
BIT 25 (1985), 148-164 

A BACKTRACKING METHOD FOR CONSTRUCTING 
PERFECT HASH FUNCTIONS FROM A SET OF 

MAPPING FUNCTIONS 

W. P. YANG and M. W. DU 

Institute of Computer Engineering, National Chiao Tung University, 45 Po Ai Street, Hsinchu, 
Taiwan, Republic of China 

Abstract. 

This paper presents a backtracking method for constructing perfect hash functions from a given 
set of mapping functions. A hash indicator table is employed in the composition. By the nature of 
backtracking, the method can always find a perfect hash function when such a function does exist 
according to the composing scheme. Simulation results show that the probability of getting a 
perfect hash function by the backtracking method is much higher than by the single-pass and 
multipass methods previously proposed. 

1. Introduction. 

Hashing is a widely used technique for information storage and retrieval [11, 
12, 13, 14, 15]. A one-to-one correspondence hash function from key space to 
address space is called a perfect hash function. Many approaches have been 
proposed for constructing perfect hash functions [1, 3, 4, 5, 6, 9, 10, 16, 17]. 
Recently, Du, Hsieh, Jea and Shieh [6] proposed a perfect hash scheme in 
which rehashing and segmentation have been employed in constructing hash 
functions. Rehash means to solve the key collision problem by using a series of 
hash functions, h 1, h2, . . . ,h s. Segmentation means to divide address space into 
segments before allocating them. A hash indicator table (HIT) is used to store 
the index of hash functions. A hash function h can be defined by HIT as follows 
[6]: 

h(k,) = hi(k,) = xi if HITChr(ki), ] 4= r for r < j and HIT[hj{ki) ] = j, 

= undefined, otherwise. 

When h is defined on all keys concerned, it is a perfect hash function. 
The advantages of the perfect hash functions defined by HIT here are: they 
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are easy to implement and they use only small tables. Two  ways for 
construct ing H I T  have been proposed in I-6, 17]. We shall discuss them briefly 

in Section 2.2. In Section 3, we introduce another  method to construct  H I T  
which is based on a backtracking technique. We present the algori thm of  this 

scheme and discuss its efficiency. In Section 4, we study the probabil i ty of  
getting a perfect hash function by this method in compar ison  with the other  two 
methods.  

2. Construction of  a HIT .  

2.1 The Problem 
Consider  the matrix of  Figure 1. There are three keys, kl, k2, and  k a, and two 

kl kz k3 

h I 2 2 0 

h 2 3 1 1 

Fig. 1. A 2 x 3 mapping table. 

hash functions, hi, and hz ; i.e., we have key space KS = {kl, k2, k3} and address 
space AS = {0, 1, 2, 3}. The matrix is called a mapping  table. The problem here 
is to construct  a perfect hash function h which is composed  of  h I and h 2. Fo r  
example, one h is defined as follows: 

fhE(k l )  = 3; 

h(ki) = h~(ki) = ~hE(k2) 1 ; 

I .hl(k3) 0. 

The perfect hash function h can be expressed as Figure 2 or  Figure 3. 

KS A S  

h 

1 

2 

3 

Fig. 2. A perfect hash function composed of h 1 and h 2. 
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HIT 
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k 3 0 

h k 2 l 
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Fig. 3. A perfect hash function h is composed of h 1 and h 2 and HIT is used. 

In Figure 3, we use HIT to store the index of the hash functions h I and h 2. 
This table stores the information of whatever function is used to compute the 
address of the keys in KS. For example, hi(k3) = 0 and HIT[0] = 1, imply that 
the key k 3 stored in the AS[0] at address 0 is computed by using h r This rule 
applies to the other entries of HIT. Since only the indices of hash functions are 
stored, the width of a HIT can be made small. When HIT is stored in the main 
memory, only one disc access is needed to retrieve a record. The retrieval 
algorithm is quite simple as proposed in [6, 17]. We list it below: 

Procedure RETRIEVAL(k, s, HIT, AS); 
/ / Assume that the hash functions hi, h2, / / 

/ / . . . .  h s, are used to create the HIT. / / 
/ / Now we want to retrieve key k. / / 
begin 

j : = l ;  
while (HIT[h~(k)] ~ j  a n d j  < s) d o j  : = j +  1; 
i f j  > s then failure 

else k is stored in AS[h~(k)] 
end. 

