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Abstract: A computation task running in distributed systems can be represented as a directed graph
H(V, E) whose vertices and edges may fail with known probabilities. In this paper, we introduce a reliability
measure, called the distributed task reliability, to model the reliability of such computation tasks. The
distributed task reliability is defined as the probability that the task can be successfully executed. Due
to the and-fork/and-join constraint, the traditional network reliability problem is a special case of the
distributed task reliability problem, where the former is known to be NP-hard in general graphs. For
two-terminal and-or series-parallel (AOSP) graphs, the distributed task reliability can be computed in
polynomial time. We consider a graph H*(V, E), named a k-replicated and—-or series-parallel (RAOSP)
graph, which is obtained from an AOSP graph H(V, E) by adding (k — 1) replications to each vertex and
adding proper edges between two vertices. It can be shown that the RAOSP graphs are not AOSP graphs;
thus, the existing polynomial algorithm does not apply. Previously, only exponential time algorithms as
used in general graphs are known for computing the reliability of H*(V, E). In this paper, we present a
linear time algorithm with O(K(|V| + | E|)) complexity to evaluate the reliability of the graph H*(V, E),
where K = max{k?22%, 23}, © 1997 John Wiley & Sons, Inc. Networks 29: 195-203, 1997

1. INTRODUCTION

In the past decade, distributed processing systems have
become increasingly popular because they provide a po-
tential increase in reliability, throughput, fault tolerance,
and resource utilization. Usually, the computation task of
a distributed processing system can be partitioned into a
set of software modules (or simply, modules) and then
modeled asadirected graph H(V, E), called atask graph.
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In the task graph H(V, E), V is the set of vertices which
represents modules and E is the set of edges which repre-
sents the messages passing links between two modules.

To increase the survival rate of the task, a straightfor-
ward method is to replicate the complete task severa
times and to execute it independently on distinct comput-
ers. The primary site approach [2] is one such example.
The disadvantage of this approach is that the system can-
not tolerate more than one fault in each replicated task.
Recently, the replication of software modules was pro-
posed and implemented, such asin Maruti [ 8] and Delta-
4 [10]. The idea behind this approach can be illustrated
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(a) )

Fig. 1. (a) A fork-join task graph; (b) its replicated graph.

in the following example: Consider a simple application
modeled by an and-fork/and-join graph as shown in Fig-
ure 1(a). (By convention, this task operates only if all
the modules as well as the links operate.) Suppose that
the application is implemented with an extra replication.
In this approach, each module receives messages not only
from its predecessors in the same replica, but also from
the corresponding predecessors in the other replica. Fig-
ure 1(b) shows one such implementation. Thus, a task
finishes successfully only if there is a set of modules
which formsthis application, and their associated commu-
nication links are operational. Obviously, this application
may tolerate more than one fault in each task replication,
depending on the fault patterns. Figure 2 shows a few
examples where the task in Figure 1(b) is operational.
The modules and the communication links may fail
due to two main factors. software failure and hardware
failure. The software failures are mainly due to the design
faults or implementation faults. The reliability can be
increased when the software components are replicated
with the N-version programming approach [ 5]. The hard-
ware failures are due to either transient failures or perma-

nent failures [10]. It has been reported that most of the
hardware failures in computer systems are transient fail-
ures [8]. The random events of failures in modules or
communication links can be considered as independent,
provided that the software components are replicated with
the N-version programming technique and the hardware
failures are assumed to be transient.

