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Abstract: A computation task running in distributed systems can be represented as a directed graph
H (V, E ) whose vertices and edges may fail with known probabilities. In this paper, we introduce a reliability
measure, called the distributed task reliability, to model the reliability of such computation tasks. The
distributed task reliability is defined as the probability that the task can be successfully executed. Due
to the and-fork/and-join constraint, the traditional network reliability problem is a special case of the
distributed task reliability problem, where the former is known to be NP-hard in general graphs. For
two-terminal and–or series-parallel (AOSP) graphs, the distributed task reliability can be computed in
polynomial time. We consider a graph Hk (V̂ , Ê) , named a k-replicated and–or series-parallel (RAOSP)
graph, which is obtained from an AOSP graph H (V, E ) by adding (k 0 1) replications to each vertex and
adding proper edges between two vertices. It can be shown that the RAOSP graphs are not AOSP graphs;
thus, the existing polynomial algorithm does not apply. Previously, only exponential time algorithms as
used in general graphs are known for computing the reliability of Hk (V̂ , Ê) . In this paper, we present a
linear time algorithm with O (K (ÉVÉ / ÉEÉ) ) complexity to evaluate the reliability of the graph Hk (V̂ , Ê) ,
where K Å max{k222k , 23k } . q 1997 John Wiley & Sons, Inc. Networks 29: 195–203, 1997

1. INTRODUCTION In the task graph H(V, E) , V is the set of vertices which
represents modules and E is the set of edges which repre-
sents the messages passing links between two modules.In the past decade, distributed processing systems have

To increase the survival rate of the task, a straightfor-become increasingly popular because they provide a po-
ward method is to replicate the complete task severaltential increase in reliability, throughput, fault tolerance,
times and to execute it independently on distinct comput-and resource utilization. Usually, the computation task of
ers. The primary site approach [2] is one such example.a distributed processing system can be partitioned into a
The disadvantage of this approach is that the system can-set of software modules (or simply, modules) and then
not tolerate more than one fault in each replicated task.modeled as a directed graph H(V, E) , called a task graph.
Recently, the replication of software modules was pro-
posed and implemented, such as in Maruti [8] and Delta-
4 [10]. The idea behind this approach can be illustratedCorrespondence to: D.-R. Liang

q 1997 John Wiley & Sons, Inc. CCC 0028-3045/97/040195-09
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196 LIANG, JAN, AND TRIPATHI

nent failures [10]. It has been reported that most of the
hardware failures in computer systems are transient fail-
ures [8] . The random events of failures in modules or
communication links can be considered as independent,
provided that the software components are replicated with
the N-version programming technique and the hardware
failures are assumed to be transient.

Suppose that the modules and the communication links
have a certain probability of being operational. Then,
there is a certain probability, called the distributed task
reliability, associated with the event that a task completes
successfully. This measure accurately models the reliabil-

Fig. 1. (a ) A fork-join task graph; (b) its replicated graph. ity of a task running in distributed systems. Due to the
and-fork /and-join constraint of the task graph, the tradi-
tional network reliability problem [1, 3, 4, 6, 7, 11, 12]

in the following example: Consider a simple application
is a special case of the distributed task reliability problem,

modeled by an and-fork/and-join graph as shown in Fig-
where the former is known to be NP-hard for general

ure 1(a) . (By convention, this task operates only if all
graphs. For the two-terminal series-parallel (TTSP)the modules as well as the links operate.) Suppose that
graphs, the distributed task reliability can be found inthe application is implemented with an extra replication.
polynomial time using the technique developed in [13].In this approach, each module receives messages not only
For the two-terminal and–or series-parallel (AOSP)from its predecessors in the same replica, but also from
graphs, we will show in Section 2 that their distributedthe corresponding predecessors in the other replica. Fig-
task reliability can also be calculated in polynomial timeure 1(b) shows one such implementation. Thus, a task
using the same technique [13]. In this paper, we considerfinishes successfully only if there is a set of modules
a graph Hk(V̂ , Ê) , named the k-replicated and–or series-which forms this application, and their associated commu-
parallel graph (k-replicated AOSP graph or, more, simplynication links are operational. Obviously, this application
RAOSP graph), which is obtained from an AOSP graphmay tolerate more than one fault in each task replication,
H(V, E) by adding (k 0 1) replications to each vertexdepending on the fault patterns. Figure 2 shows a few
and adding proper links between vertices. The main con-examples where the task in Figure 1(b) is operational.
tribution of this paper is the design of a linear time algo-The modules and the communication links may fail
rithm to calculate the reliability of the RAOSP graphdue to two main factors: software failure and hardware
Hk(V̂ , Ê) , given the base AOSP graph H(V, E) and thefailure. The software failures are mainly due to the design
replication degree k . It can be shown that the RAOSPfaults or implementation faults. The reliability can be
graphs are not AOSP graphs; thus, the existing polyno-increased when the software components are replicated
mial algorithm does not apply. Previously, only exponen-with the N-version programming approach [5]. The hard-

