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Abstract

Optical pattern formation in“nonlinear: optical systems has been
widely studied in the last decade. Analysis and simulations of pattern
formation in two classes of systems are presented. These are passive
systems and the cavity systems. Here, we focus on the pattern formation
in passive nonlinear optical systems. Passiveness means that the
excitation is driven by an externally field, smoothly and constantly in the
ideal case, rather than through population inversion. Optical pattern
formation results from the nonlinear interaction between the external field
and the nonlinear materials. Once a perturbation exists in this nonlinear
system, such as the scattering light or the noise, the initial state of the
external field may be perturbed and become unstable through the high

nonlinearity of the system.

In this dissertation, we investigate the optical pattern formation

phenomena by using the quasi-static electric-field-biased liquid crystal
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(NLC) films in combination with the one-feedback-mirror system
proposed by Firth and Pare. Though the controlling and stabilizing
methods have been widely studied the basic physical uniqueness of the
nematic liquid crystals appeared in these optical pattern formation
phenomena has not been explored very clearly. The governing diffusion-
like equation of the optical field induced phase variation in the transverse
plane used in most theoretical analysis is assumed to be isotropic based
on Firth’s method. However, the diffusion-like equation should be
modified when nematic liquid crystals are used. Unlike the previously
used operating modes such as the hybrid-aligned films, the vertically
aligned films or the liquid crystal light valve (LCLV) samples, we further
consider the parallelly planar-aligned NLC films biased by a quasi-static
electric field. To our knowledgesitherelectric field effect on the optical
pattern formation phenomena. has not been included in the earlier
theoretical analysis. From :our previous works, we know that the optical
nonlinearity of such NLC films canbe effectively modulated by suitably

applying a quasi-static electric field:

Therefore, considering the anisotropic properties of the nematic liquid
crystals, we derive the governing diffusion-like equation for the optical
field induced phase variation in the transverse plane. Furthermore, the
threshold intensity distribution for the patterns to be formed is also
derived by the results of the linear stability analysis (LSA) of the
governing diffusion-like equation. By analyzing the anisotropic threshold
intensity distribution we propose a possible method to obtain the roll and
the hexagon patterns without canceling the anisotropic property of the
threshold intensity. We successfully observe the roll and the hexagon
patterns by simply controlling the input light intensity. Furthermore, from

the theoretical analysis, we know that the anisotropic distribution of the
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threshold intensity results from the elastic anisotropy of the nematic
liquid crystals. Hence, we analyze the issue of how the elastic anisotropy
affects the optical pattern formation phenomena. From the results of the
analysis of the effects of the elastic anisotropy, we further study the
influence of the applied electric field. The nonlinearity of the system can,
indeed, be modulated by the applied electric field through the modulation
of the orientation of the liquid crystal molecules electrically. Therefore, a
simple electric-method is achieved to obtain different optical patterns
with a single input light intensity. The experimental results in our work
qualitatively agree with the theoretical results well and the suggested
pattern-forming properties in our theoretical analysis can be reasonably

proved.
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Chapter 1 Introduction

1-1  Overview

In this dissertation, liquid crystals are classified by utilizing the
classification scheme of De Gennes and Prost [1], and we will give a brief
description of thermotropic liquid crystals. Furthermore, the optical

properties of nematics are mentioned briefly.
1-1-1 Types of liquid crystals

Liquid crystals are beautiful and unique materials. The term /liquid crystal
signifies a state that is intermediate between the crystalline solid and the
amorphous liquid. As a -rule, a substance in this state is strongly
anisotropic in some of its properties-and- yet-exhibits a certain degree of
fluidity. The first observations-of liguid crystalline or mesomorphic
behavior were made towards the end of the nineteenth century by
Reinitzer [2] and Lehmann [3] (mesomorphic: of intermediate form).
Several thousands of organic compounds are known now to form liquid
crystals. An essential requirement for mesomorphism to occur is that the
molecule must be highly geometrically anisotropic in shape, like a rod or
a disc. Depending on the detailed molecular structure, the system may
pass through one or more mesophases before it is transformed into the
isotropic liquids. Transitions to these intermediate states may be brought
about by thermal processes (thermotropic mesomorphism) or by the
influence of solvents (lyotropic mesomorphism). Therefore, utilizing the

classification scheme of liquid crystal by P. G. De Gennes and J. Prost [1],
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there are four major types of liquid crystals: (i) thermotropic, (ii)
lyotropic, (iii) polymer and (iv) amphiphilic compounds.

Among these four types, the molecules of the thermotropic liquid
crystals are small organic molecules, either rod-like or disk-like, for
which an amphiphilic character may or may not be crucial. The simplest
way to induce a transition is to vary the temperature therefore they are
commonly called thermotropic. Lyotropic liquid crystals are made up of
two or more components. Generally, one of them is an amphiphile and
another is water. A familiar example of such a system is soap in water.
Here the temperature effects are difficult to control, and the nature
parameter which one can adjust to induce phase transition is the
concentration of the components. Lyotropic liquid crystals are receiving
increasing scientific and technological attention because of the way they
reflect the unique properties of their-constituent molecules. Considering
the main-chain or side-chain ‘polymers that are thermotropic mesogens,
aside from temperature the molecule weight may also be considered as a
variable. Polymeric liquid crystals are potential candidates for electronic
devices and ultra-high-strength materials. Amphiphilc compounds may
give rise to associations and to mesomorphic behavior, either in the
presence of selective solvent or as a pure phase. Thus, depending upon
which of the above conditions holds, amphiphilic compounds may be

lyotropic or thermotropic.

1-1-2 The thermotropic liquid crystals

The well-known, widely used, and extensively studied for their linear as



well as the nonlinear optical properties are thermotropic liquid crystals. In
this  dissertation, only thermotropic materials are concerned.
Thermotropic liquid crystal phases are observed in pure compounds and
mixtures. As the temperature increases, these compounds go through a
series of phase transitions: from solid to liquid crystal, to isotropic liquid,
and finally to vapor phase. Following the nomenclature proposed
originally by Friedel [4], thermotropic liquid crystals are classified
broadly into three types: nematic, cholesteric and smectic, as shown in

Fig. 1.1.
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nematic cholesteric smectic-A

Fig. 1.1 The schematic molecules arrangement of nematics, cholesterics and smectic-A liquid crystals

The nematic phase has a high degree of long-range orientational order
of the molecules, but no long-range translational order. The aligned
nematic liquid crystal molecules, on the average, are characterized by one
symmetry axis, call the director 7. The direction of 7 is arbitrary in
space and the state of director 7 and -7 are indistinguishable. The
director can be reoriented by an external field, such as electric field,
magnetic field or optical field.

Cholesteric liquid crystal is thermodynamically equivalent to a nematic



except for the chial-induced twist in the directors, as shown in Fig. 1.1.
This property results from the synthesis of cholesteric liquid crystals; they
are obtained by adding a chiral molecule to a nematic liquid crystal.
Some materials, such as cholesteric esters, are naturally chiral. The
helical structure can result in selective reflection in wavelength and
circular polarizations. The polarization states of the reflected and
transmitted waves depend on the pitch length of the cholesteric.
Cholesteric liquid crystals have found important applications in areas
such as laser cavity mirrors, color filters, and polymer dispersed
cholesteric liquid crystal displays.

Smectic liquid crystals, unlike nematic, possess positional order; that is,
the positions of the molecules are correlated in some ordered pattern.
Form the structure point of-view, all smectics, are layered-structured with
a well-defined interlayer spacing.-Therefore; smectics are more ordered
than nematics. For a given material,-smectic phases usually occur at
temperature below the nematic domain. Several subphases of smectics
have been discovered, in accordance with the arrangement or ordering of
the molecules and their structural symmetry properties. Here, we only
briefly describe basic structures of smectic A, C, and ol phases as shown
in Figs. 1.2(a)-(c).

