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Adding a Variable in Generalized 
Linear Models 

P. C. Wang 

Department of Applied Mathematics 
National Chiao Tung University 

Hsinchu, Taiwan 
Republic of China 

The likelihood ratio statistic can be used to determine the significance of an explanatory 
variable in a generalized linear model. In order to obtain such a statistic, however, we need 
two sets of iterations for two maximum likelihoods. Moreover, the statistic is not directed to 
detect influential or outlying observations that affect the importance of the variable con- 
sidered. Therefore we develop relatively simple procedures to help the analyst select an appro- 
priate model and detect the effects of such observations on adding a variable into any model. 
Two examples are given for illustration. 

KEY WORDS: Added variable plots; Score statistics; Influence; Outliers; GLIM. 

1. INTRODUCTION 

Diagnostics are used to assess the adequacy of as- 
sumptions underlying a model and to identify unex- 
pected characteristics of the data that may seriously 
influence conclusions or require special attention. 
The importance of diagnostics in normal regression 
analysis has been emphasized by several authors (e.g., 
Belsley et al. 1980, Cook and Weisberg 1982, and 
Hocking 1983). A variety of graphical and nongraph- 
ical methods for this purpose are available to aid in 
an analysis based on the linear model with normal 
errors, but relatively few methods have been devel- 
oped for application outside this framework. Pregi- 
bon (1981), Landwehr et al. (1984), and Cook and 
Wang (1983) are three exceptions. The first two de- 
velop diagnostic procedures for logistic regression 
and the last do this for nonlinear regression. 

Many diagnostic procedures are available for se- 
lecting explanatory variables and detecting the effects 
of influential or outlying observations on a particular 
explanatory variable under a normal linear model. 
One of them, the added variable plot, serves well for 
this purpose, as illustrated in Cook and Weisberg 
(1982). Atkinson (1982, 1983) and Cook and Wang 
(1983) developed similar plots for transformations 
and nonlinear regression. In this article I extend 
these diagnostic approaches to generalized linear 
models that have been applied to data in many fields, 
as illustrated by McCullagh and Nelder (1983). 

The technique of the score statistic has been used 
to derive diagnostic procedures for various purposes. 
Atkinson (1982) used it to construct partial residual 
plots for diagnosing the need for transformation of 
the responses in linear regression; Cook and Weis- 

berg (1983) used it and its graphical version for diag- 
nostic information about heteroscedasticity; Pregi- 
bon (1982) and Chen (1983) used it to test the need 
for explanatory variables in generalized linear 
models. The main exploration here is to use the score 
statistic and its graphical version to determine if an 
explanatory variable is significant. I derive results in 
the next section and present two applications in Sec- 
tion 3. Concluding comments are given in the last 
section. 

2. THE SCORE STATISTIC AND 
ADDED VARIABLE PLOT 

The probability function for a single response y in 
a generalized linear model (McCullagh and Nelder 
1983) is 

h(y I 0, c) = exp {[Oy - b(0)]/a(c) + c(y, ?)} 
for some smooth functions a( ), b( ), and c( ). Our 
concern is the parameter 0. Let (fiT, 7)T be a vector of 
p + 1 parameters, (xT, z)T be a vector of observed 
values of p + 1 explanatory variables, and r = xr/1 
+ zy be a link function of E(y) = b(0), the derivative 
of the function b(0). Our main interest is to use the 
score statistic, instead of the likelihood ratio test 
(LRT) statistic, to determine if 7 = 0. Given a sample 
of independent observations (yi, xf, zi), assume 0O = 
g(i) = g(xf/T + zi7) for a fixed function g. The log- 
likelihood function of (fiT, y) for the sample is 

L(0, Y) = {[Oii - b(0O)]/a(q) + c(yi, O)}, (1) 

where Y = (Y, .... y 
Under the null hypothesis Ho that y = 0, the maxi- 
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mum likelihood estimate (MLE) / of /, can be ob- 
tained by an iterative method. Let denote the differ- 
entiation sign. We obtain the score for Ho, 

n 

U(4) = E g(6iyi - b(Oi)]zi/a(), (2) 

and the information matrix for (iT, y), 

I(/, ) = T d(0O)( . i (3) 

where Oi = g(ri), ri = xi /, and d(Oi) = (i)2b(O). 
Let X=(x1, ..., xn), Z=(z , ..., z)', V= 
diag {d(O^)}, and S be a vector of entries 
(rTi)[yi - b(Oi)]/a(4). Then (2) and (3) can be written 

in simpler forms: 

