
I. Introduction 

1.1 Research Motive 

Fiber-reinforced polymeric (FRP) composites have been used extensively in the industry, 

such as sport appliances, lightweight armor and marine structures, due to their low weight and 

relatively high strength or stiffness.  FRP also offer unique advantage over metallic 

structures, such as resistance to harsh corrosive environment, and electrical or magnetic 

insulation in transmission.  In general, the mechanical behavior of polymeric matrix in FRP 

is nonlinear and rate-dependent which imply that FRP composites may also exhibit the 

nonlinearity and rate sensitivity, especially subjected to off-axis and dynamic loading.  To 

fully understand this characteristic of the materials, it is desired to investigate and characterize 

the nonlinear rate-dependent behavior of composites. 

  

1.2 Paper Review 

A number of theoretical models have used to describe the nonlinear behavior of 

unidirectional fiber reinforced composite materials.  There are two general approaches for 

modeling the nonlinear behavior, i.e. micromechanical approach [1-5] and macro-mechanical 

approach [6-19].  The micromechanical approach is based on the analysis of the 

representative volume element (RVE) consisting of elastic fibers with small diameters 

surrounded by elastic-plastic matrix.  Wu and Shephard et al. [1] presented a 

micromechanical model, a periodic hexagonal array of elastic fibers embedded in an 

elastic-plastic matrix, to predict the response of metal matrix composite using Finite Element 

Method.  Sun and Vaidya [2] predicted the elastic constants of the composite from a square 

RVE through the strain energy equivalence principles in conjunction with three-dimensional 

finite element method.  Zhu and Sun [3] investigated three different unit cells, i.e. the square 

edge-packing, square diagonal-packing and hexagonal-packing arrangement, to generate 

off-axis stress-strain curves.  Instead of inconvenient FEM, a general closed form 
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elastic-plastic constitutive equation for metal matrix composites was derived by Aboudi [4] 

based on the micromechanical model and the assumption that the fibers are rectangular and 

arranged in a doubly periodic array.  Sun and Chen [5] developed a simple micromechanical 

model to describe the elastic-plastic behavior of off-axis unidirectional composites.  It 

should be noted that the models are analytical and confined to 2-D. 

In the macro-mechanical approaches, composites are considered as a homogeneous 

nonlinear elastic or plastic body.  Using complementary elastic energy density, Hahn and 

Tsai [6] formulated a set of stress-strain relations which is capable of describing the 

nonlinearity just inherent in the longitudinal shear in unidirectional composite lamina.  Lin 

and Hu [7] proposed a nonlinear analytical model by considering the nonlinear in-plane shear 

behavior of composites with variable shear parameter to account the possible damage onset in 

individual lamina.  Vaziri and Olson et al. [8] developed an orthotropic plasticity model for 

the prediction of failure strength.  Hansen and Blackketter et al. [9] presented an invariant 

flow rule for anisotropic plasticity using a scalar hardening parameter instead of effective 

stress-effective plastic strain relation.  Sun and Chen [10] proposed a one parameter plastic 

potential for describing the nonlinearity of composite.  The only one parameter a66 in their 

model can be determined by performing simple tension tests on off-axis specimens with 

different fiber orientations.  Ogi and Takeda [11] presented the effect of moisture content on 

the nonlinear stress-strain behavior of glass fiber composites with this variable orthotropic 

parameter.  Sun and Lau [12] proposed a 3-D constitutive model for unidirectional 

composites.  In their model, the material anisotropic elastic, anisotropic yielding and 

anisotropic hardening behavior were considered.  Ogihara and Kobayashi et al. [13] 

investigated the mechanical behavior of carbon/epoxy unidirectional and angle-ply laminates 

with the one parameter plasticity model.  Note that, in the above works, the nonlinear 

behavior of composites was in focus.   

The rate effect on the nonlinear behavior of composite materials has been investigated in 
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past decades.  Bodner and Partom [14] developed a set of constitutive equations for 

elastic-viscoplastic behavior of isotropic materials which require neither a yield criterion nor 

the distinction between loading and unloading.  A modified Bodner and Partom’s model with 

the one-parameter plasticity model was used to describe the viscoplasticity of thermoplastic 

composites [15].  Yoon and Sun [15] and Gates and Sun [16] adopted one parameter plastic 

potential in conjunction with the overstress concept to model the elastic/viscoplastic behavior 

of the unidirectional fiber composites.  The strain rate ranges in their analysis are 10-6/s to 

10-3/s.  Zhu and Sun [17] characterized nonlinear rate-dependent behavior of off-axis 

composites at three different strain rates and any combination of loading and unloading rates 

with over stress concept.  For composite laminates consisting of plies with different fiber 

orientations, the stress and strain relations may also exhibit rate sensitivity.  Sun and Zhu [18] 

also incorporated the overstress viscoplasticity model with the laminated plate theory to 

predict the responses of symmetric balanced laminates at different strain rates.  In order to 

establish the stress and strain relation, it is required to determine the five parameters in the 

overstress viscoplasticity model as well as to solve a nonlinear ordinary differential equation.  

The effects of the residual stress and deformation-induced fiber orientation change on the 

nonlinear behavior were taken into account in their studies.  Thiruppukuzhi and Sun [19] 

characterized the rate dependent behavior of the unidirectional glass/epoxy composites and 

the woven E-glass fabric using a three parameter viscoplasticity model.  The parameters in 

the viscoplasticity model were determined from the uniaxial tests on off-axis specimens at 

three strain rates of 10-4/s, 10-2/s and 1/s.  With the assistance of finite element method, the 

three parameters viscoplasticity model was adopted to predict the rate dependent constitutive 

relation of composite laminates.  By performing high strain rate testing on off-axis 

composite specimens using a Split Hopkinson Pressure Bar, Tsai an Sun [20] demonstrated 

that the three parameters viscoplaticity model established based on low strain rate tests was 

suitable for describing high strain responses of composites at strain rate at least up to 700/s. 
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1.3 Research Approach 

In this study, the three parameters viscoplasticity model was employed in conjunction with 

the laminated plate theory to predict the constitutive relation of composite laminates at 

various strain rates.  The incremental form of stress and plastic strain relation was generated 

by using the one parameter plastic potential to describe the flow rule.  With the introduction 

of the viscoplasticity model, the explicit form of the rate dependent plastic modulus in the 

constitutive formulation was expressed in terms of effective stress and effective plastic strain 

rate.  The corresponding parameters in the viscoplasticity model were determined from the 

off-axis tensile tests proposed by Thiruppukuzhi and Sun [19].  By implementing the 

constitutive relation as well as the laminated plate theory, the stress and strain curves of the 

laminates were established analytically without using the finite element method.  Tensile 

tests were conducted on symmetric glass/epoxy and graphite/epoxy composite laminates at 

0.0001/s, 0.01/s, and 1/s strain rates and, based on the experimental results, the model 

predictions were verified.  The thermal residual stress was also considered in laminates 

prediction. 
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II. Theory and Method 

In order to characterize the nonlinear rate dependent behavior of composites, a 

viscoplasticity model was proposed based on the one parameter plastic potential together with 

the associated flow rule.  With the aid of laminate plate theory, the viscoplasticity model was 

extended to describe the rate sensitivity of the stress and strain curves of composite laminates.   

 

2.1 Viscoplasticity Model 

In plastic yield criteria [21, 22], a yield function for a general material is assumed as 
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where σij are stresses in the principal material directions.  The coefficients aij refer to the 

amount of anisotropy and can be determined from the experimental data.  For isotropic 

material, this yield function can be reduced to von Mises yield criterion as 
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The Hill’s yield function for orthotropic material is a special case of equation (2.1) with 
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If the similar form as equation (2.2) is chosen, the Hill’s function can be expressed as 
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where F, G, H, L, M, and N are material constants characterizing the orthotropic yield 

behavior.  It is noted that the yield function given by equations (2.5) implies that: 1. 

hydrostatic stress does not produce plastic deformation, 2. the plastic body does not show a 

Bauschinger effect, in other words, the magnitude of the yield stress is the same in tension 

and compression. 

Figure 2.1 is shown the orthotropic lamina located in the principal coordinate system. 

