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By (lo), the right side of (1 1) contains the term 

Since & is symmetric 

where 

Hence, applying the matrix adjoint result we obtain 

where 
l i k = f & + I * k + u k  (k=n-I, ’.‘, 1) 

A, = 0. (15) 

From (8), (1 l), and (14), the  derivative aJ/aej can be written as 

where, for convenience, 

the and Ak’s being given by (12) and (15), respectively. 

Iv. SUMMARY 

A new expression has been obtained for the derivatives of the 
prediction error cost function for time-varying linear dynamic systems. 
The main advantage of this new expression is that it requires fewer 
computations to obtain the gradient than does  the straightforward 
approach via sensitivity equations. 
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On the Identification of Polynomial Input-Output 
Differential Systems 

A. E. PEARSON AND F. C. LEE 

Abstract-A least-squares parameter identification technique is formu- 
lated for a class of deterministic nonlinear systems modeled by polyno- 
mial input-output  differential equations. The basis of the technique is 
Shinbrot’s method of moment functionals using trigonometric modulat- 
ing functions. Given the  input-output data over a single finite time 
interval for a one-shot estimate, or over a sequence of finite time intervals 
for sequential least squares,  the underlying computations utilize a fast 
fourier  transform  algorithm on polynomials of the data without the need 
for estimating unknown initial or boundary conditions at the start of each 
finite time interval. 

I. INTRODUCTION 

The parameter identification of deterministic nonlinear systems 
modeled by polynomial type differential equations can be undertaken by 
the Bellman-Kalaba quasi-linearization technique [I], [2], or by finite- 
dimensional hiU climbing techniques after approximating all signals with 
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piecewise constant Walsh-type orthogonal functions [3]. The  former 
entails the iterative solution to a nonlinear two point boundary value 
problem while the latter approach  gives up the differential equation model 
in the very beginning. In both approaches unknown initial conditions have 
to  be estimated along with the system parameters for time limited data. A 
different approach is taken here for a restricted class I of polynomial 
differential systems which retains the continuous-time format while 
avoiding the necessity to deal with all unknown boundary (initial) 
conditions for input-output data collected over a fued finite time interval, 
or over a sequence of finite time intervals [t, ,  l ; + J 3  each of duration T. 
This is accomplished by projecting the data down into a suitable subspace 
via Shinbrot's "method of moment functionals" [5] using finite sums of 
commensurable sinusoids as the modulating functions. As developed by 
the  authors in [6] for linear systems, the underlying computations entail 
calculating a fixed number of Fourier  series coefficients for the data on 
each [0, TJ interval. It is known that these coefficients can be determined 
with a high degree  of accuracy using the  discrete  Fourier transform (DFT) 
which, in turn, can be evaluated very efficiently using the fast Fourier 
transform (FFT) algorithm.  These computational aspects, together with 
the results of a simulated example, will be discussed following the 
formulation of the  problem. 

II. FOILMULATION 

Let [u(t), y(t)]  denote  an input-output pair for a single input, single 
output system which is observed free of significant measurement noise 
over a fixed finite time interval [0, a:O 5 t 5 T,  or over a sequence of 
time intervals [ti, t , ,  ,], i = 0, 1 . . , each of duration T.  It is assumed that 
the data are bounded and piecewise continuous on every finite time 
interval. Letp denote the differential operator d/dt so thatp2 = d2/dt2,  
etc. Corresponding to opriori integers (n, rn) the  class of models relating 
u(t) and y(t)  is defined by the polynomial input-output differential 
operator equation 

p " y ( t ) + C  o,( j ,  k )pn~ ' tu ( i ) l ' l v ( t ) lk=~  
n m m  

i = l  j = o  k=O 

O l t S T ,  U,(O, O)=O, i = l  . - .  n. (1) 

The ci(j, k )  represent parameters-a total of rnn(rn + 2) in the general 
case-which are  to be determined by a least-squares technique without the 
need for estimating unknown initial conditions at the start of each [ t i ,  ti+ 
interval. 7 

their components 
Defining the column n-vector parameters {a, 8. ~ ( j ) ,  v(k),  ~ ( j ,  k ) }  by 

w,=a,(O, 1) q ; ( j ) = u i ( j ,  O), 2 ~ j s r n  

B;=u,(l, 0) uj(k)=a,(O, k), 25k5m 

T U ,  k)=a, ( j ,  k), 1 sj, k s m  

i = l ,  2, ..-, n, (2) 

it can be readily verified that a set of state equations equivalent to the 
model (1) is specified by 

i=  [ -a : ! x ! ] x - 0 u - i  v ( j ) [ u ] l - i  u(k)[xllk 
1 = 2  4 = 2  

r n m  

-X r(j. W U I J t X l l k  (3) 
J = I   k = l  

in survey articles such as  Haber and Kevinky [4]. 
' The various models commonly used  in  nonlinear systems identification  can  be  found 

