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The negative-panty states of N = 88 :sotones are stuched systemaUcally in terms of the interacting boson approxtmataon 
A mass-independent effectave interacting boson hanultoman reproduced energy levels very well Umfied E1 and E3 trans:taon 
operators are found The effect of p bosons on the energy spectra and electromagnetic transxtlons as chscussed 

In  the lighter-mass end of the deformed 
A = 150-180 region the shapes of the nuclei 
change very rapidly. Since the N = 88 nuclex lie 
just  outside the permanently deformed region 
which begins at N -- 90, they extublt t ransmonal 
character and thus attracts great interest in both 
experimental  and theoretical investigations. Re- 
cently, in-beam studies [1-6] of the N = 88 nude1 
had identified some high-spin negative-panty 
odd-spin bands  Vanous models have been pro- 
posed to explain these negaUve-pafity bands 
(NPB). The NPB seen in X52Gd [1,7] has been 
interpreted in terms of an octupole wbrat~on 
coupled either to a deformed or to a sphencal 
core. Zolnowski et al. [3] has investigated the NPB 
of the N = 88 nuclei using a quadrupole-octupole 
coupled model. The calculated energy levels are 
in good agreement with the experimental data 
except for the high-spin states in X56Er. Vogel [8] 
has pointed out that above a certam critical spm 
value the NPB can no longer be treated as 
octupole states but become two-quasxpart~cle 
decoupled states. Sunyar et al. [9] interpreted the 
NPB in :56Er as a rotatxonal band built on a 
two-quasiparticle state. However, Iachello and 
Arima [10,11] have shown that this couphng can 

be treated in a simple way wltban the framework 
of the interacting boson approximation (IBA) 
model. De Volgt et al. [5] investigated the NPB of 
15°Sm m terms of interacting quadrupole and 
octupole bosons. Satisfactory results are obtained. 
Scholten et al. [12] have studied the negatwe-parity 
energy levels and El ,  E3 transitions of even-mass 
nuclei of Sm xsotopes. They used a mass-depen- 
dent interacting hamiltoman with s, d and f 
bosons. The energy levels can be well explained, 
but  the E1 transitions faal to be reproduced unless 
the higher order terms m E1 transition operators 
were taken into account. In this letter, we shall 
s tudy systematically the NPB of even-even 
N = 88 lsotones using the IBA model. It  is hoped 
that the energy levels of the negative-panty states 
of this senes of isotones can be well reproduced 
by  an umfied set of parameters 

In our model, the inert closed shells are taken 
at Z = 50 and N = 82. Extra core nucleons are 
considered to pair to active bosons. The effectxve 
hamdtonian  between bosons is taken as the form 

where H~ is the harmltoman for s and d bosons, 
ef is the singie-boson energy of the f boson, Q~) 
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and Q~2) are the quadrupole operators for s, d and 
f bosons defined as follows" 

0(2) [ d + ×  ~ + s + ×  d](2)_ ½v~-[d+× a7](2), sd 

Q~2) = C l [ f +  X f](2) 

The parameters  in Hsd are taken from a previous 
calculation for the positxve-parlty states of the 
N = 88 lSOtones [13]. The remaining two parame- 
ters ef and C 1 are determined from a least-squares 
fitting to forty-three negauve-parlty states of five 
N = 88 lsotones 148Nd, 15°Sm, 152Gd, l~4Dy and 
~56Er. We find that accurate fits to the energy 
spectra can be obtained by using an effecuve 
hamlltonlan without any exphclt boson-number 
dependence in the parameters The overall root- 
mean-square devlaUon is 0.119 MeV with the 
parameters  (in MeV) ef = 1.123, C1 = 0.028. The 
results (referred to as M1) are shown m figs. 1 and 
2. In general, the calculated values are in good 
agreement with the observed ones, except the 1 - 
states for all nuclei. The calculated 1 -  states he 
much hagher than the observed ones, so that the 
energy spacings between 1 -  and 3 -  states are 
almost  doubled as compared to the observed 
values. F rom in-beam spectra of the (A, x n) 
reaction, high-spin negative-panty states have 
been ldenUfied up to 15-  for tS°Sm and 154Dy and 
to 17 -  for lS2Gd and 156Er. These htgh-spm levels 
are all well reproduced m our calculations 

To test the wave funcUon, we also calculated 
the electromagneuc transitions. The one-body E1 
and E3 transition operators in the space of s, d 
and f bosons can be written as 

T(E1) = a l [ d + x f + f + x  d] (1>, 

T(E3) = a3 [s+Xf+ f+X  g](3) 

+ fl3[d+x f + f+x d] 0~ 

It  is found that the unified parameters a 3 = 0.12 
and f13 = - 0 70 can reproduce the B(E3) values 
quite well. The results are shown in table 1. 
However,  the calculated values for B(E1) cannot 
fit the observed values with either a mass-indepen- 
dent parameter  a~ or mass-dependent parameter  
~t I . 