ware failures are due to either transient failures or perma- tial time algorithms, as used in general graphs, are known

Fig. 2. Examples of an operational replicated task graph.
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RELIABILITY OF REPLICATED AND–OR GRAPHS 197

1. All modules in the task graph H(V, E) are perfectly
reliable.

2. Any communication link may fail with a known proba-
bility.

3. All failures are assumed to occur independently of
each other.

We remind the reader that we will extend this model to
consider the case of unreliable modules in Section 6.

Formally, a two-terminal AOSP graph of type k , where
k √ {L , PA , PO , S} (which means leaf, parallel-and,
parallel-or, and series, respectively) is recursively de-
fined as follows:Fig. 3. (a ) Sequential graph; (b) and-fork/and-join graph;

(c) or-fork/or-join graph.
1. A single edge (s , t) comprises an AOSP graph of type

L with terminals s and t . The system operates if that
edge operates.to find the reliability of Hk(V̂ , Ê) . In this paper, we
Let Hi be an AOSP graph with terminals si and ti forpresent a linear time algorithm with O(K(ÉVÉ / ÉEÉ))
i Å 1, 2.complexity to compute the reliability of the graph Hk(V̂ ,

Ê) , where K Å max{k 222k , 23k}. 2. The graph H1 Ú H2 is an AOSP graph of type PA with
The rest of the paper is organized as follows: In the terminals s and t , where the graph associated with H1

next section, the definition of AOSP graphs is given and Ú H2 is the disjoint union of H1 and H2 , with s1 identi-
the reliability evaluation for AOSP graphs is discussed. fied with s2 and t1 identified with t2 , and the system
In Section 3, we define the k-replicated AOSP graph and operates if both H1 and H2 operate.
its reliability. An algorithm for computing the reliability 3. The graph H1 Û H2 is an AOSP graph of type PO with
of a k-replicated AOSP graph Hk(V̂ , Ê) is developed in terminals s and t , where the graph associated with H1
Section 4. The algorithm is shown to have an O(K(ÉVÉ Û H2 is the same as that associated with H1 Ú H2 ,
/ ÉEÉ)) time complexity, where K Å max{k 222k , 23k}. except that the system operates if either H1 or H2 oper-
A numerical example is given in Section 5. Section 6 ates.
presents an extension to the model and considers the cases 4. The graph H1∗H2 is an AOSP graph of type S with
of partial replication as well as unreliable vertices. Fi- terminals s1 and t2 , where the graph associated with
nally, concluding remarks are presented. H1∗H2 is the disjoint union of H1 and H2 with t1 identi-

fied with s2 , and the system operates if both H1 and
H2 operate.

2. RELIABILITY EVALUATION We note that the TTSP graphs [13] can be formulated
OF AOSP GRAPHS recursively using only the operations 1, 3, and 4 of the

AOSP graphs defined previously. In other words, the class
of the TTSP graphs is a subclass of the AOSP graphs.Consider a computation task graph H(V, E) consisting of

The distributed task reliability of task H , denoted bya set of software modules V and a set of communication
R(H) , is defined as the probability that the task H oper-links E , which represents message passings between soft-
ates. For example, if H contains only one edge e of typeware modules. According to the logical structures and
L , R(H) Å r(e) , where r(e) is the reliability of edge e .precedence relationship among the modules, a large class
If H consists of two AOSP graphs H1 and H2 , thenof task graphs can be expressed by a combination of three

common types of subgraphs [5, 9]: sequential, and-fork
to and-join (AFAJ), and or-fork to or-join (OFOJ) [see
Fig. 3(a) – (c)] , where AFAJ and OFOJ subgraphs may

R(H) Å

R(H1)R(H2)

