). These

shorter audio clips are stored as 16-bit per sample with 44.1 kHz sampling rate in the

WAV file format and are used to test the audio classification performance. Note that

we take one-second audio signal as a test unit.

We also collected a set of 15 longer audio pieces recorded from movies, radio or

video programs. These pieces last from several minutes to an hour and contain various

types of audio. They are used to-test'the performance for audio segmentation.

3.3.1 Audio Classification Results

In order to examine the robust use for a variety of the audio source and the

accuracy for audio classification, we present two experiments. One is two-way

discrimination and the other is five-way discrimination. Concerning the two-way

discrimination, we try to classify the audio set into two categories: music and speech.

As for the five-way discrimination, the audio set will be classified into five categories:

pure speech, pure music, song, speech with music background, and speech with
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environmental noise background.

Tables 3.1 and 3.2 show the results of the classification. From these tables, we

can see that the proposed classification approach for generic audio data can achieve an

over 98% accuracy rate for the speech/music discrimination, and more than 95% for

the five-way classification. Both classifiers use the same testing database. It is worth

mentioning that the training is done using 50% of randomly selected samples in each

audio type, and the test is operated on the remaining 50%. By changing training set

several times and evaluating the classification rates, we find that the performance is

stable and independent on the particular test'and training sets. The experiments are

carried out on a Pentium 1l 400-PC/Windows 2000 with less than one-eleventh of the

time required to play the audio clip:

In our experiments, there are several misclassifications. From Table 3.2, we can

see that most errors occur in the speech with music background category. This is due

to that the music or speech component is weak. In order to do comparison, we also

like to cite the efficiency of the existing system described in [14], which also includes

the five audio classes considered in our method and uses similar database to ours. The

authors of [14] report that less than one eighth of the time required to play the audio

clip are needed to process an audio clip. They also report that their accuracy rates are

more than 90%.
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TABLE 3.1
TWO-WAY CLASSIFICATION RESULTS

Audio Type Number Correct Rate

Speech 300 98.17%
Music 400 98.79%
TABLE 3.2
FIVE-WAY CLASSIFICATION RESULTS
Number Discrimination Results
Audio Type Pure Music|Song s 1|Pure Speech |Speech with MB |Speech with NB

Pure Music 200 94.67% ''| 3.21% 1.05% 1.07% 0%
Song 200 0.8% +.(96.43% 0% 1.97% 0.8%
Pure Speech 200 0% 0.14% | 98.40% 0.11% 1.35%
Speech with MB| 50 1.01% 4.2% 3.10% 89.62% 2.07%
Speech with NB 50 0.15% |0.71% 1.28% 0.63% 97.23%

3.3.2 Audio Segmentation Results

We tested our segmentation procedure with audio pieces recorded from radio,

movies, and video programs. We made a demonstration program for online audio
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segmentation and indexing as shown in Fig. 3.5. Fig. 3.5 (a) shows the classification

result for a 66 second audio piece recorded from MPEG-7 data set CD19 that is a

Spanish cartoon video called “Don Quijote de la Mancha.” Fig. 3.5 (b) shows the

result of applying the segmentation method to Fig. 3.5 (a). Besides the above example,

we also performed experiments on other audio pieces.

Listed in Table 3.3 is the result of the audio segmentation, where miss-rate and

over-rate are defined as the ratio between the number of miss-segmented ones and the

actual number of segments, and the ratio between the number of over-segmented ones

and the actual number of segmentssin audio streams, respectively. Besides, error rate

is defined as the ratio between the number-of segments indexed in errors and the

actual number of segments in audio stream.

The first column shows the segmentation result without applying the

reassignment process to the classification result, and the second column shows the

segmentation result using the reassignment process. The experiments have shown that

the proposed scheme achieves satisfactory segmentation and indexing. Using human

judgement as the ground truth, our method can detect more than 95% of audio type

changes.
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Fig. 3.5. Demonstration of audio segmentation and indexing, where “SMB” and
“SNB” are the abbreviations for “speech with music background” and “speech with
noise background”, respectively. (a) Original result. (b) Final results after applying the
segmenting algorithm to (a).
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TABLE 3.3
SEGMENTATION RESULTS.