The scheme diagram of layered structure of a smectic-A liquid crystal
is shown in Fig. 1.2(a). In each layer the molecules are positionally
random, but directionally ordered with their long axis normal to the layer
normal. The system is optically uniaxial and the optical axis is normal to

the plane of the layer.
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Fig. 1.2 The schematic molecules arrangement of smectic-A, smectic-C and smectic-C" liquid crystals

The smectic-C phase is a tilted form of smectic-A, i.e., the molecules
are inclined with respect to the layer normal. (cf. Fig. 1.2(b)). The
smectic-C" liquid crystals, as depicted in Fig. 1.2(c), is an interesting
class of liquid crystal materials. Thesstructure of smectic-C is similar to
that of smectic-C except for a helical tilt distributions from layer to layer.
Another exciting feature “of - smectie-C - phase is that it exhibits
ferroelectricity. Using this spontaneous polarization, a bistable LC
modulator with microsecond response time has been demonstrated in a

ferroelectric liquid crystal (FLC) cell.
1-2  Nonlinear optics

All optical phenomena occurring in a material arise from the optical field
induced polarization P. In the electromagnetic theory of light, the
material response to the illumination of light is described by the

following equation:

P=yVE+ y@:EE+ 4 :EEE+...



where P is the induced polarization of the material, E is the electric field

of the light and ", #® and ® are the first-, second- and

third-order susceptibilities, respectively. For low light intensity, the high

order terms are very small and the optics is adequately described by the

first term » E. Linear optics is described by »® which is related to the

index of refraction by n’=1+ 4. For the early days without laser light

sources, the scientist can not obtain a reasonable nonlinear effect since a
high intensity and coherent light source is required. In 1961, an early
second harmonic generation experiment gave the first experimental

confirmation for nonlinear theories. A ruby laser with a wave length at
0.6943 11 m was focused on the front surface of a crystalline-quartz plate.

The emergent radiation was examined with a Spectrometer and was found
to contain radiation at twice'the-input-light frequency.

After the early second-harmonic generation experiments, the field of
nonlinear optics has grown rapidly. Many different nonlinear optical
phenomena have been observed. These include wave mixing, optical
phase conjugation, stimulated scattering, optical pattern formation etc. As
indicated above, these nonlinear optical phenomena require intense laser
beam. The intensity requirements become even more stringent for higher

order process.

1-2-1 General overview of nematic-optical nonlinearities

In linear optical process the physical properties of nematic liquid crystals,

such as the molecular structure, the individual or collective molecule

6



orientation, the temperature, the density, the population of the electric
levels, and so on, are not affected by the optical fields. The optical
properties of nematics can be controlled by some external electric fields;
this gives rise to a variety of electro-optical effects which are widely used
in many electro-optical displays and image-processing applications.
Nematic liquid crystals are also optically nonlinear materials since
their physical properties (molecular orientation, temperature and density)
are easily perturbed by such an applied high-intensity optical field. Since
commonly used liquid crystal molecules are dielectric anisotropic, a
polarized light from a laser can induce a realignment of the molecules in
the ordered phase. This results in a change of the index of refraction.
Other commonly occurring mechanisms'that give rise to the changes of
the refractive index are laser-induced changes in the temperature and the
density. These changes can arise from-several mechanisms. Elevation in
the temperature is a natural consequence of the photo-absorptions and the
subsequent processes. In the nematic phase the index of refraction is
highly dependent on the temperature, through their dependence of on the

order parameters, as well as the density.

1-2-2  Optical pattern formation in passive nonlinear optical

systems

Optical pattern formation in nonlinear optical systems has been widely
studied in the last decade. Analysis and simulations of pattern formation
in two classes of systems are presented. These are passive systems and

the cavity systems. Here, we focus on the pattern formation in passive
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nonlinear optical systems. Passiveness means that the excitation is driven
by an externally field, smoothly and constantly in the ideal case, rather
than through population inversion. Optical pattern formation results from
the nonlinear interaction between the external field and the nonlinear
materials. Once a perturbation exists in this nonlinear system, such as the
scattering light or the noise, the initial state of the external field may be
perturbed and become unstable through the high nonlinearity of the
system.

After the instability analysis made by Firth and Pare [5] and the
experimental observation of hexagon patterns made by Grynberg [6]
using the sodium vapor as the nonlinear material, the optical pattern
formation phenomena under two counter-propagating pump-beams
condition have been confirmed. In 1990, Firth further proposed and
demonstrated the optical pattern.formation by using a simple arrangement
which places a thin Kerr medium:in front of a planar feedback mirror [7].
Using this simple one-feedback-mirror system numerous experiments
have been successfully performed by using different materials as the
nonlinear medium, such as the atomic vapor, the photorefractive crystals
and the liquid crystals. The hexagons are the usual patterns frequently
observed in these experiments. To stabilize and select patterns other than
the hexagons, one can add a Fourier filter in the feedback route [8-10] or
break the rotational symmetry by applying the anisotropic nonlinear
medium [11]. Up to now, the use of the liquid crystal light valve
combined with a Fourier filter in the feedback route is the most favored

choice [12].



1-3 A survey of the optical pattern formation in a nematic

liquid crystal film in one-feedback-mirror system

Utilizing the one-feedback-mirror mirror system the observation of
optical pattern formation by using liquid crystals as the nonlinear
materials has been studied for many years. In 1992, R. Macdonald and H.
J. Eichler successfully observed the hexagon patterns by using a
hybrid-aligned nematic liquid crystal (NLC) cell [13]. In the next year, E.
Santamato used a clinic-positioned vertical-aligned NLC cell to perform
the experiment and also observed the hexagon patterns [14, 15].
Furthermore, in 1994, Santamato., observed the roll patterns by
considering the unequal property in‘thediffusion lengths of the governing
diffusion-like equation for this system [11].° By rotating the sample to
reduce the anisotropy of the. diffusion-lengths Santamato obtained the
hexagon patterns. Furthermore, ‘by ‘mserting a slit as a filter in the
feedback route he also obtained the square-like patterns.

In 1995, using the photosensitive-electrode-coated liquid crystal light
valve (LCLV), T. Tschudi performed a detailed study on the pattern
formation phenomena [16]. In recent years, Tschudi paid more efforts at
the stabilizing and pattern selecting topics by adding a Fourier filter in the
feedback route [10, 12]. On the other hand, Santamato successfully
observed the optical patterns in a defocusing Kerr-like film by adding dye
materials into the nematic materials since in the past time one always

obtained the optical patterns in a focusing material [17].



1-4  Aim of the research

In this dissertation, we investigate the optical pattern formation
phenomena by using the quasi-static electric-field-biased liquid crystal
(NLC) films in combination with the one-feedback-mirror system
proposed by Firth.

Though the controlling and stabilizing methods have been widely
studied, the basic physical uniqueness of the nematic liquid crystals
appearing in these optical pattern formation phenomena has not been
explored very clearly. The governing diffusion-like equation of the
optical-field-induced phase variation in the transverse plane used in most
theoretical analysis is assumed to be isotropic based on Firth’s method.
However, as Santamato mentioned in Ref.. 1L, the diffusion-like equation
should be modified and is-anisotropic-when nematic liquid crystals are
used. Unlike the previously used operating modes, such as the hybrid
aligned films, the vertically aligned films or the LCLV samples, we
further consider the parallelly planar-aligned NLC films biased by a
quasi-static electric field. To our knowledge, the electric field effect on
the optical pattern formation phenomena has not been included in the
theoretical analysis. From our previous works, we know that the optical
nonlinearity for such NLC films can be effectively modulated by suitably
applying a quasi-static electric field [18-20].

Therefore, considering the anisotropic properties of the nematic liquid
crystals we derive the governing diffusion-like equation for the
optical-field-induced phase variation in the transverse plane and the

threshold intensity distribution for the patterns to be formed is also
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derived by the results of the linear stability analysis (LSA) of the
governing diffusion-like equation. By analyzing the anisotropic threshold
intensity distribution we propose a possible method to obtained the roll
and the hexagon patterns without canceling the anisotropic property of
the threshold intensity as Santamato did in Ref. 11. We successfully
observe the roll and the hexagon patterns by simply controlling the input
light intensity [21].

With the results obtained in Ref. 21, we know that the anisotropic
distribution of the threshold intensity is resulted from the elastic
anisotropy of the nematic liquid crystals. Therefore, we analyze the issue
of how the elastic anisotropy affects the optical pattern formation
phenomena [22]. From the results we get'in Ref. 22, we further study the
influence of the applied electric field: The nonlinearity of this system
indeed can be modulated: by: the -applied: electric field through the
modulation of the orientation of the liquid crystal molecules electrically.
Therefore, a simple electric-method to obtain different optical patterns is
achieved with a single input light intensity [23].