1 0 (1 0 R(H1))

(1 0 R(H2))

if H Å H1 Ú H2

or H Å H1∗H2

if H Å H1 Û H2 .
(1)consist of several sequential subgraphs in a parallel struc-

ture. In this paper, we restrict our task graphs to contain
a combination of these three types of subgraphs. This
type of the graph can be modeled as a two-terminal AOSP
graph. To state the model, we make the following assump- To compute R(H) , we first describe an AOSP graph

H by a binary tree structure, T(H) , called the parsingtions:
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198 LIANG, JAN, AND TRIPATHI

tree of H . For example, Figure 4(b) depicts a parsing
tree of the AOSP graph H in Figure 4(a) . The nodes in
the parsing tree are numbered (at the upper right corner)
according to their postorder sequence. Each leaf node in
T(H) corresponds to an AOSP subgraph of type L , i.e.,
a single-edge AOSP graph in H . In Figure 4, for example,
H1 Å e1 , H2 Å e2 , H4 Å e3 , and H5 Å e4 . Each internal
node is labeled by S , PO , or PA according to the type of
that AOSP subgraph. An internal node numbered x in
T(H) along with all of its descendant nodes induce a

Fig. 5. (a ) A type L AOSP graph; (b) the corresponding k-subtree Tx which also describes an AOSP subgraph Hx in
replicated RAOSP; (c) the 2-replicated RAOSP.H . For example, subtree T3 describes the AOSP graph

H3 Å H1∗H2 , in Figure 4(b). Given the parsing tree
T(H) , we can obtain R(H) using Eq. (1) to compute the

execution; then, a replicated edge in Hk represents a rep-R(Hx) level by level for every node x in the parsing tree
lica thread of the corresponding thread in H [such as (si ,T(H) . For example, we first find R(H1) and R(H2) in
tj) , 1 ° i , j ° k , are a replica of (s , t) in Fig. 5(b) .]Figure 4(b), where H1 Å e1 and H2 Å e2 . Next, we
For clarity, we introduce the concept of ‘‘correct valueconsider subtrees T3 and compute R(H3)Å R(H1)R(H2) .
at terminal.’’ Without loss of generality, the source termi-Finally, we can determine R(H) Å R(H7) Å R(H3 Ú H6)
nal of an edge is either offered a valid input value or aÅ R(H3)R(H6) .
nil value. Suppose that a valid input value is offered atNote that an AOSP graph H(V, E) can be translated
the source terminal s of an AOSP graph H ; then, the sinkinto its parsing tree in O(ÉEÉ) time using the algorithm
terminal t of H is said to have a ‘‘correct’’ value withproposed by Valdes et al. [13]. In other words, R(H) can
respect to the valid input value if H operates. Further-be found in O(ÉEÉ) time.
more, the sink terminal t has a nil value if either the
source terminal is offered as a valid input value but H fails
to operate or the source is offered a nil value regardless of3. TASKS WITH REPLICATION
the operation of H .*

Consider a k-replicated AOSP graph Hk . We first no-To increase the reliability of a task, we replicate the mod-
tice that it has k source terminals and k sink terminals.ules and the message passing links of the task. The k-
Without loss of generality, we assume that those sourcereplicated task graph Hk(V̂ , Ê) of H(V, E) is created by
terminals of Hk which are offered valid input have thereplicating each vertex in V (k 0 1) times and letting the
same input value. It is obvious that whether a sink termi-edges in Hk be established in such a way that each vertex
nal of Hk has a correct output depends not only on whichis not only descendant of its predecessors in the same
source terminals of Hk are offered valid input values butreplica, but is also descendant to the corresponding prede-
also on the execution of Hk . Let S and T be the sets ofcessors in the other replicas. For example, Figure 5(b)
source and sink terminals of Hk , respectively. Let A beshows a k-replicated task graph created from an AOSP
the set of source terminals offered with the same validgraph of type L in Figure 5(a) .
input value and B be the set of sink terminals with correctImagine that each edge in H represents a thread of
outputs; A ⊆ S , B ⊆ T . Hk is said to operate w.r.t. (A ,
B) if ∀tj √ B , tj has a correct value and ∀t *j √ T"B , t *j
has nil value, given that ∀si √ A , si are offered with a
valid input value and other source terminals are offered
a nil value. Now, we are ready to formally define the k-
replicated AOSP graph:

1. (L) : A k-replicated AOSP structure of type L consists
of a set of k source terminals, S Å {s1 , . . . , sk}, a set
of k sink terminals, T Å { t1 , . . . , tk}, and k 2 edges,
(si , tj) , ∀i , j . Let A ⊆ S , B ⊆ T . The system operates
w.r.t. (A , B) iff ∀tj √ B , ∃si √ A , such that (si , tj)

Fig. 4. (a ) A fork-join AOSP graph; (b) the corresponding
parsing tree. * This is known as fail-stop model in fault-tolerant computing.
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R(Hk) Å Pr{ <
B⊆T,Bx0/

ESB(Hk)},operates and ∀t *j √ T"B , ∃"si √ A such that (si , t *j )
operates.

Å ∑
MxB⊆T

pSB(Hk) .
(2)

Let Hk
i be a k-replicated AOSP graph with terminals

set Si and Ti , and let Ai ⊆ Si , Bi ⊆ Ti , for i Å 1, 2.

2. (PA) : The graph Hk
1 Ú Hk

2 is a k-replicated AOSP A straightforward way to compute R(Hk) is to enumerate
graph of type PA with terminals set S and T , where the execution outcomes of all the edges in Hk( Ê , V̂ ) ,
the graph associated with Hk

1 Ú Hk
2 is the disjoint where É ÊÉ Å k 2

rÉEÉ and set E is an edge set in H .
union of Hk

1 and Hk
2 , with S1 identified with S2 ( i.e., However, this method takes O(2 k2

ÉEÉ) . In next section,
s1i √ S1 identified with s2i √ S2 , 1 ° i ° k) and T1 a linear time algorithm for computing R(Hk) will be pre-
identified with T2 . Furthermore, S Å S1 Å S2 and T sented.
Å T1 Å T2 . Suppose that A ⊆ S and B ⊆ T . The system
operates w.r.t. (A , B) iff Hk

1 operates w.r.t. (A , B1) ,
Hk

2 operates w.r.t. (A , B2) , and B1 > B2 Å B . 4. RELIABILITY EVALUATION OF RAOSP
GRAPHS3. (PO) : The graph Hk

1 Û Hk
2 is a k-replicated AOSP

graph of type PO with terminals set S and T , where
In this section, we present an algorithm to compute thethe graph associated with Hk

1 Û Hk
2 is the disjoint

reliability of a k-replicated task Hk(V̂ , Ê) in O(KÉEÉ)union of Hk
1 and Hk

2 , with S1 identified with S2 and T1
time. Note that K Å max{k 222k , 23k}. We first consideridentified with T2 . Let S Å S1 Å S2 , and T Å T1
the k-replicated task graph of type L . [See Fig. 5(b) forÅ T2 . Suppose that A ⊆ S and B ⊆ T . The system
an example of Hk .] Suppose that A ⊆ S and B ⊆ T . Foroperates w.r.t. (A , B) iff Hk

1 operates w.r.t. (A , B1) ,
any t √ B , the probability that at least one edge (s , t) ,Hk

2 operates w.r.t. (A , B2) , and B1 < B2 Å B .
s √ A , operates is (1 0 ∏s√A Pr[(s , t) fails]) . Thus, for

4. (S) : The graph Hk
1∗Hk

2 is a k-replicated AOSP graph the k-replicated AOSP graph Hk of type L , we have
of type S with terminals sets S Å S1 and T Å T2 , where
the graph associated with Hk

1∗Hk
2 is the disjoint union

(L) : pAB(Hk) Å { ∏
t√B

(1 0 ∏
s√A

Pr[(s , t) fails])}
of Hk

1 and Hk
2 with T1 identified with S2 . Suppose that

A ⊆ S and B ⊆ T . The system operates w.r.t. (A , B)
1 { ∏

t√T"B

∏
s√A

Pr[(s , t) fails]}.
(3)

iff Hk
1 operates w.r.t. (A , B1) , Hk

2 operates w.r.t. (A2 ,
B) , and B1 Å A2 .