Suppose that the modules and the communication links
have a certain probability of being operational. Then,
there is a certain probability, called the distributed task
reliability, associated with the event that a task completes
successfully. This measure accurately models the reliabil -
ity of atask running in distributed systems. Due to the
and-fork/and-join constraint of the task graph, the tradi-
tional network reliability problem [1, 3, 4, 6, 7, 11, 12]
isaspecial case of the distributed task reliability problem,
where the former is known to be NP-hard for general
graphs. For the two-terminal series-parallel (TTSP)
graphs, the distributed task reliability can be found in
polynomial time using the technique developed in [13].
For the two-terminal and—or series-paralel (AOSP)
graphs, we will show in Section 2 that their distributed
task reliability can also be calculated in polynomial time
using the same technique [13]. In this paper, we consider
agraph H*(V, E), named the k-replicated and—or series-
parallel graph (k-replicated AOSP graph or, more, simply
RAQOSP graph), which is obtained from an AOSP graph
H(V, E) by adding (k — 1) replications to each vertex
and adding proper links between vertices. The main con-
tribution of this paper is the design of alinear time algo-
rithm to calculate the reliability of the RAOSP graph
H¥(V, E), given the base AOSP graph H(V, E) and the
replication degree k. It can be shown that the RAOSP
graphs are not AOSP graphs; thus, the existing polyno-
mial algorithm does not apply. Previously, only exponen-
tial time algorithms, as used in general graphs, are known

(b)

Fig. 2. Examples of an operational replicated task graph.
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Fig. 3. (a) Sequential graph; (b) and-fork/and-join graph;
(c) or-fork/or-join graph.

to find the reliability of H*(V, E). In this paper, we
present a linear time agorithm with O(K(|V| + | EJ))
complexity to compute the reliability of the graph H*(V,
E), where K = max{ k%22, 23} .

The rest of the paper is organized as follows: In the
next section, the definition of AOSP graphs is given and
the reliability evaluation for AOSP graphs is discussed.
In Section 3, we define the k-replicated AOSP graph and
its reliability. An agorithm for computing the reliability
of a k-replicated AOSP graph H*(V, E) is developed in
Section 4. The algorithm is shown to have an O(K (| V|
+ | E[)) time complexity, where K = max{ k222, 23} .
A numerical example is given in Section 5. Section 6
presents an extension to the model and considers the cases
of partial replication as well as unreliable vertices. Fi-
nally, concluding remarks are presented.

2. RELIABILITY EVALUATION
OF AOSP GRAPHS

Consider a computation task graph H(V, E) consisting of
a set of software modules V and a set of communication
links E, which represents message passings between soft-
ware modules. According to the logical structures and
precedence relationship among the modules, alarge class
of task graphs can be expressed by a combination of three
common types of subgraphs [5, 9]: sequential, and-fork
to and-join (AFAJ), and or-fork to or-join (OFQJ) [ see
Fig. 3(a)—(c)], where AFAJ and OFOJ subgraphs may
consist of several sequentia subgraphsin a parallel struc-
ture. In this paper, we restrict our task graphs to contain
a combination of these three types of subgraphs. This
type of the graph can be modeled as a two-terminal AOSP
graph. To state the model, we make the following assump-
tions:
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1. All modules in the task graph H(V, E) are perfectly
reliable.

. Any communication link may fail with aknown proba-
bility.

. All failures are assumed to occur independently of
each other.

N

w

We remind the reader that we will extend this model to
consider the case of unreliable modules in Section 6.

Formally, atwo-terminal AOSP graph of type k, where
k € {L, Pa, Po, S} (which means leaf, parallel-and,
parallel-or, and series, respectively) is recursively de-
fined as follows:

1. A single edge (s, t) comprises an AOSP graph of type
L with terminals s and t. The system operates if that
edge operates.

Let H; be an AOSP graph with terminals 5 and t; for
i=1,2

2. Thegraph H; A H, isan AOSP graph of type P, with
terminals s and t, where the graph associated with H;
A H;isthedigoint union of H; and H,, with s, identi-
fied with s, and t; identified with t,, and the system
operates if both H; and H, operate.

3. Thegraph H; v H, isan AOSP graph of type P, with
terminals s and t, where the graph associated with H;
V H, is the same as that associated with H; A H,,
except that the system operates if either H, or H, oper-
ates.

