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Abstract

GQ signature scheme is widely used in many cryptographic protocols, such as forward-secure signature scheme, iden-
tity-based signature scheme, etc. However, there is no threshold version of this important signature scheme in the open
literature. We proposed the first threshold GQ signature scheme. The scheme is proved unforgeable and robust against
any adaptive adversary by assuming hardness of computing discrete logarithm modulo a safe prime and existence of fully
synchronous broadcast channel. Furthermore, with some modifications, our scheme achieves optimal resilience such that
the adversary can corrupt up to a half of the players. As an extension of our work, we provided a threshold identity-based
signature scheme and a threshold forward-secure signature scheme, which is the threshold version of the most efficient for-
ward-secure signature scheme up to now.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A threshold cryptographic protocol involves a set of players together, who each possesses a secret share
generated by a prior share generating process, to accomplish a cryptographic task. It provides strong security
assurance and robustness against a number of malicious attackers under a threshold. For example, in a
(t, l)-threshold signature scheme, as long as t + 1 players agree, they can jointly produce a signature for a given
message even some other players intend to spoil such process. Also, as long as the adversary corrupts less than
t + 1 players, it cannot forge any valid signature.

A threshold protocol contains share distribution phase and cryptographic function phase. The share distri-
bution phase is performed by a dealer (honest dealer model) or by players themselves (distributed key gener-
ation model) such that each player obtains a secret share. Then all players perform the cryptographic function
phase using their own shares. In the previous works, almost all discrete-log based protocols are under distrib-
uted key generation model because we can easily generate this type of keys in distributive way via joint
verifiable secret sharing scheme [34]. In contrast, the distributed key generation in a factoring based protocol
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is much more complex. Most factoring based distributed protocols assume an honest dealer to distribute the
secret shares. Our scheme is based on the factoring problem, and the secret shares are distributed by an
assumed dealer. We focus on the cryptographic function phase, that is, each player holds a share to compute
a signature of the given message.

Guillou and Quisquater [25] proposed an identification scheme. Then the GQ signature scheme is obtained
by the standard Fiat–Shamir transformation [15]. GQ signature scheme is widely used in many cryptographic
protocols, such as forward-secure signature scheme [26], identity-based signature scheme [12], etc. However,
there is no threshold version of this important signature scheme in the open literature. We study a threshold
signature protocol based on the GQ signature scheme in this paper. By assuming the existence of fully synchro-
nous broadcast channel, our scheme is secure in the adaptive adversary model. The adaptive adversary, in
opposition to the static adversary, means that the adversary chooses players it wants to attack in the execution
of protocols, where the static adversary can only choose them before the execution of protocols. Furthermore,
with some modifications, our scheme achieves optimal resilience such that the adversary can corrupt up to a
half of the players. We also extend our work to the identity based and forward-secure signatures paradigm.

1.1. Related work

Threshold schemes can be generally applied by the secure multiparty computation, introduced by [39,24].
However, these solutions based on the protocols that compute a single arithmetic or Boolean gate are ineffi-
cient and impractical. The first general notion of efficient threshold cryptography was introduced by Desmedt
[13]. It started many studies on threshold computation models and concrete threshold schemes based on spe-

cific cryptosystems. Here we focus on two popular signature schemes, DSS and RSA signatures.
For the DSS scheme, the first solution was proposed by Cerecedo et al. [8] under a non-standard assumption.

Gennaro et al. [23] provided another solution with security relying only on the regular DSS signature scheme.
Canetti et al. [7] and Frankel et al. [20] improved the security against the adaptive adversary. Jarecki and Lysyans-
kaya [28] furthermore removed the need of reliable erasures. Jarecki [27] summarized these techniques. These
works also contain the distributed key generation protocol such that each player holds a key share before signing.

On the other hand, threshold RSA problem is more interesting. Since the share holders do not know the
order of the arithmetic group, the polynomial interpolation is much harder than those of discrete-log based
threshold cryptosystems. Desmedt and Frankel [14] provided the first heuristic threshold RSA scheme without
security analysis. Later, they extended their work with a security proof [16]. De Santis et al. [11] also proposed
another provably secure threshold RSA scheme. Both [16,11] tried to avoid the polynomial interpolation.
However, these schemes are complicated and need either interaction or large share sizes. Besides, they do
not consider the robustness property. The robust threshold RSA schemes were proposed by Gennaro et al.
[22] and Frankel et al. [18]. Subsequently, some more efficient and simpler schemes for threshold RSA in
the static adversary model were presented [17,35]. These schemes take an extra layer of secret sharing so that
more interactions are needed. Shoup [36] provided a much simpler scheme without any interaction in the par-
tial signature generation phase (also see [30] for a more efficient solution in case of passive attacks). Damgård
and Koprowski [10] proposed schemes which are as efficient as Shoup’s and use general moduli. Moreover,
Damgård and Dupont [9] provided a robust threshold RSA scheme with the same efficiency and general mod-
uli. For the adaptively-secure threshold RSA, there exist some solutions [7,20,21,29] as well. These protocols
developed many techniques for designing secure threshold protocols.