For convenience, let M denote the matrix of pAB(Hk) ,
so that M Å [pAB(Hk)]A⊆S,B⊆T with dimension 2 k 1 2 k .Let EAB(Hk) be a probability event that Hk operates w.r.t.

terminal sets (A , B) . We denote pAB(Hk) Å Pr{EAB For example, a 2-replicated AOSP graph of type L , H 2(V̂ ,
Ê) is obtained from edge (s , t) , where V̂ Å {s1 , s2 , t1 ,(Hk)}. We notice that for any set A ⊆ S , (B⊆T pAB(Hk)

Å 1. Given that all the source terminals are offered with t2} and Ê Å {(s1 , t1) , (s1 , t2) , (s2 , t1) , (s2 , t2)}. Let
probabilities r1 , r2 , r3 , and r4 (r

V 1 , r
V 2 , r

V 3 , and r
V 4) be thethe valid input value initially, i.e., A Å S , the reliability

of Hk is the same as the probability that at least one sink reliabilities (unreliabilities) of edges (s1 , t1) , (s2 , t1) , (s1 ,
t2) , and (s2 , t2) , respectively. Then, the matrix M of H 2terminal has a correct value. Thus, the reliability of Hk

is defined as is

M Å

p{s1,s2} ,{t1,t2}(H 2) p{s1,s2} ,{t1} (H 2) p{s1,s2} ,{t2} (H 2) p{s1,s2} ,{} (H 2)
p{s1} ,{t1,t2} (H 2) p{s1} ,{t1} (H 2) p{s1} ,{t2} (H 2) p{s1} ,{} (H 2)
p{s2} ,{t1,t2} (H 2) p{s2} ,{t1} (H 2) p{s2} ,{t2} (H 2) p{s2} ,{} (H 2)
p{},{t1,t2} (H 2) p{},{t1} (H 2) p{},{t2} (H 2) p{},{} (H 2)

Å

(1 0 r
V 1rV 2)(1 0 r

V 3rV 4) (1 0 r
V 1rV 2)r

V 3rV 4 (1 0 r
V 3rV 4)r

V 1rV 2 r
V 1rV 2rV 3rV 4

r1r3 r1rV 3 r3rV 1 r
V 1rV 3

r2r4 r2rV 4 r4rV 2 r
V 2rV 4

0 0 0 1

,

(4)
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where {} represents the null set. (PO) : pAB(Hk
1 Û Hk

2)
Next, we consider Hk Å Hk

1 Ú Hk
2 . By definition, the Å ∑

B1⊆T1,B2⊆T2
s .t .B1<B2ÅB

pAB1
(Hk

1)rpAB2
(Hk

2) .
(7)

terminal sets S and T of Hk are given as S Å S1 Å S2 and
T Å T1 Å T2 . Suppose that A ⊆ S , B1 ⊆ T1 , and B2 ⊆ T2 ;
then, the event [EAB1

(Hk
1)] Ú [EAB2

(Hk
2)] implies the

For example, let H 2
i be a 2-replicated AOSP graphevent EAB(Hk

1 Ú Hk
2) if B1 > B2 Å B . Thus,

with terminal sets Si and Ti for i Å 1, 2, respectively. Let
S1 Å {s11 , s12}, S2 Å {s21 , s22}, T1 Å { t11 , t12}, and T2

EAB(Hk
1 Ú Hk

2) Å <
B1⊆T1,B2⊆T2
s .t .B1>B2ÅB

{EAB1
(Hk

1) Ú EAB2
(Hk

2)}, Å { t21 , t22}. Let (H 2
1 Û H 2

2) be the 2-replicated AOSP
graph obtained from H 2

1 and H 2
2 with terminals (s1 , s2)

and ( t1 , t2) . Note that (s1 , s2) Å (s11 , s12) Å (s21 , s22)
and ( t1 , t2) Å ( t11 , t12) Å ( t21 , t22) . Then, for any Ai.e.: ⊆ {s1 , s2},

(PA) : pAB(Hk
1 Ú Hk

2) pA ,{} (H 2
1 Û H 2

2) Å pA ,{} (H 2
1)pA ,{} (H 2

2) ,

Å ∑
B1⊆T1,B2⊆T2
s .t .B1>B2ÅB

pAB1
(Hk

1)rpAB2
(Hk

2) .
(5)

pA ,{t1} (H 2
1 Û H 2

2) Å pA ,{} (H 2
1)pA ,{t21} (H 2

2)

/ pA ,{t11} (H 2
1)pA ,{} (H 2

2)

