
BIT 25 (1985), 148-164

A BACKTRACKING METHOD FOR CONSTRUCTING
PERFECT HASH FUNCTIONS FROM A SET OF

MAPPING FUNCTIONS

W. P. YANG and M. W. DU

Institute of Computer Engineering, National Chiao Tung University, 45 Po Ai Street, Hsinchu,
Taiwan, Republic of China

Abstract.

This paper presents a backtracking method for constructing perfect hash functions from a given
set of mapping functions. A hash indicator table is employed in the composition. By the nature of
backtracking, the method can always find a perfect hash function when such a function does exist
according to the composing scheme. Simulation results show that the probability of getting a
perfect hash function by the backtracking method is much higher than by the single-pass and
multipass methods previously proposed.

1. Introduction.

Hashing is a widely used technique for information storage and retrieval [11,
12, 13, 14, 15]. A one-to-one correspondence hash function from key space to
address space is called a perfect hash function. Many approaches have been
proposed for constructing perfect hash functions [1, 3, 4, 5, 6, 9, 10, 16, 17].
Recently, Du, Hsieh, Jea and Shieh [6] proposed a perfect hash scheme in
which rehashing and segmentation have been employed in constructing hash
functions. Rehash means to solve the key collision problem by using a series of
hash functions, h 1, h2, . . . ,h s. Segmentation means to divide address space into
segments before allocating them. A hash indicator table (HIT) is used to store
the index of hash functions. A hash function h can be defined by HIT as follows
[6]:

h(k,) = hi(k,) = xi if HITChr(ki),] 4= r for r < j and HIT[hj{ki)] = j,

= undefined, otherwise.

When h is defined on all keys concerned, it is a perfect hash function.
The advantages of the perfect hash functions defined by HIT here are: they

Received January 1984. Revised April 1984.

A BACKTRACKING METHOD FOR CONSTRUCTING PERFECT HASH . . . 149

are easy to implement and they use only small tables. Two ways for
construct ing H I T have been proposed in I-6, 17]. We shall discuss them briefly

in Section 2.2. In Section 3, we introduce another method to construct H I T
which is based on a backtracking technique. We present the algori thm of this

scheme and discuss its efficiency. In Section 4, we study the probabil i ty of
getting a perfect hash function by this method in compar ison with the other two
methods.

2. Construction of a HIT .

2.1 The Problem
Consider the matrix of Figure 1. There are three keys, kl, k2, and k a, and two

kl kz k3

h I 2 2 0

h 2 3 1 1

Fig. 1. A 2 x 3 mapping table.

hash functions, hi, and hz ; i.e., we have key space KS = {kl, k2, k3} and address
space AS = {0, 1, 2, 3}. The matrix is called a mapping table. The problem here
is to construct a perfect hash function h which is composed of h I and h 2. Fo r
example, one h is defined as follows:

fhE(k l) = 3;

h(ki) = h~(ki) = ~hE(k2) 1 ;

I .hl(k3) 0.

The perfect hash function h can be expressed as Figure 2 or Figure 3.

KS A S

h

1

2

3

Fig. 2. A perfect hash function composed of h 1 and h 2.

150 W . P . YANG AND M. W. DU

KS

l l , h 2 I !

2/ : !

I

HIT

l I

2

0

2 '

AS

k 3 0

h k 2 l
J

Fig. 3. A perfect hash function h is composed of h 1 and h 2 and HIT is used.

In Figure 3, we use HIT to store the index of the hash functions h I and h 2.
This table stores the information of whatever function is used to compute the
address of the keys in KS. For example, hi(k3) = 0 and HIT[0] = 1, imply that
the key k 3 stored in the AS[0] at address 0 is computed by using h r This rule
applies to the other entries of HIT. Since only the indices of hash functions are
stored, the width of a HIT can be made small. When HIT is stored in the main
memory, only one disc access is needed to retrieve a record. The retrieval
algorithm is quite simple as proposed in [6, 17]. We list it below:

Procedure RETRIEVAL(k, s, HIT, AS);
/ / Assume that the hash functions hi, h2, / /

/ / h s, are used to create the HIT. / /
/ / Now we want to retrieve key k. / /
begin

j : = l ;
while (HIT[h~(k)] ~ j a n d j < s) d o j : = j + 1;
i f j > s then failure

else k is stored in AS[h~(k)]
end.