Without Using Using

Reassignment Reassignment

Miss-Rate 0% 1.1%
Over-Rate 5.2% 1.8%
Error-Rate 2.5% 1.3%

3.4. SUMMARY

In this chapter, we have presented a new method for the automatic classification

and segmentation of generic audio data. An accurate classification rate higher than

95% was achieved. The proposed scheme can treat a wide range of audio types.

Furthermore, the complexity is low due to the easy computing of audio features, and

this makes online processing possible. The experimental results indicate that the

extracted audio features are quite robust.

Besides the general audio types such as music and speech tested in existing work,

we have taken into account other different types of sounds including hybrid-type

59



sounds (e.g. speech with music background, speech with environmental noise
background, and song). While current existing approaches for audio content analysis
are normally developed for specific scenarios, the proposed method is generic and

model free. Thus, it can be widely applied to many applications.
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CHAPTER 4

CONTENT-BASED AUDIO RETRIEVAL BASED ON

GABOR WAVELETS

4.1. INTRODUCTION

The recent emerging of multimedia and the tremendous growth of multimedia

data archives have made the effective management of multimedia databases become a

very important and challenging task: Therefore; developing an efficient searching and

indexing technique for multimedia databases become: very important and have drawn

lots of attention recently. As many. research works were done on the content-based

retrieval of image and video data, less attention was received to the content-based

retrieval of audio data.

In recent years, techniques for audio information retrieval have started emerging

as research prototypes [9-24]. These systems can be classified into two major

paradigms [22, 34]. In the first paradigm, the user sings a melody and similar audio

files containing that melody are retrieved. This kind of approaches [18] is called

“Query by Humming” (QBH). It has the disadvantage of being applicable only when

the audio data is stored in symbolic form such as MIDI files. The conversion of
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generic audio signals to symbolic form, called polyphonic transcription, is still an

open research problem in its infancy [22]. Another problem with QBH is that it is not

applicable to several musical genres such as Dance music where there is no singable

melody that can be used as a query. The second paradigm [9-10, 13, 16-24] is called

“Query-by-Example” (QBE), a reference audio file is used as the query and audio

files with similar content are returned and ranked by their similarity degree. In order

to search and retrieve general audio signals such as the raw audio files (e.g. mp3,

wave, etc.) on the web or databases, only the QBE paradigm is currently applicable.

In this dissertation, we will develop-a QBE ‘system that will work directly on real

world raw audio data without attempting to transcribe-the music.

Wold, et al. [9] proposed arn.approeach to retrieve the audio objects based on their

content in waveform. In this approach, an N-vector for a given sound is constructed

according to the acoustical features including loudness, pitch, brightness, bandwidth,

and harmonicity. The N-vector is then used to classify sounds for similar searching.

This method is only suitable for sounds with a single timbre. Besides, the method is

supervised and not adequate to index general audio content. An approach based on the

histogram model of the zero-crossing features for searching quickly through broadcast

audio data was provided in [15]. In this approach, a certain reference template is

defined and applied on each audio stream to find whether it contains the desired
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reference sound. The accuracy of the result using this method varies considerably for

different types of recording. Besides, the audio segment to be searched should be

known a priori in this algorithm.

Foote [16] proposed a data driven approach for audio data retrieval by computing

the Mel-frequency cepstral coefficients (MFCCs) of an audio signal first. Then a

learning algorithm is applied on these MFCCs to generate a quantization tree. Each

kind of audio signals is inserted into the corresponding bin in the quantization tree.

Cosine measurement or Euclidean distance can be used to measure the similarity

between two bins. A QBE system -called “SoundSpotter” [21] provides a sound

classification tools to classify a large database into several categories and finds the

best matches to the selected query sound using state-path histograms. It is also based

on the MFCCs representation. Both of the above-mentioned two MFCC-based

approaches are not suitable for melody retrieval (e.g. music) since the MFCC-based

features do not capture enough information about the pitch content, rather, they

characterize the broad shape of the spectrum. In [24], local peaks in spectrogram are

identified and a spectral vector is extracted near each peak. Since the parameters used

in the peak identification algorithm are too many and empirical, they are improper

when the source of audio signals is changed.