Following Hill’s criterion and assuming that there is no plastic deformation in fiber direction, 

i.e. and that a 2-D plane stress state is prevalent on the 1-2 plane for fibrous 

composite plate, Sun and Chen [10] proposed the one-parameter plastic potential function as 

011 =
pdε

2
1266

2
22 22 σσ af +=                          (2.6) 

where a66 is orthotropic parameter.  By using the one parameter plastic potential to describe 

the associated flow rule, the plastic strain rates are derived as.                                    
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and the effective plastic strain rate is obtained as                         
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Sun and Chen [10] has shown that the effective stress σ  and the effective plastic strain 

pε can be obtained form the uniaxial tensile stress-strain curve of off-axis coupon specimens.  

Under monotonic loading, the effective stress and effective plastic strain have these relations 

with the uniaxial applied stress xσ  and strain : xε

xh σθσ )(=                          (2.12) 
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where )(θh  is an off-axis parameter defined as 
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The effective stress-effective plastic strain relation should be unique from stress-strain curves 

at different values of θ .  Therefore, the parameter a66 in the plastic potential function must 

be chosen by trial and error such that the effective stress-effective plastic strain curve obtained 

from the different off-axis angle θ can be collapsed into one single master curve.   

From results of off-axis tension tests, it is indicated that for fibrous composites there is no 

well defined yield point.  In fact, the nonlinearity appears in the stress-strain relation 

gradually.  Therefore, a power law with amplitude A and power n 

np Aσε =                             (2.16)  

was used to fit the master effective stress-effective plastic strain curve.   

For the rate dependent behavior of composite materials, the parameters of power law 

function at different strain rates may be changed.  In this study, the three parameters 
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viscoplasticity model proposed by Thiruppukuzhi and Sun [19] for modeling the nonlinear 

rate dependent behavior of unidirectional composite is introduced.  The effective stress and 

effective plastic strain can be rewritten as  

( ) nmpp σεχε &=                            (2.17) 

with  

( )mpA εχ &=                               (2.18) 

a strain rate-dependent coefficient.  It is noted that the parameters χ  and m are material 

constants determined by performing uniaxial tests on off-axis specimens at different strain 

rates.  The determination of the material constants for glass/epoxy and graphite/epoxy 

composites will be presented in the later section.  By using the relation of power law, then 

equation (2.10) become 
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Substituting equation (2.19) into equation (2.7), the rate form of plastic strains are expressed 
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  The equation (2.20) is indicates the incremental form of stress and plastic strain relation.  

It is noted that the entries in the [U] matrix depends on the current stress states and the 

effective plastic strain rate pε& . 

 

2.2 Constitutive Relations of Unidirectional Composites 

In the case of small incremental strains, the total strain rate can be decomposed into an 

elastic part and a plastic part as 

{ } { } { }pe εεε &&& +=                           (2.21) 
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The rate form of elastic stress-strain relation is given by 
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where the elastic compliances  and the engineering constants are related by the equations 
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Substitution of equations (2.20) and (2.22) into equation (2.21), we obtain the incremental 

stress-strain relations in a time interval for the fibrous composite, 
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Making use of the stress and strain transformation laws in the arbitrary x-y coordinate system 

(Figure 2.1), then  
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2.3 Numerical Analysis for Off-Axis Composites 

The incremental stress-strain relationships in a time interval given by equation (2.25) are 

nonlinear, as [ ]epS  depends on the current state of stress and current effect plastic strain rate 

in lamina.  The curve-fit stress versus time curve from the experimental data of off-axis 

tension test is required to be as an input in numerical simulation.  An incremental procedure 

is used to simulate the nonlinear stress-strain relationship in this study. 

The flow chart of the numerical analytic procedure for composite lamina is shown in 

Figure 2.2.  All needed material properties are inputted, and the elastic stiffness matrix [ ]eQ  

corresponding to the respective off-axis angle is calculated.  A polynomial of three order 

power-law curve shown in Figure 2.3 can be used to fit tensile stress history recorded from 

the tensile tests and the results were applied in each incremental loop.   

We start with the first time increment from the stress-free state.  Thus, for the first stress 

increments { }σ& , the elastic-plastic compliance matrix [ ]epS  is obtained with zero values of 

the current stress, and it becomes the elastic compliance matrix.  From equation (2.25) the 

corresponding strain rate { }ε&  is obtained.  The increments of stress and calculated strain are 

accumulated to represent the current stress and current strain, respectively, after the first time 

increment. 

For the second time increment, the current lamina stress (from the previous accumulated 

stress) can be used to calculate [ ]epS .  It is also needed the rate factor A substituted to 

express the strain rate effect.  To calculation of A, the previous stress rate substitutes into 

equation (2.22) to get the previous elastic strain rate, the previous total strain rate substitutes 
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into equation (2.21) to get the previous plastic strain rate, and the definition of effective 

plastic strain rate in equation (2.11) is used to get the current effective plastic strain rate.  

The amplitude A is obtained by viscoplastic assumption in equation (2.18).  This new 

calculated [ ]epS  is then used to obtain the corresponding strain rate { }ε&  for the second time 

increment.  Following the process described above, all the information related to the total 

stress and strain was obtained.  If the time increment is taken to be small enough, the 

converged stress-strain curve can be established.   

 

2.4 The Laminated Plate Theory 

By incorporating the incremental form of stress and strain relation given by equation (2.25) 

with the laminated plate theory, the constitutive relation for composite laminates can be 

generated.  In other words, the resultant force and the corresponding laminate strain can be 

expressed explicitly.  From equation (2.25), the rate form of stress-strain relation for the kth 

ply become 
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The tensor stresses of plies in terms of tensor strains of plies are given by 
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According to laminated plate theory, the strain rate in laminate represent strain rate in all of 

plies.  Therefore, by integrating equation (2.29) through the laminate thickness, we obtain 
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and 
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For the off-axis tension test, . Then equation (2.31) is reduced to: 0== xyy NN &&

xxx NG && 11=ε                              (2.32) 

xyy NG && 21=ε                              (2.33) 

xxy NG && 31=γ                              (2.34) 

For a given laminate loading rate, the corresponding strain rate in the laminates can be 

calculated.   

 

2.5 Numerical Analysis for Composite Laminates 

The rates of stress and strain in composite laminate panel given by equation (2.31) are 

nonlinear, and depend on the current stress state and amplitude A in each ply.  The 

accumulative procedure similar to that in section 2.3 is used to simulate the stress-strain 

relation of laminates. 

Figure 2.4 shows the flow chart of the numerical analytic procedure.  At first step, 

material constants ( , , 1E 2E 12ν , and ) and parameters ( , , 12G 66a n χ , and m ) are 

inputted and elastic stiffness matrix [ ]keQ  in kth ply are calculated.  The thermal expansion 

coefficients ( 1α  and 2α ) are also inputted.  Due to the mismatch of the thermal expansion 

coefficients for composite laminates containing numbers of plies with different fiber 

orientations, thermal residual stress in each ply may exist and affect the nonlinear behavior of 

the laminates.  The detailed derivation for the thermal residual stress based on linear 

thermal-elasticity is presented in Appendix A.   
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The incremental procedure began from the zero mechanical stress states.   However, the 

thermal residual stresses are present initially and considered as the initial stress state in each 

ply.   At the beginning, arbitrary values of effective plastic strain rate was assumed in each 

ply to estimate the corresponding amplitude A in the viscoplasticity model.  It was found that 

the initial selection of plastic strain rate in the plies would not affect the stress and strain 

curves predicted based on the current incremental procedure.  The elastic-plastic compliance 

matrix [ ]kepS  is dependent on the initial stress and rate factor A in plies.  In the first stress 

increments, the corresponding laminate strain increments { }ε&  were obtained from equation 

(2.31), and the strain value can also be interpreted as the strain rate in each ply.  With the 

constitutive equation (2.29), the corresponding stress increments at each ply were evaluated.  

The incremental of stress-strain of each ply are accumulated to represent the current stress and 

current strain in each ply, respectively. 

In the second time increment, the current stress in each ply (from the previous 

accumulated stress in each ply) and rate factor A in each ply were needed to calculate [ ]epS .  

To calculate the value of A at each ply, the previous stress rate in each ply was substituted into 

elastic stress-strain relation (equation (2.22)) to obtain the associated elastic strain rate in each 

ply.  Similarly, the previous total laminate strain rate was substituted into equation (2.21) to 

evaluate the previous plastic strain rate in each ply.  Through the definition of effective 

plastic strain rate given in equation (2.11), the current effective plastic strain rate in each ply 

was obtained.  From the above works, the amplitude A in each ply is calculated using 

equation (2.18).  The new calculated [ ]kepS  is integrated to update the matrix [G] in 

equation (2.31).  The matrix [G] was employed for the generation of the stress and strain 

curves in the current time increment.  If every time increment is taken to be sufficiently 

small, the plotted stress-strain curve of laminate will be the convergence.  The numerical 

codes for example of prediction of [ ] s330±  graphite/epoxy laminate are listed in Appendix 
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B. 