In evaluating the function value, the number of loops executed in the
statement in the algorithm is called the "number of internal probes" in HIT.

1 ~ ' - I HIT[i], where n is the number of keys Retrieval cost is defined by n- z_,i=0
concerned and r is the size of the address space. The optimal solution is the one
among all feasible solutions with the smallest retrieval cost. For a given
mapping table, the problem is how to construct a HIT which defines a perfect
hash function.

2.2 Previous work on constructiny H I T

The HIT construction problem was first studied in [6] which proposed a
procedure called multi-pass method and then in [17] with another procedure
called single-pass method. In the following we explain the operations of these
two procedures briefly by applying them to Figure 1 of Section 2.1.

A BACKTRACKING METHOD FOR CONSTRUCTING PERFECT HASH . . . 151

Method 1" Multi-pass procedure
(1) Select all the singletons from the first row, such as 0 in the following table.

An entry in row h and column k is a singleton if there is no other k' such that
h(k') = h(k).

(2) Select all the singletons from the second row except from those columns
which have been selected in the first row, such as 3 and 1 in the following table.
We then accomplish and obtain a perfect hash function with HIT = (1, 2,0, 2).

krt k2 k3
.

2 2 (~) hi

O O 1

Method 2: Single-pass procedure
(Basically, we will process the keys in the order k 1, k2, etc.)
(1) We process k 1 and circle 2.

kl k2 k3

hi @ 2 0

h 2 3 1 1
.

(2) We process k2. Note that k2 has the same hash value as kl by applying h r
In this case, kl and k 2 collide and both need rehashing by h 2. Thus we get the
following result :

kt kz k3

hi 2 2 0

® O 1

(3) Finally, we process k 3. Since zero is a singleton in the first row, we circle it
and obtain a perfect hash function with HIT = (1, 2, 0, 2).

kl k2 ka
.

h I 2 2 @

® O 1

From the discussion above, the main difference between the multi-pass and
single-pass approaches is the way to select singletons. While multi-pass

152 W. P. YANG AND M. W. DU

approach would select singletons row by row, single-pass approach would
process the keys column by column. The two schemes may have different
results. So for a given mapping table it is possible to get a perfect hash function
by a multi-pass method but it would be a failure by a single-pass method and
vice versa.

EXAMPLE 1. [Failure for multi-pass; success for single-pass method]
Let the key set be KS = {k 1, k2, k 3, k4}. The address space has a size of five

entries. The three hash functions are defined by the following table:

h 1

h2

h3

kl k2 k3 k4
.

2 3 2 3

3 t t 0

4 2 3 1

(1) By applying the multi-pass procedure, we have:

3 0

- 2

That is, the key k3 cannot be placed in address space, therefore the hash
function is not perfect.

(2) By applying the single-pass procedure, we have:

0

4 2 3 -

That is, the hash function h is perfect and defined by HIT = (2, 0, 3, 3, 3).

EXAMPLE 2 [Success for multi-pass; failure for single-pass method]
In the following mapping table:

kl k2 k3 k 4

h I 4 3 3 4

h z 1 4 2 3
.

the results of applying the multi-pass procedure and the single-pass procedure

A B A C K T R A C K I N G M E T H O D F O R C O N S T R U C T I N G PERFECT H A S H . . .

are as follows:

1 4 2 3 1 - 2 3

(success for multi-pass) (failure for single-pass)

EXAMPLE 3 [Failure for both multi-pass and single-pass methods]
Consider the following mapping table:

kl k2 k3 k3
.

h 1 3 4 2 4
.

h I 4 3 2 1

153

The HIT constructed by the multi-pass and the single-pass methods are both
(0, 2, 1, 1, 0), or

3 - - 2 - -

1

Therefore it does not define a perfect hash function.
In Example 3, however, we can find two perfect hash functions as defined by

HIT = (0, 2, 1, 2, 2) and HIT = (0, 2, 2, 2, 2). I.e.,

2

and
4 3 - 1 4 3 2 1

In the following we will introduce a backtracking method to find (1) all the
feasible solutions, (2) the optimal solution (i.e., with the lowest retrieval cost),
and (3) an answer of "no solution" if no solution exists, according to a given
mapping table.