There are two types of forward-secure signature schemes. The first type is a general construction based on
arbitrary signature schemes. It mainly uses the master public key to certify the public key of the current time
period. The second type modifies existing concrete signature schemes. Currently, there are four such forward-
secure signature schemes [4,2,26,5]. There are threshold versions for the first two schemes [37,1]. In this paper
we propose the threshold version for the third one.

2. Preliminaries

Before presenting our scheme we review the GQ signature scheme, introduce the components of a threshold
signature scheme, and define the security of a signature scheme and a threshold signature scheme respectively.
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2.1. GQ signature scheme

The three functions of GQ signature scheme are described as follows (security parameter: k1,k2). Let x 2R X

denote that x is chosen from X randomly.

(1) Key generation: let n = pq be a k1-bit product of two safe primes and e be a (k2 + l)-bit random value.
The secret key of a player is (n,e, s), where s 2R Z�n and the corresponding public key is (n,e,v), where
v = 1/se modn. Note that the user does not need to know p and q and thus n can be used by all users.

(2) Signing: let H be a publicly defined cryptographic-strong hash function, such as SHA-1. Given a message
M, the signer computes the signature (r,z) as follows:

• Randomly select a number r 2 Z�n and compute y = re modn and r = H(ykM).
• Compute z = r Æ srmod n.
(3) Verification: given the signature (r,z) and the message M, the verifier checks whether H(zevrmodn

kM) = r.

The security of GQ signature scheme is based on the assumption that computing eth root modulo a com-
posite is infeasible without knowing the factors of n.

2.2. Threshold signature scheme

A threshold signature scheme consists of the following three components:

(1) Key generation: there are two categories in generating keys and distributing shares to the participated
players:

• Honest Dealer model: an honest dealer is responsible for choosing keys and distributing shares to the

players.
• Distributed key generation model: all players compute their keys and shares in a distributed way.

After key generation, the public/secret key pair is defined and each player holds a share of the secret key.

(2) Distributed signing: the main signing procedure can be separated into two phases:

• Partial signature generation: each player produces a partial signature for the given message M with or

without interactions.
• Signature construction: any one who has a number of valid partial signatures over a threshold can

compute a valid signature for M.

(3) Verification: everyone can verify the validity of a signature for a message given the public key.

The signing players first run the key generation protocol, and get their secret shares. Whenever a message
needs to be signed, all players perform the distributed signing protocol to get the signature.

2.3. Security definitions

Consider a signature scheme secure against existential forgery under an adaptive chosen message attack
(CMA), we define the security as follows.

Definition 1 (Security of signature scheme). A signature scheme is (tf, e)-secure if no adversary outputs a valid
forgery with probability at least e within time tf under an adaptive chosen message attack.

The security of threshold signature scheme includes both unforgeability and robustness as defined below.

Definition 2 (Unforgeability). A(t, l)-threshold signature scheme is (tf, e)-unforgeable in certain adversarial
model if, except a negligible probability e, it no adversary in that model corrupts up to t players can produce a
valid signature on a message that was not signed by any uncorrupted player within time tf.

Another important property of threshold schemes is robustness. It ensures that the protocol can output a
correct result as long as the adversary controls at most t players.
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Definition 3 (Robustness). A(t, l)-threshold signature scheme is robust in certain adversarial model if even the
adversary in that model controls up to t players, the signature scheme is guaranteed to complete successfully.

A threshold signature scheme is called (tf, e)-secure if the above two properties are satisfied.

Definition 4 (Security of threshold signature). A(t, l)-threshold signature scheme is (tf, e)-secure in certain
adversarial model if it is both (tf, e)-unforgeable and robust in that model.

Two distribution ensembles {Xn} and {Yn} are (computationally) indistinguishable if for any probabilistic
polynomial-time distinguisher D and any polynomial p(n), there is an integer n0 such that for any n P n0,
jPr½DðX nÞ ¼ 1� � Pr½DðY nÞ ¼ 1�j < 1=pðnÞ:
The discrete logarithm over a safe prime problem is to solve D logg hmodp from given (p,g,h), where p =
2p 0 + 1 is prime, p 0 is also prime, and g is a generator of the quadratic subgroup Gp0 of Z�p. We assume that
no probabilistic polynomial-time Turing machine can solve a significant portion of the input. Let In be the
(uniform) distribution of the size-n legal input. Then, for any probabilistic polynomial-time Turing A and
polynomial p(n), there is n0 such that for any n P n0,
Prp;g;h2In ½Aðp; g; hÞ ¼ Dlogghmod p� < 1=pðnÞ:
2.4. The models

2.4.1. Players and adversary model

Our system consists of l players and an honest dealer who is responsible for generating keys and distributing
the shares. The adaptive adversary is modeled as a probabilistic polynomial-time Turing machine and may
corrupt players at any time during the execution of the protocol. A player is corrupted if it is controlled by
the adversary. Once a player is corrupted, it may deviate from the protocol in any way, and its secret infor-
mation is revealed.