  It should be noted that the arbitrary value of the effective plastic strain rate is assumed in 

the first loop.  As a result, in the first few stops, the effective plastic strain rates are quite 

varied as shown in the figure (2.5).  However, after few loops, the effective plastic strain rate 

curves are coincided together.  This is cause that in the elastic-plastic compliance [ ]kepS , the 

effects of the effective stress and the effective plastic strain rate are coupled, and in the initial 

state, the effective stress is quite small which dramatically reduce the influence of the 

effective plastic strain rate.  Thus, the [ ]kepS  is not affected by pε&  in each ply and almost 

the same with the elastic compliance [ ]kS .   
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III. Setup of Experiments 

  Two material systems, glass/epoxy and graphite/epoxy, were studied in this investigation.  

For glass/epoxy composite, S2 type of glass fiber and 8552 type of epoxy are provided in the 

form of prepreg from Hexcel Company USA.   For graphite/epoxy composite material, the 

CFA type prepreg (fiber volume fraction 49.0=fν ) with Toho HTA graphite fiber (density = 

3cm
g76.1  ) was provided from Adgroup Taiwan.  Twenty-four plies unidirectional 

glass/epoxy composites and ten plies unidirectional graphite/epoxy composites were laid up 

manually and then cured with the recommended curing process.  For graphite/epoxy material, 

the curing history of temperature and pressure is shown in Figure 3.1.  By following this 

curing cycle, the fiber volume fraction of graphite/epoxy is raised to 0.54 approximately. 

 

3.1 Experimental Procedure of Tension Tests 

In order to determine the strain rate effect on the nonlinear material behavior of 

composites, the specimens were tested at three different strain rates, 0.0001/s, 0.01/s and 1/s.  

Basically, the experiments were divided into two parts.  The one is the off-axis specimen 

testing for determining the parameters in the viscoplasticity model.  The other is the tests for 

composite laminates to verify that the viscoplasticity model in conjunction with laminated 

plate theory is proper for characterizing the rate sensitivity to the nonlinear behavior of 

laminates.  

 

3.1.1 Experimental Setup 

The tension tests were performed in a closed-loop servo-hydraulic MTS 810 testing 

machine capable with a maximum capacity of 98 KN.  The Schematic of tension test and 

data collection system is shown in Figure 3.2.  A stroke control mode was selected for all 

tests.  Three different strain rates 0.0001/s, 0.01/s, and 1/s were set to conduct the tests.  
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Measured continue force and displacement signal are collected in MTS controller sever and 

then outputted to data acquisition system.  Back-to-back Micro-Measurement 

EA-13-240LZ-120 strain gages were mounted on the specimen to measure the tensile strain.  

Adhesive back-to-back gages in the middle of specimens can compensate for the bending 

effects.  With excited voltage 3V from dynamic strain amplifier, the Wheatstone bridge 

determines the change in resistance which a gage undergoes when it is subjected to a strain.  

And appropriate multiple to amplify potential difference of bridge can get reduced-noise 

signal from dynamic strain amplifier.  Load, displacement, and strain signals are required 

using an analog-to-digital signal converter and recorded by using data acquisition system.   

 

3.1.2 Off-Axis Tests 

Coupon specimens were prepared from unidirectional glass/epoxy and graphite/epoxy 

composite panels, which were 1.8 mm and 1.5 mm thick respectively.  All specimens are cut 

with length 150 mm and width 17.8 mm from the composite panels using diamond saw.  End 

tabs made of glass fiber composite were adhered on the two sides at the ends of the specimens.  

All dimensions of tensile specimen are shown in Figure 3.3. 

The material properties, E1 and E2, for the composites were determined using coupon 

specimens with fiber orientations 0° and 90° tested at strain rate 0.0001/s.  Tensile specimen 

performed on the MTS 810 system is shown in Figure 3.4.  Vertical back-to-back strain 

gages were mounted on the 0° specimen to obtain the Poisson ratio ν12.  Determination of 

Shear modulus G12 was reached by using vertical back-to-back strain gages on the [±45]3S 

laminate.  The slope of stress-strain curves was obtained under the strain range 0%~0.1% to 

evaluate material properties.  Elastic material properties for two materials were shown in 

Table 1 and 2, respectively. 

For off-axis tests, specimens are cut at angles 15°, 30°, 45°, and 60° with the same 

dimensions.  An oblique end-tab design associated with material properties is proposed by 
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Sun and Chung [24].  It is used to ensure that the axial stress and strain of coupon specimens 

were maintained uniform in uniaxial loading.  Three coupon specimens for each angle are 

tested at strain rates of 0.0001/s, 0.01/s, and 1/s respectively.  The strain rate was the stroke 

rate of the loading frame divided by the original specimen gage length.  The 15°, 30°, 45°, 

and 60° off-axis coupon specimens were tested until failure happened to obtain the 

stress-strain curves at three different strain rates of 0.0001/s, 0.01/s, and 1/s.  All the results 

of off-axis tension test at three different strain rates are showed in Figure 3.5-3.7 for 

glass/epoxy and Figure 3.8-3.10 for graphite/epoxy material.  

 

3.1.3 Parameter Evaluation 

To completely model the rate dependent response of composite, the orthotropic 

coefficient  in the plastic potential function and the parameters in the viscoplasticity model 

need to be determined.  For evaluation of the parameter , the mater effective 

stress-effective plastic strain curve is needed.  From equations (2.12), (2.13) ,and (2.14), the 

effective stress-effective plastic strain curves for different fiber orientations 15°, 30°, 45°, and 

60° can collapse into a single effective stress-effective plastic strain curve for a certain strain 

rate by choosing a proper value of . The master effective stress-effective plastic strain 

curve was then fitted by power law.  Figure 3.11-3.13 are showed the master curves for 

glass/epoxy with  at three different strain rates, and the master curves with 

 for graphite/epoxy are showed in Figure 3.14-3.16.  However, from equation 

(2.17), it has be observed that the amplitude A is a function of the effective plastic strain rate 

66a

66a

66a

6.166 =a

4.166 =a

pε&  and the power n is constant for all the strain rates considered.  By incorporating these 

three master curves at three different strain rates showed in Figure 3.17 and Figure 3.18, it is 

obvious that these two composite materials exhibit meaningful rate dependent behavior.  

From equation (2.18) amplitude A as a function of the effective plastic strain rate can be 

plotted in Figure 3.19 and 3.20 on a log-log scale for the two material systems.  The 
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parameters χ  and m are determined from these plots as the intercept and the slope, 

respectively.  By following above procedures, three parameters n, χ , and m are determined.  

It is noted that although the parameters in the viscoplasticity model are determined at lower 

strain rates, they are still valid at strain rate at least up to 700/s [20].  The values of the 

parameters in the viscoplasticity model together with elastic material constants for 

glass/epoxy and graphite/epoxy composite are listed in Table 1 and 2. 

 

3.1.4 Tests Results for Composite Laminates 

In order to verify that the viscoplasticity model incorporated with the laminated plate 

theory suitable for characterizing the nonlinear rate-dependent stress and strain curves on the 

laminates, tensile tests were carried out on the specimens at three strain rates of 0.0001/s, 

0.01/s and 1/s.  Two composite material systems were investigated in this study.  One is 

glass/epoxy Composites with stacking sequences [ ] s4290/45± , , and 

.  The other is graphite/epoxy composites with stacking sequences 

[ s42 30/60/75 − ]

][ s42 15/75/60 − s3]45[± , 

, , and .  It is noted that since the presence of 0 degree fiber in the 

laminates will significantly reduce the nonlinear behavior, there are no 0 degree plies 

contained in the laminates.  To be consistent, the curing process used for unidirectional 

composites was employed for the laminates.  Coupon specimens with gage length of 100 

mm and width of 17.8 mm were cut from the composite panels using diamond saw.   

s3]30/60[ − s3]60[± s3]30[±

Uniaxial tensile tests were conducted on the specimens using MTS 810 system with three 

different strain rates.  All the experiment results are shown in Figure 3.21-3.27. 