In evaluating the function value, the number of loops executed in the 
statement in the algorithm is called the "number of internal probes" in HIT. 

1 ~ ' - I  HIT[i], where n is the number of keys Retrieval cost is defined by n-  z_,i=0 
concerned and r is the size of the address space. The optimal solution is the one 
among all feasible solutions with the smallest retrieval cost. For a given 
mapping table, the problem is how to construct a HIT which defines a perfect 
hash function. 

2.2 Previous work on constructiny H I T  

The HIT construction problem was first studied in [6] which proposed a 
procedure called multi-pass method and then in [17] with another procedure 
called single-pass method. In the following we explain the operations of these 
two procedures briefly by applying them to Figure 1 of Section 2.1. 
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Method 1" Multi-pass procedure 
(1) Select all the singletons from the first row, such as 0 in the following table. 

An entry in row h and column k is a singleton if there is no other k' such that 
h(k') = h(k). 

(2) Select all the singletons from the second row except from those columns 
which have been selected in the first row, such as 3 and 1 in the following table. 
We then accomplish and obtain a perfect hash function with HIT = (1, 2,0, 2). 

krt k2 k3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 2 (~) hi 

O O 1 

Method  2: Single-pass procedure 
(Basically, we will process the keys in the order k 1, k2, etc.) 
(1) We process k 1 and circle 2. 

kl k2 k3 

hi @ 2 0 

h 2 3 1 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(2) We process k2. Note that k2 has the same hash value as kl by applying h r 
In this case, kl and k 2 collide and both need rehashing by h 2. Thus we get the 
following result : 

kt kz k3 

hi 2 2 0 

® O 1 

(3) Finally, we process k 3. Since zero is a singleton in the first row, we circle it 
and obtain a perfect hash function with HIT = (1, 2, 0, 2). 

kl k2 ka 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

h I 2 2 @ 

® O 1 

From the discussion above, the main difference between the multi-pass and 
single-pass approaches is the way to select singletons. While multi-pass 
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approach would select singletons row by row, single-pass approach would 
process the keys column by column. The two schemes may have different 
results. So for a given mapping table it is possible to get a perfect hash function 
by a multi-pass method but it would be a failure by a single-pass method and 
vice versa. 

EXAMPLE 1. [Failure for multi-pass; success for single-pass method] 
Let the key set be KS = {k 1, k2,  k 3, k4}. The address space has a size of five 

entries. The three hash functions are defined by the following table: 

h 1 

h2 

h3 

kl k2 k3 k4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 3 2 3 

3 t t 0 

4 2 3 1 

(1) By applying the multi-pass procedure, we have: 

3 0 

- 2 

That is, the key k3 cannot be placed in address space, therefore the hash 
function is not perfect. 

(2) By applying the single-pass procedure, we have: 

0 

4 2 3 -  

That is, the hash function h is perfect and defined by HIT = (2, 0, 3, 3, 3). 