In the following chapter, a general theoretical description of the
governing diffusion-like equation and the analytical results of the
threshold intensity for both the parallelly planar-aligned and the
vertical-aligned NLC films are presented. In chapter 3, we give a
discussion of how the intrinsic anisotropic properties affect the optical
pattern formation phenomena. The experimental results concerning a
parallelly planar-aligned NLC film are given in chapter 4. Finally, the

discussion and conclusion are made in chapter 5.

11



Chapter 2 Theory

In this chapter, the general theoretical derivation of the governing
diffusion-like equation for the optical-field-induced phase variation and
the analytical results of the threshold intensity for the optical pattern
formation for both the parallelly planar-aligned and the vertical-aligned

NLC films are presented.

2-1 Field-induced optical phase variation in the transverse
plane when an electric-field-biased liquid crystal film is

used

In order to obtain the governing diffusion-like equation for the
optical-field-induced phase variation the governing diffusion-like
equation for the orientational distribution of the liquid crystal directors in
the transverse plane with externally applied fields must be obtained first.
We start from the continuum theory for the NLCs. If one assumes a
p-polarized light beam impinges on an electric-field-biased liquid crystal
film, then the liquid crystal directors will be reorientated when the
electric and the optical fields are high enough. As the liquid crystal
directors are reorientated, the light beam passing through the liquid
crystal film will experience a phase delay according to the orientational

distribution of the liquid crystal directors. Therefore, the orientational
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distribution of the liquid crystal directors O(x, y, z) must be calculated

first.

Fig. 2.1 shows the configuration of the quasi-static electric-field-biased
planar-aligned homogeneous NLC film considered in our derivation and
Fig. 2.2 shows the geometric scheme of our one-feedback-mirror system
for observing the optical pattern formation phenomena. The nematic

material is assumed to have positive optical and dielectric anisotropies,
namely n. > n, and &, > &, where n and € denote the refractive

indices and dielectric constants, and the subscripts refer to the directions

parallel and perpendicular to the director, respectively.

ITO glass
L 1
" I z
Eef d / #% 4y /r
"‘ o £ S S I C
Eo» ITO glass 'y

Fig. 2.1 The planar-aligned nematic liquid crystal cell: LC, liquid crystal; 8, molecular orientational angle; E,, ,

optical field; E,., electric field; n , molecular director; d, cell thickness, and ITO, indium tin oxide.

A quasi-static electric field is applied along the z-axis and is
perpendicular to the unperturbed director 7. A p-polarized light impinges
on the NLC film with its polarization direction parallel to the easy axis of
the liquid crystal directors. After it passing through the NLC sample the
light propagates freely to and from the planar feedback mirror and finally

impinges on the sample again.
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Fig. 2.2 Geometric scheme of the one-feedback-mirror system: B.S., beam splitter; d, cell thickness; L, feedback

length; LC, liquid crystal; L’i, lens

In order to obtain the governing diffusion-like equation for the optical
field induced phase variation in the transverse plane the orientational
distribution of the molecules 4(x, y, z) should be calculated first. From the
continuum theory, which is a_mactoscopic phenomenological theory of
liquid crystals dealing with . a“slowly warying director field, the

orientational distribution function O(x, y,z) 1s obtained by minimizing the

total free energy F'= _[ fdv. The total free energy density f for our system

18
S=Jatfe o (D)
where
fd= %[kn(Vsz)z+k22(ﬁ0foz)2+k33(ﬁxv><fl)2],
1
fé: __Ee.De’
8
1
and f(‘)p: _Q[Eop.Dop-i_HOp.Bop])

where fy f.and f,, represent the elastic deformation, electric, and optical
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terms, respectively. In these relations, &y, k>, and ks; are the splay, twist,
and bend elastic constants, respectively. E and D represent the electric
field and displacement while H and B are the magnetic field and
induction, respectively. Therefore, choose the coordinate system with the
z axis perpendicular to the cell walls, the x-y plane coincides with the
input cell wall and the X direction is along with the easy axis of the
liquid crystal directors. Considering the director 7= (cos#, 0, sinf) the

free energy density f can be expressed as

f= {k11 [(1+kcos 6‘)( ) +(1+ ksin 9)( ) + 2ksin @ cos 6‘(%)(%)]

o0 D’ In,
+k22(_)2}_ = .2 = =) 1/2 > (2)
oy e, (1-wsinil) ed—pusin=0)

where k=(ky,/k,)-1, w=l=&7e """ u=1-(n,/n)’ , D.is the z

component of the electric displacement, c¢ is the velocity of light in
vacuum, and / is the input optical intensity. Actually, it’s not easy to
deal with the three dimensional equation directly. Instead of solving the
distribution function f(x, y, z) by the Euler—Lagrange equations directly,

we assume a trial solution of 8(x, y, z) as

0(x,y,2) =6, +6,(x, )] sin(%)

=0,(x,y) sin(%) . 3)
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We also assume the hard-boundary condition, 8(z=0)=0(z=d)=0.

Here d is the thickness of the sample and 0, , 9p ,and 0, represent the

electrically biased spatial average orientational angle, the optically
modulated amplitude, and the transverse orientational angle in the middle
layer of the liquid crystal cell, respectively. Substituting Eq. (3) into Eq.
(2), integrating the total volume of the cell, and following the Euler-
Lagrange optimization process, we can get the torque balance equation of
the liquid crystal directors. After some algebra and considering the

viscositic term, the torque balance equation can be expressed as

00 , 0°0 , 0°0 v: I k. 2J,(20)
L] -] (—L)40 = - — 4 /112
7o Tl ) T R [Vt,f I, A I )
with
1 d k J,(26,)
17 =— () {1+ =[1+2J,(26,) - ==
. G(ﬁ) { +2[ +2J,(26,) 0 I},
1 d., k
12:__2£
, G(ﬁ) (kn)’
k
G={2+k—5[J0(26?t)—J2(29t)]},
1
I/thzzﬂ[ﬂ]z,
&)—&,
T, 1
and I, = cky, (=) (5)

d’ (~np)
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Here ) is the viscosity coefficient, V' is the root-mean-square value of
the biased voltage, /; (i = x, y) is the diffusion length in the i direction,

J;(26,) is the Bessel function of the first kind of order i, and /; and

V,, are the Freedericksz optical intensity and voltage. From Eq. (4), one

can see that the viscosity term indicates the dynamic behavior of the
orientation of NLC directors. Furthermore, the spatial orientation of NLC
directors is also related with the spatial distribution of the external fields.
Eq. (4) can be changed into the diffusion-like equation for the optical
phase variation in the transverse plane since the effective index of

refraction for the NLC materials can be expressed as

"o T /A= usin20) - (©)

and the optical phase variation in the transverse plane is

27
Y(x,y)= N j n,dz 7
0

0

After substituting Eq. (3) into Eq. (6) and replacing 7., 1in Eq. (7) by

Eq. (6), the diffusion-like equation can be expressed as

2 2 2
za—‘P—zja \f—zza T+LP=[V—2—L]S+T )
ot ox* 7 oy v,. 1, '
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Here 7 is the response time related with the viscosity coefficient, S and
T are the coefficients which are functions of the material parameters and
the orientation of the liquid crystal directors. Now if we consider a
uniform applied voltage, then the phase variation in the transverse plane
directly comes from the light intensity variation in the transverse plane. It
follows that the constant phase terms and the constant driving forces can

be removed from Eq. (8). Therefore a simplified governing diffusion-like

equation for the Kerr-induced optical phase variation o¢(x,y) can be

obtained and shown as

2 2
004 _,20°54_, 2 0°5¢

8t X ax2 y ayZ + 5¢ = aé‘l 5 (9)

27m 2607726
o = - 2N ) 0
0L £

Eq. (9) is similar to the equation proposed by Firth in Ref.7 except the
anisotropic property of the diffusion lengths in the transverse plane and o
is the effective nonlinear coefficient affected by the molecular
orientations as shown in Eq. (10). From Eq. (5) and Eq. (10), we can see

that the relative coefficients can be obtained as the material parameters,

the electrically biased spatial average orientational angle @,, and the
optically modulating amplitude 6, are known. The electrically biased

spatial average orientational angle €, can be determined by minimizing

18



the total free energy under the hard boundary condition and the

assumption of a uniformly distributed electric field. Following the
Euler-Lagrange optimization process, we find that @, has to obey the
following equation

k vt oIk
Ha{2+5[2—Jo(26’a)+J2(29a)]}=(F—]—+Z)2J1(26’a). (11)

th Ir

Eq. (11) can be calculated numerically if d, V, I, and the material
parameters are all known. From our previous paper [22], the optically

modulating amplitude is much smaller than the electrically biased spatial

average orientational angle,s ¢, << 6, . Therefore we can reasonably

substitute &, by 6, in both Eq. (5)and Eq.(10).