2.4.2. Communication model

We assume that the players have access to a round-based and fully synchronous broadcast channel, which
can be implemented by a Byzantine agreement protocol [33,31]. If all players broadcast messages simulta-
neously in a round, they can see all messages from others without delay and alternation. In addition, each pair
of players are connected by a private channel such that other players cannot tape. The private channel can be
simply implemented by a symmetric or public-key encryption scheme. However, as mentioned in [7], the adap-
tive security cannot be maintained via such implementation because the plaintexts are ‘‘committed’’ by the
ciphertexts. If the adversary corrupts some party latter, it can decrypt the ciphertexts received by that party,
and check whether the plaintexts are consistent with the values given by the simulator. Since the simulator needs
to adjust some inside values of the parties, the simulation will fail. So we use the technique introduced in [3] to
implement the private channel, as adopted by [7]. Each party uses a pseudorandom generator to refresh the
encryption keys so that the adversary gets no information about the prior keys at the time of corruption.

3. Threshold GQ signature scheme

In our threshold GQ signature scheme, the dealer generates a public/secret key pair and distributes the
shares of the secret key to the players. To sign a message distributively, each player produces a partial signa-
ture. If there are more than t þ 1 t < l

3

� �
valid partial signatures, we can construct the signature of the message

from the valid partial signatures.

3.1. Generating keys

The key generation process is shown in Fig. 1. Let {Pi} be the set of l participating players and L = l! There
are two security parameters k1 and k2. The dealer chooses two safe primes p = 2p 0 + 1 and q = 2q 0 + 1, each of



Fig. 1. TH-GQ-KeyGen: Generating keys.
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length dk1/2e bits, where p 0 and q 0 are also primes. Let n = pq, m = p 0q 0, Qn the set of all quadratic residues
modulo n, and g a generator of Qn. The order of Qn is m. Hereafter, all group computations are done in
Qn and the corresponding exponent arithmetic is done in Zm.

The dealer then chooses a random degree-t polynomial f(x) over Zm and gives the share si = gf(i) to the
player Pi. Note that the share given to player Pi is gf(i), instead of f(i). The shared secret key is thus
s = gf(0). The dealer then chooses a random (k2 + l)-bit value e with gcd(e,/(n)) = gcd(e,L2) = 1 and computes
v = l/se modn. In summary, the public key PK of the scheme is (n,e,g,v) and the secret share of player Pi is
SKi = (n,e,g,Si).

3.2. Signing messages

Our signing protocol mainly follows the signing steps of GQ signature scheme, except that the values r and
y are jointly generated. It consists of two phases: partial signature generation and signature construction, shown
in Fig. 2.

3.2.1. Partial signature generation

To sign a message M, players jointly compute y = re mod n first, where r is a random secret value. For the
simplicity of partial signature construction, we use gfrðxÞ instead of fr(x) to share the value r. That is, each
player pi gets a share ri ¼ gfrðiÞmodn and r is defined as gfrð0Þ. Therefore, we provide a protocol INT-
JOINT-EXP-RVSS for joint verifiable secret sharing of a random secret on exponent over integers, which is
shown in Appendix B. It lets all players jointly compute y ¼ re ¼ gfrð0Þe, and each player Pi get his own share
gfrðiÞ. Thus r = H(y,M) can be easily computed by all players, where H is the chosen one-way hash function.

All players then jointly execute INT-JOINT-ZVSS (joint verifiable secret sharing of zero), which is just like
INT-JOINT-RVSS described in Appendix A except that each player sets his secret ai0, bi0 to be zero, to share a
zero-constant t-degree polynomial fc(x). Each player Pi also holds a share ci ¼ gLfcðiÞmodn. This randomized
polynomial is generated for the security proof, described in Section 3.4. All other secret information generated
in INT-JOINT-ZVSS are then erased (the erasing technique [6,7]). Finally, each player Pi computes his partial
signature Zi ¼ ðriS

r
i Þ

LCi modn.