EXAMPLE 2 [Success for multi-pass; failure for single-pass method] 
In the following mapping table: 

kl k2 k3 k 4 

h I 4 3 3 4 

h z 1 4 2 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

the results of applying the multi-pass procedure and the single-pass procedure 
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are as follows: 

1 4 2 3  1 - 2 3  

(success for multi-pass) (failure for single-pass) 

EXAMPLE 3 [Failure for both multi-pass and single-pass methods] 
Consider the following mapping table: 

kl  k2 k3 k3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

h 1 3 4 2 4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

h I 4 3 2 1 

153 

The HIT constructed by the multi-pass and the single-pass methods are both 
(0, 2, 1, 1, 0), or 

3 - -  2 - -  

1 

Therefore it does not define a perfect hash function. 
In Example 3, however, we can find two perfect hash functions as defined by 

HIT = (0, 2, 1, 2, 2) and HIT = (0, 2, 2, 2, 2). I.e., 

2 . . . . .  

and 
4 3 - 1  4 3 2 1  

In the following we will introduce a backtracking method to find (1) all the 
feasible solutions, (2) the optimal solution (i.e., with the lowest retrieval cost), 
and (3) an answer of "no solution" if no solution exists, according to a given 
mapping table. 

3. Algorithm and efficiency. 

3.1 Basic concepts 
In applying a backtracking technique finding the "intelligent" bounding 

function is important. Different problems (for example, the 8-queens problem, 
sum of subsets, graph colouring, Hamiltonian cycle and knapsack problems [2, 
7, 8]) have different bounding functions. Given a mapping table, our problem is 
to construct a HIT to define a perfect hash function. Thus the goals of our 
bounding function are: (1) Each key in the key space corresponds to a unique 
address in the address space, and (2) The retrieval algorithm should work 
correctly. Assume that the solution is (xl, x2 .. . . .  x,), where xi are chosen from 
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column i in the mapping table. The first of  these two goals implies that  no two 
x~ can be the same. That  is: 

(a) x~ 4: x~ for all i @ j, 1 < i, j < n. 

Assume i ~ j and x i = hz(kj),  x i = hv(k i ) ,  then the second goal is: (see Figure 4) 

(b) 

h I 

hip.. 

xi  ~ d~ where d s = ht(ks), if l < l'. 

k I • - "  k j  " - -  k i - - .  

d j, 

t 

Q 

Fig. 4. 

© 

Suppose that  ( x l ,  x2  . . . . .  x , , )  is a solution which satisfies the constraints (a) 
and (b), where x i = ht,(ki) for key k i and some hash function h 6. Then the H I T  
corresponding to this solution can be constructed by letting 

HIT[ht,(k3] = I i for each i < n. 

To  simplify the explanation,  we will consider a problem of  constructing a 
perfect hash function on a 2 x 3 matrix• Figure 5 shows the configurations as the 
backtracking proceeds. 

® 2 o @ @ o 2 2 o 
¢ 

3 1 1 3 1 1 @ 1 1 

(a) (b) (c) 

® l 1 ® ® l ® ® 1 

(d) (e) (f) 

Fig. 5. E x a m p le  o f  a back t r ack ing  so lu t ion  to the perfect  hash ing .  
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The problem is that exactly one value must be selected in each column. In the 
beginning a value is selected in the first column of the first row, at position 
(1,1), as shown in Figure 5(a), indicated by a circle. Here we have 
(X1, X2, 'X3) = ( 2 , - , - ) .  The next value is selected from position (1, 2), 
(xl ,xE,x3)  = (2,2,-),  as shown in Figure 5(b). Since no two x i can be the same, 
it is necessary to reconsider the first column and select the value at position 
(2, 1), (xl,Xz, X 3 ) - - ( 3 , - , - ) ,  as shown in Figure 5(c). Note that we need not 
check the states of (2,2,0) and (2,2, 1). In Figure 5(d), the value 2 at position 
(1, 2) is the same as the value at position (1, 1). This selection will make future 
retrieval operations fail, so we discard this value, and select the value 1 at 
position (2,2), as shown in Figure 5(e). Finally, the value 0 in column 3 at 
position (1, 3) is selected, and we get a feasible solution, as shown in Figure 5(f); 
i.e., we constructed a perfect hash function with H I T - - ( 1 , 2 , 0 , 2 ) .  The 
backtracking algorithm determines problem solutions by systematically 
searching the solution space for the given problem instance. This search is 
simplified by using a tree organization for the solution space. In the example the 
backtracking traverses the nodes of the tree as shown in Figure 6 along the 
dotted arrows. 

xl.hl ( i I -3 

x2"hZ(k2)'2 ~" / ~  . ~" ~ ' "  - - t ' ' /  - 

Fig. 6. 