U() = STZ 
and 

(XTVX XTVZ\ 
( ZTVX ZTVZ] 

After a few algebraic manipulations, the score sta- 
tistic for Ho (Cox and Hinkley 1974, p. 324), 
U() TI -1 U(), becomes 

T = (STZ)2/(Vl/2Z)T(I - H)V'/2Z, (4) 

where H = Vl/2X(XTVX)-lXTVl/2 and I -1 is the 
((p + 1), (p + 1)) entry of the inverse of I(4). This sta- 
tistic is computationally equivalent to the F test for 
adding a variable in a normal linear model. Using 
this fact, we can establish a graphical version of (4) 
for diagnostic purposes. 

Let W = V1/2X- + V- 1/2S. We construct the ap- 
proximating model, 

W = V1/2Xp + V1l2Z7 + E, (5) 

where E is N(O, a21) distributed. The added variable 
plot for variable V112Z under (5) is a plot of R = 
V-1/2S versus (I - H)V1/2Z (Cook and Weisberg 
1982). I use this plot for diagnostic checks, since the 
significance of the F test for y = 0 under model (5), 
which is equivalent to (4), corresponds to the "non- 
zeroness" of the slope of the regression line in the 
plot. Note that the regression line passes through the 
origin because we can always find a vector perpen- 
dicular to both R and (I - H)V112Z. 

For convenience, the entries of R and 
(I - H)V1/2Z are called residuals and Z-residuals, re- 
spectively. Generally we might need extra compu- 
tations to obtain V. However, under the most com- 
monly used models, such as normal, binomial, Pois- 
son, and exponential models, it is available after the 
iteration to obtain the MLE of /. 

In the rest of the section, I explore our discussions 
further for several special distributions. 

Case 1. Let b() = 02/2, a() = a2, and g be the 

identity function. This is a normal linear model- 
that is, Y = X:/ + Zy + E with E - N(O, o21), V = 
a'-21, and R = (Y - X)/' when a is known. When 
a2 is unknown, we need to replace a2 by its MLE d2 
to compute V, R, and the score statistic. This score 
statistic is equivalent to the F-test statistic. The plot 
that I propose is equivalent to the added variable 
plot illustrated in section 2.3.2 of Cook and Weisberg 
(1982). The usefulness of such plots is also discussed 
in the book, with several numerical examples. 

Case 2. g is the identity, and a(4) is constant. The 
logistic regression, the Poisson regression with mean 
en, and the exponential regression with mean r- 1 are 
three examples. Denote V* = diag {d(0i) - (jiXyi 
- b(Oi))/a(c)}. The Newton-Raphson method for 
finding the MLE of , leads to the iterative scheme 

pt+ 1 = /t + (XTV*X) 1XTS, t = 0, 1, 2, ..., (6) 

where V* and S are evaluated at p/'. At the "final" 
step, V = V* = diag {d(Oj)} is available with 4. In 
fact, the information matrix in this case is equal to 
the negative of the second derivative matrix of the 
log-likelihood; that is not necessarily true in general. 

Case 3. The general case: The iterative scheme (6) 
can be applied with the same V*. However, we need 
to recalculate V after obtaining the MLE of ,/. In 
some cases, V becomes the identity matrix (e.g., for 
the exponential distribution with mean e"). 