3. Algorithm and efficiency.

3.1 Basic concepts
In applying a backtracking technique finding the "intelligent" bounding

function is important. Different problems (for example, the 8-queens problem,
sum of subsets, graph colouring, Hamiltonian cycle and knapsack problems [2,
7, 8]) have different bounding functions. Given a mapping table, our problem is
to construct a HIT to define a perfect hash function. Thus the goals of our
bounding function are: (1) Each key in the key space corresponds to a unique
address in the address space, and (2) The retrieval algorithm should work
correctly. Assume that the solution is (xl, x2 x,), where xi are chosen from

154 W . P. YANG A N D M. W. DU

column i in the mapping table. The first of these two goals implies that no two
x~ can be the same. That is:

(a) x~ 4: x~ for all i @ j, 1 < i, j < n.

Assume i ~ j and x i = hz(kj), x i = hv(k i) , then the second goal is: (see Figure 4)

(b)

h I

hip..

xi ~ d~ where d s = ht(ks), if l < l'.

k I • - " k j " - - k i - - .

d j,

t

Q

Fig. 4.

©

Suppose that (x l , x2 x , ,) is a solution which satisfies the constraints (a)
and (b), where x i = ht,(ki) for key k i and some hash function h 6. Then the H I T
corresponding to this solution can be constructed by letting

HIT[ht,(k3] = I i for each i < n.

To simplify the explanation, we will consider a problem of constructing a
perfect hash function on a 2 x 3 matrix• Figure 5 shows the configurations as the
backtracking proceeds.

® 2 o @ @ o 2 2 o
¢

3 1 1 3 1 1 @ 1 1

(a) (b) (c)

® l 1 ® ® l ® ® 1

(d) (e) (f)

Fig. 5. E x a m p le o f a back t r ack ing so lu t ion to the perfect hash ing .

A BACKTRACKING METHOD FOR CONSTRUCTING PERFECT HASH . . . 155

The problem is that exactly one value must be selected in each column. In the
beginning a value is selected in the first column of the first row, at position
(1,1), as shown in Figure 5(a), indicated by a circle. Here we have
(X1, X2, 'X3) = (2 , - , -) . The next value is selected from position (1, 2),
(xl ,xE,x3) = (2,2,-), as shown in Figure 5(b). Since no two x i can be the same,
it is necessary to reconsider the first column and select the value at position
(2, 1), (xl,Xz, X 3) - - (3 , - , -) , as shown in Figure 5(c). Note that we need not
check the states of (2,2,0) and (2,2, 1). In Figure 5(d), the value 2 at position
(1, 2) is the same as the value at position (1, 1). This selection will make future
retrieval operations fail, so we discard this value, and select the value 1 at
position (2,2), as shown in Figure 5(e). Finally, the value 0 in column 3 at
position (1, 3) is selected, and we get a feasible solution, as shown in Figure 5(f);
i.e., we constructed a perfect hash function with H I T - - (1 , 2 , 0 , 2) . The
backtracking algorithm determines problem solutions by systematically
searching the solution space for the given problem instance. This search is
simplified by using a tree organization for the solution space. In the example the
backtracking traverses the nodes of the tree as shown in Figure 6 along the
dotted arrows.

xl.hl (i I -3

x2"hZ(k2)'2 ~" / ~ . ~" ~ ' " - - t ' ' / -

Fig. 6.

)

The depth first order in which backtracking examines the tree o f solution space is shown
by the dotted arrows.