' An alternative projection method  w,hich  could be brought to bear on the same class of 
models is the "projected  integral equation error"  technique  presented in 171. However, it 
is believed  that the use of the F'FT algorithm makes the approach of this  paper 
computationally superior to the formulation in (71. 

are such  that ( I )  possesses bounded solutions over the time intervals of interest. Le.. no 
' It will be  tacitly assumed that  any candidate values  assigned to the parameters a,O, k) 

finite escape times. 

where y = x1 is the  first component of the column n-vector x. Within the 
context of analytic differential systems of the form 

2 = f ( x ,  u)  

Y = &x) 

wherefand g are polynomial functions of their arguments, the model (3) 
is seen to represent the special class wherein the output function g is linear 
in x, Le., &x) = c 'x  for  some row vector c'% and the nonlinear t e r n  inf 
are polynomials in the  scalar pair (c'x, u). It is easy to specialize certain 
well-known models to the above form such as  the Duffing and Van der Pol 
equations. 

Shinbrot's method of moment functionals is a classical technique for 
converting a differential equation to an algebraic equation in the 
parameters by the use of so-called modulating functions. As introduced by 
Shinbrot 151, 4(t) is a modulating function of order n relative to a fmed 
time interval 10, T ]  if it is sufficiently smooth and satisfies the end point 
conditions 

Q ("(0) = Q q  T )  = 0 

i=o,  1, ..., (n-1) (4) 

where &(o((t) meansp'Q(t). The significance of this property for the model 
(1)  relates to the fact that if (1) is multiplied by 4(t) and integrated over [O, 
T ] ,  the result is the functional equation 

(- 1)" s'y(t)d(")(t) dt 

+ 2 5 9 u,(j, k)(- l y '  S T  [ u ( t ) ] ~ L v ( t ) ) ] ~ ~ ' ~ - ~ ) ( t )  dt=O. ( 5 )  
< = I  j = O  k=O 

This follows using integration by parts n times and noting the  end point 
conditions (4). Moreover, if (&( t ) } ,  i = 1, 2, . . X, is a set of linearly 
independent modulating functions, a vector algebraic equation results 
which can be used to obtain a least-squares estimate of the parameters. 

As pointed out in [6] the above idea has been pursued by several 
investigators using a variety of modulating functions such as Hermite 
polynomials and splines. However,  the computational burden associated 
with these functionals on the data will generally be significant unless a 
"fast algorithm'' is available. Such is the  case for modulating functions 
comprised of linear combinations of commensurable sinusoids since 
integrals like 

J: [ u ( t ) ] J ~ ( t ) ] k  [sin /wet or cos ~ , t l  dt 

""7 I I=O, 1, 2, ..-, L 2?r 

can be efficiently evaluated by an FFT algorithm especially for  large L .  
With this in mind, letflt) denote  the (2L + 1) column vector of sinusoids 
defined by 

f ( t ) =  col [I; cos ad, sin wet; cos h o t ,  sin 2w0f; .. ., cos Lwot, 

sin Loor] 

21r O S t l T ,  oo=- 
T (6) 

where the integer L must be chosen at least as large as n / 2  in order  to 
satisfy (4). Roughly speaking, the pair (L,  T) will be selected by the user 
so that 2L is somewhat larger than the system model order n and T is 
sufficiently long to assure that w,, = 2 r / T  is small enough to resolve the 
spectral components of the data. This will be discussed further in the next 
section. 

Using the (off line) procedure outlined in [6] ,  let C denote the (2L + 1 
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- n) X ( 2 L  + 1 )  matrix constructed such that a(f) defined by4 

@(t )=Cf ( t ) ,   OStST  (7) 

satisfies the end point conditions 

W ~ ( O ) = @ ( ' ~ ( T ) = o ,  i = O ,  1 ,  . . .  (n-1). (8) 

Thus, @(t)  is a (2L + 1 - n) dimensional vector valued modulating 
function of order n in which the derivatives pi@(t)  = a("(f) have the 
representation [cf. (6)] 