/ pA ,{t11} (H 2
1)pA ,{t21} (H 2

2) ,For example, let H 2
i be a 2-replicated AOSP graph

with terminal sets Si and Ti for i Å 1, 2, respectively. Let pA ,{t2} (H 2
1 Û H 2

2) Å pA ,{} (H 2
1)pA ,{t22} (H 2

2) (8)
S1 Å {s11 , s12}, S2 Å {s21 , s22}, T1 Å { t11 , t12}, and T2

/ pA ,{t12} (H 2
1)pA ,{} (H 2

2)Å { t21 , t22}. Let (H 2
1 Ú H 2

2) be the 2-replicated AOSP
graph obtained from H 2

1 and H 2
2 with terminals (s1 , s2) / pA ,{t12} (H 2

1)pA ,{t22} (H 2
2) ,and ( t1 , t2) . Note that (s1 , s2) Å (s11 , s12) Å (s21 , s22)

and ( t1 , t2) Å ( t11 , t12) Å ( t21 , t22) . pA ,{t1,t2} (H 2
1 Û H 2

2) Å 1 0 [pA ,{} (H 2
1 Û H 2

2)
By Eq. (5) , for any A ⊆ {s1 , s2}, we have

/ pA ,{t1} (H 2
1 Û H 2

2)

pA ,{t1,t2} (H 2
1 Ú H 2

2) Å pA ,{t11,t12} (H 2
1)pA ,{t21,t22} (H 2

2) , / pA ,{t2} (H 2
1 Û H 2

2)] .

pA ,{t1} (H 2
1 Ú H 2

2) Å pA ,{t11,t12} (H 2
1)pA ,{t21} (H 2

2) Finally, we consider Hk Å Hk
1∗Hk

2 . By definition of
the k-replicated AOSP graph of type S , the event/ pA ,{t11} (H 2

1)pA ,{t21,t22} (H 2
2)

[EAB1
(Hk

1) > EA2B(Hk
2)] implies the event EAB(Hk

1∗Hk
2)

if B1 Å A2 . So, we have/ pA ,{t11} (H 2
1)pA ,{t21} (H 2

2) ,

EAB(Hk
1∗Hk

2) Å <
B1⊆T1,A2⊆S2

s .t .B1ÅA2

[EAB1
(Hk

1) Ú EA2B(Hk
2)] .pA ,{t2} (H 2

1 Ú H 2
2) Å pA ,{t11,t12} (H 2

1)pA ,{t22} (H 2
2) (6)

/ pA ,{t12} (H 2
1)pA ,{t21,t22} (H 2

2)

Therefore,
/ pA ,{t12} (H 2

1)pA ,{t22} (H 2
2) ,

(PS) : pAB(Hk
1∗Hk

2)pA ,{} (H 2
1 Ú H 2

2) Å 1 0 [pA ,{t1,t2} (H 2
1 Ú H 2

2)
Å ∑

B1⊆T1,A2⊆S2
s .t .B1ÅA2

pAB1
(Hk

1)rpA2B(Hk
2) . (9)

/ pA ,{t1} (H 2
1 Ú H 2

2)

/ pA ,{t2} (H 2
1 Ú H 2

2)] .
For example, let H 2

i be a 2-replicated AOSP graph
with terminal sets Si and Ti for i Å 1, 2, respectively. Let

Thus, a 22 1 22 matrix M Å [pAB(H 2)]A⊆S,B⊆T for graph S1 Å {s11 , s12}, S2 Å {s21 , s22}, T1 Å { t11 , t12}, and T2

H 2
1 Ú H 2

2 can be obtained using the above equations. Å { t21 , t22}. Let (H 2
1∗H 2

2) be the 2-replicated AOSP ob-
tained from H 2

1 and H 2
2 with terminals (s1 , s2) and ( t1 ,Similarly, let Hk Å Hk

1 Û Hk
2 with terminal sets S and

T , where S Å S1 Å S2 and T Å T1 Å T2 . Then, for any t2) . Note that (s1 , s2) Å (s11 , s12) , ( t11 , t12) Å (s21 , s22) ,
and ( t1 , t2) Å ( t21 , t22) . Then,A ⊆ S , B1 ⊆ T1 , and B2 ⊆ T2 , we have
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Fig. 6. (a ) A numerical example; (b) its corresponding parsing tree.