2-2  The threshold intensity for patterns to be formed

To obtain the threshold intensity for patterns to be formed, we follow the

linear stability analysis (LSA) in Ref. 11. Consider the geometric scheme
shown in Fig. 2.2. The incident plane wave E, passes through the NLC
film then propagates freely to and from the reflecting mirror and finally

impinges on the NLC film. For such a system, the LSA of Eq. (9) can be

performed by assuming that a noise with its azimuthal angle ¢ on the

transverse plane interacts with the input plane wave E,. The noise and

E, interfere with each other which results in the optical intensity
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distribution on the transverse plane. Since the NLC molecules possess the
dielectric anisotropic property, the orientation of the NLC molecules

follows the distribution of the optical intensity. Therefore, when the plane

wave passes through the NLC film the plane wave E, experiences a

phase modulation. Now assume a small sinusoidal phase modulation 0@

is applied to the forward plane wave E,. After the plane wave E, just

passes through the sample, it will experience the phase variation as given

by

E;(X,y)=E {l+ipcos[(qcosp)X+(qsinp)y]}
=E {1+i0¢} . (12)

Here o <<l is the perturbation amplitude and the terms related to the
wave vector g have been written in the polar form with the azimuthal

angle @ from the axis of the anisotropy to the wave vector clockwise.

The beam £ ,(x,y) then propagates freely to and from the reflecting

mirror. This part of wave propagation can be readily modeled by the

Fresnel propagation formula such as
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where

q —2—ﬂ—qcos :q —2—ﬂ—qsin ;
X A 2 y A 2

X y
1
X y
R
0 AX, 0 Aya

here uy and v, are the spatial frequencies of the phase grating in the x and
y directions, respectively. A, and A, are the spatial period of the grating in
the x and y directions, respectively. Then the reflected beam on the film

can be expressed as

2
—jzA2 L4

Eb(xa y32 L) - rEOejKZL[l + Ipe i COS(qu + qy y)] (14)
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By squaring the reflected beam field to obtain the feedback intensity

distribution which can be expressed as

2

I,=1,{1-2Rpcos[(qcos )X + (qsin ¢) y]sin(g—ﬂlo L)}. (15)

Therefore, the total intensity
I1=1 f +1 b

2

=1,{(1+ R)—-2Rpcos[(qcos p)X + (qsin @) y]sin(?— AL},
V4

implying that the variational:light intensity

2

8 = 2RI, pcos[(gcos ) x4 (g sin go)y]sin(g—/io L)
T

2

- 2RI, sin(g—” 4, L)S9. (16)

In Egs. (15) and (16), L is the length between the sample and the

reflecting mirror, R is the reflectivity of the reflecting mirror, and I, is the
intensity of the forward beam and is the square of E,. Substituting Eq.

(16) into the right side of Eq. (9) for performing the stability analysis, we
can derive the following threshold intensity for the growing of the

perturbation after some algebra:
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1+¢° (1" cos” p+1 " sin’ p)
Ith (q,(D) - 2 ) (17)
2Ra sin(q— A,L)
2

From Eq. (17), the threshold intensity as a function of g is expected to
reach its minimum approximately when sin(¢” 4, L/2 7 )=1 or equivalently

when

g=—
* iz (18)

At this time the net feedback length 2L is simply the required length to
transform the phase modulation in Eq. (12) to pure amplitude modulation
as the beam 1is reflected back'to the.sample ( the Talbot Effect). This can
be easily verified from Eq.{14) and the configuration of the Talbot Effect

is illustrated in Fig. 2.3.
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Fig. 2.3 The transferring between the phase modulation and amplitude modulation based on the Talbot Effect (Z,: Talbot

length).
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Therefore, the threshold intensity in various azimuthal angles can then be

readily obtained when the spatial frequency is known.

o YIYIIIL
L Fiegeee]

Fig. 2.4 The vertically-aligned nematic liquid crystal cell: LC, liquid crystal; 3, molecular orientational angle; E,;, ,

optical field; E,, electric field; n , molecular director; d, cell thickness, and ITO, indium tin oxide.

The derivation of the ~governing diffusion-like equation and the
threshold intensity for the patterns to.be formed for the case of the
vertical-aligned sample as shown in Fig.2:4 is the same as we do for the
homogeneous sample. The results for the vertical-aligned sample are

similar to that for the homogeneous sample and one just needs to change

the average tilt angle 6, , G, k and k;; in Eq. (5) by the average polar

angle B,,G" ={2+k'[1-(U2)[J,28,)~J, 2B}, k=(ku/ks)-1 and

k3, respectively.
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Chapter 3 Anisotropy analysis

From the theoretical results of the governing diffusion-like equation and
the threshold intensity for the patterns to be formed we can know that
when nematic liquid crystals are used as the nonlinear material to perform
the optical pattern formation experiment the intrinsic physical properties,
such as the optical birefringence, the unequal property of Franck elastic
constants, and the dielectric anisotropy, all play important roles in the
pattern formation phenomena. In this chapter, we investigate the
influence of these anisotropic properties on the pattern formation
phenomena and for convenience, the .parameters used in our numerical
analysis are on the basis of the homogeneous E7 cell with its cell gap of

68 um though the theoretical results hold for other nematic materials.

3-1 Anisotropic threshold intensity distribution results from

the elastic anisotropy of nematic liquid crystals

From Eq. (9) and Eq. (17) we can easily see that the anisotropic nonlinear
response of NLC films indeed induces the anisotropic distribution of the
needed threshold intensity for the pattern to be formed and from Eq. (5)
we can see that the anisotropy of the diffusion lengths comes from the
anisotropy of Franck elastic constants. Fig. 3.1(a) shows the theoretical
calculated threshold power in various 0, when the azimuthal angle is ¢ =
90°, 60° and 0°. The threshold power is calculated by the product of the

threshold intensity and the beam area. Actually, the key physical
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parameter for the optical pattern formation is the intensity and we use the
threshold power for the consideration of the practical-experimental reality.
From Fig. 3.1(a) we can see that for each fixed ¢ the minimum of the
threshold power locates at about 0, = 0.9 radian. For each fixed 0, the
smallest threshold power is at ¢ = 90° and the largest threshold one is at ¢
= 0° and 180°. For convenience in Fig. 3.1(b), we plot the threshold
power in various ¢ when 0, is kept at 0.787 radian. From Fig. 3.1(b), one
can see that the anisotropic property of the threshold power in various
azimuthal angles. It’s more clear that the minimum threshold power

locates at ¢ = 90° and the maximum one locates at ¢ = 0” and 180°.

1.1
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0.95
0.9
0.85
0.8
0.75
0.7

0.65 . . .
0.5 0.7 0.9 1.1 1.3

threshold power (W)

average tilt angle 6, (rad.)

(a)
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Fig. 3.1 (a) The calculated curves of the threshold power versus the average tilt angle Ga when the azimuthal angle (P is fixed,;
from the top to the bottom are azimuthal angle (P = 90", 60° and-0°, respectively (b) the calculated curve of the threshold power

versus the azimuthal angle (P when the average tilt angle ea is fixed.as 0.787 rad.