4. The graph H;H, is an AOSP graph of type S with
terminals s, and t,, where the graph associated with
H,H, isthe disjoint union of H; and H, with t; identi-
fied with s,, and the system operates if both H; and
H, operate.

We note that the TTSP graphs [13] can be formulated
recursively using only the operations 1, 3, and 4 of the
AOSP graphs defined previously. In other words, the class
of the TTSP graphs is a subclass of the AOSP graphs.

The distributed task reliability of task H, denoted by
R(H), is defined as the probability that the task H oper-
ates. For example, if H contains only one edge e of type
L, R(H) =r(e), wherer(e) is the reliability of edge e.
If H consists of two AOSP graphs H, and H,, then

R(H1)R(H) if H=H; A H;
or H = H;[H,
R(H) = ¢ . (1)
- (1-R(Hy)) ifH=H;V H,.
(1 - R(H))

To compute R(H), we first describe an AOSP graph
H by a binary tree structure, T(H), called the parsing
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tree of H. For example, Figure 4(b) depicts a parsing
tree of the AOSP graph H in Figure 4(a). The nodes in
the parsing tree are numbered (at the upper right corner)
according to their postorder sequence. Each leaf node in
T(H) corresponds to an AOSP subgraph of type L, i.e,,
asingle-edge AOSP graph in H. In Figure 4, for example,
H, = e, H, = &, H, = &;, and H; = e,. Each internd
node is labeled by S, Py, or P, according to the type of
that AOSP subgraph. An internal node numbered x in
T(H) aong with al of its descendant nodes induce a
subtree T, which also describes an AOSP subgraph H, in
H. For example, subtree T; describes the AOSP graph
H; = H,OH,, in Figure 4(b). Given the parsing tree
T(H), we can obtain R(H) using Eg. (1) to compute the
R(H,) level by level for every node x in the parsing tree
T(H). For example, we first find R(H;) and R(H,) in
Figure 4(b), where H;, = e and H, = e,. Next, we
consider subtrees T and compute R(Hs) = R(H;)R(H,).
Finally, we can determine R(H) = R(H;) = R(Hs A He)
= R(H3)R(He).

Note that an AOSP graph H(V, E) can be trandated
into its parsing tree in O(| E|) time using the algorithm
proposed by Valdes et al. [13] . In other words, R(H) can
be found in O(| E|) time.

3. TASKS WITH REPLICATION

Toincrease the reliability of atask, we replicate the mod-
ules and the message passing links of the task. The k-
replicated task graph H*(V, E) of H(V, E) is created by
replicating each vertex in V (k — 1) times and letting the
edges in H* be established in such away that each vertex
is not only descendant of its predecessors in the same
replica, but isaso descendant to the corresponding prede-
cessors in the other replicas. For example, Figure 5(b)
shows a k-replicated task graph created from an AOSP
graph of type L in Figure 5(a).

Imagine that each edge in H represents a thread of

(a) (b)

Fig. 4. (a) A fork-join AOSP graph; (b) the corresponding
parsing tree.
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Fig. 5. (a) A type L AOSP graph; (b) the corresponding k-
replicated RAOSP; (c) the 2-replicated RAOSP.

execution; then, a replicated edge in H* represents a rep-
licathread of the corresponding thread in H [such as (s,
t), 1 =i,j =k, are areplica of (s, t) in Fig. 5(b).]
For clarity, we introduce the concept of ‘‘ correct value
atterminal.’”’ Without loss of generality, the source termi-
nal of an edge is either offered a valid input value or a
nil value. Suppose that a valid input value is offered at
the source terminal s of an AOSP graph H; then, the sink
terminal t of H is said to have a ** correct’’ vaue with
respect to the valid input value if H operates. Further-
more, the sink terminal t has a nil value if either the
sourceterminal isoffered asavalid input value but H fails
to operate or the sourceis offered a nil value regardless of
the operation of H.*

