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一個關於一般音訊資料之音訊分類，音訊分段及音

訊檢索之研究 
 

研究生:林瑞祥                       指導教授:陳玲慧博士 

國立交通大學電機資訊學院 資訊科學系 

 

摘要 

近年來由於多媒體資料之大量增長，使得有效管理多媒體資料庫

之議題變得十分重要而富挑戰性。因此多媒體資料庫之檢索及儲存便

成為一個重要之研究領域。由於音訊資料在多媒體資料當中隨處可

見，也扮演著一個重要的特徵，因此音訊資料相關的研究與分析便顯

得重要；尤其是基於音訊內涵為主的相關分析更為顯的重要與迫切。 

基於音訊內涵為主的相關研究其目前的發展狀況仍是十分有

限，目前主要的問題與發展方向主要可歸納為三個方向:音訊分類、

音訊分段以及音訊檢索。本論文之主要目的在基於 spectrogram 並運

用圖樣識別等相關的理論來發展一些解決上述問題的方法。 

一般而言，對於音訊資料的內容分析而言，音訊分類是最為重要

的處理步驟；而目前音訊分類的研究其主要的問題乃是音訊的分類種

類不足。大多數的分類法都是只將音訊分成語音和音樂兩大類；這樣

的分類法比較簡單且容易，然而這樣的分類法並不足以應付目前的多
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媒體資料。為了解決這個問題，我們將提出一個新的音訊分類法；除

了語音和音樂這兩大類，我們所提出的分類法尚考慮了目前多媒體資

料中常見的語音與背景音樂混合、流行歌曲等複合型態音訊資料。這

個方法主要的重點在於，利用所提出的新音訊特徵與階層式分類法來

達到音訊分類的目的。其系統之設計除了具備以音訊內涵為特徵來處

理之功能及特色之外，其處理效率更是一個核心重點。 

接著我們會提出一個基於音訊分類的音訊分段法。此方法的主要

觀念是基於一個事實，即不同種類的音訊資料其 spectrogram 上蘊含

了視覺上可見的特徵；例如音樂性的資料其能量在 spectrogram 上會

集中分佈在某些方向，而語音類的資料，其能量的分佈會集中在某些

頻帶區間，而隨機性的音訊資料例如雜訊，其能量的分佈則出現在所

有方向。基於上述事實，我們利用 Gabor Wavelet 先針對以一秒為單

位之音訊資料的 spectrogram 上能量在方向性分佈以及比例進行強

化，接著利用強化後的 spectrogram 上能量在方向性分佈以及比例的

分析來進一步將音訊資料分類。接著，基於分類後的結果來應用於音

訊片段的音訊分段切割處理。 

最後，我們將提出一個基於音訊內涵的音訊資料檢索方法。此方

法將針對使用者所提供的音訊查詢片段進行音訊檢索，其檢索能力範

圍包括資料庫中相似的音訊片段，樂曲中重複的音訊片段及旋律相同
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但表達方式不同的樂曲，例如不同語言或者不同人等。此方法的主要

觀念也是運用音訊資料其 spectrogram 上所蘊含的視覺上可見的有

效特徵，並利用 Gabor Wavelets 針對音訊資料的 spectrogram 上能

量在方向性分佈以及比例進行強化，並利用強化後的 spectrogram 其

傅立葉頻譜的反應值來找出最有效率的 spectrogram。最後利用特徵

選擇以及圖樣識別理論找出所需要的特徵以提供音訊檢索之用。 

本論文中所提出之方法可應用於多媒體資料檢索，音訊瀏覽及數

位圖書館系統之設計。 
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ABSTRACT 

The recent emerging of multimedia and the tremendous growth of 

multimedia data archives have made the effective management of multimedia 

databases become a very important and challenging task. Digital audio is an important 

and integral part of many multimedia applications such as the construction of digital 

libraries. Thus, the demand for an efficient method to automatically analyze audio 

signal based on its content become urgent.  

The major problems of automatic audio content analysis include audio 

classification, segmentation and retrieval etc. In this dissertation, based on 

spectrogram, we will propose three methods to address the problems of audio 

classification, segmentation and content-based retrieval. Besides the general audio 

types such as music and speech tested in existing work, we have taken hybrid-type 

sounds (speech with music background, speech with environmental noise background, 

and song) into account. These categories are the basic sets needed in the content 

analysis of audiovisual data. First, a hierarchical audio classification method will be 

presented to classify audio signals into the aforementioned basic audio types. 
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Although the proposed scheme covers a wide range of audio types, the complexity is 

low due to the easy computing of audio features, and this makes online processing 

possible. The experimental results of the proposed method are quite encouraging. 

Next, based on the Gabor wavelet features, we will propose a non-hierarchical 

audio classification and segmentation method. The proposed method will first divide 

an audio stream into clips, each of which contains one-second audio information. 

Then, each clip is classified as one of two classes or five classes. Two classes contain 

speech and music; pure speech, pure music, song, speech with music background, and 

speech with environmental noise background are for five classes. Finally, a merge 

technique is provided to achieve segmentation. The experimental results demonstrate 

the effectiveness of the method. 

Finally, we will propose a method for content-based retrieval of perceptually 

similar music pieces in audio documents. It allows the user to select a reference 

passage within an audio file and retrieve perceptually similar passages such as 

repeating phrases within a music piece, similar music clips in a database or one song 

sung by different persons or in different languages. The experimental results 

demonstrate the effectiveness of the method. The methods proposed in this 

dissertation can be used as the basic components when developing an audio content 

analysis system or a system used in a digital library application. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 MOTIVATION AND APPLICATIONS 

 

The recent emerging of multimedia and the tremendous growth of multimedia 

data archives have made the effective management of multimedia databases become a 

very important and challenging task. Therefore, developing efficient analysis 

techniques for multimedia data based on its content become very important and have 

drawn lots of attentions recently.  

Audio is an important and integral part of many multimedia applications such as 

professional media production, audio archive management, commercial music usage, 

content-based audio/video retrieval, and so on. Thus, developing some techniques to 

treat audio signal can help analyze multimedia data. For example, audio classification 

and segmentation techniques can be used to support video scene-change detection and 

video classification. In general, neighboring scenes in video will have different types 

of audio data. Thus, if we can develop a method to classify audio data, the classified 

results can be used to assist scene segmentation. Furthermore, the availability of large 

multimedia data archives has made content-based information retrieval become a very 
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popular research topic. Audio and especially music collections are also deemed as one 

of the most important features when performing content-based information retrieval.  

In recent years, due to the importance of audio analysis, techniques for audio 

content analysis have started emerging as research prototypes [1-24] and devoting to 

solve the audio related problems called Auditory Scene Analysis (ASA), such as audio 

segmentation, audio classification, audio indexing and content-based audio retrieval 

etc. Those are the fundamental processes of any type of auditory analysis. In this 

dissertation, we will propose methods to deal with above-mentioned audio related 

problems and will be described in the following.  

 

1.2. STATE OF THE PROBLEMS AND RESEARCH SCOPE 

 

In this dissertation, we will propose three methods to deal with the problems of 

audio classification, audio segmentation and content-based audio retrieval. These 

three problems are defined as follows: 

(1) Audio classification: given an audio clip, to develop a method to classify it into 

one of the common categories: music, speech, song, and etc. It is the most 

important process for auditory analysis since different audio types require different 

processing and have different significance to different applications. 
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(2) Audio segmentation: given an audio stream, to develop a method to automatically 

detect when there are abrupt changes (segmentation boundaries) in the stream. For 

example the change from music to speech is the example of the segmentation 

boundary. 

(3) Audio content-based retrieval: given an audio clip as query sample, to develop a 

method to retrieve its perceptually similar clips in audio documents. 

 

Actually, the three problems are logically sequenced. And the solutions to these 

three problems can be used as the basic components when developing an audio 

content-based analysis system, audio browsing system or a system used in a digital 

library application. As mentioned above, most of research efforts have been spent on 

these three problems. However, some points still remain to be solved and will be 

described in the following. 

 

1.2.1 Some Problems of Audio Classification and Segmentation  

 

One problem of audio classification is the audio categories. Traditional 

approaches for audio classification tend to roughly divide audio signals into two 

major distinct categories: speech and music (two-way classification) [3-5]. In general, 
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speech and music have quite different properties in both time and frequency domains. 

Thus, it is not hard to reach a relatively high level of discrimination accuracy. 

However, two-way classification for audio data is not enough in many applications, 

such as content-based video retrieval [12, 14]. For example, in documentaries, 

commercials or news report, we can usually find the following audio types: speech, 

music, speech with musical or environmental noise background, and song. This 

indicates the need to take other kinds of audio into consideration.  

Some problems are in those existing classification methods for more than two 

audio categories. For example, Zhang and Kuo [14] provided a classifier, which 

extracts some audio features including the short-time fundamental frequency and the 

spectral tracks by detecting the peaks from the spectrum. The spectrum is generated 

by autoregressive model (AR model) coefficients, which are estimated from the 

autocorrelation of audio signals. Then, the rule-based procedure, which uses many 

threshold values, is applied to classify audio signals into speech, music, song, speech 

with music background, etc. The method is time-consuming due to the computation of 

autocorrelation function. Besides, many thresholds used in this approach are empirical, 

they are improper when the source of audio signals is changed. In the dissertation, we 

will propose two audio classification methods to address the above-mentioned 

shortcomings.  
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The first proposed method is a hierarchical audio classifier, which will classify 

audio data into five general categories: pure speech, music, song, speech with music 

background, and speech with environmental noise background. These categories are 

the basic sets needed in the content analysis of audiovisual data. From the hierarchical 

viewpoint, these five categories are first roughly divided into two major distinct 

categories: single-type and hybrid-type, i.e., with or without background components. 

Then, the single-type sounds are further classified into speech and music; the 

hybrid-type sounds are classified into speech with environmental noise background, 

speech with music background and song. Fig. 1.1 shows this hierarchical 

classification scheme. In the first proposed method, we will use lesser features with 

high differentiating power to achieve the classification purpose. However, the first 

proposed method is not suitable for classification-based audio segmentation since the 

features are extracted from the audio clips with larger length. To address this 

shortcoming, in the dissertation, we will propose the other audio classification 

methods to support classification-based audio segmentation.  

 

 

 

 

Single-Type
Sounds

Hybrid-Type
Sounds

Pure Speech

Music

Speech with Noise Background

Speech with Music Background
SongAudio 

Signal

 

Fig. 1.1. The hierarchical classification scheme.  
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The second proposed method is a non-hierarchical audio classifier, which will 

first divide an audio stream into clips, each of which contains one-second audio 

information. Based on the classified clips with smaller length, the proposed method is 

suitable and can be used to support classification-based audio segmentation. 