On the basis of this anisotropic distribution of the threshold power, we
can propose a method to obtain different optical patterns. The formation
of different patterns may be associated with the possibility of the
appearance of the modes with different azimuthal angles allowed to exist
under the applied input light power and other experimental conditions.
When the input light power is above and close to the minimum threshold
power, the modes with azimuthal angles close to ¢ = 90° are allowed to
appear. However, these modes will not oscillate to form other patterns
since they fulfill no momentum conservation conditions. Therefore, only

the mode with the lowest threshold power (in our case the mode with ¢ =
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90”) will be enhanced and the roll pattern should be observed.

On the other hand, when the input light power is above but not far from
the maximum threshold power, all the modes with azimuthal angle from
o = 0° to @ = 360" are allowed to appear. This is similar to that in the
isotropic case and we can expect the oscillation of three ripple patterns
leading to hexagons formation. This is because the hexagons satisfy the
momentum conservation condition and the beams can enhance with each

other.

3-2 Influence of Frank elastic constant anisotropy on optical

pattern formation phenemena

The intrinsic Frank elastic constant-anisotropy induces the anisotropy of
the diffusion length, which results. in the anisotropic distribution of the
threshold intensity for optical pattern formation. Therefore, the effects of
the elastic constant anisotropy on optical pattern formation are studied in
this subsection and the obtained numerical results can reasonably explain
the optical patterns that can be formed.

From Eq. (9) one can see that the key factor is the anisotropy of the
diffusion lengths. Therefore, in order to clearly analyze the effects of the
Franck elastic constants on the pattern formation phenomena we rewrite

the parameters in Eq. (5) as

28



% =é(%>2<1+mka>;

1 d
| =g Ok

__2m, 0] (26,)"
21 ,G

b

(19)

(jf
=ck,,

I fr
(_ne/u)

b

where

G=2+k -%[Jo(zea)—32<29a)]};

);

1 J,(26.)
m=—(1+2J,(26.)-—1—"22
2( 0(26,) P

a

ne
n

0

p=1-(=%)2,

In order to determine the anisotropic property of the threshold intensity
distribution, one should calculate the anisotropy of the diffusion lengths
first. From Eq. (17), the anisotropy of the diffusion lengths can be

expressed as:

2 2 2 1 d 2
Al =1,.7-1, =[5 ()le (20)

where
o =mk, — K, 1)

From Eq. (5), the parameter ¢ can be considered as the effective diffusion
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anisotropy parameter. For the vertical-aligned NLC films, the average tilt
angle 0,, the coefficient G and the elastic anisotropies k, and k, in the

above equations have to be replaced by the average polar angle B,
G =2+k [1-U/DL,(28,) = J,2B)IIN, k" = (ki/ks;)—1 and

kb*= (k2o/ks3) — 1, respectively.

From Eq. (20) and Eq. (21), one can easily recognize that the elastic
anisotropy between k, and k;, affects the effective diffusion anisotropy
parameter c. The value of the effective diffusion anisotropy ¢ plays an
important role in the formation of optical patterns. Considering both the
intrinsically anisotropic distribution of the threshold intensity resulted
from the elastic constant anisotropy, of the NLC materials and the
externally electric-tunable .effectivediffusion anisotropy, since it is
related with the average tilt angle 0, which is easily seen in Egs. (19) and
(20), one may employ different methods-to obtain different optical
patterns.

Generally speaking, if the value of ¢ is positive, the value of /; is larger
than that of /,. This property makes the threshold intensity distribution
has its minimum at ¢ = 7/2 and maximum at ¢ = 0, . Therefore once the
input light intensity is above and near the minimum threshold, the vertical
roll can be obtained since it will experience the maximum gain. On the
other hand, when the input light intensity is above and near the maximum
threshold, the hexagon is expected to be formed based on its compact
structure. If the value of ¢ is negative, the value of /; is smaller than that
of /,. This property makes the threshold intensity distribution has its

minimum at ¢ = 0, © and maximum at ¢ = 7/2. Therefore, once the input
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light intensity is above and near the minimum threshold, the horizontal
roll can be obtained and once the input light intensity is above and near
the maximum threshold, the hexagon is expected to be formed. The
special case for ¢ = 0 represents the isotropic distribution of the threshold
intensity and the hexagon can be obtained when the input light intensity is
above and near the threshold.

On the basis of the above description, in order to verify the influence of
the elastic constant anisotropy on optical pattern formation, it’s
straightforward to study the influence of the elastic constant anisotropy
by considering the value of the effective diffusion anisotropy 6. On the
basis of Eq. (20), in Table 3.1, we list the possible values of ¢ for
different regions of the elastic constant anisotropy. The material and

system parameters used in the calculation are summarized in Table 3.2.

Table 3.1 Classification of regions according to the Frank elastic constant anisotropy.

parallel planar-aligned Ak, >0k, >0 Bilks<0ky,<0) Clky=>0kp<0) D (ky<0ky>0)

a=0 fen/ka < 0.11 by ks =1 All None
o can be tuned to vanish 011 < ky/k, <1 011 < by /hy < 1 None None
o<0 ky ks =1 kn/k, < 0.11 None All
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Table 3.2 The liquid crystal parameters, cell properties, and optical system parameters used in the calculations.

liquid crystal material E7
n, 1.75
T2y 1.5231
£/ 19.6
g1 5.1
k11 12 pN
R‘gg 19.5 pN
cell gap (d) 68 pm
teedback length (L) 1.9 cm
mirror reflectivity (R) 0.65

wavelength {Ao)

514.5 nm

The value of m versus the-average otientational angle is plotted in Fig.
3.2. From Fig. 3.2 the value of'mi is,decteasing as the orientational angle
increasing. Between the possible range-of the average orientational angle
0, from 0 to n/2, the value of m is positive and has its maximum as 1 at 0,
= (0 and minimum as 0.11 at 0, =n/2. This means that we can modulate the
value of m from 0.11 to 1 by controlling the average orientational angle
0. electrically. For the region A in Table 3.1, the values of both &, and £,

are positive and the value of ¢ can be easily estimated from Eq. (21) and

Fig. 3.2.

32



12

0.8

g 06

0.4

0.2

0
0 025 0.5 0.75 1 1.25 15

average orientational angle 6, (rad.)

Fig. 3.2 The calculated value of m versus the average orientational angle 0,.

To more clearly illustrate the value of ¢ in this region (region A) we plot
an example in Fig. 3.3(a). From Fig. 3.3(a), one can see that the value of
o is positive if ky/k, < 0.11;1s.negativef ky/k; > 1, and can be modulated
to be zero by changing the value 6fm-electrically in the range that 0.11 <
kv/k, < 1. For example when ky/k;=.0.65 one can have ¢ = 0 by tuning 0,
to have m = 0.61962. The possibility of modulating ¢ to zero by changing
the value of m can be clearly seen when we plot the diffusion lengths in
Eq. (19) and Eq. (20) in Fig. 3.4(a). From Fig. 3.4(a), one can see that the

diffusion anisotropy can be canceled in the range 0.11 < ky/k, < 1.
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Fig. 3.3 The calculated effective diffusion anisotropy o versus the elastic
anisotropies. (a) for region A; with k, = 1.5 (b) for region B; with &k, = —0.5.
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This means that the vertical roll, the horizontal roll and the hexagon can
be expected to be obtained in region A by considering suitable elastic
constant anisotropy range and employing suitable methods. For the region
B in Table 3.1, the value of both £, and &, are negative. From Eq. (19) and
Fig. 3.2, the value of o can also be easily estimated. We plot an example
in Fig. 3.3(b) to see the value of 6. From Fig. 3.3(b), one can see that the
value of ¢ is positive for ky,/k, > 1, is negative for ky/k, < 0.11, and can be
modulated to be zero by changing the value of m electrically in the range
that 0.11 < ky/k, < 1. The possibility of modulating ¢ to zero by changing
the value of m can also be seen from the diffusion lengths plotted in Fig.
3.4(b). This means that the vertical roll, the horizontal roll and the
hexagon can also be obtained by considering suitable elastic anisotropy
range and employing suitable,methods in this region.