In this chapter, based on the Gabor wavelet features, we will propose a method
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for content-based retrieval of perceptually similar music pieces in audio documents. It

is based on the QBE paradigm and allows the user to select a reference passage within

an audio file and retrieve perceptually similar passages such as repeating phrases

within a music piece, similar music clips in a database or one song sung by different

persons or in different languages. The proposed method consists of four phases:

time-frequency distribution (TFD) generation, initial feature extraction, feature

selection and similarity measurement. First, the input audio stream is transformed to a

spectrogram and divided into clips, each of which contains one-second audio

information and will meet the human auditory:system (HAS) [29]. Second, for each

clip with one-second window, a-setof initial-frame-based features are extracted based

on the Gabor wavelet filters [27-28]. TFhird, based on the extracted initial features, the

Singular Value Decomposition (SVD) [25] is used to perform the feature selection and

to reduce the feature dimension. Finally, a similarity measuring technique is provided

to perform pattern matching on the resulting sequences of feature vectors.

Experimental results show that the proposed method can achieve over 96%

accuracy rate for audio retrieval and the complexity is low enough to allow operation

on today’s personal computers and other cost-effective computing platforms. These

results demonstrate the capability of the proposed audio features for characterizing the

perceptual content of an audio sequence. The rest of the chapter is organized as
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follows. In Section 4.2, the proposed method is described in details. Experimental

results and discussion are presented in Section 4.3. Finally, in Section 4.4, we give a

summary.

4.2. THE PROPOSED METHOD

The block diagram of the proposed method is shown in Fig. 4.1. It is based on

the spectrogram and consists of four phases: time-frequency distribution (TFD)

generation, initial feature extraction, feature selection and similarity measurement.

First, the input audio is transformed to a-spectrogram, I(x,y), as mentioned in

Multi-resolution Short Time Fourier Transform section (Chapter 1, Section 1.3.2).

Second, for each clip with one-second window, some Gabor wavelet filters will be

applied to the resulting spectrogram to extract a set of initial features. Third, based on

the extracted initial features, the Singular VValue Decomposition (SVD) [25] is used to

TED Initial Feature Similarity
- Feature Selection Measurement]
Generation Extraction

Fig. 4.1. Block diagram of the proposed method.
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perform the feature selection and to reduce the feature dimension. Finally, based on

the selected features, a similarity measure is provided to measure the similarity of

audio data. In what follows, we will describe the details of the proposed method.

4.2.1. Initial Feature Extraction

Generally speaking, the spectrogram is a good representation for the audio since

it is often visually interpretable. By observing a spectrogram, we can find that the

energy is not uniformly distributed, but tends. to cluster to some patterns. All

curve-like patterns are called -tracks [31].-Fig. 4.2 (a) shows that for a musical

instrument signal, some line ‘tracks® corresponding to tones will exist on its

spectrogram. Fig. 4.2 (b) shows some patterns including clicks (broadband, short

time), noise burst (energy spread over both time and frequency), tones, and frequency

sweeps in a song spectrogram. Thus, if we can extract some features from a

spectrogram to represent these patterns, the retrieval should be easy. Smith and Serra

[32] proposed a method to extract tracks from a STFT spectrogram. Once the tracks

are extracted, each track is classified. However, tracks are not well suited for

describing some kinds of patterns such as clicks, noise burst and so on. To treat all

kinds of patterns, a richer representation is required. In fact, these patterns contain
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various orientations and spatial scales. For example, each pattern formed by lines (see

Fig. 4.2 (a)) will have a particular line direction (corresponding to orientation) and

width (corresponding to spatial scale) between two adjacent lines; each pattern formed

by curves (see Fig. 4.2 (b)) contains multiple line directions and a particular width

between two neighboring curves. Since Gabor wavelet transform provides an optimal

way to extract those orientations and scales [29], in this chapter, we will use the

Gabor wavelet functions to extract some initial features to represent the needed

patterns. The detail will be described in the following section.