 

3.2 Measurement of Thermal Expansion Coefficients of Composites 

For considering thermal residual stress effect on composite laminates, the principal thermal 

expansion coefficient of unidirectional fiber composite must be measured.  Here, a simple 

measurement method [25] is used by employing strain gages adhered on a composite panel 

 18



under temperature variation. 

 

3.2.1 Principle of the Measurement Technique 

When an electrical resistance strain gage is installed on a stress-free specimen, and the 

temperature of material is changed, the thermal output of the gage change correspondingly.  

But it should not be assumed that the thermal output is linear with temperature, since (a) 

differences in the coefficients of thermal expansion (CTEs) of the test material, gage backing, 

and gage-foil alloy and (b) changes in the electrical properties of the gage alloy which occur 

with a change in temperature.  The principle of measuring the CTE, α, consist of installing 

two identical electrical resistance strain gages onto two stress-free specimens [26]: (1) the test 

specimen of unidirectional composite, having α unknown; (2) the reference specimen, having 

α known.  If the two specimens are exposed to the same variation of temperature T∆  and the 

transverse sensitivity  is assumed, it can be shown that the CTE of the test specimen 

relative to the CTE of the reference one can be obtained from the difference of the output of 

the two strain gages as 

0=tK

T
r

rx
x

∆

−
=−

εε
αα                          (3.1) 

where x is the direction of installation of the strain gage in the test material, xα  is the CTE 

of the test specimen along the measurement direction, rα  is the CTE of the reference 

material, xε  is the thermal output from the gage in the test specimen and rε  is the thermal 

output from the gage in the reference specimen. 

  The basic circuit arrangement, shown in Figure 3.28, uses the properties of the half-bridge 

circuit to perform the subtraction electrically.  When the two gages are connected as adjacent 

arms of the bridge circuit, with excited voltage V, the instrument output ΔE is equal to the 

difference in the individual thermal outputs.  The circuit is obviously simple and 

direct-reading.  In adjacent arms of the bridge circuit, it is noted that leadwires connected to 
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gages should be particularly well-matched and maintained physically together throughout 

their lengths.  It would minimize differential resistance changes which could appear in the 

instrument output. With a thermal couple placed adjacent to the gage, differences of 

temperature and strain would be immediately measured. 

 

3.2.2 Correction of the Error from Transverse Sensitivity 

  In essence, the transverse sensitivity is a measure of the sensitivity of the strain gage to 

strains acting in the transverse direction of the gage grid.  In most applications a strain gage 

is used to measure strains in the grid direction, and hence a very low transverse sensitivity is 

usually desirable.  As a result, the CTEs of composite between the axial and transverse 

direction is very different, the CTE in axial direction is much smaller than in transverse 

direction for graphite-epoxy composite material, thermal output in axial direction would be 

required to correct due to the error from transverse sensitivity.  The relation between the 

measured thermal output and the true thermal output was shown [27]. 

  In figure 3.29, it is assumed that a strain gage subjected to a biaxial-strain field.  The 

change in gage resistance induced by the biaxial-strain field is given by: 

ttaa FF
R
R εε +=

∆                         (3.2) 

where 

      R= original gage resistance 

     aε =strains in gage grid direction 

     tε =strain transverses to gage grid 

     =axial-gage factor aF

     =transverse-gage factor tF

It is noted that the axial-gage factor is not equal to the gage factor, , reported by the 

manufacturer. 

gF
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  The transverse sensitivity coefficient, K, is defined as 

a

t

F
FK ≡                                (3.3) 

This coefficient is supplied by the manufacturer with strain-gage package.  Then equation 

(3.3) can be rewritten in terms of K as follow: 

( taa KF
R
R εε += )∆                        (3.4) 

  During calibration, the gage is mounted to a standard calibration material which 

285.00 =ν and subjected to a uniaxial stress loading.  The grid direction is parallel to the 

uniaxial stress.  Under these conditions, the transverse strain applied to the gage is due to 

Poisson effect, and is given by 

at ενε 0−=                          (3.5) 

Equation (3.4) for this loading condition become: 

( aa KF
R
R εν 01−= )∆                        (3.6) 

The gage factor supplied by the manufacturer is defined as 

( )KFF ag 01 ν−≡                           (3.7) 

Finally, equation (3.6) can be rearranged as 

g
a F

R
R
⎥⎦
⎤

⎢⎣
⎡∆

=ε                              (3.8) 

Equation (3.8) is derived based on the following assumptions: (a) The strain gage is subjected 

to a uniaxial stress field; (b) The gage grid is parallel to the direction of stress; (c) The gage is 

mounted on a material whose Poisson’s ratio equals 0ν .  If a strain gage is used during a test 

in above three conditions, then the measured strain mε  is given by equation (3.8) directly. 

g
am F

R
R
⎥⎦
⎤

⎢⎣
⎡∆

== εε                              (3.9) 

Under any other conditions, equation (3.8) is not suitable, and appreciable measurement 
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error can occur due to transverse sensitivity.  In these cases the measured strain must be 

corrected for transverse sensitivity effect.  At least two orthogonal strain measurements are 

required to correct these errors.  A biaxial-strain-gage rosette can get two orthogonal 

measured strains mxε  and myε , and the true strain xε  and yε  are simply given by: 

( )( )
2

0

1
1

K
KK mymx

x −

−−
=

εεν
ε                    (3.10) 

( )( )
2

0

1
1

K
KK mxmy

y −

−−
=

εεν
ε                    (3.11) 

Equations (3.10) and (3.11) would be used in the correction of the error form the 

measurement of CTE of fiber composites. 

 

3.2.3 Measurement Procedures and Results 

  Experiments were performed for the measurement of the CTEs 1α  and 2α  of 

glass/epoxy and graphite/epoxy unidirectional composites by using electrical resistance strain 

gage rosettes.  The test specimens were prepared from previously 10-plied graphite/epoxy 

and 24-plied glass/epoxy unidirectional composite panels, which was 1.8 mm and 1.5 mm 

thick respectively.  The specimen was cut with dimension 24×48 mm.  

Micro-Measurements EA-06-062TT-120 rosettes all belonging to the same lot and the same 

package were used.  This type of gage has two perpendicular grids used to determine 

principal thermal output with various temperatures.  The reference material is 

ultra-low-expansion titanium silicate which is available from Micro-Measurements for the 

temperature compensation of dummy gages.  When the two gages, installing on test 

specimen and reference material respectively, are connected as adjacent arms of the two 

bridge circuits, the instrument outputs of axial direction and transverse direction are equal to 

the difference in their individual thermal outputs.  A thermal couple is placed adjacent to the 

gage installing on test specimen to measure the temperature difference.  Test specimen and 

reference material are put in the programmable-control oven with heating 15°C/hour and free 
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cooling about 20°C/hour.  The most gradual slope of temperature-time will minimize thermal 

hysteresis effect and residual stress in the specimen.  Test specimen must be placed as free 

suspension to reduce friction force effect on specimen surface (see Figure 3.30).  Continuous 

temperature difference and strain data are read in conjunction with data acquisition system.  

Figure 3.31-3.34 are shown the measurement results in two principal directions for 

glass/epoxy and graphite/epoxy composites, respectively.  The transverse sensitivity error is 

corrected in fiber direction for two materials.  It is noted that, for graphite/epoxy composite, 

it has a near zero value of thermal expansion coefficient.  Finally, the thermal expansion 

coefficients fitted from measurement strain data are  and  

for glass/epoxy and  and  for graphite/epoxy 

respectively. 

C°×= − /107 6
1α C°×= − /103.18 6

2α

C°×= − /1057.0 6
1α C°×= − /104.41 6

2α
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IV. Results of Prediction and Discussion 

4.1 Model Predictions for Off-Axis Composites 

By following the analysis presented in chapter 2.3 for off-axis composites, model 

predictions for glass/epoxy and graphite/epoxy materials at various strain rate compared with 

uniaxial tensile tests were depicted in Figures 4.1-4.6, respectively together with experimental 

results.  It is obvious that all modeling results at various off-axis angles were good 

predictions in both linear-elastic and nonlinear parts.   

 

4.2 Model Predictions for Composite laminates 

Figure 4.7, 4.8 and 4.9 depict the comparison of experimental stress-strain curves and 

model predictions for , [ ] s4290/45± [ ] s42 30/60/75 − , and [ ] s42 15/75/60 −  glass/epoxy 

composite laminates at three different strain rates, respectively.  The predictions were based 

on the viscoplasticity model together with the laminated plate theory.  It was shown that the 

nonlinear portions of the stress and strain curves are sensitive to the strain rate.  When the 

strain rate increases, the material become stiffer.  At strain rages less than 1%, it can be 

shown that the model predictions demonstrate good agreements with experimental results.  