A simple method to obtain the -vertical roll, the hexagon and the
horizontal roll can be suggested if the effective diffusion anisotropy ¢ can
be canceled electrically like the case in region A and B. For example,
Figs. 3.5(a)-(c) show the results for k, = 0.625 and ky/k, = 0.512 in region
A. From Fig. 3.5(a) we find that /; and /; are equal at 0, = 0.905 radian
and the threshold intensity distributions for all the azimuthal modes are
the same at 0, = 0.905 radian as shown in Fig. 3.5(b). This property
makes the formation of the stable vertical roll, the stable horizontal roll
and the stable hexagon possible by simply modulating the average tilt
angle electrically. The threshold intensity versus the azimuthal angles for
several fixed tilt angles is shown in Fig. 3.5(¢c). If the input light intensity
is about 55.6 W/cm® and 0, is 0.85 radian, then the modes which are

allowed to appear is closed to the minimum at ¢ = n/2 and thus the stable
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Fig. 3.5 (a) The calculated diffusion lengths versus the average tilt angle 0, (b) The calculated threshold intensity versus the
average tilt angle 6, when the azimuthal angle ¢ is fixed (c) The calculated threshold intensity versus the azimuthal angle ¢ when

the average tilt angle 6, is fixed With &, = 0.625, ky/k, = 0.512.
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vertical roll is expected to be obtained. If 6, is 0.905 radian, all the modes
in different azimuthal ¢ are allowed to appear and then the stable
hexagon is expected to form due to its compact structure. If 0, is 0.95
radian, the modes that are allowed to appear are closed to @ =0 or ¢ = 7.
Therefore the stable horizontal roll is supposed to appear. This method to
obtain different patterns is similar to the method used by Santamato by
rotating the NLC sample in Ref. 11.

Now we continue to discuss the cases in regions C and D. One can
easily realize from Eq. (21) and Fig. 3.2 that the value of ¢ in region C is
always positive and the value of ¢ in region D is always negative. In
region C, the value of £, is positive and the value of 4, is negative. From
Fig. 3.2, one can see that thevalue of m is always positive and then the
resulted value of ¢ in region € is always positive. Similarly, in region D
the value of £, is negative, the value-ofm is positive and the value of £ is
positive. Then the resulted value of o is‘always negative in region D. The
examples of the threshold intensity distribution in regions C and D are
plotted in Fig. 3.6(a) and (b), respectively. The possible optical patterns
can be obtained in region C are the vertical roll and the hexagon, and in
region D they are the horizontal roll and the hexagon.

As for the vertical-aligned case, the analysis can be easily done by
following the similar procedure for the parallelly planar-aligned case.
One just needs to replace 0,, G, k,, and k, by B, G*, k," and kb*,
respectively and the results are similar.

From the above description, one can see that the Frank elastic constant
anisotropy indeed plays an important role for optical pattern formation in

the studied system. It is not easy to illustrate all the above cases
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experimentally since the commercially available rod-like liquid crystal
materials generally posses the property that k33 > ky; > ky,. Therefore,
only the cases in region C for with parallelly planar-aligned LC films and
the cases in region B with the vertical-aligned LC films may be

obtainable now.
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Fig. 3.6 (a) The calculated threshold intensity versus the average tilt angle 6, when the azimuthal angle ¢ is fixed; with &, =
0.625, ky/k, = —0.4. (b)The calculated threshold intensity versus the average tilt angle 6, when the azimuthal angle ¢ is fixed with

ke =—0.2, kp/ky=—1.
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3-3 Analysis of the influence of dielectric anisotropy of
nematic liquid crystals on optical pattern formation

phenomena

From Eq. (19), we can see that not only the anisotropy of the diffusion
lengths 1s affected by the orientation of the liquid crystal molecules but
also the effective nonlinearity is related with the orientation of the liquid
crystal molecules. Therefore, once a positive dielectric anisotropy liquid
crystal material is used and treated as the parallel-aligned configuration
the orientation of the liquid crystal materials can be modulated by the
externally applied electric field: Furthermore, the nonlinearity of the
system can be modulated. In this subsection,;-we analyze the effect of the
biasing voltage through ithe ability to change the nonlinearity by
modulating the orientation of the NLC molecules electrically and see the
influence on the optical pattern formation phenomena.

Since the positive-dielectric-anisotropic NLC films are used the
orientation of the liquid crystal directors is changed when the applied
voltage exceeds the Freedericksz voltage Vy, (in our case Vy, = 0.9V ).
As an example, from Eq. (11) we plot the changing of 6, with respect to
the applied biasing voltage and is shown in Fig. 3.7(a). From Fig. 3.7(a),
we can see that 6, can be modulated by the applied biasing voltage.
Therefore, from Eq. (17) we plot a with respect to 0, as shown in Fig.
3.7(b). From Fig. 3.7(b), we see that a initially increases with 0,
increasing and reaches a maximum when 0, is about 0.9 rad.. However,

when 0, is larger than 0.9 rad. o decreases with 0, increasing.
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Furthermore, the changing behavior of a with respect to 0, directly affects

the threshold intensity distribution when 60, is changed.

1.4
1.2

1
0.8

0.6
0.4 {
0.2

O F ] ] ] ] }l A A A A ]
0 02 04 06 08 1 12 14 16 18 2

biasing voltage (V)

@

average tilt angle g (rad)

(a)

O [l [l [l [l [l [l [l

0 02 04 06 08 1 12 14

average tilt angle 6, (rad)

(b)

Fig. 3.7 (a) The calculated curve of the average tilt angle 0, versus the biasing voltage (b) the effective nonlinear coefficient a
versus the average tilt angle 0,; with beam diameter=1.4 mm, d=68 um, L=1.9 cm, R=0.65, input light power=0.91 W
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Fig. 3.8 (a) the calculated threshold power distribution for different 6,; from the top to the bottom are 6, = 0.6, 0.75 and 0.9 rad,
respectively (b) the calculated threshold power distribution for different 0,; from the bottom to the top are 8, = 0.9, 1.05 and

1.2 rad, respectively; with beam diameter=1.4 mm, d=68 um, L=1.9 cm, R=0.65, input light power=0.91W
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Fig. 3.8(a) and 3.8(b) show the theoretical curves of the threshold power
at different 0,. The threshold power is obtained by the product of Eq. (17)
and the beam area. In our calculation the beam diameter is assumed to be
1.4 mm. From Fig. 3.8(a) and 3.8(b), one can see that the threshold power
distribution decreases with 0, increasing when 0, is smaller than 0.9
radian and increases with 0, increasing when 0, is larger than 0.9 radian.
Therefore, considering both the anisotropic distribution of the threshold
intensity and the electric-modulated property of the effective nonlinear
coefficient a an electric method to obtain different optical patterns can be
expected. When 0, is initially biased at a value smaller than 0.9 radian,
one can input a light power Jarger than the maximum threshold (in our
case the maximum locates-at.¢=0" and 180%: the hexagon is expected to
be formed based on its stable and-compact structure. This is similar to
that in the isotropic case and we ean expect the oscillation of three ripple
patterns leading to hexagons formation. Decreasing the biasing voltage,
which decreasing 6,, results in the increasing of the threshold. Once the
minimum threshold (in our case the minimum locates at ¢=90) is tuned
below and near to the input light power, only the mode with the lowest
threshold power will be enhanced and the roll pattern should be observed.
On the other hand, when 0, is initially biased larger than 0.9 radian one

has to increase the biasing voltage to see the roll pattern.
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Chapter 4 Experiments

From the analysis in Chapter 3, we know that the intrinsic anisotropies of
NLC materials indeed play important roles on the optical pattern
formation phenomena. In this Chapter, we present the experimental

results according to the analysis in Chapter 3.

4-1 Sample preparation, experimental setup and measurements

x

&tﬁvé_)z

LC cell Mirror

Fig. 4.1 Experimental setup: B.S., beam splitter; d, cell thickness; L, feedback length; LC, liquid crystal; L’i, lens

The experimental setup is the same as we shown in Fig. 2.2 and we
redraw it as in Fig. 4.1. The Sample used in our experiment is a nematic
liquid-crystal cell prepared by sandwiching the nematic E7 between two
indium tin oxide-coated (ITO) glass windows that had been treated with
polyvinyl alcohol (PVA) and achieved the parallelly planar alignment by
rubbing. The nematic E7 is a mixed liquid crystal; it has many
components. The material parameters of E7 including the temperature
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range of nematic phase, refractive index, and elastic constants are listed
in Appendix I as a reference. Different values of the parameters for E7 are
obtained from different published sources because of the variations of
different measuring methods. The thickness of the liquid-crystal cell is
about 68 pum which is controlled by the calibrated Myler spacer and
measured by using a micrometer. The sample area is about 2x2 cm” which
is much larger than the laser-spot size of about 1.4 mm in diameter. The
planar alignment quality is examined by microscopy and conoscopy to
assure that there is no observable defects. The hyperbola conoscopic

picture which shows the planar alignment is shown in Fig. 4.2.