Noise Burst

Frequency Sweeps

Tone

(b)

Fig. 4.2. Two examples to show some possible different kinds of patterns in
a spectrogram. (a) Line tracks corresponding to tones in a musical instrument
spectrogram. (b) Clicks, noise burst, tones, and frequency sweeps in a song
spectrogram.
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4.2.1.1 Feature Estimation

In this chapter, we will deal with musical audio signal including musical
instrument and song. Most of the current works only deal with the monophonic
sources, in this chapter we will also consider polyphonic music. Polyphonic music is
more common, but it is also more difficult to represent. The most meaningful feeling
of human perception for the music data is primarily the pitch and timbre. Both of
them are correlated with the tones. For example, the fundamental tone decides the
pitch that we hear, and the .harmonics decide the timbre. Based on the
above-observation for the spectrogram (see Fig. 4.2 (a) and 4.2 (b)), we find that some
line tracks corresponding to tones will exist in the spectrogram. Thus, if we can
extract the features about tones, the retrieval should be easy.

Since through our observation, most prominent tracks are near horizontal, in this
chapter, we only take one orientation that is horizontal. Thus, each Gabor wavelet
filter as mentioned in Gabor Wavelet Functions and Filters Design section (Chapter 3,
Section 3.2.1.1), g,,(X,Yy), can be briefly represented by g, (x,y). Note that in our
experiments, we set @) = %4, o = 34, K=1 and S=7. To extract the audio
features, each Gabor wavelet filter, g, (X,y), is first applied to the spectrogram

I(x,y) to get a filtered spectrogram, the spectrum of which is represented by
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Wm (u,v) called spectrogram spectrum. That is

W, (u,v) = Fig, (x N} F{I(x y)}, (4.1)
where F{} is a fast Fourier Transform.

Up to now, there are S spectrogram spectrum with scale m, Wm (u,v), to be
available. Since, in each audio signal, those tracks appear in the corresponding
spectrum have a certain scale, not all these spectrogram spectrum are used to perform
the feature estimation, only the one with the maximum contrast (which corresponds to
the track scale) is used. To reach this goal, the vertical profile of the spectrum, P, (u)
(m=1.2,---,S), is constructed as folows:

P (U) = D W, {u,0). (4.2)
Let M, be the number ofthe"local peaks (u;,u,,--,uy_.) in P, (u), P, (u;)

(i=12,---,M,) be the magnitudes of these peak points, and

P =maxP, (u;). (4.3)

Then the contrast is defined as

Mp
contrast, = P™ — L D P (). (4.4)
M p i=1
Let
mc = arg contrast,, (4.5)

m

then the spectrogram spectrum, Wmc (u,v), and the corresponding spectrogram,

Woe (x,y), are used to do initial feature extraction.

69



Fig. 4.3 (a) shows an example of the Gabor-wavelet filtered spectrogram with the
maximum contrast, Wmc(x’ y). From Fig. 4.3 (a), we can see that the tracks in the
figure are somewhat obscured, to remove this phenomenon, an enhancement process

[27] is applied as follows:

Wi (%, y) = F W0 () - W 0,v)] (4.6)

where « is set as 1.4 and W (x,y) is the enhanced spectrogram. Fig. 4.3 (b)

shows the result of the enhancement process for Fig. 4.3 (a).

An initial feature vector, f, is now constructed using w f (x,y) as feature
components. Recall that in our experiments, for:each clip with one-second window (M
frames) is used for constructing spectrogram: Besides, high frequency components
above Fs/4 are discarded to aveid the influence-of noise. These will result in a
M x N dimensional initial feature vector

f =[X1,X2,"',XM]t, (47)

- *

(a) (b)
Fig. 4.3.  An example to show the enhancement process performing in a
spectrogram. (a) The Gabor-wavelet filtered spectrogram with the maximum
contrast. (b) Enhanced spectrogram.
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where X; :[wf (i,1),wf (i,2),---,wf (i, N)} (i=12,---,M ) is the spectral vector of

each frame in W (X, ).