However, at higher strain level, the predictions deviate from the experiments.  This disparity 

can be attributed to the formation of micro-cracking in the laminates, such as delamination 

and matrix cracking, which may lead to the stiffness degradation of the whole laminates.  

Nevertheless, in the model, the laminates were assumed to be damage free and the potential 

failure mechanisms during the loading process were not considered in analysis. 

The stress and strain curves for s3]45[± , s3]30/60[ − , s3]60[±  and  graphite/epoxy 

composites obtained from experiments were compared the model prediction in Figure 

4.10-4.13, respectively.  For  and 

s3]30[±

s3]45[± s3]30/60[ −  laminates, it was indicated that the 

viscoplasticity model provides fairly good prediction for the rate dependent nonlinearity of 

the laminate at strain up to 1.2%.  Beyond this strain value, the experimental results trend to 
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soften than the predictions which are similar to those of the glass/epoxy composites.  For 

 laminate, specimen failure was happened early because of its  stacking 

sequence characteristic.  It is noted that, for 

s3]60[± s3]60[±

s3]30[±  laminate, the prediction result is mush 

softer than experimental results.  Therefore, it is possible that other mechanisms are 

responsible for the discrepancies.  In next section, a possible mechanism will be investigated: 

the deformation-induced fiber orientation change.  

 

4.3 Effect of Deformation-Induced Change of Fiber Orientation 

When the laminate specimen is subjected to a tensile loading, the specimen extends in 

loading direction and contracts in the transverse direction.  As a result of this deformation, 

the fiber orientation will be altered.  The detailed description of this effect can be found in 

Reference [18]. 

Consider [ ]nsθ±  composite laminates.  Figure 4.14a is supposed that the initial fiber 

orientation in a certain ply is θ.  When the laminate is subjected to a tensile loading in the 

x-direction, the fiber orientation change to θ’ (Figure 4.14b).  It is easy to derive the 

relation between θ’ and the initial angle θ as: 

( )
( )

( )
( ) θ

ε
ε

ε
ε

θ tan
1
1

1
1

tan
x

y

x

y

a
b

a
b

+

+
=

+

+
=
′
′

=′                           (4.1) 

In an incremental laminate analysis, Equation (4.1) can be used to update the angle of the 

fiber orientation step-by-step by using the strains from the previous step.  Once the new 

angle is obtained, it is substituted back into the transformation matrix  and [ σT ] [ ]εT  for 

updating [ ]epQ  and other quantities.  Using such an approach, the effect of fiber orientation 

change can be included in the laminate model. 

Figure 4.15 shows the calculated stress-strain curves with and without the fiber orientation 

change for  graphite/epoxy laminate at strain rate of 0.0001/s.  The effect of fiber 

orientation change is obviously become stiffer in the nonlinear behavior.  However, it is still 

s3]30[±
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deviated from the experiments. 

 

4.4 Sensitivity in Stacking Sequence for Symmetric Laminate 

In order to understand the sensitivity of the nonlinear behavior to the fiber orientation, 

s][ θ±  graphite/epoxy laminates with fiber orientations 29°, 30°, 44°, 45°, 59°, and 60° were 

modeled and shown in Figure 4.16.  It is indicated that for s]29[±  and  laminates, the 

nonlinear portions are quite different. However, 

s]30[±

s]44[±  and s]45[±  illustrate almost the same 

stress and strain curves which is similar to those in s]59[±  and  laminates.  As a 

result, among the angle-ply laminates considered, the stress and strain curve of 

s]60[±

s]30[±  

demonstrate the strong dependence on the fiber orientation.   

Prior to the tests conducted, we took the s3]30[±  specimen and observed the 

corresponding fiber angles in each ply with respect to the loading direction using the optical 

microscope.  The measured angles of each ply were shown in Figure 4.17.  The calculation 

of average value of each angle is 29.08° for nominal s]30[±  laminates.  Based on this 

measurement, the new model prediction with initial fiber orientation of 29° was performed.  

The deformation induced fiber orientation change was also considered in the prediction as 

shown in Figure 4.18.  It was shown the predictions are getting close to the experimental 

results, however, still have discrepancy existing at the high strain level.  
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V. Conclusion 

A constitutive model was proposed based on the viscoplasticity model and the laminated 

plate theory for characterizing the nonlinear rate dependent behavior of composite laminates.  

In the viscoplasticity model, the correlation between effective stress and effective plastic 

strain was established in the form of power law with rate dependent amplitude and the 

associated parameters were determined by testing the off-axis coupon specimens at strain 

rates of 0.0001/s, 0.001/s, and 1/s.  With a numerical iteration on the incremental form of the 

constitutive model, the stress-strain relations of the composite laminates at various strain rates 

can be generated.  In order to demonstrate the strain rate effect, glass/epoxy composite 

laminates ( [ ] , , and s4290/45± [ ] s42 30/60/75 − [ ] s42 15/75/60 − ) and graphite/epoxy composite 

laminates ( , , s3]45[± s3]30/60[ − s3]60[±  and s3]30[± ) were tested at three different strain rates.  

Experimental results reveal that the nonlinear portions of the stress-strain curves are pretty 

sensitive to the strain rates.  Comparison of model predictions with experiments indicates 

that the constitutive model is capable of predicting the nonlinear rate dependent behavior pf 

composite laminates at strain rates up to 1/s.  It is noted that, for  graphite/epoxy 

laminate, the nonlinearity is quite sensitive to the fiber orientation, therefore, a precise 

measurement of the off-axis angle as well as accounting the effect of deformation induced 

fiber orientation change are required for model the stress and strain relation.  

s3]30[±
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Appendix 

A. Thermal Residual Stresses in Composite Laminates 

From equations (2.20), (2.27), and (2.28), it is known that the laminate stiffness matrix [R] 

is related with the current stress state in each ply of laminate.  Therefore, now we consider 

the corresponding thermal residual stresses in laminates due to interaction with other laminae.  

Because of differences between fiber and matrix CTEs (coefficients of thermal expansion) in 

the lamina and differences between lamina CTEs in the laminate, residual stresses may occur 

during fabrication with temperature change.  The total strains in the kth ply are given the 

form when changes in temperature occur: 
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and the resulting stresses are given by 
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In the transformations it must be noted that the CTEs transform like tensor strains, so that 
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The resultant laminate forces { }N  and moment { }M  per unit length are found by 

integrating equation (A.2) though the thickness of laminate and rearranged: 
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where the thermal forces: { } [ ] { }∫ ∆= TdzQN kk
T α                        (A.5) 

and the thermal moments: { } [ ] { }∫ ∆= TzdzQM kk
T α                      (A.6) 

Alternatively, the inverted forms of equation (A.4) are given by 
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Let the mechanical loading be zero for the initial thermal residual stress state, i.e. { } { }0=N , 

, and considering symmetric laminate for simplicity, i.e. { } { }0=M { } { }0=TM , { } { }0=B .  

Substitution into equation (A.7) with above assumptions, we can get the following relations. 

{ } [ ] { }TNA 10 −=ε                                        (A.8) 

   { } { }0=κ                                              (A.9) 

