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Three-dimensional phase distribution near the focal plane is demonstrated by cross-section profiles of cophasal
surfaces. The phase distribution in the focal plane and the phase anomaly in the focus are discussed in greater de-
tail. Numerical results obtained are arranged systematically with Fresnel numbers sampled between 0.5 and 100,
a sampling that covers conventional and unconventional cases.

1. INTRODUCTION

Phase distribution near the focus when a converging, mono-
chromatic, spherical wave is diffracted at a circular aperture
on an opaque screen has been treated by many authors after
Gouy’s discovery in 1890 of the so-called phase anomaly near
the focus.1# The extensive literature related to this subject
is cited in Ref. 3.

Attention is now paid to the same problem, because in a
number of publications®12 authors have revealed that, in
principle, many of the classical results are merely special in-
stances that are covered by more-general laws. For instance,
classical authors3 predicted that the cophasal surfaces in the
immediate neighborhood of the focus are nearly plane, while
Gouy! argued that a spherical converging light wave passing
through its focus undergoes a rapid phase change of m rad. In
this paper, it is shown that the cophasal surfaces near the focus
are approximately spherical, that the rapidity of the phase
change along a selected geometrical ray through the focus is
directly proportional to the Fresnel number of the diffracting

aperture, and that therefore Gouy’s predictions of phase’

anomaly near the focus may describe phenomena in focusing
systems only when their Fresnel numbers are considerably
larger than unity. Moreover, phase distribution in the focal
plane needs to be discussed, because in the focal plane an
additional parabolic phase factor has to be taken into account
if some of the assumptions underlying the classical investi-
gations are modified.”

The numerical results obtained in this paper are displayed
systematically by curves and cross-section profiles with the
Fresnel number sampled between 0.5 and 100.

2. EXPRESSIONS OF PHASE DISTRIBUTION
IN THE FOCAL REGION

When a uniform converging spherical wave working at a cir-
cular frequency w emerges from a circular aperture in an
opaque screen, it is seen that it travels along the z axis toward
the geometrical focus at x =y = z = 0 (Fig. 1). By using the
scalar theory of diffraction, it can be predicted that the be-
havior of the diffracted field is determined by the following
parameters: A, amplitude; a, aperture radius; A, wavelength;
and f, focal length. The last three parameters can be com-
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bined into the Fresnel number N = a?/\f and the f number
F = f/2a.

In the present investigation, attention is centered on the
phase behavior of the diffraction field near the focus, which
is, apart from a periodic factor exp(—iwt), given by6711,12

1
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on(un, vN) = N un?

— alu, vn) ~ g (mod 27). (2.1)

This is the central equation of this paper. In this equation

2/f
un = 2w T+ o (2.2a)
r/a
= 97N = (x2 4 »2)1/2 9
uN =27 T4 2/f [r=x2+y912, (2.2b)
and
oS - Cc
sina = €2+ S cos @ = 2 +S2)1/2’ (2.3)
with

L .
C—-iS=2 J; Jo(vnp) exp (—-%u;wﬂ]pdp. (2.4)

The notation (mod 27) in Eq. (2.1) means that ¢ is inde-
terminate according to the extension of an additive multiple
of 27.

The multivalued function ¢ has a branch point at each
zero of the intensity.3 At all points other than the points of
zero intensity, ¢ is continuous with respect to (uy, vy). In
the special case of (uy = 0, vy = 0), i.e., at the geometrical
focus (which is not a branch point), we obtain from Eq. (2.1)
that
(2.5a)

¢N(0,O)=—§:tm7r, (m=0,1,2...).

We can then define
én(0,0) = — g (2.5b)

as the principal value of ¢n(0, 0).
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Fig.1. Illustration of the notation.