4.2.1.2 Feature Selection and Representation

The initial features are not used directly for similarity measurement since some
features give poor separability among different objects and inclusion of these features
will lower down the system performance. In addition, some features are highly
correlated so that redundancy will be introduced.. To remove these disadvantages, in
this chapter, the Singular Value Decomposition (SVD) [23] is applied to the initial
features to find those uncorrected.features with the highest separability.

As for the SVD, it is a well-known technique for reducing the dimensionality of
data while retaining maximum information content. It decomposes the data into a sum
of vector outer products with vectors representing both the basis function
(eigenvectors) and the projected features (eigen coefficients). A subset of the complete
basis is selected to reduce data dimensionality. The loss of information is minimized
because the basis functions are ordered by statistical salience; thus, functions with low
information content are discarded.

Based on SVD, the initial feature vector, f, for each one-second audio clip can
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be decomposed into the form [28]:
f =USV', (4.8)

where S is a diagonal matrix containing the singular values of f along its diagonal,
and the columns of U and V are the eigenvectors (the basis function) of fft , and
flf respectively. Then the basis, V, is reduced by retaining only the first k basis
functions. That is

V, =[Vv;,V,,, Vv, ] (4.9
And the initial feature vector f is projected to the space generated by V, to geta
new feature vector f with the reduced dimension. f is then used to stand for the
audio clip as follows:

f =X, Xy 1=V, (4.10)
where x, (i=12,---,M ) is a k-dimensional vector. Note that we will call V, as the

basis of f .

4.2.2. Audio Retrieval and Similarity Measurement

In general, audio (multimedia) data searching can be classified into two different
strategies: “a-whole-object search”, and “in-object search”. “A-whole-object search”

approach searches for data that is globally similar to the query input; on the other
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hand, an “in-object search” approach searches for a large piece of data containing a
fragment that is similar to the query. A method of using the latter searching strategy
can reach the aim of the first searching strategy but not vice versa. Thus, in this
chapter, the retrieval is performed based on the latter searching strategy. Based on the
feature vector introduced in the previous section, the similar audio clip retrieval will
be conducted. Before retrieval, it is important to give a good similarity measure. Here,
a distance measure is first proposed to evaluate the similarity between two audio clips.
In our experiments, the Euclidean distance worked better than others (e.g.,

Mahalanobis, covariance, etc.) in the'space generated by V, .

4.2.2.1 Similarity Measure

For the candidate audio sequence, y, with feature vector f; =[x ,X .+ Xy ]
(J=212,---,1), where | is the number of the one-second clips in the audio sequence.
That is, y_ is divided into one-second clips:

Ye =Dy Yooyl (4.11)
where y; has feature vector f,.
For every queried one-second clip, y,, before computing the distance between

Yy, and each of the candidate clip y;, Yy, should be projected to the basis of y; to
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get the corresponding feature f, =[x,,.X,

w2 Xqm 1. Then the distance between

one-second clips y, and y; isevaluated as follows:

M

1
. . 2.5
Dist, ; = (Z‘xq’i _Xj,i‘ )2, (4.12)
i=1
where j=12,---,1 and ‘x'mi —x'j’i‘ stands for the Euclidean distance between two
vectors: X,; and x;;. Then for all j, sort Dist,; in an increasing order. For the

top g clips, we define their grades, Gd,.,as g,g-1,9-2,---, and 1, respectively.

aj’
The clip with the least distance will have the highest grade and be considered as the

most similar one. In addition, Gd,; of all other clips are defined as zero. Note that

in this chapter, one-second audio clip is taken as the basic distance measurement unit.

4.2.2.2 Retrieval

For a query audio sequence, Y, , with length p-seconds, it is first divided into p

successive one-second clips. That is

Yo =[Ya Yo ¥el. (4.13)
Next, for each clip y(‘] (i=42,---,p) and a candidate audio sequence y_, the
similarity measure is first performed and the corresponding grades, Gd;“.
(i=142,---,pand j=12,---,1), are evaluated based on Eq. (4.12). According to these

grades, the total grade of the candidate clip y; (j=12,---,1), Gd _T,;, is defined

a,j!
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to be
Gd_T,, = Zp:Gd;Y i (4.14)
i1
where j=12,---,1. Finally, based on the set of total grades, Gd _T ;(j=12,---,1),
sort Gd _T,; inan increasing order. According to this measure, the top k clips with
the higher similarity to the query one can be retrieved. For example, the matching clip

with the highest similarity to the query one can be retrieved according to the

following criterion:

s=arg maxGd _T, ;, (4.16)