Fig. 4.2 Conoscopic picture for the planar aligned NLC sample.

The applied external fields include a 1kHz electric field and an optical
field. The 1kHz electric field is generated by a microcomputer’s
waveform synthesizer (Quatech Inc., WSB-A12M) applied normally to
the sample’s glass windows and its amplitude could be programmably
controlled. The laser beam wused is from a CW Ar-ion laser
(Spectra-Physics, Model 2080-15s) with wave length at 514.5 nm and

linear polarization at TEMy, mode. The original beam waist from the
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Ar-ion laser is 1.9 mm and the input beam diameter is controlled by a
pinhole of 1.4 mm in diameter. The pinhole is used to block the stray light
in the low intensity wings of the beam and allows the high intensity
region to pass through the sample. The reflectivity of our reflecting
mirror is about 0.65. The distance between the sample and the feedback
mirror is 1.9 cm. The lens L;, L, are arranged to observe the near-field
picture of the reflected beam impinging on the sample. A silicon
photodetector system (UDT, Model S380), which is covered by an iris
diaphragm to reduce the scattering noise recorded, is used to detect the
input light power. The observed picture was recorded by a digital camera
with its exposure time of 1/800 second. The ambient temperature is
roughly controlled by using a mounted thermo-electric cooler for
eliminating laser heating effect and keeping the liquid crystal in nematic

phase.

4-2  Experimental observations

In the following, the experimental results will be separated as three parts

to describe the anisotropic effects and the electrical-modulating effect.

4-2-1 Optical pattern formation in a parallelly planar-aligned

NLC film

In considering the prediction by the results of the LSA of the governing

diffusion-like equation, the optical pattern should be formed as the input
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light intensity is above the threshold intensity. Although the distribution
of the threshold intensity in our planar-aligned homogeneous NLC film is
anisotropic and has the minimum at ¢=90" and the maximum at ¢=0" and
180°, we first fix the applied voltage at 1.117 V., then input a light beam
with power 0.83 W. From Eq. (11), the average tilt angle 0, at this
external field conditions is about 0.787 radian and the maximum
threshold power obtained by the product of Eq. (17) and the beam area is
about 0.8W as shown in Fig. 3.1(b). The near-field picture observed on
the screen is shown in Fig. 4.3 and the stable hexagon is obviously

formed.

Fig. 4.3 Near-field pattern observed on the screen; input power=0.83 W, biased voltage=1.117 Vrms, d=68 um, L=1.9 cm,

R=0.65, beam diameter=1.4 mm, and exposure time=1.25 ms.
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4-2-2  Obtaining different optical patterns by the optical

method

The optical pattern formation from our quasi-electric-field-biased
planar-aligned NLC film has been confirmed as shown in Fig. 4.3.
Considering the theoretical analysis in Chapter 3, the NLC (E7) film is
classified in the region C in Table 3.1. The anisotropy between the
diffusion lengths is always positive and the anisotropic distribution of the
threshold power appears, as shown in Fig. 3.1(b) for example.

Therefore, in order to study the effects of the anisotropic distribution of
the threshold power, we fix the biasing veltage at 1.117 Vs and change
the input light power from 0.71 W t0-0.98 W with a power step about
0.03 W. The input light power is. measured after the beam passing through
the pinhole and the beam splitter. In. our ‘experiments, the laser beam is
blocked when we change the input light to the desired power. Therefore
the pattern formations always start from the homogeneous state. We find
that, as the input power is 0.74 W and 0.78 W the observed near-field
pictures are the stable rolls as depicted in Fig. 4.4. Furthermore, as the
input power is close to 0.8 W, the observed near-field picture are not
stable and the patterns are appear as the roll and the hexagon alternately.

The competition of the patterns is shown in Figs. 4.5(a)-(c).
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(a) (b)

Fig. 4.4 Stable roll patterns observed on the screen (a) input power=0.74 W (b) input power=0.78 W

(b)

Fig. 4.5 Pattern sequence showing the competition between the roll and the hexagon patterns; input power=0.8 W.

As the input light power is at 0.83 W the stable hexagon is obtained,
however, if the input light power increases continuously to about 0.98 W
the pattern becomes unstable and turns chaotic finally. The hexagons and

the chaotic patterns are shown in Fig. 4.6.
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(b)

Fig. 4.6 Stable hexagon and chaotic patterns observed on the screen (a) input power= 0.83 W (b) input power= 0.98 W.

4-2-3  Obtaining different optical patterns by the electric

method

In this subsection, we keep”investigating the electric effect on the optical
pattern formation phenomeria. In the above experimental observations,
we see that the different patterns can be obtained by changing the input
light power. Here, we fix the input light power at 0.91 W and change the
biasing voltage to see what patterns can be obtained.

Fig. 4.7 shows the pattern when the biasing voltage is zero. There is no
structured pattern that can be identified. Obviously to create a significant
optical pattern, a biasing voltage is required when a planar-aligned

homogeneous NLC film is used.
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Fig. 4.7 Observed picture when the biasing voltage is zero with input light power=0.91 W

In our experiments, we find that the patterns we get are similar to that we
get by changing the input light power. The stable hexagons are obtained

when the voltage is at 1.11‘7"; Vi and 1.114 Vs and are shown in Fig.
1=k Wk

4.8. yZ” E

(a) (b)

Fig. 4.8 Stable hexagon patterns observed on the screen (a) V=1.117 Vs (b) V= 1.114 V
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The stable rolls are obtained when the voltage is at 1.032 Vs and are
illustrated in Fig. 4.9. The pattern competition between the rolls and the
hexagons is also observed when the biasing voltage is at 1.096 V. See

Fig. 4.10.

Fig. 4.9 Stable roli p;attems observecf 01; the screenz with V=1.032 Vs
i ] 1

(a) (b) (©)

Fig. 4.10 Pattern sequence showing the competition between the roll and the hexagon patterns; V= 1.096 V.

According to Santamato’s explanation in Ref. 11, as the anisotropy
between the diffusion lengths exists the roll patterns are expected to be

seen and once the anisotropy is cancelled by rotating the sample at a
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suitable angle the hexagon patterns are obtained. However, in our
experiments, the hexagon patterns are seen even without canceling the
anisotropy between the diffusion lengths. Not only the stable hexagons
can be obtained but also the stable rolls are obtained by either changing
the input light power or the biasing voltage. The pattern competition
between the rolls and the hexagons is also observed when the input light
power or the biasing voltage is between the values to obtain the stable

rolls and the stable hexagons.
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Chapter 5 Discussion and Conclusions

In this chapter, we discuss the experimental results and compare them
with the theoretical LSA results we get in Chapter 2. Finally, we make
some conclusion about our work in this dissertation and we also suggest
some future works which may be done in this topic about the optical

pattern formation by using NLC films.

5-1 Discussion

From the experimental results we presented in Chapter 4, we observe the
stable rolls, the stable hexagons and the competition between the rolls and
hexagons. To investigate ‘the “telation between the patterns and the
external fields, we plot the distribution of the threshold intensity (or

power) to see the corresponding relations.