3.2 Algorithm
Here we define some terminological concepts regarding tree organization of

solution spaces (see Figure 6). Each node in the tree defines a problem state. All
paths from the root to other nodes define the state space of the problem.
Solution states are those problem states S for which the path from the root to S
defines a tuple in the solution space. In the tree of Figure 6, only the leaf nodes
are solution states. Answer states or feasible solutions are those solution states S
for which the path from the root to S defines a tuple which is an element of the
set of solutions (i.e., it satisfies the constraints) of the problem. The tree

156 W, P. YANG AND M. W. DU

organization of the solution space will be referred to as the state space tree.
Given a mapping table MT, the procedure "FINDHIT" prints all the feasible

solutions which define perfect hash functions by using backtracking techniques.
The procedure is listed in Figure 7. The variables used are defined as follows:

N
R
S
I
M T
X
INDEX

NEXT
BACKUP

number of the key set.
size of the address space.
number of rehash functions.
index of the value in the solution vector.
mapping table.
solution vector.
contains row numbers for the corresponding x-values in the mapping
table (i.e. the index of hash functions).
NEXT(i) points to the next row to be tried in column i.
is the number of columns to go back in the problem states.

PROCEDURE FINDHIT;
Var MT: array[1... S, 1. . . N] of integer;

X, INDEX, NEXT: array[1... N] of integer;
HIT: array[1 ...R] of integer;
L K, BACKUP: integer;

FUNCTION T(/): boolean;//generating the next problem states//
begin T := false;

if NEXT[/] < S then
begin INDEX[/] := NEXT[/] ; X[/] := MT[INDEX[/] , /] ;

NEXT[/] := NEXT[l] + 1 ; T := true end
end;

else

end;

FUNCTION B(/): boolean;//bounding function//
begin B := true;

for K : = 1 t o I - l d o
if X[K] = X[/]
then begin B := false;//violate constraint(a)//

if INDEX[K] = INDEX[l] //with same hash function//
then if INDEX[K] = 1 //h 1 is used in the first row//

then BACKUP:= l - K / / b a c k t r a c k k - i columns//
else BACKUP := 1 //backtrack to previous column/

end
if (NEXT[K] > NEXT[/]) and (MT[INDEX[/], K] = X[/])
then B := false //violate constraint(b)~~

A B A C K T R A C K I N G M E T H O D F O R C O N S T R U C T I N G P E R F E C T H A S H . . . 1 5 7

beg in / /ma in program starts here/ /
while not end-of-file do

begin
read (M T) ; / / r e a d mapping table/ /
for I := 1 t o N do N E X T [/] := l, I := 1; / / ini t ial izing//

while I > 0 flo
begin

if (T(/) and B(I)
then if I = N then print(X and H I T) / / o b t a i n a feasible sloution//

else I := I + 1 / /cons ider the next column//

else begin / /ac tua l backtracking is executed//

while B A C K U P > 0 do
begin N E X T [/] : = 1 ; I : = I - 1 ; BACKUP : = B A C K U P - 1 end ;

while N E X T [/] > S do
begin N E X T [/] := 1 ; I := I - 1 end;

end
end

end
end.

Fig. 7. The procedure F1NDHIT prints all the feasible solutions.

Generating the next problem state, T
The boolean function T(i) is used to test whether (xl ,x2 x~) is in the

problem state. If it is true, it implies that x~ is assigned from one value of
column i in the MT, and (xl,x2 xi-~) have already been chosen. Now the
solution vector is extended to i values, and xg (to be called the value of current
state or current value in short) is considered as a component of a feasible solution.

Bounding function, B
The bounding function B(i) is false for a path (Xl, x2 Xi) only if the path

cannot be extended to reach an answer node, i.e., the bounding function Bi
returns a boolean value which is true if the ith x can be selected in the column i
of the mapping rable MT, and can satisfy the constraints (a) and (b) in Section
3.1. Thus the candidates for position i of the solution vector X(1 ... n) are those
values which are generated by T(i) and satisfy B(i). If i = n, we obtain a feasible

solution and then print it.

EXAMPLE 4 [Backtracking method to construct HIT]

Consider the following mapping table:

kl k2 k3 k4

1 1 2 1

3 0 2 4

hi

h2

158 w . P . YANG AND M. W. DU

The size of the solution space is 16. By using the procedure F I N D H I T , two

feasible solutions are obtained as

2
and

3 0 - 4 3 0 2 4

with H I T = (2, 0, 1, 2, 2) and H I T = (2, 0, 2, 2, 2) respectiveiy. The first solution
is the optimal with retrieval cost equal to 1.75.

EXAMPLE 5 [Backtracking one or more steps]
Consider the following mapping table:

h 1

h2

ha

h4

k l k2 k3 k4 k5 k6 k7 k s k9 k l o
.