3. PHASE DISTRIBUTION IN THE FOCAL
PLANE

By putting uy = 0 into Eq. (2.1), the following result is ob-
tained:

on (0, v) = 1ﬂ—Mmm—§, (mod 27). (3.1)

47N

In this equation the dimensionless parameter vy, as defined
by Eq. (2.2b), has been replaced by

v=2rN z. (8.2)
a

Under the condition uy = 0, Eq. (2.4) yields the following
results:

C = Besinc(v) = 2J;(v)/v and
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By substituting these equations into Eqs. (2.3), we obtain

sina=0 and cos ¢ = Besine(v)/|Besinc(v)).

(3.4)

From these results, it is clear that the principal value of (0,
v) in Eq. (3.1) is either 0 or , according to whether the special
function Besinc(v) > 0 or Besinc(v) < 0. These inequalities
are equivalent, respectively, to

0=<r< Rl, R2p <r< R2p+1, (353.)

and
R2p—1 <r< R2py (P =1,2,3,...). (3.5b)

Here R, is the radius of the pth dark ring in the Airy pattern
where the available regions of the following formulas are di-
vided:

T
¢n(0,v) = N v2—— (mod 27) (3.6a)
when inequalities (8.5a) hold, and
T
0,v) = 24— 2 .
on(0,v) v + 5 (mod 27) (3.6b)

when inequalities (3.5b) hold.

Phase distributions in the focal plane are shown by the
parabolic curves in Figs. 2(a), 2(b), 2(c), 2(d), 2(e), and 2(f) for
systems of Fresnel number N = 0.5, 1, 2, 5, 10, 100, respec-
tively. These parabolic curves are cut into segments by the
points of zero intensity at r = R, at which the phase distri-
bution undergoes rapid transitions of w rad. In addition, since
calculations in the present study are limited to a region smaller
than the fourth dark ring of the Airy pattern, the v values in
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Fig. 2. Phase distribution in the focal plane in systems with different Fresnel numbers N. ORj, ORq, and OR3 are the radii of the first three
dark rings in the Airy pattern.
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Eqs. (3.6) range from 0 to 13.32. A consequence of this limi-
tation is that the contribution of the quadratic term on the
right-hand sides of Egs. (3.6) becomes negligible when the
Fresnel number is much larger than unity. InFig. 2(f) (N =
100), phase distribution between two adjacent dark rings of
the Airy pattern is practically a constant—a result that may
be regarded as classical and one that has not received much
attention in the classical investigations.

Strictly speaking, a constant phase distribution in any finite
area in the focal plane is unobtainable.

4. THREE-DIMENSIONAL PHASE
DISTRIBUTION NEAR THE FOCAL PLANE

In order to illustrate the three-dimensional phase distribution
near the focal plane by means of cophasal surfaces, Eq. (2.1)

2T . Z)T_\E_ VxZey?

o

\
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is treated as a transcendental equation, viz.,
— 1 4F%un + N3~ =un
1 —un/2aN 47N
+ Bluy, vy) = constant, “.1)

in which B(un, vy) can be evaluated in terms of Lommel’s U
functions,!2i.e.,

U
(U2 + U2V

Uy

(.U12 + U22)1/2’ (4‘23)

sin § = cos B =

or in terms of Lommel’s V functions, i.e.,

+1
12
13
+,

= -1
o
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sin 8 = Vo—cos©
[(Vo — cos ©)2 + (V1 + sin 9)2]1/2’
cos 8 = Vi +sin ©
[(Vo— cos ©)2 + (V; + sin 0)2]/2
1 2
= -?:(uN + %N;) (4.2b)

The definitions of Lommel’s U and V functions can be found
in Ref. 13.

In this investigation, transcendental Eq. (4.1) was solved
on a computer by employing Lommel’s U functions when
Jun/vn] < 1 and Lommel’s V function when |un/vn| > 1. The
results obtained are displayed in Figs. 3(a)-3(f) by the profiles
of cophasal surfaces in systems with different Fresnel num-
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bers. In these figures, the curves are crowded in the region
near the dark rings of the Airy pattern. In order to avoid
overlapping, curves in those regions are displayed only sche-
matically. Actually, phase structure near the said dark rings
changed much more rapidly than is shown in Figs. 4(a)—4(f).
From these figures, it seems clear that the cophasal surfaces
near the focus are convex to the aperture and nearly spher-
ical.