It is known that Step 1 takes O(ÉEÉ) [13]. In Step 2,pAB(H 2
1∗H 2

2) Å pA ,{t11,t12} (H 2
1)p{s21,s22} ,B(H 2

2)
if Hk

x is of type L , it takes O(k 2) time to compute each
/ pA ,{t11} (H 2

1)p{s21} ,B(H 2
2)

(10) entry in matrix Mx and, thus, O(k 22 k) time in total for
matrix Mx . If Hk

x is of type PA or PO , it takes O(2 k
r2 k)/ pA ,{t12} (H 2

1)p{s22} ,B(H 2
2)

to compute each row in matrix Mx and, thus, O(23k) time
/ pA ,{} (H 2

1)p{},B(H 2
2) . for matrix Mx . If Hk

x is of type S (say Hk
x Å Hk

y ∗Hk
z ) ,

matrix Mx is obtained from multiplying My by Mz and,
Let Hk(V̂ , Ê) be the k-replicated AOSP graph derived thus, it takes O(23k) time to compute matrix Mx . Thus,

from H(V, E) . Since Hk is derived from H , the structure the total time in Step 2 is O(max{k 222k
ÉEÉ, 23k

ÉEÉ}).
of the parsing tree of H , T(H) , is equivalent to the struc- Hence the time complexity of Algorithm 1 is O(KÉEÉ) ,
ture of the parsing tree of Hk , T(Hk) , i.e., T(H)á T(Hk) . where K Å max{k 222k , 23k}.
The only difference is that the leaf nodes in T(H) are
type L AOSP graphs, whereas the leaf nodes in T(Hk)
are type L RAOSP graphs with degree k . Therefore,
T(Hk) can be obtained by applying the algorithm [13] to 5. A NUMERICAL EXAMPLE
its base AOSP graph H .

As discussed, each leaf node with the postorder se- We illustrate the calculation of the distributed task relia-
quence x in T(Hk) corresponds to an RAOSP subgraph bility in this section through an example: Consider a 2-
of type L , denoted as Hk

x . Every internal node x is labeled replicated AOSP graph H 2 as shown in Figure 6(a) ,
by S , PO , or PA according to the type of that RAOSP which is generated from the AOSP graph in Figure 4(a) .
subgraph. Similar to the T(H) , every internal node x in It is readily seen that H 2 Å H 2

7 Å (H 2
1∗H 2

2)
T(Hk) , along with all its descendant nodes, induces a Ú (H 2

4∗H 2
5) , where H 2

1 , H 2
2 , H 2

4 , and H 2
5 are 2-replicated

subtree Tx which describes a k-replicated AOSP subgraph AOSP subgraphs of type L . [See Fig. 5(c) for k Å 2.]
Hk

x in Hk . Therefore, Mr for root node r can be determined In analogy to the parsing tree of H in Figure 4(b), the
by computing the Mx level by level for every node x in parsing tree for H 2 is given in Figure 6(b).
the parsing tree T(Hk) using Eqs. (3) , (5) , (7) , and (9). Suppose that the reliability of each link in H 2

i is ri ,
Finally, R(Hk) Å (MxB⊆T pSB(Hk) is emerged in the first for i Å 1, 2, 4, 5. Let r1 Å 0.9, r2 Å 0.8, r4 Å 0.7, and
row of matrix Mr . r5 Å 0.7. To calculate R(H 2) , we first calculate the MiWe now present the algorithm: matrices for H 2

i , i Å 1, 2, 4, 5. From Eq. (4) , we have

Algorithm 1

STEP 1. Find the parsing tree of the graph Hk, denoted M1 Å

0.9801 0.0099 0.0099 0.0001
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0 0 0 1

,
as T(Hk) , by applying Valdes’ algorithm to H [13].

STEP 2. Evaluate the matrix Mx for each node x in the
parsing tree T(Hk) by postorder traversal.

STEP 3. Compute R(Hk) Å (⊆xB⊆T pSB(Hk) , where the
M2 Å

0.9216 0.0384 0.0384 0.0016
0.64 0.16 0.16 0.04
0.64 0.16 0.16 0.04
0 0 0 1

,
terms pSB(Hk) can be found in the first row of matrix
Mr at root node r in T(Hk) .
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M3 Å M1∗M2

M4 Å

0.8281 0.0819 0.0819 0.0081
0.49 0.21 0.21 0.09
0.49 0.21 0.21 0.09
0 0 0 1

,

Å

0.9159 0.0408 0.0408 0.0025
0.8617 0.0599 0.0599 0.0185
0.8617 0.0599 0.0599 0.0185
0 0 0 1

,

M6 Å M4∗M5M5 Å

0.8281 0.0819 0.0819 0.0081
0.49 0.21 0.21 0.09
0.49 0.21 0.21 0.09
0 0 0 1

.