3. EXAMPLES 

In this section I present two brief examples to illus- 
trate the usefulness of added variable plots in gener- 
alized linear models, one in logistic regression and 
the other in Poisson regression. I omit those in 
normal linear regression, since they have been illus- 
trated by Cook and Weisberg (1982). 
3.1 Finney's Data 

The data were analyzed by Finney (1947). Pregi- 
bon (1981) used them to illustrate the building blocks 
of logistic regression diagnostics. The response is 
either the occurrence or nonoccurrence of vasocon- 
striction. This response might depend on the rate 
(Xl) and volume (X2) of air inspired on a transient 
vasoconstriction in the skin of the digits. The plots in 
Figures 1 and 2, where the score statistics' values are 
14.82 and 13.68, respectively, clearly indicate the sig- 
nificance of one variable after the other is included in 
the model. This suggests the importance of these two 
explanatory variables. Note that observations 4 and 
18 in both plots seem to be the two most important 
observations that affect the slope of the regression 
through the origin, or the significance of the score 
statistic. In fact, when these two observations are de- 
leted, the MLE of /f changes from (-2.875, 5.719, 
4.526) to (-24.58, 39.55, 31.94). Observation 32, 
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Figure 1. Added Variable Plot for Rate in Finney's (1947) Data. 

which stands out in Figure 1, also attracts our atten- 
tion, although it does not affect the regression much. 
Its strange Xl value can be detected after careful 
checks. 

3.2 J0rgensen's Data 

The data are taken from Jorgensen (1961). The 
response is the number of failures of a complex piece 
of electronic equipment in a week. Nine weeks in 
which each week was divided into two operating re- 
gimes were spent in observation. Explanatory vari- 
ables T1 and T2 are times spent in regimes one and 
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Figure 3. Added Variable Plot for Time T1 in Jorgensen's 
(1961) Data. 

two, respectively. For my illustration, treat these nine 
responses as independent Poisson observations with 
possible mean Tl,3 + T2 /2 . The importance of ex- 
planatory variable T, after including T2 in the model 
is clearly shown in the plot of Figure 3 with score 
statistic 39.99. Moreover, the coefficient of T1 esti- 
mated by the plot is .159, not far from its MLE of 
.167. Unlike time TI, however, time T2 is not signifi- 
cant when time T1 is included. The added variable 
plot in Figure 4 indicates this with a value of 1.825 
for the score statistic. 

Observations 4, 5, and 8 seem to control two linear 
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Figure 4. Added Variable Plot for Time T2 in Jorgensen's 
(1961) Data. 
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trends on these two added variable plots. Both plots 
suggest that the conclusion would be totally different 
without these three observations. Moreover, observa- 
tion 1 in Figure 4, which has the largest residual, 
suggests the decrease of the importance of variable 
T2 without it. These suggestions are confirmed by the 
score statistics without the corresponding observa- 
tions. 

4. DISCUSSIONS AND CONCLUSIONS 

Pregibon (1981) gave excellent diagnostic pro- 
cedures in logistic regression, based on the model 
that includes all of the important explanatory vari- 
ables. In the preceding, I provide another approach 
to better understanding of the nature of the data 
under consideration. My procedures, both the score 
statistic and the corresponding added variable plot, 
check the importance of any explanatory variable 
and possibly influential or outlying observations for 
this variable. The score statistic indicates the signifi- 
cance of the slope of the regression line in the added 
variable plot and determines the importance of the 
underlying variable. The plot gives the overall im- 
pression of the scatter of the data points and detects 
observations that affect the importance of the vari- 
able. Such observations might be revealed when they 
are separated from the rest of the data. Thus I view 
these two procedures as complementary, and I rec- 
ommend the use of both. 

Both the score statistic and the LRT statistic can 
be used for generalized linear models and be com- 
puted in the GLIM computer package. However, 
score statistics need fewer computations, since no 
iteration to obtain MLE's is needed under the alter- 
native. Although the score statistic I derived is a spe- 
cial case of Pregibon's (1982), we expect it to be more 
useful along with its corresponding added variable 
plot. 

The slope of the regression line in an added vari- 
able plot can be used as an estimate of the coefficient 
of the variable considered. In normal linear regres- 
sion, this slope is exactly its MLE under the alter- 
native. However, this is not true in general. The 
MLE's in generalized linear models are usually ob- 
tained by an iterative method. Thus it is almost im- 

possible to obtain such an estimate in any single step. 
The slope of the regression line in the plot might be a 
good starting estimate of the coefficient considered. 
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