) 

The depth first order in which backtracking examines the tree o f  solution space is shown 
by the dotted arrows. 

3.2 Algorithm 
Here we define some terminological concepts regarding tree organization of 

solution spaces (see Figure 6). Each node in the tree defines a problem state. All 
paths from the root to other nodes define the state space of the problem. 
Solution states are those problem states S for which the path from the root to S 
defines a tuple in the solution space. In the tree of Figure 6, only the leaf nodes 
are solution states. Answer states or feasible solutions are those solution states S 
for which the path from the root to S defines a tuple which is an element of the 
set of solutions (i.e., it satisfies the constraints) of the problem. The tree 
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organization of the solution space will be referred to as the state space tree. 
Given a mapping table MT, the procedure "FINDHIT" prints all the feasible 

solutions which define perfect hash functions by using backtracking techniques. 
The procedure is listed in Figure 7. The variables used are defined as follows: 

N 
R 
S 
I 
M T  
X 
INDEX 

NEXT 
BACKUP 

number of the key set. 
size of the address space. 
number of rehash functions. 
index of the value in the solution vector. 
mapping table. 
solution vector. 
contains row numbers for the corresponding x-values in the mapping 
table (i.e. the index of hash functions). 
NEXT(i) points to the next row to be tried in column i. 
is the number of columns to go back in the problem states. 

PROCEDURE FINDHIT; 
Var MT: array[1...  S, 1. . .  N] of integer; 

X, INDEX, NEXT: array[1...  N] of integer; 
HIT: array[1 ...R] of integer; 
L K, BACKUP: integer; 

FUNCTION T(/): boolean;//generating the next problem states// 
begin T := false; 

if NEXT[/] < S then 
begin INDEX[/] := NEXT[/] ; X[/] := MT[INDEX[/] , / ] ;  

NEXT[/] := NEXT[l] + 1 ; T := true end 
end; 

else 

end; 

FUNCTION B(/): boolean;//bounding function// 
begin B := true; 

for K : =  1 t o I - l d o  
if X[K] = X[/] 
then begin B := false;//violate constraint(a)// 

if INDEX[K] = INDEX[l] //with same hash function// 
then if INDEX[K] = 1 //h 1 is used in the first row// 

then BACKUP:=  l - K / / b a c k t r a c k  k - i  columns// 
else BACKUP := 1 //backtrack to previous column/ 

end 
if (NEXT[K] > NEXT[/]) and (MT[INDEX[/], K] = X[/]) 
then B := false //violate constraint(b)~~ 
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beg in / /ma in  program starts here/ /  
while not end-of-file do 

begin 
read ( M T ) ; / / r e a d  mapping table/ /  
for I :=  1 t o  N do N E X T [ / ]  :=  l, I :=  1; / / ini t ial izing//  

while I > 0 flo 
begin 

if (T(/) and B(I) 
then if I = N then print(X and H I T ) / / o b t a i n  a feasible sloution//  

else I :=  I +  1 / /cons ider  the next column//  

else begin / /ac tua l  backtracking is executed//  

while B A C K U P  > 0 do 
begin N E X T [ / ]  : = 1 ; I : = I -  1 ; BACKUP : = B A C K U P  - 1 end ; 

while N E X T [ / ]  > S do 
begin N E X T [ / ]  :=  1 ; I :=  I -  1 end; 

end 
end 

end 
end. 

Fig. 7. The procedure F1NDHIT prints all the feasible solutions. 

