NEGATIVE-PARITY STATES OF $\boldsymbol{N}=88$ ISOTONES IN THE INTERACTING BOSON APPROXIMATION

C.S. HAN, D.S. CHUU
Department of Electrophysics, Natıonal Chiao Tung Unwersity, Hsinchu, Taiwan, Republic of China

S.T. HSIEH and H.C CHIANG
Department of Physics, National Tsing Hua Untverstty, Hsinchu, Tawan, Republic of China

Received 6 December 1984, revised manuscript received 4 June 1985

Abstract

The negative-panty states of $N=88$ isotones are studied systematically in terms of the interacting boson approximation A mass-independent effective interactung boson hamiltonian reproduced energy levels very well Unified E1 and E3 transition operators are found The effect of p bosons on the energy spectra and electromagnetic transitions is discussed

In the lighter-mass end of the deformed $A=150-180$ region the shapes of the nucle1 change very rapidly. Since the $N=88$ nucler he just outside the permanently deformed region which begins at $N=90$, they exhibit transitional character and thus attracts great interest in both experimental and theoretical investigations. Recently, in-beam studies [1-6] of the $N=88$ nuclet had identified some high-spin negative-parity odd-spin bands Various models have been proposed to explain these negative-parity bands (NPB). The NPB seen in ${ }^{152} \mathrm{Gd}[1,7]$ has been interpreted in terms of an octupole vibration coupled etther to a deformed or to a spherical core. Zolnowski et al. [3] has investigated the NPB of the $N=88$ nucleı using a quadrupole-octupole coupled model. The calculated energy levels are in good agreement with the experimental data except for the high-spin states in ${ }^{156} \mathrm{Er}$. Vogel [8] has pointed out that above a certain critical spin value the NPB can no longer be treated as octupole states but become two-quasiparticle decoupled states. Sunyar et al. [9] interpreted the NPB in ${ }^{156} \mathrm{Er}$ as a rotational band built on a two-quasiparticle state. However, Iachello and Arima [10,11] have shown that this coupling can
be treated in a simple way within the framework of the interacting boson approximation (IBA) model. De Vorgt et al. [5] investigated the NPB of ${ }^{150} \mathrm{Sm}$ in terms of interacting quadrupole and octupole bosons. Satisfactory results are obtaned. Scholten et al. [12] have studied the negative-parity energy levels and E1, E3 transitions of even-mass nuclei of Sm isotopes. They used a mass-dependent interacting hamiltonıan with s, d and f bosons. The energy levels can be well explained, but the E1 transitions fall to be reproduced unless the higher order terms in E1 transition operators were taken into account. In this letter, we shall study systematically the NPB of even-even $N=88$ isotones using the IBA model. It is hoped that the energy levels of the negative-parity states of this series of isotones can be well reproduced by an unified set of parameters

In our model, the nert closed shells are taken at $Z=50$ and $N=82$. Extra core nucleons are considered to parr to active bosons. The effective hamiltonian between bosons is taken as the form
$H=H_{s \mathrm{~d}}+\varepsilon_{\mathrm{f}}+\left[Q_{\mathrm{sd}}^{(2)} \cdot Q_{f}^{(2)}\right]$,
where H_{sd} is the hamiltonian for s and d bosons, ε_{f} is the single-boson energy of the f boson, $Q_{\mathrm{sd}}^{(2)}$

$$
\underset{\sim}{\infty} \underset{\sim}{\infty}
$$

Fig 2
and $Q_{f}^{(2)}$ are the quadrupole operators for s, d and f bosons defined as follows-
$Q_{\mathrm{sd}}^{(2)}=\left[d^{+} \times \tilde{s}+s^{+} \times \tilde{d}\right]^{(2)}-\frac{1}{2} \sqrt{7}\left[d^{+} \times \tilde{d}\right]^{(2)}$,
$Q_{\mathrm{f}}^{(2)}=C_{1}\left[f^{+} \times \tilde{f}\right]^{(2)}$
The parameters in $H_{\text {sd }}$ are taken from a previous calculation for the positive-parity states of the $N=88$ isotones [13]. The remaining two parameters ε_{f} and C_{1} are determined from a least-squares fitting to forty-three negative-parity states of five $N=88$ isotones ${ }^{148} \mathrm{Nd},{ }^{150} \mathrm{Sm},{ }^{152} \mathrm{Gd},{ }^{154} \mathrm{Dy}$ and ${ }^{156} \mathrm{Er}$. We find that accurate fits to the energy spectra can be obtained by using an effective hamultonian without any explicit boson-number dependence in the parameters The overall root-mean-square deviation is 0.119 MeV with the parameters (in MeV) $\varepsilon_{\mathrm{f}}=1.123, C_{1}=0.028$. The results (referred to as M1) are shown in figs. 1 and 2. In general, the calculated values are in good agreement with the observed ones, except the 1^{-} states for all nucle. The calculated 1^{-}states he much higher than the observed ones, so that the energy spacings between 1^{-}and 3^{-}states are almost doubled as compared to the observed values. From in-beam spectra of the (A, $x \mathrm{n}$) reaction, high-spin negative-parity states have been identified up to 15^{-}for ${ }^{150} \mathrm{Sm}$ and ${ }^{154} \mathrm{Dy}$ and to 17^{-}for ${ }^{152} \mathrm{Gd}$ and ${ }^{156} \mathrm{Er}$. These high-spin levels are all well reproduced in our calculations