A further point of interest was a study of the curvature of
cophasal surfaces at the focus. To undertake this, Eq. (2.1)
was transformed into an implicit function with variables r and
z, viz.,

G(z,r; ¢n) =0, 4.3)

where ¢n = constant. From this, the said curvature is de-
termined by
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(Figure 3 continued overleaf)
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Fig. 3. Profiles of cophasal surfaces in the immediate neighborhood of the focal plane in an F/3.5 system with different Fresnel numbers N.
OR and OR; are radii of the first and the second dark rings in the Airy pattern.

— leGr(Gzr + Grz) - (Gr)szz - (Gz)zGrrl
k= (G,2 + G,2)%2 |2=0 (4.4)

r=0

in which G; = 3dG/oz, G, =9G/dr, G,, = 32G/dzdr,. ... After
a lengthy derivation, omitted here, the result obtained can be
expressed as

1

Tk (4.5)

If F2> 1, the above relationship is reduced to k ~ f~1; then
the corresponding radius of curvature

m=laf (4.6)
K

is obtained, a result that indicates that the center of the radius
of curvature is in the middle of the aperture. This theoretical
outcome, which may be regarded as a fundamental property
for focusing systems of any Fresnel numbers, is shown
graphically in Fig. 1 by the dashed circular curve. This out-
come is also in close agreement with the experimental results
obtained in microwave optics, as reported by Farnell (see Figs.
2 and 3 of Ref. 14).

The complete phase disttibution near the focal plane can
be found by rotating Fig. 3 arourid the z axis. After this has
been done, the curvature circle in this figure becomes a sphere
of radius f.
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The classical prediction concerning the cophasal surfaces
in the immediate neighborhood of the focus may be considered
as a special case of the present result [expression (4.6)]. This
is because the region in which the classical authors? carried
out their calculations was limited by the first several dark rings
in the Airy pattern, which, when the Fresnel number is far
larger than unity, is rather small in comparison with a sphere
of radius f. As a result of the limitation of the region of ob-
servation, it was logical for the classical authors to conclude
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that the cophasal surfaces in the immediate neighborhood of
the focus are almost plane.

5. PHASE ANOMALY

In the classical theory of focusing, phase anomaly near the
focus is an important subject that has attracted the attention
of many investigators during the many years past. After
numerous notable investigations, it is now generally accepted
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Fig. 4, Phase anomaly along geometrical rays through the focus in
an F/3.5 system with different Fresnel numbers N. The angle § de-
notes the inclination of the ray to the axis.
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that a converging spherical wave undergoes a rapid phase
change of 7 rad in passing through its focus.! This phe-
nomenon is not only observable in focused light fields?—4 but
also in focused acoustic fields.

In this section of the present study, the classical predictions
concerning phase anomaly near the focus are checked in sys-
tems of different Fresnel numbers. To this end, it is necessary
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to consider the phase behavior as the observation point P
moves along a selected geometrical ray through the focus (see
Fig. 1). If 8 is the angle between the axis and the selected
geometrical ray, then we have

N _ 2F tan 6. (5.1)
un
By inserting the above formula into Eq. (2.1), we obtain
4F%uy un

,0) = 1+
ov(un, 0) 1—un/2aN\" " 4zN

tan? 0) — olupy, 9) _12_r

(mod 27). (5.2)

In order to determine the linearity in the phase change de-
scribed by Eq. (5.2), we introduce a reference wave (geomet-
rical wave). This wave has a linear phase property as obser-
vations are made in the region of illumination predicted by
geometrical optics and along a ray through the focus, viz.,

D(P) = RIf y 0<0<tan"1(2F), (5.3)
where
d(un, 0) = —kR when uy < 0]. (5.4)
= 4+kR when uy >0
Here k& = 27/\ is the wave number, and
R=(2+r)12= l-—iliﬂlﬂv-l-—sec ] (5.5)

k1—~un/27N

is the distance from point P to the focus 0. The difference
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dn(un, 0) = on(un, 0) — dlun, 0), (5.6)