Generally speaking, the spectrogram is a good representation for an audio signal 

since it is often visually interpretable. By observing a spectrogram, we can find that 

the energy is not uniformly distributed, but tends to cluster to some patterns. All 

curve-like patterns are called tracks. Fig. 1.2(a) shows that for a music signal, some 

line tracks corresponding to tones will exist on its spectrogram. Fig. 1.2(b) shows 

some patterns including clicks (broadband, short time), noise burst (energy spread 

over both time and frequency), and frequency sweeps in a song spectrogram. Thus, if 

 

 

 

 

 

 

 

 

      
      (a)                                (b) 

Fig. 1.2.  Two examples to show some possible different kinds of 
patterns in a spectrogram. (a) Line tracks corresponding to tones in a 
music spectrogram. (b) Clicks, noise burst and frequency sweeps in a 
song spectrogram.  

Frequency 
Sweeps 

Clicks 
Noise Burst 

Tones 
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we can extract some features from a spectrogram to represent these patterns, the 

classification should be easy. Based on these phenomena, the proposed method will 

adopt feature selection process to explore the features with the highest discriminative 

ability to achieve classification purposes and will be used to do audio segmentation. 

As for the audio segmentation, most of the existing approaches for audio 

segmentation can be classified into two major paradigms: temporal segmentation and 

classification-based segmentation. Temporal segmentation (see Fig. 1.3) is a more 

primitive process than classification-based segmentation since it does not try to 

interpret the data. By contrast, the classification-based segmentation divides an audio 

sequence into semantic scenes called “audio scene” and to index them as different 

audio classes. That is, the approaches via classification usually adopt classification 

results to achieve segmentation purpose and the performance is dependent on the 

classification result. In this dissertation, based on the proposed above-mentioned 

classification method, we will present one classification-based segmentation method 

to achieve segmentation purpose. 

 

 

 

 
Fig. 1.3.  Temporal segmentation. 
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1.2.2 Some Problems of Audio Retrieval 

In recent years, techniques for audio information retrieval have started emerging 

as research prototypes. These systems can be classified into two major paradigms [22, 

34]. In the first paradigm, the user sings a melody and similar audio files containing 

that melody are retrieved. This kind of approaches [18] is called “Query by 

Humming” (QBH). It has the disadvantage of being applicable only when the audio 

data is stored in symbolic form such as MIDI files. The conversion of generic audio 

signals to symbolic form, called polyphonic transcription, is still an open research 

problem in its infancy [16]. Another problem with QBH is that it is not applicable to 

several musical genres such as Dance music where there is no singable melody that 

can be used as a query. The second paradigm [9, 15-17, 19-24] is called 

“Query-by-Example” (QBE), a reference audio file is used as the query and audio 

files with similar content are returned and ranked by their similarity degree. In order 

to search and retrieve general audio signals such as the raw audio files (e.g. mp3, 

wave, etc.) on the web or databases, only the QBE paradigm is currently applicable.  

There are some disadvantages in the existing QBE audio-retrieval methods.  For 

example, the method proposed by Wold, et al. [9] is only suitable for sounds with a 

single timbre. It is supervised and not adequate to index general audio content. An 

approach provided in [15] has accuracy varying considerably for different types of 
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recording, and the audio segment to be searched should be known a priori in this 

algorithm. Two MFCC-based (Mel-frequency cepstral coefficients) approaches [16, 

21] are not suitable for melody retrieval (e.g. music) since the MFCC-based features 

do not capture enough information about the pitch content, they characterize the broad 

shape of the spectrum. Besides, most of the current works only deal with the 

monophonic sources. Polyphonic music is more common, but it is also more difficult 

to represent. To solve the above-mentioned shortcomings, in the dissertation, we will 

present one method for content-based audio retrieval and will also consider 

polyphonic music.  

In the dissertation, we will develop our methods based on spectrogram. In the 

following, we will give a brief review of the generation of the spectrogram. 

 

1.3 AUDIO REPRESENTATION 

 

We will develop our methods based on spectrogram that is a commonly used 

representation of an acoustic signal in a three-dimensional (time, frequency, intensity) 

space known as a time-frequency distribution (TFD) [29]. Traditionally, a 

spectrogram is displayed with gray levels, where the darkness of a given point is 

proportional to its energy. The vertical axis in a spectrogram represents frequency and 
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the horizontal axis represents time (or frame). To construct a spectrogram, the Short 

Time Fourier Transform (STFT) is applied. In the following, we will give a brief 

review of the theories of the Short Time Fourier Transform. 

 

1.3.1 Short Time Fourier Transform  

 

In general, the input audio signal is first divided into several frames. Each frame 

contains consecutive n audio signal samples, and two neighboring frames will overlap 

50%. Then, the Fourier transform is applied to each frame tapered with a window 

function in succession (see Fig.1.4). Let )(ts  denote the audio signal and 

),( ωτSTFT  be the result of STFT, that is   
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tjetrntsSTFT ωτωτ                  (1.1) 

where )(* tr  is the window function, τ  stands for the frame number, n is the 

window size and ω  is the frequency parameter. Then, the spectrogram, ),( ωτS , is 

 

 

 

 

 
 

Fig. 1.4.  Short Time Fourier Transform.  

Fourier Transform
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the energy distribution associated with the Short Time Fourier Transform, that is,  

,)
),(

(log10),( 2
10 M

STFT
S

ωτ
ωτ =                            (1.2) 

where ),(max
,

ωτ
ωτ

STFTM = . 

 

1.3.2 Multi-resolution Short Time Fourier Transform 

 

Conventionally, in the Short Time Fourier Transform, the TFD is sampled 

uniformly in time and frequency. However, it is not suitable for the auditory model 

because the frequency resolution within the human psycho-acoustic system is not 

constant but varies with frequency [29]. By contrast, in the Multi-resolution Short 

Time Fourier Transform (MSTFT), the TFD is perceptually tuned, mimicking the 

time-frequency resolution of the ear. That is, the TFD consists of axes that are 

non-uniformly sampled. Frequency resolution is coarse and temporal resolution is fine 

at high frequencies while temporal resolution is coarse and frequency resolution is 

fine at low frequencies [19].  

One example of the tiling in the time-frequency plane is shown in Fig. 1.5 and 

Fig. 1.6 shows a schematic diagram of the TFD generating using the Multi-resolution 

Short Time Fourier Transform.  
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There are three parts in the TFD generating. In the first part, the N -point STFT 

is applied to the original audio signal )(1 tP  to obtain a spectrogram ),(1 yxS . In the 

second part, a low-pass filter is first applied to )(1 tP  and then the filtered result is 

downsampled half size to obtain signal )(2 tP and the N -point STFT is applied to 

)(2 tP  to obtain a spectrogram ),(2 yxS . In the third part, a low-pass filter is first 

applied to )(1 tP  and then the filtered result is downsampled quarter size to obtain 

signal )(3 tP and the N -point STFT is applied to )(3 tP  to obtain a spectrogram 
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Fig. 1.6.  A schematic diagram of the TFD generating details. 
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Fig. 1.5.  An example of tiling in the time-frequency plane. 
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),(3 yxS . The frequency resolution jf∆  and the analysis time interval jT  in 

),( yxS j  can be calculated as follows: 

               
jjj TN

Fsf 1
2

1
1 =⋅=∆
−

, .3,2,1=j              (1.3) 

Note that the window center at the kth  time block in ),( yxS j , k
jt , is given by 

                      j
k
j Tkt

2
= , .3,2,1=j                        (1.4) 

Finally, based on ),(1 yxS , ),(2 yxS , and ),(3 yxS , a spectrogram ),( yxI  is 

obtained according to the following equation: 
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                                                       (1.5) 

where fN is the frame number of )(1 tP . From Eq. (1.3), we can see that in I(x,y), 

frequency resolution is coarse and temporal resolution is fine at high frequencies 

while temporal resolution is coarse and frequency resolution is fine at low frequencies. 

This means that I(x,y) meets the human psycho-acoustic system. 

 

1.4 SYNOPSIS OF THE DISSERTATION 

The rest of the dissertation is organized as follows. Chapter 2 describes the 

proposed hierarchical audio classification method. The non-hierarchical audio 
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classification and segmentation method based on Gabor wavelets is proposed in 

Chapter 3. The proposed method of audio retrieval based on Gabor wavelets is 

described in Chapter 4. Some conclusions and future research directions are drawn in 

Chapter 5. 
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CHAPTER 2 

A NEW APPROACH FOR CLASSIFICATION OF 

GENERIC AUDIO DATA 

 
2.1. INTRODUCTION 

 

Audio classification [1-14] has many applications in professional media 

production, audio archive management, commercial music usage, content-based 

audio/video retrieval, and so on. Several audio classification schemes have been 

proposed. These methods tend to roughly divide audio signals into two major distinct 

categories: speech and music. Scherier and Slaney [3] provided such a discriminator. 

Based on thirteen features including cepstral coefficients, four multidimensional 

classification frameworks are compared to achieve better performance. The approach 

presented by Saunders [5] takes a simple feature space and is performed by exploiting 

the distribution of zero-crossing rate. In general, speech and music have quite 

different properties in both time and frequency domains. Thus, it is not hard to reach a 

relatively high level of discrimination accuracy. However, two-type classification for 

audio data is not enough in many applications, such as content-based video retrieval 
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[11]. Recently, video retrieval has become an important research topic. To raise the 

retrieval speed and precision, a video is usually segmented into several scenes [11,14]. 

In general, neighboring scenes will have different types of audio data. Thus, if we can 

develop a method to classify audio data, the classified results can be used to assist 

scene segmentation. Different kinds of videos will contain different types of audio 

data. For example, in documentaries, commercials or news report, we can usually find 

the following audio types: speech, music, speech with musical or environmental noise 

background, and song. 

Wyse and Smoliar [7] presented a method to classify audio signals into “music,” 

“speech,” and “others.” The method was developed for the parsing of news stories. In 

[8], audio signals are classified into speech, silence, laughter, and non-speech sounds 

for the purpose of segmenting discussion recordings in meetings. The 

above-mentioned approaches are developed for specific scenarios, only some special 

audio types are considered. The research in [12-14] has taken more general types of 

audio data into account. In [12], 143 features are first studied for their discrimination 

capability. Then, the cepstral-based features such as Mel-frequency cepstral 

coefficients (MFCC), linear prediction coefficients (LPC), etc., are selected to classify 

audio signals. The authors concluded that in many cases, the selection of features is 

actually more critical to the classification performance. More than 90% accuracy rate 
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is reported. Zhang and Kuo [14] first extracted some audio features including the 

short-time fundamental frequency and the spectral tracks by detecting the peaks from 

the spectrum. The spectrum is generated by autoregressive model (AR model) 

coefficients, which are estimated from the autocorrelation of audio signals. Then, the 

rule-based procedure, which uses many threshold values, is applied to classify audio 

signals into speech, music, song, speech with music background, etc. More than 90% 

accuracy rate is reported. The method is time-consuming due to the computation of 

autocorrelation function. Besides, many thresholds used in this approach are empirical, 

they are improper when the source of audio signals is changed. To avoid these 

disadvantages, in this chapter, we will provide a method with only few thresholds 

used to classify audio data into five general categories: pure speech, music, song, 

speech with music background, and speech with environmental noise background. 