It means that no out of plane deformation occurs in symmetric laminate when have 

uniform temperature change.  The strain in mid-plane represents the laminate strain in each 

ply.  Finally, substitution the thermal-induced deformation in laminate into equation (A.2), 

the laminar residual stress in each ply is 
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The calculated { }krσ  will be the initial stress state in kth ply of laminate.  They are 

inputted to the numerical process as the initial stress variables before the loading increment 

was applied. 
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B. Numerical Code 
%simple flow rule for characterizing nonlinear behavior of graphite/epoxy laminates  
%-------------------------------------------------------------------------- 
% symbols: 
% e1,e2,g12,v12,v21,a66,n,x: material parameters 
% ta1,ta2: thermal expansion coefficients in fiber and transverse direction 
% tdt: temperature change 
% exp: stress-strain form experiment 
% datanum: numbers of exp. data 
% ang1~ang4:ply 1~4 angle 
% rad1~rad4:ply 1~4 radian 
% delta1,delta2: the incremental stress 
% final1,final2: the final stress 
% q00: 0 degree Q stiffness matrix 
% qc1~qc4: ang1~ang4 Q-bar stiffness matrix 
% tsig1~tsig4: ang1~ang4 stress components coordinate transformation matrix 
% teps1~teps4: ang1~ang4 strain components coordinate transformation matrix 
% sig1~sig4: ang1~ang4 stress components in x1-x2 coordinate 
% eps1~eps4: ang1~ang4 strain components in x1-x2 coordinate 
% sigxy: laminate average stress cpmponents 
% epsxy: laminate strain components 
% dsigxy: the incremental laminate average stress components in x-y coordinate 
% depsxy: the incremental strain components in x-y coordinate 
% effsig1~effsig4: effective stress in ang1~ang4 
% sep1~sep4: elastic-plastic compliance matrix in ang1~ang4 
% qep1~qep4: elastic-plastic stiffness matrix in ang1~ang4 
% g: laminate stiffness matrix 
% dsigtxy1~dsigtxy4: the incremental stress components in ang1~ang4 on x-y coordinate 
% dsig1~dsig4: the incremental stress components in ang1~ang4 on 1-2 coordinate 
%-------------------------------------------------------------------------- 
clear all; 
%----------------------------------------- material properties-------------------- 
e1=138.5e3; 
e2=8.1e3; 
g12=4.2e3; 
v12=0.27; 
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v21=v12*e2/e1; 
a66=1.6; 
n=4.6; 
x=0.7e-12; 
m=-0.185; 
ta1=0.57e-6;              %thermal expansion coefficient  
ta2=41.4e-6;                %thermal expansion coefficient  
tdt=-125;                 %temperature change 
%----------------------------------------- material properties-------------------- 
%------------------input stress rate data from experimental results--------- 
fid=fopen('pn60_high.txt'); 
datanum=57; 
exp=fscanf(fid,'%g',[2 datanum]); 
exp=exp'; 
redu=1; 
nn=(datanum-1)/redu; 
dt=(exp(2,1)-exp(1,1))*redu; 
rate=1e-20; 
%------------------input stress rate data from experimental results--------- 
%------------------------stacking sequences--------------- 
ang1=60; 
ang2=-60; 
ang3=-60; 
ang4=60; 
%------------------------stacking sequences--------------- 
i=[1 0 0;0 1 0;0 0 1];   %unit matrix 
q11=e1/(1-v12*v21); 
q12=v12*e2/(1-v12*v21); 
q21=q12; 
q22=e2/(1-v12*v21); 
q33=g12; 
q00=[q11 q12 0;q21 q22 0; 0 0 q33];             %0 degree stiffness matrix 
u1=(3*q11+3*q22+2*q12+4*q33)/8; 
u2=(q11-q22)/2; 
u3=(q11+q22-2*q12-4*q33)/8; 
u4=(q11+q22+6*q12-4*q33)/8; 
rad1=ang1*pi/180; 
rad2=ang2*pi/180; 
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rad3=ang3*pi/180; 
rad4=ang4*pi/180; 
q1=u1+u2*cos(2*rad1)+u3*cos(4*rad1); 
q2=u4-u3*cos(4*rad1); 
q3=u1-u2*cos(2*rad1)+u3*cos(4*rad1); 
q4=sin(2*rad1)*u2/2+u3*sin(4*rad1); 
q5=sin(2*rad1)*u2/2-u3*sin(4*rad1); 
q6=(u1-u4)/2-u3*cos(4*rad1); 
qc1=[q1 q2 q4; 
    q2 q3 q5; 
    q4 q5 q6;];                            %1-th ply off-axis stiffness matrix 
q1=u1+u2*cos(2*rad2)+u3*cos(4*rad2); 
q2=u4-u3*cos(4*rad2); 
q3=u1-u2*cos(2*rad2)+u3*cos(4*rad2); 
q4=sin(2*rad2)*u2/2+u3*sin(4*rad2); 
q5=sin(2*rad2)*u2/2-u3*sin(4*rad2); 
q6=(u1-u4)/2-u3*cos(4*rad2); 
qc2=[q1 q2 q4; 
     q2 q3 q5;  
     q4 q5 q6;];                            %2-th ply off-axis stiffness matrix 
q1=u1+u2*cos(2*rad3)+u3*cos(4*rad3); 
q2=u4-u3*cos(4*rad3); 
q3=u1-u2*cos(2*rad3)+u3*cos(4*rad3); 
q4=sin(2*rad3)*u2/2+u3*sin(4*rad3); 
q5=sin(2*rad3)*u2/2-u3*sin(4*rad3); 
q6=(u1-u4)/2-u3*cos(4*rad3); 
qc3=[q1 q2 q4; 
    q2 q3 q5; 
    q4 q5 q6;];                             %3-th ply off-axis stiffness matrix 
q1=u1+u2*cos(2*rad4)+u3*cos(4*rad4); 
q2=u4-u3*cos(4*rad4); 
q3=u1-u2*cos(2*rad4)+u3*cos(4*rad4); 
q4=sin(2*rad4)*u2/2+u3*sin(4*rad4); 
q5=sin(2*rad4)*u2/2-u3*sin(4*rad4); 
q6=(u1-u4)/2-u3*cos(4*rad4); 
qc4=[q1 q2 q4; 
     q2 q3 q5;  
     q4 q5 q6;];                            %4-th ply off-axis stiffness matrix 
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%1-th ply CTE coordinate transformation 
 ac1=[ta1*cos(rad1)^2+ta2*sin(rad1)^2; 
    ta1*sin(rad1)^2+ta2*cos(rad1)^2; 
    2*(ta1-ta2)*cos(rad1)*sin(rad1)]; 
%2-th ply CTE coordinate transformation 
ac2=[ta1*cos(rad2)^2+ta2*sin(rad2)^2; 
     ta1*sin(rad2)^2+ta2*cos(rad2)^2; 
     2*(ta1-ta2)*cos(rad2)*sin(rad2)]; 
%3-th ply CTE coordinate transformation 
ac3=[ta1*cos(rad3)^2+ta2*sin(rad3)^2; 
    ta1*sin(rad3)^2+ta2*cos(rad3)^2; 
    2*(ta1-ta2)*cos(rad3)*sin(rad3)]; 
%4-th ply CTE coordinate transformation 
ac4=[ta1*cos(rad4)^2+ta2*sin(rad4)^2; 
     ta1*sin(rad4)^2+ta2*cos(rad4)^2; 
     2*(ta1-ta2)*cos(rad4)*sin(rad4)]; 
%1-th ply coordinate transformation 
tsig1=[cos(rad1)^2   sin(rad1)^2   2*sin(rad1)*cos(rad1); 
      sin(rad1)^2   cos(rad1)^2  -2*sin(rad1)*cos(rad1); 
      -sin(rad1)*cos(rad1)   sin(rad1)*cos(rad1)  (cos(rad1)^2-sin(rad1)^2)]; 
teps1=[cos(rad1)^2   sin(rad1)^2   sin(rad1)*cos(rad1); 
      sin(rad1)^2   cos(rad1)^2  -sin(rad1)*cos(rad1); 
      -2*sin(rad1)*cos(rad1)   2*sin(rad1)*cos(rad1)  (cos(rad1)^2-sin(rad1)^2)]; 
%---------------------------------- 
%2-th ply coordinate transformation 
tsig2=[cos(rad2)^2   sin(rad2)^2   2*sin(rad2)*cos(rad2); 
      sin(rad2)^2   cos(rad2)^2  -2*sin(rad2)*cos(rad2); 
      -sin(rad2)*cos(rad2)   sin(rad2)*cos(rad2)  (cos(rad2)^2-sin(rad2)^2)]; 
teps2=[cos(rad2)^2   sin(rad2)^2   sin(rad2)*cos(rad2); 
      sin(rad2)^2   cos(rad2)^2  -sin(rad2)*cos(rad2); 
      -2*sin(rad2)*cos(rad2)   2*sin(rad2)*cos(rad2)  (cos(rad2)^2-sin(rad2)^2)]; 