Generating the next problem state, T 
The boolean function T(i) is used to test whether (xl ,x2 ... . .  x~) is in the 

problem state. If  it is true, it implies that x~ is assigned from one value of 
column i in the MT, and (xl,x2 . . . . .  xi-~) have already been chosen. Now the 
solution vector is extended to i values, and xg (to be called the value of current 
state or current value in short) is considered as a component  of a feasible solution. 

Bounding function, B 
The bounding function B(i) is false for a path (Xl, x2 . . . . .  Xi) only if the path 

cannot be extended to reach an answer node, i.e., the bounding function Bi 
returns a boolean value which is true if the ith x can be selected in the column i 
of the mapping rable MT, and can satisfy the constraints (a) and (b) in Section 
3.1. Thus the candidates for position i of the solution vector X(1 ... n) are those 
values which are generated by T(i) and satisfy B(i). If i = n, we obtain a feasible 

solution and then print it. 

EXAMPLE 4 [Backtracking method to construct HIT]  

Consider the following mapping table: 

kl k2 k3 k4 

1 1 2 1 

3 0 2 4 

hi 

h2 
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The size of  the solution space is 16. By using the procedure F I N D H I T ,  two 

feasible solutions are obtained as 

2 . . . . .  
and 

3 0 - 4  3 0 2 4  

with H I T  = (2, 0, 1, 2, 2) and H I T  = (2, 0, 2, 2, 2) respectiveiy. The first solution 
is the optimal with retrieval cost equal to 1.75. 

EXAMPLE 5 [Backtracking one or more steps] 
Consider the following mapping  table:  

h 1 

h2 

ha 

h4 

k l  k2 k3 k4 k5 k6 k7  k s  k9  k l o  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 2 5 6 4 3 8 12 4 12 

6 5 12 3 4 13 3 5 6 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 15 3 6 7 5 6 4 3 I1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 2 5 I1 4 3 17 16 4 . 14 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

By using the procedure F I N D H I T ,  the first four solutions can be easily 
obtained as shown in the Appendix. Before we find the first solution, we should 

reach a problem state as shown in Figure 8(a). In  the figure the partial values 
(circled) of the solution vector are X = (4, 2, 5, 6 . . . . . .  -), and the current  
value is 4 (shown by a square box). Since X[1-] = X [ 5 ]  = 4, it is impossible to 

have feasible solutions such that  X [ 1 ]  = 4 because the constraints  (a) or  (b) 
would be violated. Therefore, it must  backtrack the problem state from I = 5 to 
I = 1 as shown in Figure 8(b). Figure 8(c) shows the fourth solution. In order  

to find the next solution, the following problem states are generated and are 

tested. We show them by Figures 8(d), 8(e), 8(f) and 8(g). In  Figure 8(g), again, 
we have X[1 ]  = X [ 6 ]  = 5. If  we backtrack 5 steps (backtrack to the first 

column), as shown in Figure 8(h), we m a y  lose some feasible solutions. Only  a 
one-step backtracking (backtrack to column 5) is correct  as shown in Figure 

8(i). Therefore, the solution obtained in Figure 8(j) is our  fifth feasible solution. 

Some other  solutions are listed in the Appendix. 

® @ @ @ [] 3 8 4 12 

6 5 12 3 4 13 3 5 6 5 

5 15 3 6 7 5 6 '4 3 11 

4 2 5 11 4 3 17 16 4 14 

(a) 
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4 2 5 6 4 3 8 12 4 12 

6 5 12 3 4 13 3 5 6 5 

5 15 3 6 7 5 6 4 3 11 

5 15 3 6 7 5 6 4 3 11 

[ ]  2 5 11 4 3 17 16 4 14 

(h) 

4 @ 5 @ 4 3 8 12 4 12 

6 5 @ 3 4 13 3 5 6 5 

@ 15 3 6 [ ]  5 6 4 3 11 

4 2 5 I1 4 3 17 16 4 14 , 

(i) 

4 @ 5 @ 4 @ @ 12 4 12 

6 5 ( ~  3 4 13 3 5 6 5 

@ 15 3 6 C )  5 6 4 3 @ 

4 2 5 11 4 3 17 @ @ 14 

O) 
Fig, 8. Behavior of the backtracking of Example 4. 