These categories are the basic sets needed in the content analysis of audiovisual data. 

The proposed method consists of three stages: feature extraction, the coarse-level 

classification, and the fine-level classification. Based on statistical analysis, four 

effective audio features are first extracted to ensure the feasibility of real-time 

processing. They are the energy distribution model, variance and the third moment 

associated with the horizontal profile of the spectrogram, and the variance of the 

differences of temporal intervals. Then, the coarse-level audio classification based on 
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the first feature is conducted to divide audio signals into two categories: single-type 

and hybrid-type, i.e., with or without background components. Finally, each category 

is further divided into finer subclass through Bayesian decision function [15]. The 

single-type sounds are classified into speech and music; the hybrid-type sounds are 

classified into speech with environmental noise background, speech with music 

background and song. Experimental results show that the proposed method achieves 

an accuracy rate of more than 96% in audio classification.  

The chapter is organized as follows. In Section 2.2, the proposed method will be 

described. Experimental results and discussion will be presented in Section 2.3. 

Finally, the summary will be given in Section 2.4. 

 

2.2. THE PROPOSED METHOD 

   

The system diagram of the proposed audio classification method is shown in Fig. 

2.1. It is based on the spectrogram and consists of three phases: feature extraction, the 

coarse-level classification and the fine-level classification. First, an input audio clip is 

transformed to a spectrogram as mentioned in Short Time Fourier Transform section 

(Chapter 1, Section 1.3.1) and four effective audio features are extracted. Figs. 

2.2(a) – 2.2(e) show five examples of the spectrograms of music, speech with music 
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background, song, pure speech, and speech with environmental noise background, 

respectively. Then, based on the first feature, the coarse-level audio classification is 

conducted to classify audio signals into two categories: single-type and hybrid-type. 

Finally, based on the remaining features, each category is further divided into finer 

subclasses. The single-type sounds are classified into pure speech and music. The 

hybrid-type sounds are classified into song, speech with environmental noise 

background and speech with music background. In the following, the proposed 

method will be described in details. 

 

Speech
with NB

Speech
with M B
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M usic
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Speech

Fine-Level
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Fig. 2.1.  Block diagram of the proposed system, where “MB” and “NB” are 
the abbreviations for “music background” and “noise background”, 
respectively. 
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Fig. 2.2.  Five spectrogram examples. (a) Music. (b) Speech with music background. 
(c) Song. (d) Speech. (e) Speech with environmental noise background. 
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2.2.1. Feature Extraction Phase 

 

Four kinds of audio features are used in the proposed method, they are energy 

distribution model, variance and the third moment associated with the horizontal 

profile of the spectrogram, and variance of the differences of temporal intervals 

(which will be defined later). To get these features, the audio spectrogram for an audio 

signal is constructed first. Based on the spectrogram, these four features are extracted 

 
(d) 

 
(e) 

 
Fig. 2.2.  Five spectrogram examples. (a) Music. (b) Speech with music 
background. (c) Song. (d) Speech. (e) Speech with environmental noise 
background. (Continued) 
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and described as follows. 

 

2.2.1.1 The Energy Distribution Model 

 

For the purpose of characterizing single-type and hybrid-type sounds, i.e., with or 

without background components, the energy distribution model is proposed. The 

histogram of a spectrogram is also called the energy distribution of the corresponding 

audio signal. In our experiments, we found that there are two kinds of energy 

distribution models: unimodel and bimodel (see Figs. 2.3 (a) and 2.3 (b)), in audio 

signals. In Fig. 2.3, the horizontal axis represents the spectrogram energy. 

For a hybrid-type sound, its energy distribution model is bimodel; otherwise, it is 

unimodel. Thus, to discriminate single-type sounds from hybrid-type sounds, we only 

need to detect the type of the corresponding energy distribution model. To reach this, 

for an audio signal, the histogram of its corresponding spectrogram, )(ih , is 

established first. Then, the mean µ  and the variance 2σ  of )(ih  are calculated. In 

general, if µ  approaches to the position of the highest peak in h , )(ih  will be a 

unimodel (see Fig. 2.3 (a)). On the other hand, for a bimodel, dividing )(ih  into two 

parts from µ , each part will be unimodel (see Fig. 2.3 (b)). Thus, if we find a local 

peak in each part, these two peaks will not be close. Based on these phenomena, a 
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model decision algorithm is provided and described as follows.  
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(a)                                  (b) 

Fig. 2.3.  Two examples of the energy distribution models. (a) Unimodel (the 
histogram of the energy distribution of Fig. 2.2 (a)). (b) Bimodel (the histogram 
of the energy distribution of Fig. 2.2 (c)). 

 

Algorithm 2.1.  Model decision Algorithm 

Input: The spectrogram ),( ωτS  of an audio signal. 

Output: The model type, T, and two parameters T1, T2. 

Step 1. Establish the histogram, 255,...,0),( =iih , of ),( ωτS . 

Step 2. Compute the mean µ  and the variance 2σ  of )(ih . 

Step 3. Find the position p  of the highest peak in )(ih . 

Step 4. If 5≤− µp ,  T = unimodel, go to Step 9. 

Else 

Use µ  to set the search range pℜ  as follows: 

Spectrogram Energy Spectrogram Energy 
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      End if. 

Step 5. Find the position q  of the highest peak )(qh within pℜ . 

Step 6. Find the position v  of the lowest valley )(vh  in the range between p  

and q . 

Step 7. Set qpdst −= . 

Step 8. Set T = bimodel if the following two conditions are satisfied 

       Condition 1: 
2
σ

≥dst . 

       Condition 2: )(
2
1)( phqh ≥  and )(

5
6)( vhqh ≥ . 

       Else T = unimodel.  

Step 9. Output T and assign µ  to T1, µ  + σ  to T2.  

End of Algorithm 2.1. 

 

Through the model decision algorithm described above, the model type for an 

audio signal can be determined. Note that in the algorithm, except the model type 

extracted, two parameters, T1 and T2, which will be used later, will be also obtained. 
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2.2.1.2 The Horizontal Profile Analysis 

 

In this section, we will base on two facts to discriminate an audio clip with or 

without music components. One fact is that if an audio clip contains musical 

components, we can find many horizontal long-line like tracks (see Figs. 2.2 (a) – 2.2 

(c)) in its spectrogram. The other fact is that if an audio clip does not contain musical 

components, most energy in the spectrogram of each frame will concentrate on a 

certain frequency interval (see Figs. 2.2 (d) – 2.2 (e)). Based on these two facts, two 

novel features will be derived and used to distinguish music from speech. 

To obtain these features, the horizontal profile of the audio spectrogram is 

constructed first. Note that the horizontal profile (see Figs. 2.4 (a) – 2.4 (e)) is defined 

as the projection of the spectrogram of the audio clip on the vertical axis. Based on the 

first fact, we can find that for an audio clip with musical components, there will be 

many peaks in its horizontal profile (see Figs. 2.4 (a) – 2.4 (c)), and the location 

difference between two adjacent peaks is small and near constant. On the other hand, 

based on the second fact, we can see that for an audio clip without musical 

components, only few peaks can be found in its horizontal profile (see Figs. 2.4 (d) – 

2.4 (e)), and the location difference between any two successive peaks is larger and 

variant. Based on the above description, for an audio clip, all peaks, iP , in its 
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horizontal profile are first extracted; and the location difference, idP , between any 

two successive peaks is evaluated. Note that in order to avoid the influence of noise in 

high frequency, the frequency components above Fs/4 are discarded, where Fs is the 

sampling rate. 

Then the variance, idPv , and the third moment, idPm , of sdPi  are taken as the 

second and third features and used to discriminate audio clips with or without music 

components. Note that variance and the third moment stand for the spread and 

skewness of the location differences of all two successive peaks in the horizontal 

profile respectively. For an audio clip with musical components, variance and the 

third moment will be small; however, for an audio clip without musical component, 

these two features will be larger. 

 

 

 

 

 

 

 

 

 

dPi

(a)                                  (b) 

Fig. 2.4.  Five examples of the horizontal profiles. (a) – (e) are the horizontal 
profiles of Figs. 2(a) - 2(e), respectively. 
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2.2.1.3 The Temporal Intervals 

 

Up to now, we have provided three features. By processing the audio signals 

through these features, all audio signals can be classified successfully except the 

(c) (d) 

 

(e) 
Fig. 2.4.  Five examples of the horizontal profiles. (a) – (e) are the horizontal 
profiles of Figs. 2(a) - 2(e), respectively. (Continued) 
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simultaneous speech and music category, which contains two kinds of signals: speech 

with music background and song. To discriminate these, a new feature is provided. 

One important characteristic to distinguish them is the duration of the music-voice.  

The duration of music-voice is defined as the duration of music appearing with 

human voice simultaneously. That is, two successive durations of music-voice is 

separated by the duration of a pure music component. For speech with music 

background, in order to emphasize the message of the talker, the signal energy 

contribution of voice is greater than the contribution of the music. In general, it is 

strongly speech-like, the difference between any two adjacent duration of music-voice 

is variable (see Fig. 2.5 (c)). Conversely, song is usually melodic and rhythmic, the 

difference between any two adjacent duration of music-voice in song is small and near 

constant (see Fig. 2.5 (a)). 

By observing the spectrogram in different frequency bands, we can see that 

music-voice (i.e. speech and music appears simultaneously) has more energy in the 

neighboring middle frequency bands, while music without voice will possess more 

energy in the lower frequency band. These phenomena are shown in Fig. 2.5.  
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(a) 

 

(b) 

 

 

(c) 

 

Human Speaking
Music without Voice

Human Singing 
Music without Voice

Fig. 2.5.  Two examples of the filtered spectrogram. (a) The spectrogram of song. 
(b) The filtered spectrogram of (a). (c) The spectrogram of speech with music 
background. (d) The filtered spectrogram of (c). 
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(d) 

 

 

Based on these phenomena, the property of the duration of each continuous part 

of the simultaneous speech and music in a sound is used to discriminate the speech 

with music background from song. First, a novel feature associated with the temporal 

interval is derived. The temporal interval is defined as the duration of a continuous 

part of music-voice of a sound. Note that the signal between two adjacent temporal 

intervals will be music without human voice. Based on the phenomenon of the energy 

distribution in different frequency bands described previously, an algorithm will be 

proposed to determine the continuous music-voice parts in a sound. Note that some 

frequency noises usually exist in an audio clip, i.e., these noises will contribute to 

those frequencies with lower energy in spectrogram. In order to avoid the influence of 

frequency noise, a filtering procedure is applied in advance to get rid of those with 

lower energy. The proposed filtering procedure is provided and described as follows. 