4 2 5 6 4 3 8 12 4 12

6 5 12 3 4 13 3 5 6 5
.

5 15 3 6 7 5 6 4 3 I1
.

4 2 5 I1 4 3 17 16 4 . 14
.

By using the procedure F I N D H I T , the first four solutions can be easily
obtained as shown in the Appendix. Before we find the first solution, we should

reach a problem state as shown in Figure 8(a). In the figure the partial values
(circled) of the solution vector are X = (4, 2, 5, 6 -), and the current
value is 4 (shown by a square box). Since X[1-] = X [5] = 4, it is impossible to

have feasible solutions such that X [1] = 4 because the constraints (a) or (b)
would be violated. Therefore, it must backtrack the problem state from I = 5 to
I = 1 as shown in Figure 8(b). Figure 8(c) shows the fourth solution. In order

to find the next solution, the following problem states are generated and are

tested. We show them by Figures 8(d), 8(e), 8(f) and 8(g). In Figure 8(g), again,
we have X[1] = X [6] = 5. If we backtrack 5 steps (backtrack to the first

column), as shown in Figure 8(h), we m a y lose some feasible solutions. Only a
one-step backtracking (backtrack to column 5) is correct as shown in Figure

8(i). Therefore, the solution obtained in Figure 8(j) is our fifth feasible solution.

Some other solutions are listed in the Appendix.

® @ @ @ [] 3 8 4 12

6 5 12 3 4 13 3 5 6 5

5 15 3 6 7 5 6 '4 3 11

4 2 5 11 4 3 17 16 4 14

(a)

"1
1

.0
0

f~

Q

G
I ~

~
~

Z

0

160 w . P . YANG AND M. W. DU

4 2 5 6 4 3 8 12 4 12

6 5 12 3 4 13 3 5 6 5

5 15 3 6 7 5 6 4 3 11

5 15 3 6 7 5 6 4 3 11

[] 2 5 11 4 3 17 16 4 14

(h)

4 @ 5 @ 4 3 8 12 4 12

6 5 @ 3 4 13 3 5 6 5

@ 15 3 6 [] 5 6 4 3 11

4 2 5 I1 4 3 17 16 4 14 ,

(i)

4 @ 5 @ 4 @ @ 12 4 12

6 5 (~ 3 4 13 3 5 6 5

@ 15 3 6 C) 5 6 4 3 @

4 2 5 11 4 3 17 @ @ 14

O)
Fig, 8. Behavior of the backtracking of Example 4.

3.3 Efficiency

How effective is the algorithm FINDHIT over the brute force approach? For
a 2 × 4 matrix as shown in Example 2, there are 31 nodes in the tree
organization of the solution space. That is, there are 31 problem states. Some
states are ignored by the constraints of the bounding function B. Hence we need
to examine only 12 problem states. The efficiency of the algorithm is thus
defined by :

efficiency = T1/ T 2,

where T 1 denotes the number of nodes generated by the backtracking algorithm,
and T z denotes the number of nodes in the state space tree. In Example 2, the
efficiency is only about 0.387. This implies that only 38.7 percent of the nodes
need be examined in order to find the feasible solutions. Since the efficiency is
data dependent, we design an experiment to estimate some average values of
efficiency. Column (a) in Figure 9 shows the expected values of efficiency to find
a feasible solution set. Column (b) shows the expected values of efficiency to
find the optimal solution. For a given mapping table, if the perfect hash
function does not exist, we say there is no solution. Using the backtracking
algorithm, we can determine whether there is no solution by only generating the

A B A C K T R A C K I N G M E T H O D FOR C O N S T R U C T I N G P E R F E C T H A S H . . . 161

partial nodes (the number is denoted by T1) instead of testing all the nodes in
the state space tree (T2). Column (c) shows the expected values of efficiency to
find no solution. All the values are computed from the average of 100
independent test data sets, with loading factor (i.e., (size of KS)/(size of AS))

= 0 . 8 .

(a = 0 .8 ; s = 3)

key (a) (b) (c)
n o . a f e a s i b l e o p t i m a l n o s o l u t i o n

5 0 .0744 0 .2312 0 .1567

10 0 .0042 0 .0246 0 .0093
. .