Consider a k-replicated AOSP graph H*. We first no-
tice that it has k source terminals and k sink terminals.
Without loss of generality, we assume that those source
terminals of H* which are offered valid input have the
same input value. It is obvious that whether a sink termi-
nal of H* has a correct output depends not only on which
source terminals of H* are offered valid input values but
also on the execution of H*. Let Sand T be the sets of
source and sink terminals of H¥, respectively. Let A be
the set of source terminals offered with the same valid
input value and B be the set of sink terminals with correct
outputs; Ac S, B c T. H¥ is said to operate w.r.t. (A,
B) if Ot € B, t; has a correct value and 0Ot/ € T\B, t/
has nil value, given that (s € A, 5 are offered with a
valid input value and other source terminals are offered
anil value. Now, we are ready to formally define the k-
replicated AOSP graph:

1. (L): A k-replicated AOSP structure of type L consists
of aset of k sourceterminals, S={s,, ..., &}, aset
of k sink terminals, T = {t;, ..., t}, and k? edges,
(s.t),0i,j. Let Ac S, B c T. The system operates
w.rt. (A, B) iff Ot € B, 5 € A, such that (s, t))

* This is known as fail-stop model in fault-tolerant computing.



operates and Ot/ € T\B, Ns € A such that (s, t])
operates.

Let H be ak-replicated AOSP graph with terminals
st SandT,andlet A =cS,B T, fori =1, 2

. (Pa): The graph H% A HY is a k-replicated AOSP
graph of type P, with terminals set S and T, where
the graph associated with HY A H is the disoint
union of HY and HY%, with S, identified with S, (i.e.,
s € S identified withs; € S, 1 =i =Kk)and T,
identified with T,. Furthermore, S=S, =S and T
=T, =T,. Supposethat Ac Sand B c T. The system
operates w.r.t. (A, B) iff HY operates w.r.t. (A, B,),
H% operates w.r.t. (A, B,), and B, N B, = B.

(Po): The graph H% v HY is a k-replicated AOSP
graph of type Py with terminals set S and T, where
the graph associated with HY v HY is the digoint
union of HX and H, with S, identified with S, and T,
identified with T,. Let S=S =S, ad T =T,
= T,. Suppose that A ¢ Sand B < T. The system
operates w.r.t. (A, B) iff HY operates w.r.t. (A, B,),
H% operates w.r.t. (A, B,), and B, U B, = B.

(S): The graph HXOHY is a k-replicated AOSP graph
of type SwithterminalssetsS= S, and T = T,, where
the graph associated with HXOHY is the digjoint union
of H¥ and H% with T, identified with S,. Suppose that
Ac Sand B c T. The system operates w.r.t. (A, B)
iff HY operatesw.r.t. (A, B,), HX operates w.r.t. (A,,
B), and B; = A,.

Let Exs(H¥) be a probability event that H* operates w.r.t.
terminal sets (A, B). We denote pas(H*) = Pr{Es
(H}. We notice that for any set A c S, St Pas(HY)
= 1. Given that all the source terminals are offered with
the valid input value initialy, i.e.,, A = S, the reliability
of H¥is the same as the probability that at least one sink
terminal has a correct value. Thus, the reliability of H*
is defined as

[ Prsus i (H?)
Pesyy ctut (H?)
Pyttt (H?)

| Pg e (H %)

(1 —rr)(1l— )
rrs
0

Psusay .y (H?)
Psyy 1y (H?)
Psyy .t (H?)
P .y (H?)

RELIABILITY OF REPLICATED AND-OR GRAPHS 199

R(H¥) = Pr{ U Eg(HY},
BcT,B+0 ) (2)
= > ps(HY.
@ +BcT

A straightforward way to compute R(H*) is to enumerate
the execution outcomes of all the edges in H¥(E, V),
where |E| = k?- |E| and set E is an edge set in H.
However, this method takes O(2¥“/E'). In next section,
alinear time algorithm for computing R(H*) will be pre-
sented.