To test the wave function, we also calculated the electromagnetic transitions. The one-body E1 and E3 transition operators in the space of s, d and f bosons can be written as

$$
\begin{aligned}
& T(\mathrm{E} 1)=\alpha_{1}\left[d^{+} \times \tilde{f}+f^{+} \times \tilde{d}\right]^{(1)}, \\
& T(\mathrm{E} 3)=\alpha_{3}\left[s^{+} \times \tilde{f}+f^{+} \times \tilde{s}\right]^{(3)} \\
& \quad+\beta_{3}\left[d^{+} \times \tilde{f}+f^{+} \times \tilde{d}\right]^{(3)}
\end{aligned}
$$

It is found that the unified parameters $\alpha_{3}=0.12$ and $\beta_{3}=-070$ can reproduce the $B(\mathrm{E} 3)$ values quite well. The results are shown in table 1. However, the calculated values for $B(\mathrm{E} 1)$ cannot fit the observed values with either a mass-independent parameter α_{1} or mass-dependent parameter $\boldsymbol{\alpha}_{1}$.

It may be interested to study whether the 1^{-} states and the E1 transitions can be improved by

Table 1

Nucleus	$J_{1} \rightarrow J_{\mathrm{f}}$	B (E3) $\left[e^{2} \mathrm{~b}^{3}\right]$	
		experiment	theory
${ }^{150} \mathrm{Sm}$	$0^{+} \rightarrow 3_{1}^{-}$	$036{ }^{\text {a }}$	039
	$0^{+} \rightarrow 3_{2}^{-}$	$015^{\text {a) }}$	011
${ }^{152} \mathrm{Gd}$	$0^{+} \rightarrow 3_{1}^{-}$	$032{ }^{\text {b }}$	042
	$0^{+} \rightarrow 3_{2}^{-}$	$007{ }^{\text {b }}$	012

${ }^{\text {a) }} \operatorname{Ref}[14] \quad{ }^{\text {b) }} \operatorname{Ref}[15]$
including the p boson. To check this point, we modify our hamiltonian to the following form to incorporate the effects of p bosons:
$H=H_{\mathrm{sd}}+\varepsilon_{\mathrm{f}}+\varepsilon_{\mathrm{p}}+\left[\begin{array}{ll}Q_{\mathrm{sd}}^{(2)} & Q_{\mathrm{fp}}^{(2)}\end{array}\right]$,
where ε_{p} is the single boson energy for p bosons and

$$
\begin{aligned}
& Q_{\mathrm{fp}}^{(2)}=C_{1}\left[f^{+} \times \tilde{f}\right]^{(2)}+C_{2}\left[p^{+} \times \tilde{p}\right]^{(2)} \\
& \quad+C_{3}\left[f^{+} \times \tilde{p}+p^{+} \times \tilde{f}\right]^{(2)},
\end{aligned}
$$

The energy spectra fitting with an RMS deviation of 0.102 MeV can be obtaned with the following unified interaction parameters (in MeV) $\varepsilon_{\mathrm{f}}=1.106$, $\varepsilon_{\mathrm{p}}=1.260, C_{1}=0.019, C_{2}=-0.002, C_{3}=0.003$. The results (referred to as M2) are also presented in figs. 1 and 2. It can be seen that the 1^{-}states are all lowered down and thus the $1^{-}-3^{-}$energy spacings become very close to the experimental data. In order to test the effects of the p boson on E1 and E3 transition rates we also include two terms, $\beta_{1}\left[s^{+} \times \tilde{p}+p^{+} \times \tilde{s}\right]^{(1)}$ and $\gamma_{1}\left[d^{+} \times \tilde{p}+p^{+} \times\right.$ $\tilde{d}]^{(1)}$, in the $T(\mathrm{El})$ operator and a term $\gamma_{3}\left[d^{+} \times \tilde{p}+\right.$ $\left.p^{+} \times \tilde{d}\right]^{(3)}$ in the $T(\mathrm{E} 3)$ operator. The calculated $B(E 1)$ transition rates agree reasonably well with the experimental data with a unified set of parameters $\alpha_{1}=-0.28, \beta_{1}=-050, \gamma_{1}=1.80$ for all isotones. The calculated and experimental values for some $N=88$ isotones are shown in table 2. The inclusion of the $\gamma_{3}\left[d^{+} \times \tilde{p}+p^{+} \times \tilde{d}\right]^{(3)}$ term does not change the values of $B(E 3)$ appreciably for a wide range of values of γ_{3}, thus we put $\gamma_{3}=0$. In shell-model language, it is intended to interpret the p-boson as a two-particle pair within the valence shell having J^{-}values as 1^{-}. It is well known that this state contains a large