It  may be interested to study whether the 1 -  
states and the E1 transmons can be improved by 

Table 1 

Nucleus J, ~ Jf B(E3) [ e 2 b 3 ] 

experiment theory 

15°Sin 0 +---~ 3/- 0 36 a) 0 39 
0 + ~  32 0 15 a) 0 11 

152Gd 0 +---, 3/- 0 32 b) 0 42 
0 +---, 32 007 b) 0 12 

a)Ref [14] b)Ref [15] 

including the p boson. To check this point, we 
modify  our hamll toman to the following form to 
incorporate the effects of p bosons: 

H = Hsd + ef + ep + [O~) ,o(2)1 ~ f p  ] ,  

w h e r e  ep lS the s, ngle boson energy for p bosons 
and 

Q(2) ep = C l [ f+x  f](:~ + G[p+x/~]  (2> 

+C3[f+×~+p+Xf] (2), 

The energy spectra fitting with an RMS deviation 
of 0.102 MeV can be obtained with the following 
unified lnteracuon parameters (in MeV) e f --- 1.106, 
ep = 1.260, C 1 = 0.019, C2 = -0 .002,  C 3 = 0.003. 
The results (referred to as M2) are also presented 
in figs. 1 and 2. It  can be seen that the 1 - states 
are all lowered down and thus the 1 - - 3 -  energy 
spacings become very close to the experimental 
data. In order to test the effects of the p boson on 
E1 and E3 transition rates we also include two 
terms, i l l [s+×/3 + p + ×  ~](1) and ,/l[d+ x/3 + p + x  
d] (1), in the T(E1) operator and a term "r3[d+× ~ + 
p +× d](3) in the T(E3) operator. The calculated 
B(E1) t ransmon rates agree reasonably well with 
the experimental  data with a umfied set of 
parameters  a 1 = -0 .28 ,  131 = - 0  50, ~1 = 1.80 for 
all lSOtones. The calculated and experimental 
values for some N - -  88 lsotones are shown in 
table 2. The inclusion of the "/3 [ d+ × P + P + × d] o) 
te rm does not change the values of B(E3) 
appreciably for a wide range of values of Y3, thus 
we put  Y3 = 0. In shell-model language, it is 
intended to interpret the p-boson as a two-particle 
pair  within the valence shell having J -  values as 
1 -.  It  is well known that this state contains a large 
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Table 2 

Nucleus J, ~ Jf B(E1) ratxos 

experiment theory 

14SNd 3{- ~ 4{/27 1 5 + 0 2  a) 37 
I x- ~ 2?/07 2 6 + 0 3 a~ 2 1 

xS°Sm 3~- ~ 4?/2?  0 78 b) 0 74 
11- ~ 27/07 2 07 b) 1 98 
11- --., 0~/07 0 63 b) 0 05 
5{ ---, 4?/6? 1 0 c) 5 1 

152Gd 3~- ~ 4? /2?  0 59 b) 0 35 
1 x- ~ 2?/07 1 62 b) 1 84 
1{ ~ 0~-/07 0 48 b) 0 04 

a)Ref [16] b)Ref [17] C)Ref [18] 

a m o u n t  of spurious center-of-mass moUon, whtch 
is, however,  no t  treated in our  calculation. 
Therefore,  we would lake to emphasxze that the 
success in  fittings of 1 - energy levels and  B(E1) 
t rans i t ion  rates should be interpreted in  a phenom-  

enological  sense. 
In  conclus ion,  the NPB of N -- 88 lsotones can 

be  expla ined  in  terms of the mterac tmg boson  
app rox ima t ion  model. A mass- independent  ham- 
d t o n i a n  can  be used for describing the whole series 
of lsotones.  The  EM transi t ions can be reproduced 

qui te  sat isfactory by  a umfied set of parameters.  
I t  is also found  that  the inclusion of the p boson 
improves  the fittings m 1 -  states and the E1 
t rans i t ion  rates al though the spunous  center-of- 

mass mo t ion  of p boson pairs are not  treated m 

any  way. 
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