4. RELIABILITY EVALUATION OF RAOSP
GRAPHS

In this section, we present an algorithm to compute the
reliability of a k-replicated task H*(V, E) in O(K|E|)
time. Note that K = max{ k?22%, 2%} . We first consider
the k-replicated task graph of type L. [ See Fig. 5(b) for
an example of H*.] Suppose that A < Sand B c T. For
any t € B, the probability that at least one edge (s, t),
s € A, operatesis (1 — [Nsea Pr[(s, t) fails]). Thus, for
the k-replicated AOSP graph H* of type L, we have

(L) pas(H) ={] (1 = [] Pri(s, 1) fails])}

teB seA

x{ 1 [ Prics, t) fails]}.

teT\B seA

(3)

For convenience, let M denote the matrix of pxs(HY),
S0 that M = [pag(H*)]acsser With dimension 2 x 2,
For example, a 2-replicated AOSP graph of typeL, H*(V,
E) is obtained from edge (s, t), where V = {s, s, t,
t} and E = {(s1, tu), (S1, t2), (S, 1), (S, t2)}. Let
probabilities rq, ry, r3, and ry (11, 2, rz, and r;) be the
reliabilities (unreliabilities) of edges (s;, t1), (S, 1), (S1,
t,), and (s, t,), respectively. Then, the matrix M of H?
is

Psisy .0 (H?)
Pesy i (H?)
Pesar.0p (H?)
Py (H?)

Psuso it (H?)
Psy it (H?)
Py it (H?)
Py .y (H?)

(4)
(1-nr)r (1 - rn)nn nehEn
rif raf rirs
rars rar2 |
0 0 1
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where {} represents the null set.

Next, we consider H* = H% A H. By définition, the
terminal sets Sand T of H* aregivenasS= S, = S, and
T=T,=T,. Supposethat Ac S,B, c T,, and B, c T5;
then, the event [Eas,(H5)] A [Eas,(H5)] implies the
event Exg(HS A HY) if B, N B, = B. Thus,

Eas(HY A H3) = U {EABl(Hli) A EABZ(HE)}y

B1cT1,BocTo
S.1.B;NB,=B

i.e.

(Pa): pas(HY A HY) (5)

= z pABI(HlI)' DABZ(HE)-

B1cT1,BocTo
S1.B;NB,=B

For example, let HZ be a 2-replicated AOSP graph
with terminal sets S and T, for i = 1, 2, respectively. Let
S ={su. S}, S ={, S}, T1 = {tu, iz}, and T,
= {ty, tp}. Let (HZ A H3) be the 2-replicated AOSP
graph obtained from H% and H32 with terminals (s, ;)
and (t;, t,). Note that (s;, ) = (S, S2) = (Sz1s S2)
and (t1, tp) = (ti1, t2) = (o, t2).

By Eq. (5), forany A c {s,, s}, we have

pA,{tl,tz}(Hi A H3) = pA,{tll,tlz}(Hi)pA,{tzbtzz‘y(H%)!
Pty (HE A H3) = Pttt (HD) Pa iy (H2)
+ Patty (HD) Patatn (H3)
+ Pagug (HD Pa oy (H3),
Pty (HE A H3) = Pa g (HT) Pa g (H2) (6)
+ Pa.ttn (HD) Pattat (H3)
+ pA,{tlz}(Hi) pA,{tzz}(Hg)i
Pay(HEAHS) =1- [pA,{tl,tz}(Hi A H3)
+ Pagg (HI A HJ)
+ Pagg (HE A HII.

Thus, a2? x 22 matrix M = [ pas(H?)]acseer foOr graph
H? A H2 can be obtained using the above equations.