Table 2

Nucleus	$J_{1} \rightarrow J_{\mathrm{f}}$	$B($ El $)$ ratios	
		experıment	theory
${ }^{148} \mathrm{Nd}$	$3_{1}^{-} \rightarrow 4_{1}^{+} / 2_{1}^{+}$	$15 \pm 02^{\mathrm{a})}$	37
	$1_{1}^{-} \rightarrow 2_{1}^{+} / 0_{1}^{+}$	$26 \pm 03^{\mathrm{a}}$	21
${ }^{150} \mathrm{Sm}$	$3_{1}^{-} \rightarrow 4_{1}^{+} / 2_{1}^{+}$	$078^{\mathrm{b})}$	074
	$1_{1}^{-} \rightarrow 2_{1}^{+} / 0_{1}^{+}$	$207^{\mathrm{b})}$	198
	$1_{1}^{-} \rightarrow 0_{2}^{+} / 0_{1}^{+}$	$063^{\mathrm{b})}$	005
	$5_{1}^{-} \rightarrow 4_{1}^{+} / 6_{1}^{+}$	$10^{\mathrm{c})}$	51
${ }^{152} \mathrm{Gd}$	$3_{1}^{-} \rightarrow 4_{1}^{+} / 2_{1}^{+}$	$059^{\mathrm{b})}$	035
	$1_{1}^{-} \rightarrow 2_{1}^{+} / 0_{1}^{+}$	$162^{\mathrm{b})}$	184
	$1_{1}^{-} \rightarrow 0_{2}^{+} / 0_{1}^{+}$	$048^{\mathrm{b})}$	004

${ }^{\text {a) }}$ Ref [16] ${ }^{\text {b) }}$ Ref [17] ${ }^{\text {c) }} \operatorname{Ref}[18$]
amount of spurious center-of-mass motion, which 1s, however, not treated in our calculation. Therefore, we would like to emphasize that the success in fittings of 1^{-}energy levels and B (E1) transition rates should be interpreted in a phenomenological sense.

In conclusion, the NPB of $N=88$ isotones can be explained in terms of the interacting boson approximation model. A mass-1ndependent hamiltonian can be used for describing the whole series of isotones. The EM transitions can be reproduced quite satisfactory by a unufied set of parameters. It is also found that the inclusion of the p boson improves the fittungs in 1^{-}states and the E1 transition rates although the spurious center-of-
mass motion of p boson pars are not treated in any way.

References

[1] D R Zolnowskı, T Kıshimoto, Y Gono and T T Sugihara, Phys Lett 55B (1975) 453
[2] Y Gono, D R Zolnowski, D R Haenm and T T Sugihara, Phys Lett 49B (1974) 338
[3] D R Zolnowskı, M B Hughes, J Hunt and T T Sugihara, Phys Rev C21 (1980) 2556
[4] H Beuscher, W F Davidson, R M Lieder, C Mayer-Boncke and H Ihle, Z Phys 263 (1973) 201
[5] M J A De Voıgt, Z Sujkowskı, D Chmelewska, J F W Jansen, J Van Klınken and S J Feenstra, Phys Lett 59B (1975) 137
[6] C M Baglin, Nucl Data Sheets 18 (1976) 223
[7] M Nomura, Phys Lett 55B (1975) 357
[8] P Vogel, Phys Lett 60B (1976) 431
[9] A W Sunyar, E Ter Mateosian, O C Kıstner, A Johnson, A H Lumpkin and P Theiberger, Phys Lett 62B (1976) 283
[10] F Iachello and A Anma, Phys Lett 53B (1974) 309
[11] A Anma and F Iachello, Phys Lett 57B (1975) 39
[12] O Scholten, F Iachello and A Anma, Ann Phys (NY) 115 (1978) 325
[13] D S Chuu, C S Han, S T Hsich and M M King Yen, Phys Rev C30 (1984) 1300
[14] G G Seaman, J S Greenberg and D A Bromley, Phys Rev 149 (1966) 925
[15] R Bloch, B Elbek and P O Tjom, Nucl Phys A91 (1967) 576
[16] Y Ikeda, H Yamamoto, K Kawade, T Takeuch, T Katoh and T Nagahara, J Phys Soc Japan 47 (1979) 1039
[17] D R Zolnowskı, E G Funk and J W Mihehch, Nucl Phys A177 (1971) 513
[18] Nucl Data Sheets 20, No 3 (1977), 18, No 3 (1976)