Fig. 2.5.  Two examples of the filtered spectrogram. (a) The spectrogram of song. 
(b) The filtered spectrogram of (a). (c) The spectrogram of speech with music 
background. (d) The filtered spectrogram of (c). (Continued) 
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Filtering Procedure: 

1) Filter out the higher frequency components with lower energy: 

For the spectrogram of each frame τ , ),( ωτS , find the highest 

frequency hω  with 2),( TS h >ωτ . Set 0),( =
∧

ωτS , hωω >∀ . 

2) Filter other components: 

For hωω < , 
⎩
⎨
⎧ <

=
∧

.),,(
1),(,0

),(
otherwiseS

TSif
S

ωτ
ωτ

ωτ  

 

Figs. 2.5 (b) and 2.5 (d) show the filtered spectrograms of Figs. 2.5 (a) and 2.5 (c), 

respectively. In what follows, we will be interested in how to determine the temporal 

intervals. 

Note that an audio clip of the simultaneous speech and music category contains 

several temporal intervals and some short periods of background music, each of ones 

will separate two temporal intervals (see Fig. 2.5 (a)). To extract temporal intervals, 

the entire frequency band [0, Fs/2] is first divided into two subbands of unequal width: 

[0, Fs/8] and [Fs/8, Fs/2]. Next, for each frame, evaluate the ratio of the non-zero part 

in each subband to the total non-zero part. If the ratio is larger than 10%, mark the 

subband. Based on the marked subbands, we can extract the temporal intervals. First, 

those neighboring frames with the same marked subbands are merged to form a group. 
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If the higher subband (i.e., [Fs/8, Fs/2]) in a group is marked, the group will be 

regarded as a part of music-voice (also called raw temporal interval). That is, a 

temporal interval is a sequence of frames with higher energy in higher subband. 

Since the results obtained after filtering procedure are usually sensitive to 

unvoiced speech and slight breathing, a re-merged process is then applied to the raw 

temporal intervals. During the re-merged process, two neighboring intervals are 

merged if the distance between them is less than a threshold. Fig. 2.6 shows an 

example of the re-merge process. Once we complete this step, we will obtain a set of 

temporal intervals and the duration difference between any two successive intervals is 

evaluated. Finally, the variance of these differences, dtv , is taken as the last feature. 

 

 

 

 

 

 

 

 

 

  

 

     

 

 

(a)                               (b) 

Fig. 2.6.  An example of the re-merged process. (a) Initial temporal intervals. (b) 
Result after re-merged process.   

distance<threshold re-merge
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2.2.2. Audio Classification 

 

Since there are some similar properties among most of the five classes 

considered, it is hard to find distinguishable features for all of these five classes. To 

treat this problem, a hierarchical system is proposed. It will do coarse-level 

classification first, then the fine-level classification is performed. To meet the aim of 

on-line classification, features described above are computed on the fly with incoming 

audio data. 

 

2.2.2.1 The Coarse-Level Classification 

 

The aim of coarse-level audio classification is to separate the five classes into 

two categories such that we can find some distinguishable features in each category. 

Based on the energy distribution model, audio signals can be first classified into two 

categories: single-type and hybrid-type, i.e., with or without background components. 

Single-type sounds contain pure speech and music. And hybrid-type sounds contain 

song, speech with environmental noise background and speech with music 

background. 
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2.2.2.2 The Fine-Level Classification  

 

The coarse-level classification stage yields a rough classification for audio data. 

To get the finer classification result, the fine-level classifier is conducted. Based on 

the extracted feature vector X, the classifier is designed using a Bayesian approach 

under the assumption that the distribution of the feature vectors in each class kw  is a 

multidimensional Gaussian distribution ),( kkk CmN . The Bayesian decision 

function [15] for class kw , )(Xdk  has the form: 

)()(
2
1ln

2
1)(ln)( 1

kk
T

kkkk mXCmXCwPXd −−−−= −  ,      (2.3) 

where km  and kC are the mean vector and covariance matrix of X, and )( kwP  is 

the priori probability of class kw . For a piece of sound, if its feature vector X satisfies 

)()( XdXd ji >  for all ij ≠ , it is assigned to class iw . 

The fine-level classifier consists of two phases. During the first phase, we take 

( idPv , idPm ) as the feature vector X and apply Bayesian decision function to each of 

the two coarse-level classes separately. For each audio signal of the single-type class, 

we can successfully classify it as music or pure speech. And the classification is well 

done without needing any further processing. For that of the hybrid-type sounds, 

which may be speech with environmental noise background, speech with music 
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background or song, the same procedure is applied. Speech with environmental noise 

background is distinguished and what left in the first phase is the subclass including 

speech with music background and song. An additional process is needed to do further 

classification for the subclass. To do this, the Bayesian decision function with the 

feature dtv  is applied. And we can successfully classify each signal in this subclass 

as speech with music background or song.  

 

2.3. EXPERIMENTAL RESULTS 

 

In order to do comparison, we have collected a set of 700 generic audio pieces of 

different types of sound according to the collection rule described in [14] as the 

testing database. Care was taken to obtain a wide variation in each category, and most 

of clips are taken from MPEG-7 content set [14, 17]. For single-type sounds, there are 

100 pieces of classical music played with varied instruments, 100 other music pieces 

of different styles (jazz, blues, light music, etc.), and 200 clips of pure speech in 

different languages (English, Chinese, Japanese, etc.). For hybrid-type sounds, there 

are 200 pieces of song sung by male, female, or children, 50 clips of speech with 

background music (e.g., commercials, documentaries, etc.), and 50 clips of speech 

with environmental noise (e.g., sport broadcast, news interview, etc.). These audio 
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clips (with duration from several seconds to no more than half minute) are stored as 

16-bit per sample with 44.1 kHz sampling rate in the WAV file format. 

 

2.3.1 Classification Results  

 

Tables I and II show the results of the coarse-level classification and the final 

classification results, respectively. From Table II, it can be seen that the proposed 

classification approach for generic audio data can achieve an accuracy rate of more 

than 96% by using the testing database. The training is done using 50% of randomly 

selected samples in each audio type, and the test is operated on the remaining 50%. 

By changing training set several times and evaluating the classification rates, we find 

that the performance of the system is stable and independent on the particular test and 

training sets. Note that the experiments are carried out on a Pentium II 400 

PC/Windows 2000, it needs less than one twentieth of the time required to play the 

audio clip for processing an audio clip. The only computational expensive part is the 

spectrogram, and the other processing is simple by comparison (e.g. variances, peak 

finding, etc). In order to do comparison, we also like to cite the efficiency of the 

existing system described in [14], which also includes the five audio classes 

considered in our method and uses similar database to ours. The authors of [14] report 
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that less than one eighth of the time required to play the audio clip are needed to 

process an audio clip. They also report that their accuracy rates are more than 90%. 

 

TABLE 2.1 
COARSE-LEVEL CLASSIFICATION RESULTS. 

Audio Type Number Correct Rates 

Pure Speech 200 100% Single-Type 

Sounds Pure Music 200 100% 

Song 200 100% 

Speech with MB 50 100% 

Hybrid-type 

Sounds 

Speech with NB 50 100% 

 

TABLE 2.2 
FINAL CLASSIFICATION RESULTS. 

Audio Type Number Correct Rates 

Pure Speech 200 100% Single-Type 

Sounds Pure Music 200 97.6% 

Song 200 98.53% 

Speech with MB 50 96.5% 

Hybrid-type 

Sounds 

Speech with NB 50 100% 
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2.4. SUMMARY 

 

In this chapter, we have presented a new method for the automatic classification 

of generic audio data. An accurate classification rate higher than 96% was achieved. 

Two important and distinguishing features compared with previous work in the 

proposed scheme are the complexity and running time. Although the proposed scheme 

covers a wide range of audio types, the complexity is low due to the easy computing 

of audio features, and this makes online processing possible.  

Besides the general audio types such as music and speech tested in existing work, 

we have taken hybrid-type sounds (speech with music background, speech with 

environmental noise background, and song) into account. While current existing 

approaches for audio content analysis are normally developed for specific scenarios, 

the proposed method is generic and model free. Thus, our method can be widely 

applied to many applications. 
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CHAPTER 3 

A NEW APPROACH FOR AUDIO CLASSIFICATION 

AND SEGMENTATION USING GABOR WAVELETS AND 

FISHER LINEAR DISCRIMINATOR 

 

3.1. INTRODUCTION 

 

In recent years, audio, as an important and integral part of many multimedia 

applications, has been gained more and more attentions. Rapid increase in the amount 

of audio data demands for an efficient method to automatically segment or classify 

audio stream based on its content. Many studies on audio content analysis [1-14] 

haven been proposed. 

A speech/music discriminator was provided in [3], based on thirteen features 

including cepstral coefficients, four multidimensional classification frameworks are 

compared to achieve better performance. The approach presented by Saunders [5] 

takes a simple feature space, it is performed by exploiting lopsidedness of the 

distribution of zero-crossing rate, where speech signals show a marked rise that is not 

common for music signals. In general, for speech and music, it is not hard to reach a 

relatively high level of discrimination accuracy since they have quite different 
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properties in both time and frequency domains.  

Besides speech and music, it is necessary to take other kinds of sounds into 

consideration in many applications. The classifier proposed by Wyse and Smoliar [7] 

classifies audio signals into “music,” “speech,” and “others.” It was developed for the 

parsing of news stories. In [8], audio signals are classified into speech, silence, 

laughter, and non-speech sounds for the purpose of segmenting discussion recordings 

in meetings. However, the accuracy of the segmentation resulted using this method 

varies considerably for different types of recording. Besides the commonly studied 

audio types such as speech and music, the research in [12-14] has taken into account 

hybrid-type sounds, e.g., the speech signal with the music background and the singing 

of a person, which contain more than one basic audio type and usually appear in 

documentaries or commercials. In [12], 143 features are first studied for their 

discrimination capability. Then, the cepstral-based features such as Mel-frequency 

cepstral coefficients (MFCC), linear prediction coefficients (LPC), etc., are selected to 

classify audio signals. Zhang and Kuo [14] extracted some audio features including 

the short-time fundamental frequency and the spectral tracks by detecting the peaks 

from the spectrum. The spectrum is generated by autoregressive model (AR model) 

coefficients, which are estimated from the autocorrelation of audio signals. Then, the 

rule-based procedure, which uses many threshold values, is applied to classify audio 
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signals into speech, music, song, speech with music background, etc. Accuracy of 

above 90% is reported. However, this method is complex and time-consuming due to 

the computation of autocorrelation function. Besides, the thresholds used in this 

approach are empirical, they are improper when the source of audio signals is 

changed. 