%---------------------------------- 
%3-th ply coordinate transformation 
tsig3=[cos(rad3)^2   sin(rad3)^2   2*sin(rad3)*cos(rad3); 
      sin(rad3)^2   cos(rad3)^2  -2*sin(rad3)*cos(rad3); 
      -sin(rad3)*cos(rad3)   sin(rad3)*cos(rad3)  (cos(rad3)^2-sin(rad3)^2)]; 
teps3=[cos(rad3)^2   sin(rad3)^2   sin(rad3)*cos(rad3); 
      sin(rad3)^2   cos(rad3)^2  -sin(rad3)*cos(rad3); 
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      -2*sin(rad3)*cos(rad3)   2*sin(rad3)*cos(rad3)  (cos(rad3)^2-sin(rad3)^2)]; 
%---------------------------------- 
%4-th ply coordinate transformation 
tsig4=[cos(rad4)^2   sin(rad4)^2   2*sin(rad4)*cos(rad4); 
      sin(rad4)^2   cos(rad4)^2  -2*sin(rad4)*cos(rad4); 
      -sin(rad4)*cos(rad4)   sin(rad4)*cos(rad4)  (cos(rad4)^2-sin(rad4)^2)]; 
teps4=[cos(rad4)^2   sin(rad4)^2   sin(rad4)*cos(rad4); 
      sin(rad4)^2   cos(rad4)^2  -sin(rad4)*cos(rad4); 
      -2*sin(rad4)*cos(rad4)   2*sin(rad4)*cos(rad4)  (cos(rad4)^2-sin(rad4)^2)]; 
%---------------------------------- 
sig1=[0;0;0];                  %1-th initial stress, strain tensor 
eps1=[0;0;0]; 
sig2=[0;0;0];                  %2-th initial stress, strain tensor 
eps2=[0;0;0]; 
sig3=[0;0;0];                  %3-th initial stress, strain tensor 
eps3=[0;0;0]; 
sig4=[0;0;0];                  %4-th initial stress, strain tensor 
eps4=[0;0;0]; 
%----calculation of thermal residual stress---------- 
ma=8*qc1+8*qc2+8*qc3+8*qc4; 
nt=(qc1*ac1+qc2*ac2+qc3*ac3+qc4*ac4)*8*tdt; 
thermaldepsxy=inv(ma)*nt; 
resigxy1=qc1*(thermaldepsxy-ac1*tdt); 
resigxy2=qc2*(thermaldepsxy-ac2*tdt); 
resigxy3=qc3*(thermaldepsxy-ac3*tdt); 
resigxy4=qc4*(thermaldepsxy-ac4*tdt); 
resig1=tsig1*resigxy1; 
resig2=tsig2*resigxy2; 
resig3=tsig3*resigxy3; 
resig4=tsig4*resigxy4; 
%----calculation of thermal residual stress---------- 
sig1=resig1;             
sig2=resig2; 
sig3=resig3; 
sig4=resig4; 
%----calculation of thermal residual stress---------- 
sigxy(:,1)=[0;0;0];            %set initial zero of laminate stress and strain 
epsxy(:,1)=[0;0;0]; 
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%--------initial value of updated A in each ply--------- 
    effdepsp1(1)=rate; 
    a1=x*effdepsp1(1)^m; 
    effdepsp2(1)=rate; 
    a2=x*effdepsp2(1)^m; 
    effdepsp3(1)=rate; 
    a3=x*effdepsp3(1)^m; 
    effdepsp4(1)=rate; 
    a4=x*effdepsp4(1)^m; 
    %pause 
%--------initial value of updated A in each ply--------- 
for k=1:nn;                 %accumulated loops 
    dsigxy=[(exp(redu*k+1,2)-exp(redu*(k-1)+1,2)); 0; 0];           
%the incremental stress in time interval(x-y coordinate) 
    efsig1=(3/2*(sig1(2)^2+2*a66*sig1(3)^2))^0.5;             %ang1 effective stress 
    mu1=[0                0                0; 
       0          9/4*sig1(2)^2   9/2*a66*sig1(2)*sig1(3); 
       0   9/2*a66*sig1(2)*sig1(3)   9*a66^2*sig1(3)^2]*a1*n*efsig1^(n-3); 
    sep1=teps1^-1*(q00^-1+mu1)*tsig1;         %ang1 elastic-plastic compliance matrix 
    qep1=sep1^-1; 
    efsig2=(3/2*(sig2(2)^2+2*a66*sig2(3)^2))^0.5;             %ang2 effective stress 
    mu2=[0                0                0; 
       0          9/4*sig2(2)^2   9/2*a66*sig2(2)*sig2(3); 
       0   9/2*a66*sig2(2)*sig2(3)   9*a66^2*sig2(3)^2]*a2*n*efsig2^(n-3); 
    sep2=teps2^-1*(q00^-1+mu2)*tsig2;         %ang2 elastic-plastic compliance matrix 
    qep2=sep2^-1; 
    efsig3=(3/2*(sig3(2)^2+2*a66*sig3(3)^2))^0.5;             %ang3 effective stress 
    mu3=[0                0                0; 
       0          9/4*sig3(2)^2   9/2*a66*sig3(2)*sig3(3); 
       0   9/2*a66*sig3(2)*sig3(3)   9*a66^2*sig3(3)^2]*a3*n*efsig3^(n-3); 
    sep3=teps3^-1*(q00^-1+mu3)*tsig3;         %ang3 elastic-plastic compliance matrix 
    qep3=sep3^-1; 
    efsig4=(3/2*(sig4(2)^2+2*a66*sig4(3)^2))^0.5;             %ang4 effective stress 
    mu4=[0                0                0; 
       0          9/4*sig4(2)^2   9/2*a66*sig4(2)*sig4(3); 
       0   9/2*a66*sig4(2)*sig4(3)   9*a66^2*sig4(3)^2]*a4*n*efsig4^(n-3); 
    sep4=teps4^-1*(q00^-1+mu4)*tsig4;         %ang4 elastic-plastic compliance matrix 
    qep4=sep4^-1; 
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    %laminate plate theory 
    r=(qep1+qep2+qep3+qep4)/4; 
    g=inv(r); 
    depsxy=g*dsigxy; 
    dsigtxy1=qep1*depsxy;                       %the increment of stress in ang1 ply 
    dsigtxy2=qep2*depsxy;                       %the increment of stress in ang2 ply 
    dsigtxy3=qep3*depsxy;                       %the increment of stress in ang3 ply 
    dsigtxy4=qep4*depsxy;                       %the increment of stress in ang4 ply 
    %-----------coordinate transformation from x-y to 1-2 system-------- 
    dsig1=tsig1*dsigtxy1;                           
    dsig2=tsig2*dsigtxy2; 
    dsig3=tsig3*dsigtxy3;                           
    dsig4=tsig4*dsigtxy4; 
    %-----------coordinate transformation from x-y to 1-2 system-------- 
    %-----------updated A in each ply-------- 
    depse1=inv(q00)*dsig1; 
    depse2=inv(q00)*dsig2; 
    depse3=inv(q00)*dsig3; 
    depse4=inv(q00)*dsig4; 
    depsp1=teps1*depsxy-depse1; 
    depsp2=teps2*depsxy-depse2; 
    depsp3=teps3*depsxy-depse3; 
    depsp4=teps4*depsxy-depse4; 
    %pause 
    effdepsp1(k+1,1)=(2/3*(depsp1(2)^2+1/2/a66*depsp1(3)^2))^0.5/dt; 
    a1=x*effdepsp1(k+1,1)^m; 
    effdepsp2(k+1,1)=(2/3*(depsp2(2)^2+1/2/a66*depsp2(3)^2))^0.5/dt; 
    a2=x*effdepsp2(k+1,1)^m; 
    effdepsp3(k+1,1)=(2/3*(depsp3(2)^2+1/2/a66*depsp3(3)^2))^0.5/dt; 
    a3=x*effdepsp3(k+1,1)^m; 
    effdepsp4(k+1,1)=(2/3*(depsp4(2)^2+1/2/a66*depsp4(3)^2))^0.5/dt; 
    a4=x*effdepsp4(k+1,1)^m; 
    %pause 
    %-----------updated A in each ply-------- 
    %----------update the stress in each ply-------- 
    sig1=sig1+dsig1;                        
    sig2=sig2+dsig2;                        
    sig3=sig3+dsig3;                       
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    sig4=sig4+dsig4;                        
    %----------update the stress in each ply-------- 
    %stress and strain in laminate areaccumulated 
    sigxy(:,k+1)=sigxy(:,k)+dsigxy; 
    epsxy(:,k+1)=epsxy(:,k)+depsxy; 
end;               %loop ended 
%-----------plot the results----------- 
plot(abs(epsxy(1,:)),abs(sigxy(1,:))); 
%axis([0,0.016,0,exp(73,2)]); 
xlabel('\epsilon_x'); 
ylabel('\sigma_x(MPa)'); 
grid on; 
epsxy=epsxy'; 
sigxy=sigxy'; 
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Table 1 Material constants for glass/epoxy composites. 