4F2LLN uN
=—"TUN g gecf) + N tan2g
T anyonn (L ecO) + oy tan

— afuy, 0) — 121:, (mod 27),

0<tand < (2F)71, (5.7

is called the phase anomaly along a geometrical ray. Inorder
to compare this result with that given by the classical authors
(see, e.g., Fig. 8.47 of Ref. 1), the same f number (i.e., F /3.5)
is now adopted, and the influence of the Fresnel number on
the phase anomaly is observed.

The results obtained from Eq. (5.7) are demonstrated in Fig.
4 for the same Fresnel numbers as those in Figs. 2and 3. Each
curve in Fig. 4 corresponds to a particular geometrical ray
through the focus. Phase anomaly near the focusin a N = 100
focusing system [Fig. 4(f)] is essentially the same as the clas-
sical result, in which 6 (1, 0) (phase anomaly along the axis)
is a linear function of the z coordinate, except at the points of
zero intensity; for the oblique rays, phase anomaly is an-
tisymmetric to the focus and undergoes a rapid but continuous
phase change of 7 rad as the rays pass through the focus.
These properties, which are notable outcomes of the classical
theory of the phase anomaly in the focus, disappear one by one
with decreasing values of the Fresnel number N. Figures 4(e)
(N = 10) and 4(d) (N = 5) show that phase anomaly is no
longer antisymmetrical to the focus and that, along the axis
and between two adjacent transitions, 6y becomes a nonlinear
function of the z coordinate. However, the change of iy near

the focus is still = rad. But this property is lost when the -

Fresnel number is further decreased. Thus the classical
theory can no longer be used to predict correct results when
the Fresnel number is of the order of unity or smaller [see Figs.
4(a), 4(b), and 4(c) for the cases of N = 0.5, 1, 2.

Further evidence is provided by considering the following
two quantities. First,

A = dn(un, 0)=—0.9f — On(un, 0)z=+o.2f, (5.8

an index number expressing the total amount of the change
of 8,y between two points on the two sides of the focus; and,
second, a quantity concerning the rapidity of the change of
0n in the focus,15 viz.,

éﬁﬁéu_zv)

on’(0,0) =
w'(0,9) (6u1v dz

=0 = W—zly—[l + 16F2(sec § — 1)),

uN=0

0<stanf < (2F)7L. (5.9)

This result indicates that the rapidity of the phase-anomaly
change along a selected geometrical ray is directly proportional
to the Fresnel number of the diffracting aperture.

Under the condition F2 > 1, we have sec § — 1 =~ 0.5 tan?
6. We then obtain the following expression:

57(0,0) = — —7521![1 +8(Ftan0)?,  0<(Ftan0) <0.5.

(5.10)

The quantity A is plotted in Fig. 5 as a function of the
Fresnel number N. From this figure it is seen that the
phase-anomaly change in the focal point and along the edge
of the geometrical shadow attains 7 rad when N = 2, whereas
phase anomaly along the axis attains the same amount of
variation when N = 5. The rapidity of this variation [Eq.
(5.10)] is demonstrated in Fig. 6, from which it is seen that an
appreciably rapid phase change occurs in the focus only when
N > 10. Therefore Gouy’s prediction of the anomalous
propagation of phase in the focus, i.e., a converging spherical
wave undergoes a rapid 7 rad phase change in passing through
its focus, may describe phenomenon in focusing systems only
when their Fresnel numbers are considerably larger than
unity.
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6. CONCLUSIONS

In this paper, phase distribution near the focus is demon-
strated by a series of diagrams. It seems that if these results
are combined with the previous diagrams that show in detail
the structure of the field and the distribution of encircled
energy in the focal region,!!+12 a comprehensive knowledge of
the focused field would then be obtained. For this purpose,
the Fresnel numbers in Figs. 2-4 have been arranged in the
same way as those used in the previous investigations.
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