Similarly, let H* = HY v H% with terminal sets Sand

T,whereS=S =S and T =T,; = T,. Then, for any
AcS, B, cT,;, and B, c T,, we have

Pas(H Vv H5)

B1cT1,BocTo
s.t.BjUB,=B

Po):
(Po) . o (D
Pas, (H1) * Pas,(H3).

For example, let H? be a 2-replicated AOSP graph
with terminal sets S and T; for i = 1, 2, respectively. Let
S =1{su S}, S ={%1, S}, T1 = {tu, tn},and T,
= {ty, t}. Let (HZ v H3) be the 2-replicated AOSP
graph obtained from H% and H3 with terminals (s, ;)
and (t, t;). Note that (s;, ) = (S, Si2) = (Sa1s S2)

and (t;, t;) = (ty, t) = (tu, t). Then, for any A
c{s, s},
Pa.g (HE V H2) = pa g (HI)pa gy (H?),
Pa.cty (HE V H3) = pag (HT)Pa iy (H3)
+ Paguy (HD)Pa g (H2)
+ Pa g (HE) Pa iy (H2),
Pa.(ty (HE V H3) = pa g (HT)Pa gz (H2) (8)
+ Patt (HD)pag (H2)
+ Patt (HE) Pa. gtz (H3),
Pati (HI V H2) = 1 — [pag(HI Vv HY)
+ Pagy (HI V H3)

+ Pagp (HI vV H3)L.

Finaly, we consider H* = HXOH%. By definition of
the k-replicated AOSP graph of type S, the event
[Eas,(H) N Eag(H5)] implies the event Eag(HYH5)
if B, = A. S0, we have

EAB(HEDHIE) = U [EABl(H';.) A EAZB(HS)]
B1cT1,AcS,
s.t.B1=Ay
Therefore,
(Ps):  pas(H5OHY)
= z pAsl(HlI)° pAzB(Hlé)' (9)
B1cT1,AcS,
s.t.B1=Ay

For example, let HZ be a 2-replicated AOSP graph
with terminal sets S and T, for i = 1, 2, respectively. Let
S ={su, S}, S = {1, S}, T1 = {tu, iz}, and T,
= {ty, t,} . Let (H{OH2) be the 2-replicated AOSP ob-
tained from H? and H% with terminals (s, s;) and (t,
t;). Note that (s, S) = (Su1, Si2), (tu, ti2) = (Sa1, S2),
and (t3, t;) = (tu, t2). Then,
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®)

Fig. 6. (a) A numerical example; (b) its corresponding parsing tree.

Pas(HITH2) = Pa (i) (HD) Prspsnnt 8 (HE)
+ Paguy (H1) Prsy 8(H3)
+ Pagi (HD) Prsgy s(H2)
+ pag (H2)pgy s(H3).

(10)

Let H*(V, E) be the k-replicated AOSP graph derived
from H(V, E). Since H* is derived from H, the structure
of the parsing tree of H, T(H), is equivalent to the struc-
ture of the parsing treeof H*, T(H¥), i.e,, T(H) = T(H").
The only difference is that the leaf nodes in T(H) are
type L AOSP graphs, whereas the leaf nodes in T(H)
are type L RAOSP graphs with degree k. Therefore,
T(H¥) can be obtained by applying the algorithm [13] to
its base AOSP graph H.

As discussed, each leaf node with the postorder se-
quence x in T(H*) corresponds to an RAOSP subgraph
of type L, denoted as HX . Every internal node x is labeled
by S, Py, or P, according to the type of that RAOSP
subgraph. Similar to the T(H), every internal node x in
T(H%), along with all its descendant nodes, induces a
subtree T, which describes a k-replicated AOSP subgraph
HXinHX. Therefore, M, for root noder can be determined
by computing the M, level by level for every node x in
the parsing tree T(H¥) using Egs. (3), (5), (7), and (9).
Finally, R(H*) = =gt pss(H¥) is emerged in the first
row of matrix M,.

We now present the algorithm:

Algorithm 1

Step 1. Find the parsing tree of the graph H¥, denoted
as T(HY), by applying Valdes algorithm to H [13].