In this chapter, we will provide two classifiers, one is for speech and music 

(called two-way); the other is for five classes (called five-way) that are pure speech, 

music, song, speech with music background, and speech with environmental noise 

background. Based on the classification results, we will propose a merging algorithm 

to divide an audio stream into some segments of different classes. 

One basic issue for content-based classification of audio sound is feature 

selection. The selected features should be able to represent the most significant 

properties of audio sounds, and they are also robust under various circumstances and 

general enough to describe various sound classes. The issue in the proposed method is 

addressed in the following: first, some perceptual features based on the Gabor wavelet 

filters [15-16] are extracted as initial features, then Fisher Linear Discriminator (FLD) 

[17] is applied to these initial features to explore the features with the highest 

discriminative ability. 

Note that FLD is a tool for multigroup data classification and dimensionality 
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reduction. It maximizes the ratio of between-class variance to within-class variance in 

any particular data set to guarantee maximal separability. Experimental results show 

that the proposed method can achieve an accuracy rate of discrimination over 98% for 

a two-way speech/music discriminator, and more than 95% for a five-way classifier 

which uses the same database as that used in the two-way discrimination. Based on 

the classification result, we can also identify scene breaks in audio sequence quite 

accurately. Experimental results show that our method can detect more than 95% of 

audio type changes. These results demonstrate the capability of the proposed audio 

features for characterizing the perceptual content of an audio sequence. 

The rest of the chapter is organized as follows. In Section 3.2, the proposed 

method is described in details. Experimental results and discussion are presented in 

Section 3.3. Finally, in Section 3.4, we give a summary.  

 

3.2. THE PROPOSED METHOD 

 

The block diagram of the proposed method is shown in Fig. 3.1. It is based on 

the spectrogram and consists of five phases: time-frequency distribution (TFD) 

generation, initial feature extraction, feature selection, classification and segmentation. 

First, the input audio is transformed to a spectrogram, ),( yxI , as mentioned in 
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Multi-resolution Short Time Fourier Transform section (Chapter 1, Section 1.3.2). 

Second, for each clip with one-second window, some Gabor wavelet filters will be 

applied to the resulting spectrogram to extract a set of initial features. Third, based on 

the extracted initial features, the Fisher Linear Discriminator (FLD) is used to select 

the features with the best discriminative ability and also to reduce feature dimension. 

Fourth, based on the selected features, classification method is then provided to 

classify each clip. Finally, based on the classified clips, a segmentation technique is 

presented to identify scene breaks in each audio stream. In what follows, we will 

describe the details of the proposed method. 
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Fig. 3.1.  Block diagram of the proposed method, where “MB” and “NB” are the 
abbreviations for “music background” and “noise background”, respectively. 
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3.2.1 Initial Feature Extraction 

 

Generally speaking, the spectrogram is a good representation for the audio since 

it is often visually interpretable. By observing a spectrogram, we can find that the 

energy is not uniformly distributed, but tends to cluster to some patterns (see Fig. 3.2 

(a), 3.2 (b)). All curve-like patterns are called tracks [31]. Fig. 3.2 (a) shows that for a 

music signal, some line tracks corresponding to tones will exist on its spectrogram. 

Fig. 3.2 (b) shows some patterns including clicks (broadband, short time), noise burst 

(energy spread over both time and frequency), and frequency sweeps in a song 

spectrogram.  

 

 

 

 

 

 

 

 

 

    
      (a)                               (b) 

Fig. 3.2.  Two examples to show some possible different kinds of patterns in 
a spectrogram. (a) Line tracks corresponding to tones in a music spectrogram. 
(b) Clicks, noise burst and frequency sweeps in a song spectrogram.  
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Thus, if we can extract some features from a spectrogram to represent these 

patterns, the classification should be easy. Smith and Serra [32] proposed a method to 

extract tracks from a STFT spectrogram. Once the tracks are extracted, each track is 

classified. However, tracks are not well suited for describing some kinds of patterns 

such as clicks, noise burst and so on. To treat all kinds of patterns, a richer 

representation is required. In fact, these patterns contain various orientations and 

spatial scales. For example, each pattern formed by lines (see Fig. 3.2 (a)) will have a 

particular line direction (corresponding to orientation) and width (corresponding to 

spatial scale) between two adjacent lines; each pattern formed by curves (see Fig. 3.2 

(b)) contains multiple line directions and a particular width between two neighboring 

curves. Since Gabor wavelet transform provides an optimal way to extract those 

orientations and scales [27], in this chapter, we will use the Gabor wavelet functions 

to extract some initial features to represent those patterns. The detail will be described 

in the following section.   

 

3.2.1.1 Gabor Wavelet Functions and Filters Design 

 

Two-dimensional Gabor kernels are sinusoidally modulated Gaussian Functions. 

Let ),( yxg  be the Gabor kernel, its Fourier Transform ),( vuG  can be defined as 
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follows [28]: 
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Gabor wavelets are sets of Gabor kernels which will be applied to different 

subbands with different orientations. It can be obtained by appropriate dilations and 

rotations of ),( yxg  through the following generating functions [28]: 
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where 
K
nπθ = , .1,,1,0 −= Kn L , .1,,1,0 −= Sm L , K is the total number of 

orientations, S  is the number of scales in the multi-resolution decomposition, hω  

and lω  are the highest and the lowest center frequency, respectively. In this chapter, 

we set 64
3=lω , 4

3=hω , 6=K  and 7=S . 
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3.2.1.2 Feature Estimation and Representation 

 

To extract the audio features, each Gabor wavelet filter, ),( yxgmn , is first 

applied to the spectrogram ),( yxI  to get a filtered spectrogram, ),( yxWmn , as 

111111 ),(*),(),( dydxyxgyyxxIyxW
mnmn ∫ −−= ,              (3.7) 

where * indicates the complex conjugate. The above filtering process is executed by 

FFT (fast Fourier Transform). That is 

    { } { }{ }),(),(),( 1 yxIFyxgFFyxW mnmn ⋅= − .                (3.8) 

Since peripheral frequency analysis in the ear system roughly follows a 

logarithmic axis, in order to keep with this way, the entire frequency band [0, Fs/2] is 

divided into six subbands of unequal width: F1=[0, Fs/64], F2=[Fs/64, Fs/32], 

F3=[Fs/32, Fs/16], F4=[Fs/16, Fs/8], F5=[Fs/8, Fs/4], and F6=[Fs/4, Fs/2]. In our 

experiments, high frequency components above Fs/4 (i.e., subband [Fs/4, Fs/2]) are 

discarded to avoid the influence of noise. Then, for each interested subband iF , the 

directional histogram, ),( nmiH , is defined to be 

∑
=

= 5

0
),(

),(
),(

n
i

i
i

nmN

nmN
nmH , 4,,0 L=i ,                        (3.9) 

,
,0

),(,1
),(

⎩
⎨
⎧ ∈>

=
otherwise

FyandTyxWif
yxW immni

mn                   (3.10) 

     ,),(),( ∑∑=
x y

i
mni yxWnmN                              (3.11) 



 48

where .6,,0 L=m  and .5,,0 L=n . Note that ),( nmNi  is the number of pixels in 

the filtered spectrogram ),( yxmnW  at subband iF , scale m and direction n with 

value larger than threshold mT . mT  is set as 

                  mmmT σµ += .                                (3.12) 

where 
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and mN  is the number of pixels over all the 6 filtered spectrogram ),( yxmnW  with 

scale m.  

An initial feature vector, f , is now constructed using ),( nmiH  as feature 

components. Recall that in our experiments, we use seven scales (S=7), six 

orientations (K=6) and five subbands, this will result in a 567 ××  dimensional 

initial feature vector  

THHHf )]5,6(,),1,0(),0,0([ 400 L= .                     (3.13) 

 

3.2.1.3 Feature Selection and Audio Classification 

 

The initial features are not used directly for classification since some features 

give poor separability among different classes and inclusion of these features will 
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lower down classification performance. In addition, some features are highly 

correlated so that redundancy will be introduced. To remove these disadvantages, in 

this chapter, the Fisher Linear Discriminator (FLD) is applied to the initial features to 

find those uncorrected features with the highest separability. Before describing FLD, 

two matrices, between-class scatter and within-class scatter, will first be introduced. 

The within-class scatter matrix measures the amount of scatter between items in the 

same class and the between-class scatter matrix measures the amount of scatter 

between classes. 

For the thi  class, the within-class scatter matrix i
wS  is defined as 

∑
∈
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i
i
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i
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the total within-class scatter matrix wS  is defined as  
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and the between-class scatter matrix bS  is defined as 
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where iµ  is the mean of class iX , iN  is the number of samples in class iX , i
kx  

is the kth sample in iX , and C  is the number of classes. 

In FLD, a matrix { }121 ,,, −= Copt vvvV L  is first chosen, it satisfies the 

following equation: 
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In fact, { }121 ,,, −Cvvv L  is the set of generalized eigenvectors of bS  and wS  

corresponding to the 1−C  largest generalized eigenvalues { }1,,2,1 −= Cii Kλ  [17], 

i.e., 

iwiib vSvS λ= .                        (3.18)  

Note that in this chapter, two classes and five classes (i.e., 2=C  and 5=C ) are 

used and one-second audio clip is taken as the basic classification unit. 

Based on optV , the initial feature vector for each one-second audio clip in the 

training data and testing data is projected to the space generated by optV  to get a new 

feature vector 'f  with dimension C-1. 'f  is then used to stand for the audio clip. 

Before classification, it is important to give a good similarity measure. In our 

experiments, the Euclidean distance worked better than others (e.g., Mahalanobis, 

covariance, etc.). For each test sample, jx  with feature vector '
jf , the Euclidean 

distance between the test sample and the class center of each class in the space 

generated by optV  is evaluated. Then the sample is assigned to the class with 

minimum distance. That is, jx  is assigned as class '
jC  according to the following 

criterion: 

CifC ij
i

j ,,2,1,minarg ''' L=−= µ , ,                    (3.19) 

where '
iµ  is the mean vector of the projected vectors of all test samples in class i. 
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Fig. 3.3 shows an example of using a two-way speech/music discriminator. In the 

figure, “x” stands for the projected result of an music signal, “o” stands for the 

projected result of a speech signal. From this figure, we can see that through FLD, 

music and speech samples can be easily separated. Fig. 3.4 outlines the process of 

feature selection and classification.  

Two problems arise when using Fisher discriminator. First, the matrices needed 

for computation are very large. Second, since we may have fewer training samples 

than the number of features in each sample, the data matrix is rank deficient. To avoid 

the problems described above, it is possible to solve the eigenvectors and eigenvalues 

of a rank deficient matrix by using a generalized singular value decomposition routine. 

One simple and speedup solution [33] is taken in this chapter. 