]

where j=12,---,1 and the best matched audio’'sequence, y, in the candidate audio

sequence will result in the following audio sequence:

Yo =¥, Ve Yo pa (4.17)
4.3. EXPERIMENTAL RESULTS

In order to show the efficiency of the proposed method, we have collected a set
of 150 musical pieces (50 musical instruments, 100 songs) with total length about
three hours and 10000 phrases as the testing database. Care was taken to obtain a wide
variation in each type such as varied instruments, different languages (English,

Chinese, Japanese, etc.), different singers (male, female, or children), and different

75



style (jazz, rock, folk, etc.). These audio clips are stored as 16-bit per sample with

44.1 kHz sampling rate in the WAV file format and are used to test the audio retrieval

performance. Note that in order to do comparison, the testing database includes the

dataset described in [17, 18], and some of clips are taken from MPEG-7 content set

[29].

4.3.1 Experiment Results

There are two major factors affecting the performance of the proposed approach,

i.e., the number of the basis functions-used and the. length of the query example. In

order to examine the performance’ of“the.proposed method, we present two

experiments. In the first experiment,for each"-music object in the database, we use its

refrain as the query example to retrieve all repeating phrases similar to this refrain.

Therefore, 150 queries are performed. This experiment is presented to examine the

quality of the proposed retrieval approach with two above-mentioned major factors.

As for the second experiment, for each song, there will have two versions which are

sung in different languages or by different persons in the database. We use its refrain

in a certain version (e.g. the Chinese version) as the query example to retrieve all

repeating phrases similar to this refrain in other version (e.g. the English version).

This experiment is presented to examine the robust of the proposed retrieval approach.
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In this chapter, the performance is evaluated by the precision rates (P.) and the
recall rates (R,) [30]. Note that the recall rate, R,, and the precision rate, P,, are
defined as

N
R.=— and P =—, (4.18)
K
where N is the number of relevant items retrieved (i.e. correctly retrieved items),
T is the total number of relevant items (i.e. correctly retrieved items and the relevant
items that have not been retrieved) and K is the total number of the retrieved items.
The recall rate is typically used in conjunction with the precision rate, which measures
the fraction of the retrieved patterns:that is relevant. The precision and recall rate can
often be traded-off. That is one-can-achieve high precision rate and low recall rate or
the other way round.

Tables 4.1 and 4.2 show the results of two experiments presented in this chapter.

TABLE 4.1
THE AVERAGE RECALL RATES OF THE FIRST EXPERIMENT
Basic Function Query Sample Length
Numbers One second Two seconds | Three seconds
5 29% 71% 74%
10 31% 75% 75%
15 40% 98% 98%
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TABLE 4.2
THE AVERAGE RECALL RATES OF THE SECOND EXPERIMENT

Basic Function Query Sample Length
Numbers One second Two seconds | Three seconds
5) 31% 71% 72%
10 31% 71% 74%
15 38% 94% 94%

In our experiments, the number of .retrieved patterns was adjusted to the number of
relevant patterns, so the precision rate and recall rate are the same. From Table 4.1, we
can see that the above-mentioned two.factors-affect the performance of the proposed
approach. The more basis functions are used, the higher the recall rate will be. And
the longer length of the query sample is used, the higher the recall rate will be. Based
on the first experiment, we can see that it is best to perform retrieval using 15 basis
functions and two-second length of query sample. From Table 4.2, we can also see the
same phenomena as Table 4.1 except for the lower recall rate.