5-1-1 Discussion about the observed patterns obtained by

optical method

In order to explain the experimental results described in Section 4-2-2, we
substitute all values of the experimental parameters, including the cell
parameters, the material parameters and the external fields, into Eq. (11)

to obtain the average tile angle 0, and into Eq. (17) to calculate the
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threshold intensity distribution. Threshold power is calculated by the
product of Eq. (17) and the beam area. When the biasing voltage is about
1.117 Vs, the calculated average tilt angle 0,1s about 0.787 radian. We
plot the calculated threshold power distribution versus the azimuthal
angles in Fig. 5.1 to relate these experimental observations to our
arguments from the theoretical results exhibited in Section 4-2-2. Even
though the actual laser beam is a gaussian beam, for simplicity we
calculate the threshold power from the threshold intensity shown in Fig.
3.1(b) by multiplying the beam area. Since only the light with high
intensity passing through the pinhole and the sample the optical power
with the peak intensity reaching the threshold intensity should be lower
then that shown in Fig. 5.1. Nevertheless; it is clear that the stable rolls
and stable hexagons exist and are obtained indeed in the power regions

near the minimum and the maximum-threshold power, respectively.

822 —e—threshold
~ 0:83 ) \ power
2 0.82 —=—P=0.74W
o 0.81
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Fig. 5.1 The calculated curve of the threshold power versus the azimuthal angle ¢ when the average tilt angle 6, is fixed at

about 0.787 radian and the biased voltage is 1.117 Vrms.

According to the theoretical analysis and the experimental observations

that we have shown above, one can see that the anisotropy indeed play an
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important role in the formation of the rolls. Moreover, some more words
have to be said about the input power issue. When the power is above the
maximum threshold, the hexagons appear. However, chaotic patterns will
be formed if we keep increasing the input power. One interesting question
which may appear is that what patterns will be formed as the input power
is between the minimum and the maximum threshold power. Actually our
experimental observations at 0.77 W and 0.8 W indicate that the
hexagons and the rolls may compete with each other and are not stable.
This implies an interesting suggestion that the hexagons may still be
formed without the requirement that all the modes with different
azimuthal angles are allowed to appear. The experimental observations

reasonably agree with the theoretical predictions discussed in Section 3-1.

5-1-2 Discussion about-the:observed patterns obtained by the

electrical method.

In order to explain the experimental results we get in Section 4-2-3,
following the same procedures in the preceding section, we insert the
experimental parameters, including the cell parameters, the material

parameters and the external fields values, into Eq. (11) to obtain the
average tile angle 6, and into Eq. (17) to calculate the threshold intensity

distribution then obtain the threshold power by the product of Eq. (17)

and the beam area. We obtain the results as illustrated in Fig. 5.2.

56



L15

1.1
1.05 ——V=1.114Vrms
—#—V=1.032Vrms

1
0.95 h d I —&— input power=0.91W
09 |

0.85
0.8 m! 'fﬁu
0.75
0.7

0,65 '] '] '] ']
0 05 1 1.5 2 25 3

threshold power (w)

azimuthal angle ¢ (rad.)

Fig. 5.2 The calculated curves of the threshold power versus the azimuthal angle @, from the bottom to the top are biased
voltage=1.114 V., and 1.032 V., respectively; the horizontal line indicates the input light power=0.91 W; with beam

diameter=1.4 mm, d=68 pm, L=1.9 cm, R= 0.65.

Fig. 5.2 suggests that the stable hexagons are formed when the input light
power is above and near to the maximum threshold, and the stable rolls
are formed when the input light power is above and near to the minimum
threshold. The competition between the rolls and the hexagons appear
when the input light power is at some value between the maximum and

the minimum thresholds.

In our calculation, we set the spatial frequency ¢ as ¢ = n //4,L . The

accuracy of such an approximation has been verified by measuring the
relations between the feedback length and the pattern period. The pattern
period for the feedback length L=1.9 cm is 198 um and the theoretically
predicted value is 197.74 um. The experimental results agree with the

theoretical predictions reasonably well.
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5-1-3Overall discussion

From the theoretical analysis and the experimental observations, the
anisotropic properties of NLC materials indeed play important roles in the
optical pattern formation. The orientation-dependent birefringence makes
the pattern formation possible. The anisotropy of the elastic constant
results in the anisotropic distribution of the threshold intensity for the
patterns to be formed and this anisotropic distribution allows the
observation of stable rolls and stable hexagons without using any external
Fourier filter. Furthermore, the dielectric anisotropy of NLC materials
enables to control the nonlineafity ofithe system by a small biasing
voltage.

The pattern competition-behaviot between the rolls and hexagons we
observed in our experiments. 1s an intéresting phenomenon worth
continuing investigation. This dynamic behavior may associate with the
dynamic property of the NLC molecules and with the instability of the
roll state. The theoretical model we present here is only the instability
analysis with respect to the homogeneous plane-wave state and the static
state of the NLC molecules. Although only with the LSA results, the
optical pattern formation phenomena can be effectively extended when
the basic intrinsic properties are included.

The influence of the Talbot effect in this one-feedback-mirror system is

also proved by measuring the period of the formed patterns.
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5-2 Conclusions and future works

In this dissertation, we present the theoretical model to obtain the
governing diffusion-like equation for both the orientation of the NLC
directors and the Kerr-induced phase variation from the continuum theory
for NLC materials for the one-feedback-mirror system to observe the
optical pattern formation phenomena. The threshold intensity for the
patterns to be formed is obtained from the linear stability analysis of the
diffusion-like equation. Furthermore, the influences of the anisotropic
properties of the NLC materials are analyzed.

The elastic anisotropy results,.in.the anisotropic distribution of the
threshold intensity. The anisotropicidisttibution of the threshold intensity
is the key factor for the system to yield the pattern of stable rolls without
using a Fourier filter. However, this-does not imply that the hexagon
patterns can not be obtained ‘when' ‘the anisotropy of the threshold
intensity distribution exists. The stable hexagons can still be obtained
when the input light power is larger than the maximum threshold.

The anisotropic dielectric property of the NLC materials makes the
modulation of the nonlinearity of the system possible by controlling the
orientational distribution electrically. This property also facilitates the
modulation of the formed patterns without changing the input light
power.

The influences of the relative values of the Frank elastic constants are
analyzed theoretically. We believe that once the material satisfying the

elastic-constant requirement mentioned in Section 3-2 is available, the
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method to obtain the vertical rolls, the horizontal rolls and the hexagons
can be realized by simply modulating the biasing voltage.

The experimental results in our work qualitatively agree with the
theoretical results well. The suggested forming properties in our
theoretical analysis can be reasonably proved.

This work presented in this dissertation can be viewed as an opening of
the study of the optical pattern formation phenomena from the point of
view of the liquid crystal. We establish the theoretical model by using the
simple linear stability analysis. The perturbation is added to the
homogeneous plane wave state. However, the pattern competition
phenomena we observed in our experiments are indeed associated with
interaction of the roll and the hexagon patterns. Therefore, the stability
analysis to the roll state can-be.included in the future studies.

Not only the instability analysis-can-be extended but also the dynamic
behavior of the NLC molecules:can. be considered and it may become
rather complicated.

Generally speaking, the study of the optical pattern formation
phenomena is very interesting and the simple and tunable properties of
liquid crystals can effectively be applied on the pattern formation
phenomena and obtain interesting patterns without using Fourier filters.
There still are many interesting topics which can be studied in the future,

including both the theory and the experiments.
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Appendix I

MERCK

Mixture: E7

S —- N [°C] <-30
Clearing point [°C] +58
Rot. visc. 4; [mPa-s] (20 °C) -
Viscosity [mm?s~!] 20 °C 39
Viscosity [mm?s—!] 0°C 145
Viscosity [mm?s—!] -20°C 1200
Viscosity [mmzs_l] -30°C 6400 |
Viscosity [mm?s~!] —40 °C -
N, (589nm, 20 °C) 1.7464
An (589nm, 20 °C) +0.2253
Ace- ( 1 kxHz, 20 °C) +13.8
6” ( 1 kHZ, 20 °C) 19.0
K3/K1 +20°C 1.54
K3 /K2 +20 °C -
V(10,45,20) [V] 1.05
V(10,0,20) (V] 1.41
V(50,0,20) (V] 1.63
V(90,0,20) [V] 1.99
Temp. dep. [mv/°C](0-40°C) 11.2
Temp. dep. [%/°C}(0 — 40 °C) 0.80
(Vso/Vio — 1)-100 (%] 15.2
(Veo/Vio — 1)-100 (%) 40.6
M 20 1.90
MO - 40 2.53
M’ 0 - 40 1.89
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