 

 

 

 

 

 

 

  
Fig. 3.3.  An example of using FLD for two-way speech/music discriminator. 
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3.2.1.4 Segmentation 

 

The segmentation is to divide an audio sequence into semantic scenes called 

“audio scene” and to index them as different audio classes. Due to some classification 

errors, a reassigning algorithm is first provided to rectify these classification errors. 

For example, if we detect a pattern like speech-music-speech, and the music 

subpattern lasts a very short time, we can conclude that the music subpattern should 

be speech. First, for each one-second audio clip, the similarity measure between the 

audio clip and the center of its class is defined as 

     
∑ =

−= 5
1

min1
j jdist

dist
Similarity , ,minmin jj

distdist =                 (3.20) 

where jdist  is the Euclidean distance between the clip and the thj  class center in 
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Fig. 3.4.  A block diagram of feature selection and classification using 
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the feature space. If the similarity measure is less than 0.9, mark the clip as 

ambiguous. Note that ambiguous clips often arise in transition periods. For example, 

if a transition happens when speech stops and music starts, then each clip in the 

transition will contain both speech and music information. Then, each ambiguous clip 

will be reassigned as the class of the nearest unambiguous clip. After the reassignment 

is completed, all neighboring clips with the same class are merged into a segment. 

Finally, for each audio segment, the length is evaluated. If the length is shorter than 

the threshold T (T=3 second), each clip in the segment is reassigned as the class of one 

of its two neighboring audio segments with the least Euclidean distance between the 

clip and the center of class of the selected neighboring segment. 

 

3.3. EXPERIMENTAL RESULTS 

 

In order to do comparison, we have collected a set of 700 generic audio pieces 

(with duration from several seconds to no more than one minute) of different types of 

sound according to the collection rule described in [14] as the testing database. Care 

was taken to obtain a wide variation in each category, and some of clips are taken 

from MPEG-7 content set [23]. The database contains 100 pieces of classical music 

played with varied instruments, 100 other music pieces of different styles (jazz, blues, 



 54

light music, etc.), 200 pieces of pure speech in different languages (English, Chinese, 

Japanese, etc.), 200 pieces of song sung by male, female, or children, 50 pieces of 

speech with background music (e.g. commercials, documentaries, etc.), and 50 pieces 

of speech with environmental noise (e.g. sport broadcast, news interview, etc.). These 

shorter audio clips are stored as 16-bit per sample with 44.1 kHz sampling rate in the 

WAV file format and are used to test the audio classification performance. Note that 

we take one-second audio signal as a test unit. 

We also collected a set of 15 longer audio pieces recorded from movies, radio or 

video programs. These pieces last from several minutes to an hour and contain various 

types of audio. They are used to test the performance for audio segmentation. 

 

3.3.1 Audio Classification Results 

 

In order to examine the robust use for a variety of the audio source and the 

accuracy for audio classification, we present two experiments. One is two-way 

discrimination and the other is five-way discrimination. Concerning the two-way 

discrimination, we try to classify the audio set into two categories: music and speech. 

As for the five-way discrimination, the audio set will be classified into five categories: 

pure speech, pure music, song, speech with music background, and speech with 
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environmental noise background.  

Tables 3.1 and 3.2 show the results of the classification. From these tables, we 

can see that the proposed classification approach for generic audio data can achieve an 

over 98% accuracy rate for the speech/music discrimination, and more than 95% for 

the five-way classification. Both classifiers use the same testing database. It is worth 

mentioning that the training is done using 50% of randomly selected samples in each 

audio type, and the test is operated on the remaining 50%. By changing training set 

several times and evaluating the classification rates, we find that the performance is 

stable and independent on the particular test and training sets. The experiments are 

carried out on a Pentium II 400 PC/Windows 2000 with less than one-eleventh of the 

time required to play the audio clip. 

In our experiments, there are several misclassifications. From Table 3.2, we can 

see that most errors occur in the speech with music background category. This is due 

to that the music or speech component is weak. In order to do comparison, we also 

like to cite the efficiency of the existing system described in [14], which also includes 

the five audio classes considered in our method and uses similar database to ours. The 

authors of [14] report that less than one eighth of the time required to play the audio 

clip are needed to process an audio clip. They also report that their accuracy rates are 

more than 90%. 
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TABLE 3.1 
TWO-WAY CLASSIFICATION RESULTS  

Audio Type Number Correct Rate 

Speech 300 98.17% 

Music 400 98.79% 

 

TABLE 3.2 
FIVE-WAY CLASSIFICATION RESULTS  

 Number Discrimination Results 

Audio Type  Pure Music Song Pure Speech Speech with MB Speech with NB

Pure Music 200 94.67% 3.21% 1.05% 1.07% 0% 

Song 200 0.8% 96.43% 0% 1.97% 0.8% 

Pure Speech 200 0% 0.14% 98.40% 0.11% 1.35% 

Speech with MB 50 1.01% 4.2% 3.10% 89.62% 2.07% 

Speech with NB 50 0.15% 0.71% 1.28% 0.63% 97.23% 

 

3.3.2 Audio Segmentation Results 

 

We tested our segmentation procedure with audio pieces recorded from radio, 

movies, and video programs. We made a demonstration program for online audio 
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segmentation and indexing as shown in Fig. 3.5. Fig. 3.5 (a) shows the classification 

result for a 66 second audio piece recorded from MPEG-7 data set CD19 that is a 

Spanish cartoon video called “Don Quijote de la Mancha.” Fig. 3.5 (b) shows the 

result of applying the segmentation method to Fig. 3.5 (a). Besides the above example, 

we also performed experiments on other audio pieces. 

Listed in Table 3.3 is the result of the audio segmentation, where miss-rate and 

over-rate are defined as the ratio between the number of miss-segmented ones and the 

actual number of segments, and the ratio between the number of over-segmented ones 

and the actual number of segments in audio streams, respectively. Besides, error rate 

is defined as the ratio between the number of segments indexed in errors and the 

actual number of segments in audio stream.  

The first column shows the segmentation result without applying the 

reassignment process to the classification result, and the second column shows the 

segmentation result using the reassignment process. The experiments have shown that 

the proposed scheme achieves satisfactory segmentation and indexing. Using human 

judgement as the ground truth, our method can detect more than 95% of audio type 

changes. 

 

 



 58
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(b) 

 
Fig. 3.5.  Demonstration of audio segmentation and indexing, where “SMB” and 
“SNB” are the abbreviations for “speech with music background” and “speech with 
noise background”, respectively. (a) Original result. (b) Final results after applying the 
segmenting algorithm to (a). 
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TABLE 3.3 
SEGMENTATION RESULTS. 

 Without Using 

Reassignment 

Using 

Reassignment 

Miss-Rate 0% 1.1% 

Over-Rate 5.2% 1.8% 

Error-Rate 2.5% 1.3% 

 

 

3.4. SUMMARY 

 

In this chapter, we have presented a new method for the automatic classification 

and segmentation of generic audio data. An accurate classification rate higher than 

95% was achieved. The proposed scheme can treat a wide range of audio types. 

Furthermore, the complexity is low due to the easy computing of audio features, and 

this makes online processing possible. The experimental results indicate that the 

extracted audio features are quite robust. 

Besides the general audio types such as music and speech tested in existing work, 

we have taken into account other different types of sounds including hybrid-type 
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sounds (e.g. speech with music background, speech with environmental noise 

background, and song). While current existing approaches for audio content analysis 

are normally developed for specific scenarios, the proposed method is generic and 

model free. Thus, it can be widely applied to many applications.  
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CHAPTER 4 

CONTENT-BASED AUDIO RETRIEVAL BASED ON 

GABOR WAVELETS 

 
4.1. INTRODUCTION 

 

The recent emerging of multimedia and the tremendous growth of multimedia 

data archives have made the effective management of multimedia databases become a 

very important and challenging task. Therefore, developing an efficient searching and 

indexing technique for multimedia databases become very important and have drawn 

lots of attention recently. As many research works were done on the content-based 

retrieval of image and video data, less attention was received to the content-based 

retrieval of audio data.  

In recent years, techniques for audio information retrieval have started emerging 

as research prototypes [9-24]. These systems can be classified into two major 

paradigms [22, 34]. In the first paradigm, the user sings a melody and similar audio 

files containing that melody are retrieved. This kind of approaches [18] is called 

“Query by Humming” (QBH). It has the disadvantage of being applicable only when 

the audio data is stored in symbolic form such as MIDI files. The conversion of 
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generic audio signals to symbolic form, called polyphonic transcription, is still an 

open research problem in its infancy [22]. Another problem with QBH is that it is not 

applicable to several musical genres such as Dance music where there is no singable 

melody that can be used as a query. The second paradigm [9-10, 13, 16-24] is called 

“Query-by-Example” (QBE), a reference audio file is used as the query and audio 

files with similar content are returned and ranked by their similarity degree. In order 

to search and retrieve general audio signals such as the raw audio files (e.g. mp3, 

wave, etc.) on the web or databases, only the QBE paradigm is currently applicable. 

In this dissertation, we will develop a QBE system that will work directly on real 

world raw audio data without attempting to transcribe the music.  

Wold, et al. [9] proposed an approach to retrieve the audio objects based on their 

content in waveform. In this approach, an N-vector for a given sound is constructed 

according to the acoustical features including loudness, pitch, brightness, bandwidth, 

and harmonicity. The N-vector is then used to classify sounds for similar searching. 

This method is only suitable for sounds with a single timbre. Besides, the method is 

supervised and not adequate to index general audio content. An approach based on the 

histogram model of the zero-crossing features for searching quickly through broadcast 

audio data was provided in [15]. In this approach, a certain reference template is 

defined and applied on each audio stream to find whether it contains the desired 



 63

reference sound. The accuracy of the result using this method varies considerably for 

different types of recording. Besides, the audio segment to be searched should be 

known a priori in this algorithm. 

Foote [16] proposed a data driven approach for audio data retrieval by computing 

the Mel-frequency cepstral coefficients (MFCCs) of an audio signal first. Then a 

learning algorithm is applied on these MFCCs to generate a quantization tree. Each 

kind of audio signals is inserted into the corresponding bin in the quantization tree. 

Cosine measurement or Euclidean distance can be used to measure the similarity 

between two bins. A QBE system called “SoundSpotter” [21] provides a sound 

classification tools to classify a large database into several categories and finds the 

best matches to the selected query sound using state-path histograms. It is also based 

on the MFCCs representation. Both of the above-mentioned two MFCC-based 

approaches are not suitable for melody retrieval (e.g. music) since the MFCC-based 

features do not capture enough information about the pitch content, rather, they 

characterize the broad shape of the spectrum. In [24], local peaks in spectrogram are 

identified and a spectral vector is extracted near each peak. Since the parameters used 

in the peak identification algorithm are too many and empirical, they are improper 

when the source of audio signals is changed.  