15 1.8 * 10 - 4 7 . 4 , 1 0 - 4 3.0 * l0 - 4

20 7 . 4 * 10 - 6 2 . 6 * 10 - 5 6 . 7 * 10 - 6

Fig . 9. V a l u e s o f e f f i c i e n c y ,

4. Comparison results.

Suppose the mapping tables have random hash values; i.e., the hash values in
each mapping table are uniformly distributed over the range, Let P,,, Ps, and Pb
denote the probability of getting perfect hash functions by using multi-pass,

Prob.

~.o~

O.gr

0.8i,

O.7t

0.~1

O.S|

0.4~

0.]

0o~

0.]

0.01
I.o 15 " - 20 2S -" 30

• -] ; o - 0 . 6

• ' Pm m ~ t ~ l - o ~ s s
~ p$ s L ~ q L e - p a s s

- - ' ~ - -Pb back~ra~

~'S " n

p o o h .

,.ot
0 . 9

O ° e

0 . 7

O.G

0 . 5

0 . 4

0 . 3

O . Z

0 . !

0 . 0 tO ItS ZO 1$ 10 IS

(a) (b)

Fig . 10. P r o b a b i l i t y o f c o n s t r u c t i n g p e r f e c t h a s h i n g : (a) s = 3, (b) s = 7.

162 W. P. YANG AND M. W. DU

single-pass, and backtracking methods respectively. The procedures for the three
methods were programmed in Pascal and their probabilities evaluated on a
CDC Cyber 170/720 computer. The results of this evaluation are presented in
Figure 10. As the figure indicates, the backtracking method is better than multi-
pass and single-pass methods. The retrieval costs of the three methods are also
presented in Figure 11. All of them are within a limit, not exceeding 1.95, in the
case s = 3.

21
1 . 5

1

0 . 5

• ~] 1 ! G ~ 0 . 8

-- - H u l t l - p a s s

S L n g l e - p a s s

J I 8 a c k t t ' & c k

• • . ! i i i

$ 10 1S 20

are listed in the Appendix.

Appendix.

M A P P I N G TABLE IS:

4 2 5 6 4 3 8 12 4 12
6 5 12 3 4 13 3 5 6 5
5 15 3 6 7 5 6 4 3 11
4 2 5 11 4 3 17 16 4 14

SIZE O F S O L U T I O N SPACE: 1048576

Fig. 1 I. Retrieval cost.

5. Conclusion.

This paper presents a backtracking method to construct perfect hash
functions from a set of mapping functions. Compared with the other two
methods proposed before, this new method has a much better chance to get
perfect hash functions. For example, as n = 25, ct = 0.8, s = 7, the probability of
getting a perfect hash function is around 97 %. The only problem is that when n
increases, the probability of getting a perfect hash function decreases. But this
difficulty can be overcome by segmentation, i.e., by dividing the address space
into segments. This idea was first used in [6] and was also applied in [17].

If perfect hash functions do exist in a given mapping table, the backtracking
method can certainly find all of them and give the optimal solution. It is
surprising that, in a mapping table of dimensions 4 x 10, we get 204 feasible
solutions, with efficiency of 0.006. The matrix and some of the feasible solutions

A B A C K T R A C K I N G M E T H O D F O R C O N S T R U C T I N G P E R F E C T H A S H . . . 163

F E A S I B L E S O L U T I O N :