( -  l)'p'@(t)= CDlf(f) ,  i=O, I . . . (9) 

where D is the block diagonal matrix defined by 

and Do is defined as the identity matrix. Then multiplying the model 
equation ( 1 )  with @(f), integrating over [0, T ] ,  and using integration-by- 
parts n times while noting (8) ,  there results the vector analog of (5) :  

where 20'. k) and Yare (finite) Fourier coefficient vectors defined by 

Z(j ,   k )=  IT  [u(t)]JlY(f)]Zf(r) d f ,  O s j ,  k s m  

Y=Z(O, 1). (12) 

Equation (1 1) can be written in the standard form  for least squares by 
defining the column block partitioned parameter vector 0 [cf. (2)] 

e=  col Iff, 0, 7(2) ... dm), u(2)  . ' .  u(m), y(1, 1)  .. . r(m,  m)] 
(13) 

and the coefficient Mjk (each of dimension (2L + 1) x n) according to 
the partitions 

M,P=[D"-'Z(J,  k),  D"-'Z(j,  k) . . .  Z ( j ,  k)]  (14) 

such that the product MO results in the vector sum [cf. (2)  and (3)] 

m m m r n  

/ = 2  k = 2  , = I  P = I  

(1 5 )  

That is to  say, matrix M is partitioned into row blocks 

M= ROW [ M o l ,  M I , ,  Ma . . . M,,, A402 . . Mom, M I L  . . M,,,,] 

(16) 

comformably with the partitioning in 0 such that (15) holds. With these 
definitions, ( 1 1 )  is equivalent to 

CD"Y+CMB=O. (17) 

- n)  Vandenonde type matrix equations. Further  details  can  be  found in [ll]. 
It can be shown that C has full rank and  that determining C involves solving (2L + 1 

The normal equation for (17) is given by 

M'C'CMO=M'C'CD"Y (18) 

and a unique solution for a one-shot least-squares estimate of 6 is obtained 
if  and only if the Gram matrix M'C'CM has full rank. Although the 
matrix C has full rank (2L + 1 - n), it is not enough to assert that a 
unique solution to (18) exists if Mhas  full rank. Hence, the uniqueness of 
the one-shot least-squares estimate is predicated on the condition that CM 
has full rank equal to mn(m + 2). In turn, this implies the inequality ( 2 L  
+ I - n) 2 mn(m + 2) since C has dimension (2L + 1 - n) x ( 2 L  + 
1). Therefore,  the one-shot least-squares estimate has the potential for 
being well posed only if 2L 2 [mn(m + 2) + n - I ] .  This supercedes 
the basic inequality 2L 2 n which arises from the  end point conditions 
(8). 

The above equations pertain to  data observed over a single [0, T ]  time 
interval. In the  case of data observed over sequential time intervals [t i ,  
ti- i = 0, 1 . . . , each of duration T, (17 )  is replaced by 

CDnY(i) + CM(i)O = 0 (19) 

where Y(fi and M(z7 are computed from (12) and (14) for the data 
collected over each T-interval. Standard sequential least-squares theory 
for deterministic discrete models can then be applied to (19) in 
constructing a recursive solution 0(i). 

m. SOME COMPUTATIONAL CONSIDERATIONS 

A. Choice of (L, T) 

Borrowing from frequency domain ideas for linear systems, the choice 
of the time interval [0, TJ can be based on  the heuristic notion that since wo 
= 29/T is essentially the resolving frequency, T should be large enough 
to distinguish the characteristic modes of the system. Likewise, the 
selection of the ratio LIT can be guided by the consideration that Lw0 = 
L 2 d T  be comparable to the system bandwidth. Although "characteristic 
mode" and "system bandwidth" are not well-defined concepts for 
nonlinear systems, their intuitive meanings bear some relevance to this 
discussion. Also, since the modulating functions act as a Nter on the data 
through the finite Fourier  series coefficients, L should not be too  large  as 
to give undue emphasis to whatever high-frequency measurement noise 
might be present in the data. 

B. Computing 20, k) Via FFT Techniques 

The major computational burden in setting up the least-squares 
identification of ( 1 )  will be the determination of the Z u ,  k )  in (12) at each 
stage. Let z ( f )  denote a typical function from the m(m + 1) set of 
functions { [ u ( t ) ] J L ~ ( t ) ] ~ ,  0 5 j ,  k 5 m } ,  0 5 t s T. Then (6) and (12) 
imply determining the following integrals (complex form) for each ~ ( t ) :  

~:z(f)e'feo' dr, I = O ,  1 . . . L.  (20) 