Step 2. Evaluate the matrix M, for each node x in the
parsing tree T(H*) by postorder traversal.

Srep 3. Compute R(H¥) = S_.pr ps(HY), where the
terms pg(H*) can be found in the first row of matrix
M, at root node r in T(H).

It is known that Step 1 takes O(| E|) [13]. In Step 2,
if H is of type L, it takes O(k?) time to compute each
entry in matrix M, and, thus, O(k?2%) time in total for
matrix M,. If H¥ is of type P, or P, it takes O(2%- 2%)
to compute each row in matrix M, and, thus, O(2%) time
for matrix M,. If H¥ is of type S (say HY = HEOHY),
matrix My is obtained from multiplying M, by M, and,
thus, it takes O(23*) time to compute matrix M,. Thus,
the total time in Step 2 is O(max{ k?2%¢| E|, 2°¢| E|}).
Hence the time complexity of Algorithm 1 is O(K| E|),
where K = max{ k?22%, 23} .

5. A NUMERICAL EXAMPLE

We illustrate the calculation of the distributed task relia-
bility in this section through an example: Consider a 2-
replicated AOSP graph H? as shown in Figure 6(a),
which is generated from the AOSP graph in Figure 4(a).
It is readily seen that H? = HZ = (HIOH3)
A (H30H2), where H%, H3, H3, and HZ are 2-replicated
AOSP subgraphs of type L. [See Fig. 5(c) for k = 2]
In analogy to the parsing tree of H in Figure 4(b), the
parsing tree for H? is given in Figure 6(b).

Suppose that the reliability of each link in HZ isr;,
fori=1,2 4,5 Letr, =09, r,=08,r, = 0.7, and
rs = 0.7. To calculate R(H?), we first calculate the M;
matrices for H?, i = 1, 2, 4, 5. From Eq. (4), we have

[0.9801 0.0099 0.0099 0.0001]
M,_ | 081 009 009 001
081 009 009 001 |
0 0 0 1]
(09216 0.0384 00384 0.0016]]
M,— | 064 016 016 004
064 016 016 004 | °
0 0 0 1]
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[0.8281 0.0819 0.0819 0.0081 |
M, = 049 021 021 0.09

049 021 021 0.09 '

|0 0 0 1 i

[0.8281 0.0819 0.0819 0.0081]
M, = 049 021 021 0.09

049 021 021 0.09

) 0 0 1 J

Next, we consider the subgraphs (H%0H2) and
(H30OH2), i.e., the subtrees rooted at nodes 3 and 6 in
Figure 6(b). Applying Eg. (10), we have

Pessy 1y (H?)
Pesyat (H?)
Pesy oy (H?)
Py 1y (H?)

Prssy ey (H?)
p{s},{t,t’}(HZ)
Prsy.ieay (H?)
Py 1ty (H?)

Finally, the reliability of H? can be obtained by Eq. (2):

z Pss(H?)

0+BcT

R(H?) = Pr{ U Eg(H?)}=

= Pssyatey (H?) + Prssyqny (H?) + Prssy oy (H?)
= 0.7016 + 0.1290 + 0.1290= 0.9596.

6. FURTHER DISCUSSION

In Section 4, we assumed that a k-replicated AOSP graph
is fully replicated, i.e., each vertex is replicated exactly
(k — 1) times and each edge is replicated (k — 1)? times.
Furthermore, we assumed that all vertices are perfectly
reliable. In this section, we first extend our model to
consider those cases where vertices and edges are partially
replicated. Later on, we present a solution method to the
problem that both vertices and edges can fail.

To caculate the reliability of partialy replicated
RAQOSP graph, we first convert such a graph into a fully
replicated RAOSP graph, then calculate its reliability us-
ing Algorithm 1. Suppose that H* = (V, E) is an RAOSP

Pessy vy (H?)
p{s},{t’}(Hz)
Pesy ey (H?)
Py .y (H?)