3.3 Efficiency 

How effective is the algorithm FINDHIT over the brute force approach? For 
a 2 × 4  matrix as shown in Example 2, there are 31 nodes in the tree 
organization of the solution space. That is, there are 31 problem states. Some 
states are ignored by the constraints of the bounding function B. Hence we need 
to examine only 12 problem states. The efficiency of the algorithm is thus 
defined by : 

efficiency = T1/ T 2, 

where T 1 denotes the number of nodes generated by the backtracking algorithm, 
and T z denotes the number of nodes in the state space tree. In Example 2, the 
efficiency is only about 0.387. This implies that only 38.7 percent of the nodes 
need be examined in order to find the feasible solutions. Since the efficiency is 
data dependent, we design an experiment to estimate some average values of 
efficiency. Column (a) in Figure 9 shows the expected values of efficiency to find 
a feasible solution set. Column (b) shows the expected values of efficiency to 
find the optimal solution. For a given mapping table, if the perfect hash 
function does not exist, we say there is no solution. Using the backtracking 
algorithm, we can determine whether there is no solution by only generating the 
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partial nodes (the number is denoted by T1) instead of testing all the nodes in 
the state space tree (T2). Column (c) shows the expected values of efficiency to 
find no solution. All the values are computed from the average of 100 
independent test data sets, with loading factor (i.e., (size of KS)/(size of AS)) 

= 0 . 8 .  

( a  = 0 .8 ;  s = 3)  

key  (a)  (b )  (c) 
n o .  a f e a s i b l e  o p t i m a l  n o  s o l u t i o n  

5 0 .0744  0 .2312  0 .1567 

10 0 .0042  0 .0246  0 .0093  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

15 1.8 * 10 - 4  7 . 4 , 1 0  - 4  3.0 * l0  - 4  

20 7 . 4 *  10 - 6  2 . 6 *  10 - 5  6 . 7 *  10 - 6  

Fig .  9. V a l u e s  o f  e f f i c i e n c y ,  

4. Comparison results. 

Suppose the mapping tables have random hash values; i.e., the hash values in 
each mapping table are uniformly distributed over the range, Let P,,, Ps, and Pb 
denote the probability of getting perfect hash functions by using multi-pass, 

Prob. 

~.o~ 

O.gr 

0.8i, 

O.7t 

0.~1 

O.S| 

0.4~ 

0.] 

0o~ 

0.] 

0.01 
I.o 15 " - 20 2S  -" 30 

• - ] ;  o - 0 . 6  

• ' Pm m ~ t ~ l - o ~ s s  
~ p$ s L ~ q L e - p a s s  

- - ' ~ - -Pb  back~ra~ 

~'S " n 

p o o h .  

,.ot 
0 . 9  

O ° e  

0 . 7  

O.G 

0 . 5  

0 . 4  

0 . 3  

O . Z  

0 . !  

0 . 0  tO ItS ZO 1$ 10 IS 

( a )  ( b )  

Fig .  10. P r o b a b i l i t y  o f  c o n s t r u c t i n g  p e r f e c t  h a s h i n g :  (a )  s = 3, (b )  s = 7. 
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single-pass, and backtracking methods respectively. The procedures for the three 
methods were programmed in Pascal and their probabilities evaluated on a 
CDC Cyber 170/720 computer. The results of this evaluation are presented in 
Figure 10. As the figure indicates, the backtracking method is better than multi- 
pass and single-pass methods. The retrieval costs of the three methods are also 
presented in Figure 11. All of them are within a limit, not exceeding 1.95, in the 
case s = 3. 
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are listed in the Appendix. 

Appendix. 