Å

0.7660 0.1022 0.1022 0.0296
0.6116 0.1283 0.1283 0.1318
0.6116 0.1283 0.1283 0.1318
0 0 0 1

.

Next, we consider the subgraphs (H 2
1∗H 2

2) and
(H 2

4∗H 2
5) , i.e., the subtrees rooted at nodes 3 and 6 in Finally, we consider H 2 . Given M3 and M6 , we obtain

Figure 6(b). Applying Eq. (10), we have the matrix M Å M7 for H 2 using Eq. (6) . Thus,

M Å M7 Å

p{s ,s =},{t ,t =} (H 2) p{s ,s =},{t } (H 2) p{s ,s =},{t =} (H 2) p{s ,s =},{} (H 2)
p{s },{t ,t =} (H 2) p{s },{t } (H 2) p{s },{t =} (H 2) p{s },{} (H 2)
p{s =},{t ,t =} (H 2) p{s =},{t } (H 2) p{s =},{t =} (H 2) p{s =},{} (H 2)
p{},{t ,t =} (H 2) p{},{t } (H 2) p{},{t =} (H 2) p{},{} (H 2)

Å

0.7016 0.1290 0.1290 0.0404
0.5270 0.1549 0.1549 0.1632
0.5270 0.1549 0.1549 0.1632
0 0 0 1

.

Finally, the reliability of H 2 can be obtained by Eq. (2): graph of type L and is fully replicated. The RAOSP graph
H * k Å (VV , EV ) is partially replicated if VV ⊆ V̂ and/or EV
⊆ Ê . To compute R(Hk) , we first add those unreplicatedR(H 2) Å Pr{ <

B⊆T,Bx0/
ESB(H 2)}Å ∑

0/xB⊆T

pSB(H 2)
vertices and edges (vertices and edges that would have
been in a fully replicated Hk) into VV and EV and simplyÅ p{s ,s =},{t ,t =} (H 2) / p{s ,s =},{t } (H 2) / p{s ,s =},{t =} (H 2)
set the reliability of those edges to 0, i.e., Pr{(si , tj)

Å 0.7016 / 0.1290 / 0.1290Å 0.9596. operates} Å 0, ∀(si , tj) √ Ê Ú (si , tj) √/ EV . After adding
those edges, H * k becomes fully replicated and R(H * k)
can be obtained via Eq. (3) . Now, we summarize the

6. FURTHER DISCUSSION reliability analysis of the general RAOSP graph Hk with
partial replication; we first find its parsing tree using the

In Section 4, we assumed that a k-replicated AOSP graph same algorithm in [13]. Then, we convert each RAOSP
is fully replicated, i.e., each vertex is replicated exactly graph of type L in Hk into a fully replicated RAOSP graph
(k 0 1) times and each edge is replicated (k 0 1)2 times. of type L as shown above. Then, we apply Steps 2 and
Furthermore, we assumed that all vertices are perfectly 3 in Algorithm 1 to obtain the reliability of Hk .
reliable. In this section, we first extend our model to We next consider the RAOSP graphs with unreliable
consider those cases where vertices and edges are partially vertices. We begin the discussion with the AOSP graphs.
replicated. Later on, we present a solution method to the To incorporate the unreliable vertices into our graph
problem that both vertices and edges can fail. model, for each vertex (or terminal) t in an AOSP graph,

To calculate the reliability of partially replicated we replace it by an edge ( t , t *) and assign the reliability
RAOSP graph, we first convert such a graph into a fully of that edge to be the failure probability of that vertex.
replicated RAOSP graph, then calculate its reliability us- [See Fig. 7(b) as an example.] Similarly, to consider the

unreliable vertices (or terminals) in an RAOSP graph Hk ,ing Algorithm 1. Suppose that Hk Å (V̂ , Ê) is an RAOSP
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graph problems there may also exist polynomial-time al-
gorithms for RAOSP graphs provided there exist polyno-
mial-time algorithms for AOSP graphs.
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