M3 = M1|:|M2

0.9159
0.8617 0.0599 0.0599 0.0185
0.8617 0.0599 0.0599 0.0185]| '’
0 0 0 1

0.0408 0.0408 0.0025

0.7660
0.6116 0.1283 0.1283 0.1318
0.6116 0.1283 0.1283 0.1318
0 0 0 1

0.1022 0.1022 0.0296

Finally, we consider H2. Given M; and Mg, we obtain
the matrix M = M, for H? using Eq. (6). Thus,

Prssy.0 (H?)
Pesy.o (H?)
Pesy.0 (H?)
Pa.o(H?)

0.7016 0.1290 0.1290 0.0404
05270 0.1549 0.1549 0.1632
05270 0.1549 0.1549 0.1632
0 0 0 1

graph of type L and isfully replicated. The RAOSP graph
H'* = (V, E) is partialy replicated if V < V and/or E
c E. To compute R(H*), we first add those unreplicated
vertices and edges (vertices and edges that would have
been in a fully replicated H*) into V and E and simply
set the reliability of those edges to O, i.e, Pr{(s. t)
operates} = 0, (s, t) € E A (s, 1) ¢ E. After adding
those edges, H'* becomes fully replicated and R(H'¥)
can be obtained via Eq. (3). Now, we summarize the
reliability analysis of the general RAOSP graph H* with
partial replication; we first find its parsing tree using the
same algorithm in [13]. Then, we convert each RAOSP
graph of type L in H*into afully replicated RAOSP graph
of type L as shown above. Then, we apply Steps 2 and
3 in Algorithm 1 to obtain the reliability of H*.

We next consider the RAOSP graphs with unreliable
vertices. We begin the discussion with the AOSP graphs.
To incorporate the unreliable vertices into our graph
model, for each vertex (or terminal) t in an AOSP graph,
we replace it by an edge (t, t') and assign the reliability
of that edge to be the failure probability of that vertex.
[See Fig. 7(b) asan example.] Similarly, to consider the
unreliable vertices (or terminals) in an RAOSP graph H¥,



t’ l; té
(a) (b) (c) (d)

Fig. 7. (a) A single vertex; (b) its AOSP equivalent; (c) a
vertex and its replica; (d) its RAOSP equivalent.

we can aso replace each terminal in H* by an edge. As
shown in Figure 7(c) and (d), it isaterminal after being
replicated once and each terminal being replaced by an
edge. We notice that this structure is an RAOSP graph
of type L with partial replication, and, thus, its reliability
can be obtained using the method presented in the previ-
ous section.

7. CONCLUSIONS

This paper has focused on the design of an efficient algo-
rithm to predict the reliability of tasks characterized by
k-replicated and—or series-paralel (AOSP) graphs. A k-
replicated AOSP graph is derived from an AOSP graph
with vertex and edge replications. Conventional algo-
rithms may apply to compute the reliability of a k-repli-
cated AOSP graph. However, these algorithms take expo-
nential time in the number of edges. We have presented
an algorithm with time complexity O(K(|V| + | EJ)),
where K = max{ k?22%, 2%} and |V| and | E| are the
number of vertices and edges, respectively, in its corre-
sponding AOSP graph. In real-life applications, the k is
typically small whereas |V| + | E| is much larger; thus,
our agorithm is a significant improvement over the tradi-
tional approaches.

Many graph-related problems are NP-complete for
genera graphs but can be solved in polynomial-time for
AOSP graphs. In this paper, we have shown that the
distributed task reliability problem can also be solved in
linear time for RAOSP graphs. It seems that for other

RELIABILITY OF REPLICATED AND-OR GRAPHS 203

graph problems there may also exist polynomial-time al-
gorithms for RAOSP graphs provided there exist polyno-
mial-time algorithms for AOSP graphs.
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