(l) - 2 - 6 8

12 - 4 13 - - -

5 3 l l

. 16

H I T = (0 , 1 , 3 , 2 , 3 , 1 ) C O S T = 2 . 2 0

(2) - 2 - 6 - 8

12 - 4 13

5 3 -

. 16 - 14

H I T = (0, 1o 3, 2, 3, 1) C O S T = 2 . 3 0

3) - 2 - 6 - -

12 - 4 13

5 3 11

17 16

H I T = (0, 1, 3, 2, 3, 1) C O S T = 2 .50

(4) - 2 - 6

12 - 4 13

5 3 -

. 17 16 - 14

H I T = (0, 1, 3, 2, 3, 1) C O S T = 2 . 6 0

(5) - 2 - 6 - 3 8

12

5 7 11

. 16 4

H I T = (0 , 1 , 1, 4 , 3 , 1 ) C O S T = 2 . 3 0

(6) - 2 - 6 - 3 8

12 - -

5 7

. 16 4 14

H I T = (0, 1, 1, 4, 3, 1) C O S T = 2 . 4 0

(7) - 2 - 6 - 3

12 -

5 7 11

. 17 16 4 -

H I T = (0, t , 1, 4, 3 , 1 ) C O S T = 2 . 6 0

(8) - 2 - 6 - 3

t 2

5 - - 7

17 16 4 14

H I T = (0, 1, 1, 4, 3, 1) C O S T = 2 . 7 0

(9) - 2 - 6 8

1 2 13

5 7 4 3 11

164 w . P . YANG AND M. W. DU

H I T = (0,1,3,3,3,1) C O S T = 2 . 2 0

(1 0) - 2 6 8 - -
12 13

5 7 4 3
. 14

HIT = (0, 1, 3, 3, 3, 1) COST = 2.30
OPTIMAL SOLUTION: (1)
EFFICIENCY = 0.006 = 8605/1398101

(204)
12 13

- - - 7 3 -

4 2 11 - 17 16 - 14

HIT = (0,4,3,4,0,0, . . .) COST = 3.00

Acknowledgement.

The authors wish to thank the anonymous referee for his valuable and
constructive comments.

R E F E R E N C E S

1. M. R. Anderson and M. G. Anderson, Comments on perfect hashing functions: A single probe
retrieving method for static sets. Comm. ACM 22, 2 (Feb. 1979), 104.

2. J. R. Bitner and E. M. Reingold, Backtrack programming techniques. Comm. ACM 18, 11
(Nov. 1975), 651-656.

3. R. J. Chichelli, Minimal perfect hash functions made simple. Comm. ACM 23, 1 (Jan. 1980),
1%19.

4. C. R. Cook and R. R. Oldehoeft, A letter oriented minimal perfect hashing function. ACM
Trans. on SIGNPLAN NOTICES 17, 9 (Sept. 1982), 18-27.

5. C. C. Chang, The stud),, of an ordered minimal perfect hashing scheme. Comm. ACM 27,
4 (April 1984), 384-387.

6. M. W. Du, T. M. Hsieh, K. F. Jea and D. W. Shieh, The study of a new perfect hash scheme.
IEEE Trans. on Software Engineering, SE-9, 3 (May 1983), 305-313.

7. S. W. Goloma and L. D. Baumert, Backtrack programming. JACM 12, 4 (1965), 516-524.
8. E. Horowitz and S. Sahni, Fundamentals of Computer Algortthms. Computer Science Press,

INC., 1978.
9. G. Jaeschke and G. Osterburg, On Chiehelli's minimal perfect hash functions method. Comm.

ACM 23, 12 (Dec. 1980), 728-729.
10. G. Jaeschke, Reciprocal hashing: A method for generating minimal perfect hashing functions.

Comm. ACM 24, 12 (Dec. 1981), 829-833.
11. D. E. Knuth, The Art of" Computer Programming, Vol. 3, Sorting and Searching. Addison-

Wesley, Reading, Mass., 1973.
12. W. D. Maurer, An improved hash code for scatter storage. Comm. ACM 11, 1 (Jan. 1968),

35-37.
13. W. D. Maurer and T. G. Lewis, Hash table method. Computing Surveys 7, 1 (Mar. 1975), 5-19.
14. R. Morris, Scatter storage techniques. Comm. ACM 11, 1 (Jan. t968), 38-44.
15. D. G. Severance, Identifier search mechanisms: A survey and generalized model. Computing

Surveys 6, (Sep. 1974), 175-194.
16. R. Sprugnoli, Perfect hashing, functions: A single probe retrieving method for static sets. Comm.

ACM 20, 11 (Nov. 1977), 841-850.
17. W, P. Yang, M. W. Du a n d J. C. Tsay, Single-pass perfect hashing for data storage and

retrieval. Proc. 1983 Conf, on Information Sciences and Systems, Baltimore, Maryland, Mar.
1983, 470-476.