M A P P I N G  TABLE IS: 

4 2 5 6 4 3 8 12 4 12 
6 5 12 3 4 13 3 5 6 5 
5 15 3 6 7 5 6 4 3 11 
4 2 5 11 4 3 17 16 4 14 

SIZE O F  S O L U T I O N  SPACE: 1048576 

Fig. 1 I. Retrieval cost. 

5. Conclusion. 

This paper presents a backtracking method to construct perfect hash 
functions from a set of mapping functions. Compared with the other two 
methods proposed before, this new method has a much better chance to get 
perfect hash functions. For example, as n = 25, ct = 0.8, s = 7, the probability of 
getting a perfect hash function is around 97 %. The only problem is that when n 
increases, the probability of getting a perfect hash function decreases. But this 
difficulty can be overcome by segmentation, i.e., by dividing the address space 
into segments. This idea was first used in [6] and was also applied in [17]. 

If perfect hash functions do exist in a given mapping table, the backtracking 
method can certainly find all of them and give the optimal solution. It is 
surprising that, in a mapping table of dimensions 4 x 10, we get 204 feasible 
solutions, with efficiency of 0.006. The matrix and some of the feasible solutions 
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F E A S I B L E  S O L U T I O N  : 

( l )  - 2 - 6 8 

12  - 4 13 - - - 

5 . . . . . .  3 l l  

. . . . . .  16 

H I T =  ( 0 , 1 , 3 , 2 , 3 , 1  . . . .  ) C O S T = 2 . 2 0  

( 2 ) -  2 - 6 - 8 

12 - 4 13 . . . .  

5 . . . . .  3 - 

. . . . . . . . . . .  16 - 14  

H I T  = (0, 1o 3, 2,  3, 1 . . . .  ) C O S T  = 2 . 3 0  

3 ) -  2 - 6 - - 

12 - 4 13 . . . .  

5 . . . . . . .  3 11 

17 16 

H I T  = (0, 1, 3, 2, 3, 1 . . . .  ) C O S T  = 2 .50  

( 4 ) -  2 - 6 . . . . . . . .  

12 - 4 13 

5 . . . . . .  3 - 

. . . . . .  17 16 - 14  

H I T  = (0, 1, 3, 2, 3, 1 . . . .  ) C O S T  = 2 . 6 0  

( 5 ) -  2 - 6 - 3 8 

12 . . . . . . .  

5 7 . . . .  11 

. . . . . . .  16 4 

H I T  = ( 0 , 1 ,  1, 4 ,  3 , 1  . . . .  ) C O S T  = 2 . 3 0  

( 6 ) -  2 - 6 - 3 8 

12 - - 

5 7 

. . . . . . . . . .  16 4 14 

H I T  = (0, 1, 1, 4, 3, 1 . . . .  ) C O S T  = 2 . 4 0  

( 7 ) -  2 - 6 - 3 

12 - 

5 7 . . . . .  11 

. . . . .  17 16 4 - 

H I T  = (0, t ,  1, 4,  3 , 1  . . . .  ) C O S T  = 2 . 6 0  

( 8 ) -  2 - 6 - 3 

t 2  . . . . . . .  

5 - - 7 

17 16 4 14 

H I T  = (0, 1, 1, 4, 3, 1 . . . .  ) C O S T  = 2 . 7 0  

( 9 ) -  2 - 6 8 

1 2  13 . . . .  

5 7 4 3 11 
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H I T =  (0,1,3,3,3,1 . . . .  ) C O S T = 2 . 2 0  

( 1 0 )  - 2 6 8 - - 
12 13 

5 7 4 3 
. . . . . . .  14 

HIT = (0, 1, 3, 3, 3, 1 . . . .  ) COST = 2.30 
OPTIMAL SOLUTION:  ( 1) 
EFFICIENCY = 0.006 = 8605/1398101 

(204) . . . . . . . . . . . . .  
12 13 

- - - 7 3 - 

4 2 11 - 17 16 - 14 

HIT = (0,4,3,4,0,0, . . . )  COST = 3.00 
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