In this chapter, based on the Gabor wavelet features, we will propose a method 
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for content-based retrieval of perceptually similar music pieces in audio documents. It 

is based on the QBE paradigm and allows the user to select a reference passage within 

an audio file and retrieve perceptually similar passages such as repeating phrases 

within a music piece, similar music clips in a database or one song sung by different 

persons or in different languages. The proposed method consists of four phases: 

time-frequency distribution (TFD) generation, initial feature extraction, feature 

selection and similarity measurement. First, the input audio stream is transformed to a 

spectrogram and divided into clips, each of which contains one-second audio 

information and will meet the human auditory system (HAS) [29]. Second, for each 

clip with one-second window, a set of initial frame-based features are extracted based 

on the Gabor wavelet filters [27-28]. Third, based on the extracted initial features, the 

Singular Value Decomposition (SVD) [25] is used to perform the feature selection and 

to reduce the feature dimension. Finally, a similarity measuring technique is provided 

to perform pattern matching on the resulting sequences of feature vectors.  

Experimental results show that the proposed method can achieve over 96% 

accuracy rate for audio retrieval and the complexity is low enough to allow operation 

on today’s personal computers and other cost-effective computing platforms. These 

results demonstrate the capability of the proposed audio features for characterizing the 

perceptual content of an audio sequence. The rest of the chapter is organized as 
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follows. In Section 4.2, the proposed method is described in details. Experimental 

results and discussion are presented in Section 4.3. Finally, in Section 4.4, we give a 

summary. 

 

4.2. THE PROPOSED METHOD 

 

The block diagram of the proposed method is shown in Fig. 4.1. It is based on 

the spectrogram and consists of four phases: time-frequency distribution (TFD) 

generation, initial feature extraction, feature selection and similarity measurement. 

First, the input audio is transformed to a spectrogram, ),( yxI , as mentioned in 

Multi-resolution Short Time Fourier Transform section (Chapter 1, Section 1.3.2). 

Second, for each clip with one-second window, some Gabor wavelet filters will be 

applied to the resulting spectrogram to extract a set of initial features. Third, based on 

the extracted initial features, the Singular Value Decomposition (SVD) [25] is used to 
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Fig. 4.1.  Block diagram of the proposed method. 



 66

perform the feature selection and to reduce the feature dimension. Finally, based on 

the selected features, a similarity measure is provided to measure the similarity of 

audio data. In what follows, we will describe the details of the proposed method. 

 

4.2.1. Initial Feature Extraction 

 

Generally speaking, the spectrogram is a good representation for the audio since 

it is often visually interpretable. By observing a spectrogram, we can find that the 

energy is not uniformly distributed, but tends to cluster to some patterns. All 

curve-like patterns are called tracks [31]. Fig. 4.2 (a) shows that for a musical 

instrument signal, some line tracks corresponding to tones will exist on its 

spectrogram. Fig. 4.2 (b) shows some patterns including clicks (broadband, short 

time), noise burst (energy spread over both time and frequency), tones, and frequency 

sweeps in a song spectrogram. Thus, if we can extract some features from a 

spectrogram to represent these patterns, the retrieval should be easy. Smith and Serra 

[32] proposed a method to extract tracks from a STFT spectrogram. Once the tracks 

are extracted, each track is classified. However, tracks are not well suited for 

describing some kinds of patterns such as clicks, noise burst and so on. To treat all 

kinds of patterns, a richer representation is required. In fact, these patterns contain 
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various orientations and spatial scales. For example, each pattern formed by lines (see 

Fig. 4.2 (a)) will have a particular line direction (corresponding to orientation) and 

width (corresponding to spatial scale) between two adjacent lines; each pattern formed 

by curves (see Fig. 4.2 (b)) contains multiple line directions and a particular width 

between two neighboring curves. Since Gabor wavelet transform provides an optimal 

way to extract those orientations and scales [29], in this chapter, we will use the 

Gabor wavelet functions to extract some initial features to represent the needed 

patterns. The detail will be described in the following section. 

 

 

 

 

 

 

 

 

 

 

  

  
      (a)                               (b) 

Fig. 4.2.  Two examples to show some possible different kinds of patterns in 
a spectrogram. (a) Line tracks corresponding to tones in a musical instrument 
spectrogram. (b) Clicks, noise burst, tones, and frequency sweeps in a song 
spectrogram.  
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4.2.1.1 Feature Estimation  

 

In this chapter, we will deal with musical audio signal including musical 

instrument and song. Most of the current works only deal with the monophonic 

sources, in this chapter we will also consider polyphonic music. Polyphonic music is 

more common, but it is also more difficult to represent. The most meaningful feeling 

of human perception for the music data is primarily the pitch and timbre. Both of 

them are correlated with the tones. For example, the fundamental tone decides the 

pitch that we hear, and the harmonics decide the timbre. Based on the 

above-observation for the spectrogram (see Fig. 4.2 (a) and 4.2 (b)), we find that some 

line tracks corresponding to tones will exist in the spectrogram. Thus, if we can 

extract the features about tones, the retrieval should be easy. 

Since through our observation, most prominent tracks are near horizontal, in this 

chapter, we only take one orientation that is horizontal. Thus, each Gabor wavelet 

filter as mentioned in Gabor Wavelet Functions and Filters Design section (Chapter 3, 

Section 3.2.1.1), ),( yxgmn , can be briefly represented by ),( yxgm . Note that in our 

experiments, we set 64
3=lω , 4

3=hω , 1=K  and 7=S . To extract the audio 

features, each Gabor wavelet filter, ),( yxgm , is first applied to the spectrogram 

),( yxI  to get a filtered spectrogram, the spectrum of which is represented by 
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),( vumW  called spectrogram spectrum. That is 

    { } { }),(),(),( yxIFyxgFvuW mm ⋅= ,                      (4.1) 

where {}⋅F  is a fast Fourier Transform. 

Up to now, there are S spectrogram spectrum with scale m, ),( vumW , to be 

available. Since, in each audio signal, those tracks appear in the corresponding 

spectrum have a certain scale, not all these spectrogram spectrum are used to perform 

the feature estimation, only the one with the maximum contrast (which corresponds to 

the track scale) is used. To reach this goal, the vertical profile of the spectrum, )(uPm  

( Sm ,,2,1 L= ), is constructed as follows: 

∑=
v

mm vuWuP ).,()(                                (4.2) 

Let PM  be the number of the local peaks ( .,,, 21 PMuuu L ) in )(uPm , )( im uP  

( PMi ,,2,1 L= ) be the magnitudes of these peak points, and  

).(maxmax
imum uPP

i

=                                 (4.3) 

Then the contrast is defined as 

.)(1
1

max ∑
=

−=
PM

i
im

P
mm uP

M
Pcontrast                   (4.4) 

Let 

,arg m
m

contrastmc =                               (4.5) 

then the spectrogram spectrum, ),( vumcW , and the corresponding spectrogram, 

),( yxmcw , are used to do initial feature extraction.  
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Fig. 4.3 (a) shows an example of the Gabor-wavelet filtered spectrogram with the 

maximum contrast, ),( yxmcw . From Fig. 4.3 (a), we can see that the tracks in the 

figure are somewhat obscured, to remove this phenomenon, an enhancement process 

[27] is applied as follows: 

{ }α),(),(),( 1 vuWvuWFyxw mcmcf ⋅= − .                    (4.6) 

where α  is set as 1.4 and  ),( yxfw  is the enhanced spectrogram. Fig. 4.3 (b) 

shows the result of the enhancement process for Fig. 4.3 (a).  

An initial feature vector, f , is now constructed using ),( yxfw as feature 

components. Recall that in our experiments, for each clip with one-second window (M 

frames) is used for constructing spectrogram. Besides, high frequency components 

above Fs/4 are discarded to avoid the influence of noise. These will result in a 

NM ×  dimensional initial feature vector  

 ,][ 21
t

M,,, xxxf L=                        (4.7) 

  

 

 

 

 

       
(a)                                (b) 

Fig. 4.3.  An example to show the enhancement process performing in a 
spectrogram. (a) The Gabor-wavelet filtered spectrogram with the maximum 
contrast. (b) Enhanced spectrogram. 
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where ⎥⎦
⎤

⎢⎣
⎡= ),(,),2,(),1,( Nifwifwifwi Lx  ( Mi ,,2,1 L= ) is the spectral vector of 

each frame in ),( yxfw . 

 

4.2.1.2 Feature Selection and Representation  

 

The initial features are not used directly for similarity measurement since some 

features give poor separability among different objects and inclusion of these features 

will lower down the system performance. In addition, some features are highly 

correlated so that redundancy will be introduced. To remove these disadvantages, in 

this chapter, the Singular Value Decomposition (SVD) [23] is applied to the initial 

features to find those uncorrected features with the highest separability.  

As for the SVD, it is a well-known technique for reducing the dimensionality of 

data while retaining maximum information content. It decomposes the data into a sum 

of vector outer products with vectors representing both the basis function 

(eigenvectors) and the projected features (eigen coefficients). A subset of the complete 

basis is selected to reduce data dimensionality. The loss of information is minimized 

because the basis functions are ordered by statistical salience; thus, functions with low 

information content are discarded. 

Based on SVD, the initial feature vector, f , for each one-second audio clip can 
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be decomposed into the form [28]: 

,tUSVf =                         (4.8) 

where S  is a diagonal matrix containing the singular values of f  along its diagonal, 

and the columns of U  and V  are the eigenvectors (the basis function) of tff , and 

ff t  respectively. Then the basis, V , is reduced by retaining only the first k  basis 

functions. That is 

].,,,[ 21 kk vvvV L=                     (4.9) 

And the initial feature vector f  is projected to the space generated by kV  to get a 

new feature vector 'f  with the reduced dimension. 'f  is then used to stand for the 

audio clip as follows: 

,][ 21
'

k
t'

M
'' ,,, fVxxxf == L                 (4.10) 

where '
ix  ( Mi ,,2,1 L= ) is a k-dimensional vector. Note that we will call kV  as the 

basis of 'f . 

 

4.2.2. Audio Retrieval and Similarity Measurement 

 

In general, audio (multimedia) data searching can be classified into two different 

strategies: “a-whole-object search”, and “in-object search”. “A-whole-object search” 

approach searches for data that is globally similar to the query input; on the other 
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hand, an “in-object search” approach searches for a large piece of data containing a 

fragment that is similar to the query. A method of using the latter searching strategy 

can reach the aim of the first searching strategy but not vice versa. Thus, in this 

chapter, the retrieval is performed based on the latter searching strategy. Based on the 

feature vector introduced in the previous section, the similar audio clip retrieval will 

be conducted. Before retrieval, it is important to give a good similarity measure. Here, 

a distance measure is first proposed to evaluate the similarity between two audio clips. 