Besides, by examining the occurrence of missing in the experiments based on
human judgement as the ground truth, we found two major factors. First, for the first

experiment, we find that some errors occur in those searched clips containing a
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transition, which is made due to that we simply segment an audio object into several

one-second clips uniformly against pre-dividing the audio object into sequences of

audio phrases. As a matter of fact, this kind of errors can be reduced by increasing the

length of query sequence (i.e., clip number) to get more related information or

performing the pre-dividing for the audio phrases. Secondly, we find that some errors

occur due to that the refrains of some songs are performed at different tempo. From

these tables, we can see that the proposed retrieval approach for music data can

achieve an over 96% accuracy rate. The experiments are carried out on a Pentium Il

400 PC/Windows 2000. The 150 queries can be processed in less than five seconds for

10000 phrases. In order to do comparison, we also like to cite the efficiency of the

existing system described in [17, 18],”which also uses similar database to ours. The

authors reported that their accuracy rates are more than 90%.

4.4 SUMMARY

Digital audio signals, especially for music are an important type of media.

However, few works were focused on the music databases. In this chapter, we have

presented a new method for content-based music retrieval to retrieve perceptually

similar music pieces in audio documents. In the proposed method, based on the Gabor
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wavelet filters, the extracted perceptual features are general enough to meet the
human auditory system. An accurate retrieval rate higher than 96% was achieved.
Furthermore, the complexity is low due to the easy computing of audio features, and
this makes online processing possible.

There are several related tasks to be conducted in the future. First, we will work
on the other type of audio source such as sound effects and the compression domain.
Second, we will work on developing an automatic segmentation technique to divide

the musical objects into sequences of phrase.
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CHAPTER 5
CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

5.1 Conclusions

Rapid increase in the amount of audio data demands for an efficient method to
automatically analysis audio signal based on its content. In this dissertation, we have
presented three methods to address.the problems:of audio segmentation, classification
and content-based retrieval.

Besides the general audio types stich as musicand speech tested in existing work,
in this dissertation, we have taken hybrid-type sounds (speech with music background,
speech with environmental noise background, and song) into account. First, we have
proposed a hierarchical audio classification method to classify audio data into five
general categories: pure speech, music, song, speech with music background, and
speech with environmental noise background. These categories are the basic sets
needed in the content analysis of audiovisual data. An accurate classification rate
higher than 96% was achieved. The experimental results indicate that the extracted

audio features are quite robust.
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We also propose a classification-based audio segmentation method based on

Gabor wavelets. The proposed method provides two classifiers, one is for speech and

music (called two-way); the other is for five classes (called five-way) that are pure

speech, music, song, speech with music background, and speech with environmental

noise background. In order to make the proposed method robust for a variety of audio

sources, we use Fisher Linear Discriminator to obtain features with the highest

discriminative ability. Based on the classification results, a merging algorithm is

provided to divide an audio stream into some segments of different classes to achieve

segmentation. Experimental results:show that the. proposed method can achieve over

98% accuracy rate for speech -and music discrimination, and more than 95% for a

five-way discrimination. By checking the class types of adjacent clips, we also can

identify more than 95% audio scene breaks in audio sequence.

Two important and distinguishing features compared with previous work in the

above two proposed schemes are the complexity and running time. Although the

proposed schemes covers a wide range of audio types, the complexity is low due to

the easy computing of audio features, and this makes online processing possible. Thus,

the proposed methods can be widely applied to many audiovisual analysis

applications such as content-based video retrieval.

Finally, we have presented a new method for content-based music retrieval to
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retrieve perceptually similar music pieces in audio documents. It is based on the QBE

paradigm and allows the user to select a reference passage within an audio file and

retrieve perceptually similar passages such as repeating phrases within a music piece,

similar music clips in a database or one song sung by different persons or in different

languages. First, an audio stream is divided into clips and the frame-based features of

each clip are extracted based on the Gabor wavelet filters. Then, a similarity

measuring technique is provided to perform pattern matching on the resulting

sequences of feature vectors. The experimental results demonstrate the capability of

the proposed audio features for characterizingsthe perceptual content of an audio

sequence.

5.2 Future Research Directions

Content-based audio analysis is still a new area that is not well explored. There

are some possible future research directions. For example, in audio classification and

segmentation, we will work on the other type of audio source such as sound effects

and the compression domain. In the content-based audio retrieval, we will emphasize

in query by humming (QBH).
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