Although the real and imaginary parts of the above integral can be 
evaluated by passing z(t)  through a bank of appropriately tuned harmonic 
oscillators [6 ] ,  greater flexiblity is offered by using well-known digital 
approximations. Thus,  for example. if uniform sampling of z(t) is used to 
generate N samples zi = z(ih), h = TIN, i = 0, 1, . . (N - l), the 
standard parabolic rule yields 

. r  N- I 1 

practical problem, such as initialization  and  roundoff  errors,  which  attend all sequential 
See, for example, Mendel [8] for convergence theorem and a discussion of various 

least-squares formulations. 
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where W = eJ2r’N and o( e) is the order  of  the error as a function of the 
sampling interval h. Assuming N i s  a power of 2, the usual FFT algorithm 
can be used to evaluate the DFT of the quantity in brackets on the right- 
hand side of the  above approximation yielding the Fourier coefficients for 
I = 0, 1 ---(A’ - l) ,  i.e., 

h 
3 Z = -  FFT [(&+Z,v), 421, 222. 423, 2z4 ... 4Z~7-11. (22) 

The computational savings of this algorithm for  large N are well known; 
specifically, log, N/N. However, a special FFT-type algorithm can be 
devised in consideration of  the fact that only L Fourier coefficients are 
needed in the computation and  the efficiency of such an algorithm is log, 
L/L. As pointed out by a reviewer, this represents a kind of FFT 
“pruning” discussed in Markel [9] .  

C. A Simulated  Example 

The following bilinear control system model for nuclear fission is 
discussed in Mohler [lo,  Section 4.11 

@=(u-P)y+IhC 

It = By - I xc. 

Eliminating the “average  precursor population” variable at), the 
preceding equations in the “neutron population“ y(t)  become 

where u(t) is the control reactivity and (A, 0, I )  are parameters 
characterizing the nuclear fission process. Using the sinusoidal forcing 
function 

u ( t ) = 2 +  sin f+- + sin 2t+- ( ;> ( 1) 
several simulation runs were made over a [0,2r] time interval, i.e., w0 = 
2rlT = 1 ,  for a one-shot least-squares estimate of the following 
parameters: 

fJ,=X+-=2.0 P 
I 

Fig. 1 shows the output data f i t )  for noise-free conditions (a) and a run @) 
in which white Gaussian noise was added to the data resulting in a noise- 
to-signal ratio of approximately 5 percent. Notice that the system is 
apparently unstable for the above chosen parameter values and control 
reactivity. 

Table I lists the estimated parameter values for the different runs using 
the modulating function frequencies (0, 1, 2, 3,  4}, i.e., L = 4.6 This 
means that 2L + 1 - n = 7 algebraic equations in (17) were used to 
form the normal equation (1 8) for each run.  No difficulties were 
encountered in solving the normal equation (18) for any of the runs. The 
two columns under each parameter estimate in the table give the results 
for  two  different  discrete approximations in computing the Fourier 
coefficients (21) for each z(t) E {u(r), At), u(r)y(t)}, i.e., the FFT orders 
were N = 128 and N = 256 in (22).’ The results show that good 
accuracy in the parameter estimates is attained under ideal noise free 

combinations of the functions in the two sets  {sin i f ,  1 5 i 5 4) and {cos it, 0 5 i 5 4) 
The modulating functions themselves w’ere obtained by separately subjecting linear 

for t E [O, 2 4  to the end point constraints (4 ) .  As mentioned earlier. this is an off line 
calculation involving the solution to Vandermonde type matrix  equations yielding the 
matrix C in (7). 

T h e  IMSL Library was used  to provide the integration routine (DVERK) for 
eenerating the ”continuous” data and as the source for  an FFT algorithm to compute the 
DFT’s of the ”sampled” data. 
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Fig. I .  Response data for the  nuclear fission example. 

TABLE I 
ESTIMATED  PARAMETER VALUES FOR THE  NUCLEAR FISSION EXAMPLE 

e,  llAell -e, -e, 
\Order FFT 128 I 256  128 I 256 128 I 256 1% I 256 

18 
21 

1 . m  

3. 

4.7% 36.9% 0.939 0.493 0.986 0.982 1.898 
2.110 1.924 0.447 0.947 1.088 

3.5% 15.9% 0.9% 0.809 0.993 0.936 1.921 1.625 4. 
9.4% 37.4% 1.138 0.484 0.942 1.019 2.129 1.233 
3.886 6.8% 1.010 

*Ram 1-4 include  additive noise io the  data with an R W  N/S ratio 21 5%. 

conditions (Run 0) using the relatively coarse DFT order (N = 128), but 
that a similar degree of accuracy could be maintained under the more 
realistic measurement noise case (Runs 1-4) only by increasing the  order 
of the DFT ( N  = 256). Limiting the highest modulating function 
frequency by choosing the value L = 4 served to filter out the higher 
frequencies in the white measurement noise, i.e., increasing L will 
decrease the estimation accuracy in the noisy case. At the same time, 
reducing L will result in fewer algebraic equations for the least-squares 
estimate. A rule of thumb is to choose L such that (2L + 1 - n) is 
approximately double the unknown parameters for a one-shot estimate 
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and to choose T such that L 2 r / T  is comparable to the system bandwidth 
(if known). 