In our experiments, the Euclidean distance worked better than others (e.g., 

Mahalanobis, covariance, etc.) in the space generated by kV .  

 

4.2.2.1 Similarity Measure  

 

For the candidate audio sequence, cy  with feature vector ][ ,2,1,
' '

Mj
'
j

'
jj ,,, xxxf L=  

( lj ,,2,1 L= ), where l  is the number of the one-second clips in the audio sequence. 

That is, cy  is divided into one-second clips: 

],,,,[ 21 lc yyy L=y                          (4.11) 

where jy  has feature vector '
jf . 

For every queried one-second clip, qy , before computing the distance between 

qy  and each of the candidate clip jy , qy  should be projected to the basis of jy  to 
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get the corresponding feature t'
Mq

'
q

'
qq ,,, ][ ,2,1,

' xxxf L= . Then the distance between 

one-second clips qy  and jy  is evaluated as follows: 

2
1

1

2'
,

'
,, )(∑

=

−=
M

i
ijiqjqDist xx ,                        (4.12) 

where lj ,,2,1 L=  and '
,

'
, ijiq xx −  stands for the Euclidean distance between two 

vectors: '
,iqx  and '

,ijx . Then for all j , sort jqDist ,  in an increasing order. For the 

top g  clips, we define their grades, jqGd , , as ,,2,1, L−− ggg  and 1, respectively. 

The clip with the least distance will have the highest grade and be considered as the 

most similar one. In addition, jqGd ,  of all other clips are defined as zero. Note that 

in this chapter, one-second audio clip is taken as the basic distance measurement unit. 

 

4.2.2.2 Retrieval 

 

For a query audio sequence, qy , with length p-seconds, it is first divided into p 

successive one-second clips. That is 

                      ].,,,[ 21 p
qqqq yyy L=y                          (4.13) 

Next, for each clip i
qy  ( pi ,,2,1 L= ) and a candidate audio sequence cy ,  the 

similarity measure is first performed and the corresponding grades, i
jqGd ,  

( pi ,,2,1 L= and lj ,,2,1 L= ), are evaluated based on Eq. (4.12). According to these 

grades, the total grade of the candidate clip jy  ( lj ,,2,1 L= ), jqTGd ,_ , is defined 
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to be 

∑
=

−+=
p

i

i
ijqjq GdTGd

1
1,, ._                      (4.14) 

where lj ,,2,1 L= . Finally, based on the set of total grades, jqTGd ,_ ( lj ,,2,1 L= ), 

sort jqTGd ,_  in an increasing order. According to this measure, the top k clips with 

the higher similarity to the query one can be retrieved. For example, the matching clip 

with the highest similarity to the query one can be retrieved according to the 

following criterion:  

,_maxarg , jq
j

TGds =                       (4.16) 

where lj ,,2,1 L=  and the best matched audio sequence, oy , in the candidate audio 

sequence will result in the following audio sequence: 

],,,[ 11 −++= pssso yyy Ly .                (4.17) 

 

4.3. EXPERIMENTAL RESULTS 

 

In order to show the efficiency of the proposed method, we have collected a set 

of 150 musical pieces (50 musical instruments, 100 songs) with total length about 

three hours and 10000 phrases as the testing database. Care was taken to obtain a wide 

variation in each type such as varied instruments, different languages (English, 

Chinese, Japanese, etc.), different singers (male, female, or children), and different 



 76

style (jazz, rock, folk, etc.). These audio clips are stored as 16-bit per sample with 

44.1 kHz sampling rate in the WAV file format and are used to test the audio retrieval 

performance. Note that in order to do comparison, the testing database includes the 

dataset described in [17, 18], and some of clips are taken from MPEG-7 content set 

[29].  

 

4.3.1 Experiment Results  

 

There are two major factors affecting the performance of the proposed approach, 

i.e., the number of the basis functions used and the length of the query example. In 

order to examine the performance of the proposed method, we present two 

experiments. In the first experiment, for each music object in the database, we use its 

refrain as the query example to retrieve all repeating phrases similar to this refrain. 

Therefore, 150 queries are performed. This experiment is presented to examine the 

quality of the proposed retrieval approach with two above-mentioned major factors. 

As for the second experiment, for each song, there will have two versions which are 

sung in different languages or by different persons in the database. We use its refrain 

in a certain version (e.g. the Chinese version) as the query example to retrieve all 

repeating phrases similar to this refrain in other version (e.g. the English version). 

This experiment is presented to examine the robust of the proposed retrieval approach.  
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In this chapter, the performance is evaluated by the precision rates ( rP ) and the 

recall rates ( eR ) [30]. Note that the recall rate, eR , and the precision rate, rP , are 

defined as 

T
NRe =  and 

K
NPr = ,                         (4.18) 

where N  is the number of relevant items retrieved (i.e. correctly retrieved items), 

T  is the total number of relevant items (i.e. correctly retrieved items and the relevant 

items that have not been retrieved) and  K  is the total number of the retrieved items. 

The recall rate is typically used in conjunction with the precision rate, which measures 

the fraction of the retrieved patterns that is relevant. The precision and recall rate can 

often be traded-off. That is one can achieve high precision rate and low recall rate or 

the other way round. 

Tables 4.1 and 4.2 show the results of two experiments presented in this chapter. 

 
TABLE 4.1 

THE AVERAGE RECALL RATES OF THE FIRST EXPERIMENT 

Query Sample Length Basic Function  

Numbers One second Two seconds Three seconds 

5 29% 71% 74% 

10 31% 75% 75% 

15 40% 98% 98% 
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TABLE 4.2 
THE AVERAGE RECALL RATES OF THE SECOND EXPERIMENT 

Query Sample Length Basic Function  

Numbers One second Two seconds Three seconds 

5 31% 71% 72% 

10 31% 71% 74% 

15 38% 94% 94% 

 

In our experiments, the number of retrieved patterns was adjusted to the number of 

relevant patterns, so the precision rate and recall rate are the same. From Table 4.1, we 

can see that the above-mentioned two factors affect the performance of the proposed 

approach. The more basis functions are used, the higher the recall rate will be. And 

the longer length of the query sample is used, the higher the recall rate will be. Based 

on the first experiment, we can see that it is best to perform retrieval using 15 basis 

functions and two-second length of query sample. From Table 4.2, we can also see the 

same phenomena as Table 4.1 except for the lower recall rate.  

Besides, by examining the occurrence of missing in the experiments based on 

human judgement as the ground truth, we found two major factors. First, for the first 

experiment, we find that some errors occur in those searched clips containing a 
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transition, which is made due to that we simply segment an audio object into several 

one-second clips uniformly against pre-dividing the audio object into sequences of 

audio phrases. As a matter of fact, this kind of errors can be reduced by increasing the 

length of query sequence (i.e., clip number) to get more related information or 

performing the pre-dividing for the audio phrases. Secondly, we find that some errors 

occur due to that the refrains of some songs are performed at different tempo. From 

these tables, we can see that the proposed retrieval approach for music data can 

achieve an over 96% accuracy rate. The experiments are carried out on a Pentium II 

400 PC/Windows 2000. The 150 queries can be processed in less than five seconds for 

10000 phrases. In order to do comparison, we also like to cite the efficiency of the 

existing system described in [17, 18], which also uses similar database to ours. The 

authors reported that their accuracy rates are more than 90%.  

 

4.4 SUMMARY 

 

Digital audio signals, especially for music are an important type of media. 

However, few works were focused on the music databases. In this chapter, we have 

presented a new method for content-based music retrieval to retrieve perceptually 

similar music pieces in audio documents. In the proposed method, based on the Gabor 
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wavelet filters, the extracted perceptual features are general enough to meet the 

human auditory system. An accurate retrieval rate higher than 96% was achieved. 

Furthermore, the complexity is low due to the easy computing of audio features, and 

this makes online processing possible.  

There are several related tasks to be conducted in the future. First, we will work 

on the other type of audio source such as sound effects and the compression domain. 

Second, we will work on developing an automatic segmentation technique to divide 

the musical objects into sequences of phrase.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

 

5.1 Conclusions 

 

Rapid increase in the amount of audio data demands for an efficient method to 

automatically analysis audio signal based on its content. In this dissertation, we have 

presented three methods to address the problems of audio segmentation, classification 

and content-based retrieval.  

Besides the general audio types such as music and speech tested in existing work, 

in this dissertation, we have taken hybrid-type sounds (speech with music background, 

speech with environmental noise background, and song) into account. First, we have 

proposed a hierarchical audio classification method to classify audio data into five 

general categories: pure speech, music, song, speech with music background, and 

speech with environmental noise background. These categories are the basic sets 

needed in the content analysis of audiovisual data. An accurate classification rate 

higher than 96% was achieved. The experimental results indicate that the extracted 

audio features are quite robust. 
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We also propose a classification-based audio segmentation method based on 

Gabor wavelets. The proposed method provides two classifiers, one is for speech and 

music (called two-way); the other is for five classes (called five-way) that are pure 

speech, music, song, speech with music background, and speech with environmental 

noise background. In order to make the proposed method robust for a variety of audio 

sources, we use Fisher Linear Discriminator to obtain features with the highest 

discriminative ability. Based on the classification results, a merging algorithm is 

provided to divide an audio stream into some segments of different classes to achieve 

segmentation. Experimental results show that the proposed method can achieve over 

98% accuracy rate for speech and music discrimination, and more than 95% for a 

five-way discrimination. By checking the class types of adjacent clips, we also can 

identify more than 95% audio scene breaks in audio sequence. 

Two important and distinguishing features compared with previous work in the 

above two proposed schemes are the complexity and running time. Although the 

proposed schemes covers a wide range of audio types, the complexity is low due to 

the easy computing of audio features, and this makes online processing possible. Thus, 

the proposed methods can be widely applied to many audiovisual analysis 

applications such as content-based video retrieval. 

Finally, we have presented a new method for content-based music retrieval to 
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retrieve perceptually similar music pieces in audio documents. It is based on the QBE 

paradigm and allows the user to select a reference passage within an audio file and 

retrieve perceptually similar passages such as repeating phrases within a music piece, 

similar music clips in a database or one song sung by different persons or in different 

languages. First, an audio stream is divided into clips and the frame-based features of 

each clip are extracted based on the Gabor wavelet filters. Then, a similarity 

measuring technique is provided to perform pattern matching on the resulting 

sequences of feature vectors. The experimental results demonstrate the capability of 

the proposed audio features for characterizing the perceptual content of an audio 

sequence.      

 

5.2 Future Research Directions 

 

Content-based audio analysis is still a new area that is not well explored. There 

are some possible future research directions. For example, in audio classification and 

segmentation, we will work on the other type of audio source such as sound effects 

and the compression domain. In the content-based audio retrieval, we will emphasize 

in query by humming (QBH).  
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