E1(GPa) 55.7±1.1
E2(GPa) 21.5±0.65
G12(GPa) 6.9

ν12 0.29±0.003
a66 1.4
n 3.9

χ(MPa)-n 6.5×10-12

m -0.125
α1(10-6/°C) 7
α2(10-6/°C) 18.3  

 
 
 

Table 2 Material constants for graphite/epoxy composites ( 54.0=fν ). 

E1(GPa) 138.5±7.3
E2(GPa) 8.1±0.3
G12(GPa) 4.2±0.2

ν12 0.27±0.01
a66 1.6
n 4.6

χ(MPa)-n 0.7×10-12

m -0.185
α1(10-6/°C) 0.57
α2(10-6/°C) 41.4  
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Figure 2.1: Orthotropic lamina with principal and off-axis coordinate systems. 
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Given material properties: 
E1, E2, ν12, G12, a66, n, χ, 
m, and off-axis angle θ. 

 

Figure 2.2: Flow chart of the numerical analytic procedure for off-axis composite laminae. 
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Figure 2.3: example of stress-time for laminate tensile test. 
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Given material properties: 
E1, E2, ν12, G12, a66, n, χ, 
m, α1, α2, ΔT, and 
lay-up sequence. 

Input curve-fit 
stress-time data 

 
Figure 2.4: Flow chart of the numerical analytic procedure for composite laminates. 
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Figure 2.5: the effective plastic strain rate versus time history diagram of [ ] s330±  

graphite/epoxy at strain rate 0.0001/s. 
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Figure 3.1: Curing process for graphite/epoxy composite prepreg. 
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Load Cell

 
Figure 3.2: Schematic for tension testing system. 
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Figure 3.3: Dimensions of tensile test specimen. 
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Figure 3.4: Experiment on the MTS 810 machine. 
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Figure 3.5: Stress-stain curves for glass/epoxy at 0.0001/s. 
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Figure 3.6: Stress-stain curves for glass/epoxy at 0.01/s. 
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Figure 3.7: Stress-stain curves for glass/epoxy at 1/s. 
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Figure 3.8: Stress-stain curves for graphite/epoxy at 0.0001/s. 
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Figure 3.9: Stress-stain curves for graphite/epoxy at 0.01/s. 
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Figure 3.10: Stress-stain curves for graphite/epoxy at 1/s. 
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Figure 3.11: Effective stress-effective plastic stain curve for glass/epoxy at 0.0001/s. 
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Figure 3.12: Effective stress-effective plastic stain curve for glass/epoxy at 0.01/s. 
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Figure 3.13: Effective stress-effective plastic stain curve for glass/epoxy at 1/s. 
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Figure 3.14: Effective stress-effective plastic stain curve for graphite/epoxy at 0.0001/s. 
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Figure 3.15: Effective stress-effective plastic stain curve for graphite/epoxy at 0.01/s. 
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Figure 3.16: Effective stress-effective plastic stain curve for graphite/epoxy at 1/s. 
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Figure 3.17: Three master curves by power law curve fitted for glass/epoxy. 
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Figure 3.18: Three master curves by power law curve fitted for graphite/epoxy. 
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Figure 3.19: The rate dependent amplitude A -effective plastic stain rate relation on a log-log 
plot for glass/epoxy. 
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Figure 3.20: The rate dependent amplitude A -effective plastic stain rate relation on a log-log 
plot for graphite/epoxy. 
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Figure 3.21: Stress and strain curve for [ ] s290/45 4±  glass/epoxy laminates at various strain 

rates. 
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Figure 3.22: Stress and strain curve for [ ] s42 30/60/75 −  glass/epoxy laminates at various 

strain rates. 
 

 57



0

50

100

150

200

250

0 0.005 0.01 0.015
Strain (mm/mm)

St
re

ss
 (M

Pa
)

0.0001/s (Exp)
0.01/s (Exp)
1/s (Exp)

 

Figure 3.23: Stress and strain curve for [ ] s2 15/75/60 4−  glass/epoxy laminates at various 

strain rates. 
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Figure 3.24: Stress and strain curve for [ ] s345±  graphite/epoxy laminates at various strain 

rates. 
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Figure 3.25: Stress and strain curve for [ ] s330/60 −  graphite/epoxy laminates at various strain 

rates. 
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Figure 3.26: Stress and strain curve for [ ] s360±  graphite/epoxy laminates at various strain 

rates. 
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Figure 3.27: Stress and strain curve for [ ] s330±  graphite/epoxy laminates at various strain 

rates. 
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Figure 3.28: Half-bridge circuit for measuring thermal expansion coefficient. 
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Figure 3.29: Schematic for a strain gage subjected to a biaxial strain field. 
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Figure 3.30: Specimen and reference material placed in the oven for measurement. 
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Figure 3.31: Thermal expansion response in the axial direction for glass/epoxy composite. 
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Figure 3.32: Thermal expansion response in the transverse direction for glass/epoxy 
composite. 
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Figure 3.33: Thermal expansion response in the axial direction for graphite/epoxy composite. 
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Figure 3.34: Thermal expansion response in the transverse direction for graphite/epoxy 
composite. 
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Figure 4.1: Model predictions and experimental results of stress and strain curve for off-axis 
glass/epoxy composite at strain rate of 0.0001/s. 
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Figure 4.2: Model predictions and experimental results of stress and strain curve for off-axis 
glass/epoxy composite at strain rate of 0.01/s. 
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Figure 4.3: Model predictions and experimental results of stress and strain curve for off-axis 
glass/epoxy composite at strain rate of 1/s. 
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Figure 4.4: Model predictions and experimental results of stress and strain curve for off-axis 
graphite/epoxy composite at strain rate of 0.0001/s. 
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Figure 4.5: Model predictions and experimental results of stress and strain curve for off-axis 
graphite/epoxy composite at strain rate of 0.01/s. 
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Figure 4.6: Model predictions and experimental results of stress and strain curve for off-axis 

graphite/epoxy composite at strain rate of 1/s. 
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Figure 4.7: Model predictions and experimental results of stress and strain curve for 

[ s290/45 ]4±  glass/epoxy laminates at various strain rates. 
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Figure 4.8: Model predictions and experimental results of stress and strain curve for 
 glass/epoxy laminates at various strain rates. [ s42 30/60/75 − ]
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Figure 4.9: Model predictions and experimental results of stress and strain curve for 

 glass/epoxy laminates at various strain rates. [ s2 15/75/60 − ]4
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Figure 4.10: Model predictions and experimental results of stress and strain curve for [ ] s345±  

graphite/epoxy laminates at various strain rates. 
 

0

20

40

60

80

100

120

140

160

180

0 0.005 0.01 0.015 0.02
Strain(mm/mm)

St
re

ss
(M

Pa
)

0.0001/s (Exp.)
0.01/s (Exp.)
1/s (Exp.)
0.0001/s (Model)
0.01/s (Model)
1/s (Model)

 

Figure 4.11: Model predictions and experimental results of stress and strain curve for 
 graphite/epoxy laminates at various strain rates. [ s330/60 − ]
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Figure 4.12: Model predictions and experimental results of stress and strain curve for [ ] s360±  

graphite/epoxy laminates at various strain rates. 
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Figure 4.13: Model predictions and experimental results of stress and strain curve for [ ] s330±  

graphite/epoxy laminates at various strain rates. 
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Figure 4.14: Fiber orientation change due to deformation. 
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Figure 4.15: Model predictions and experimental results for [ ] s330±  graphite/epoxy 

laminates at 0.0001/s.  Fiber orientation change was considered. 
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Figure 4.16: Model predictions for [ ]sθ±  graphite/epoxy laminates at 0.0001/s. 

 

 73



29.2° 27.5° 28.6°

29.2°
30.3° 29.5°

29.5°30.1° 29.5°

29.2°27.4° 28.8°

29.2°29.2° 27.5°27.5° 28.6°28.6°

29.2°29.2°
30.3°30.3° 29.5°29.5°

29.5°29.5°30.1°30.1° 29.5°29.5°

29.2°29.2°27.4°27.4° 28.8°28.8°

 
Figure 4.17: Fiber angle of each ply for [ ] s330±  graphite/epoxy laminate. 
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Figure 4.18: New model predictions and experimental results of stress and strain curve for 
 graphite/epoxy laminates at various strain rates.  Fiber orientation change was 

considered. 
[ ] s330±
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