IV. CONCLUSIONS 

Choosing commensurable sinusoids as modulating functions in the 
Shinbrot method of moment functionals, it has been shown how the least- 
squares identification of polynomial input-output differential systems can 
be formulated in a way that utilizes the computationally efficient FFT 
algorithm at each stage while avoiding the necessity to estimate unknown 
initial conditions for  time limited data. In addition to  the  order of the 
system model and the number of parameters to be identified, the choice in 
modulating functions can be based to some extent on noise rejection and 
the heuristic notion of “system bandwidth.” An interesting problem for 
future investigation is determining an optimal set of Fourier-based 
modulating functions which minimizes some measure of the error in the 
parameter estimates for noisy measurements with specified spectral 
characteristics. Another problem is determining conditions on the input - 

that guarantee uniqueness of the least-squares estimate. 
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Nonparametric Kernel Algorithm for Recovery of 
Functions from Noisy Measurements  with Applications 

ALEXANDER  A.  GEORGIEV 

Abstract-This note presents a kernel algorithm for recovery of a 
regression function  from noisy data.  Conditions are provided that assure 
pointwise convergence in the mean square and almost sure senses. An 
application to a class  of linear system identification problems is discussed. 

I. INTRODUCTION 

There are many situations in system identification when a nonlinear 
memoryless system g(x) is estimated from observations (xI, Y l ) ,  (x2, Y2), 
. . . , (x,, Y,), where  the design points xi are  from a real interval [0, 11 
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over which observations are taken, satisfying 

yi=g(xJ+&. (1) 

Assume that the points xi are selected in some  arbitrary fashion by the 
experimenter and are not necessarily equally spaced. The  errors Z1, . . . , 
Z ,  are mean-zero independent identically distributed random variables 
with finite variance d .  It is interesting for many purposes to estimate the 
system g, for example, to predict g at a particular point x and to describe 
and itlustrate the relationship between the design points x, and the 
observations Yi.  

In the finite-dimensional parameter  case, when the function g is known 
except for a set of  parameters, the least square or the maximum likelihood 
methods are commonly used [7], [ 161. 

In this note we propose a nonparametric kernel algorithm for recovery 
of the function g from noisy measurements. The  “nonparametric” 
property refers to the absence of a finitedimensional continuous 
parametrization of the  space of functions containing g. 

Assume that the input signals xi satisfy, without loss of generality, the 
order condition 

Let x, = 0 and x, + = 1. The considered kernel algorithm for recovery 
of g(x) is 

where K (so-called kernel) is a bounded nonnegative function on the real 
line and { h , }  is a sequence of positive real numbers. The estimate (3) can 
be regarded as the appropriate  average of observations in a neighborhood 
of  the point under consideration. For example, one might consider 

where s(x) = i :  Ix - xi1 < h,} . The procedure g, is obtainable from (3) 
for the window kernel 

and  for  the xi.s equally spaced,  i.e., xi - x i - ,  = I / n .  
The estimate g, was introduced by Priestley and Chao [11] and has 

been studied by Benedetti [ 11, Gasser  and  Muller  [3], Schuster and 
Yakowitz [17], as well as Cheng and Lin [2]. Another method, the 
“nearest neighbor method,”  for  the recovery of function g has been 
introduced by Greblicki 191 and an orthogonal series method has been 
examined by Rutkowski [14]. 

The main object of this paper is to introduce control engineers to  some 
techniques afforded by nonparametric methodology. In Section II, the 
convergence theorems are stated and new results are discussed. Applica- 
tions to linear dynamical system identification are given in Section III. 
Finally, some  remarks about nonparametric identification procedures are 
made. 

n. THE CONVERGENCE OF THE ALGORITHM 

In this section, we establish the sufficient conditions for consistency of 
the algorithm (3). The proofs of the following results are given in the 
Appendix. 

Lemma (Bias): 
Assume that g(x) is a bounded function and K is a continuous 

probability density function such that K(u) is nonincreasing for u > 0, 
and nondecreasing for u < 0. Let 
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