3.2.2. Signature construction

To compute the signature for M, we need t + 1 valid partial signatures. Since we do not know the validity
of partial signatures, we have to find the valid ones by simple majority vote or some more efficient algorithms
such as Berlekamp–Welch algorithm [38]. Therefore the threshold t must be less than l

3
. (We discuss how to



Fig. 2. TH-GQ-Sig and TH-GQ-Ver: Signing and verifying message.
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achieve t < l
2

in the next section.) Assume that the t + 1 valid partial signatures are zi1 ; zi2 ; . . . ; zitþ1
, we compute

the interpolation
z0 ¼
Ytþ1

j¼1

z
k0;ij L

ij modn ¼ g
Ptþ1

j¼1
k0;ij frðijÞþrf ðijÞþfcðijÞ

� �L2

modn ¼ ðrsrÞL
2

modn;
where k0;ij is the interpolation coefficient for the constant term from the index set {i1, i2,. . . , it+i}. Since k0;ij � L is
an integer, we can compute z 0 without knowing the factorization of n (and thus m). Moreover, because that
gcd(L2,e) = 1, we can find integers a, b such that L2a + eb = 1 and compute the signature z for M as:
z ¼ z0a � ðy=vrÞb ¼ ðrsrÞL
2aðrsrÞeb ¼ rsr mod n
Remark. Since the sharing polynomials f(x), fr(x), and fc(x) are over the exponents, the partial signature
zi ¼ ðrisr

i Þ
Lci is a share of a degree-t polynomial in the exponent. Thus, we need only t + 1 shares to interpolate

z 0. This helps us to modify the protocol to achieve optimal resilience. The detail is described in Section 4.
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3.3. Verifying signatures

The verification procedure is straightforward, as defined by the GQ signature scheme, shown in Fig. 2.

3.4. Security analysis

Our threshold GQ signature scheme is secure against the chosen message attack in the adaptive adversary
model. As long as the adaptive adversary controls less than t + 1 players, it cannot forge a valid signature
without interacting with un-corrupted players. The adversary cannot interrupt the un-corrupted players to
cooperatively obtain a valid signature for a message, either.

We need a simulator SIMTH-GQ-Sig to simulate the view of execution of the TH-GQ-Sig scheme producing a
signature (r,z) for a message M. The simulator is shown in Fig. 3.

Lemma 1. If the adaptive adversary corrupts at most t < l
3 players, its view of an execution of TH-GQ-Sig on

input message M and output signature (r, z) is the same as the view of an execution of SIMTH-GQ-Sig on input M

and signature (r, z).

Proof. Assume that B is the set of corrupted players and G is the set of un-corrupted (honest) players up to
now. In the beginning (the key generation stage), the simulator emulates the dealer to randomly assign si 2 Qn

to player Pi, 1 6 i 6 l. These si’s remain fixed for many rounds of simulation of TH-GQ-Sig. Let y = zevrmodn,
which is the correct re modn. Since y is distributively computed by all players in TH-GQ-Sig, the simulator runs
SIMINT-JOINT-EXP-RVSS (Fig. B.2) on input y to simulate the execution of INT-JOINT-EXP-RVSS protocol. In
Step 3, the simulator runs INT-JOIN-ZVSS on behalf of honest players and assigns each corrupted player
Pi a share ci = gfc(i) modn, where fc(x) has a zero constant. Now, the corrupted players Pi get si, ri and ci. Their
partial signatures zi ¼ ðrisr

i Þ
Lci mod n need be fixed since the adversary corrupts them. Let K0 � B be a set of t

players. We fix the partial signatures of the players in K 0. For un-corrupted players Pj 62 K 0, we set their partial
signatures to be compatible with those in K 0, that is, the shares of any t + 1 players result in the same signa-
ture. This is done by setting their partial signatures as
Fig. 3. SIMTH-GQ-Sig: Simulator of TH-GQ-Sig.
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z�j ¼ zkj;0L �
Y
k2K0
ðrksr

k gfcðkÞÞkj;k L mod n;
where kj,k’s are the interpolation coefficients for computing the jth share from the set of shares {0} [
{kjPk 2 K 0}. The simulator also sets the new shares c�j ¼ z�j=ðrjsr

j Þ
L the players Pj 62 K 0 and erases the old shares

cj. These c�j make the un-corrupted players have the consistent relation for rj; sj; c�j and z�j .
We see how the simulator produces an indistinguishable distribution for the adversary:

(1) The simulator runs SIMINT-JOINT-EXP-RVSS which generates y in the proper distribution.
(2) The simulator performs INT-JOINT-ZVSS on behalf of honest players. This is the same as what TH-GQ-

Sig does in Step 3. Thus, the distribution for ci’s is the same.
(3) The partial signatures zi’s of all players are consistent since the shares of any t + 1 players produce the

right signature (r,z) (by adjusting ci’s). Therefore, they have the right distribution.
(4) The erasing technique (for ci’s) is employed. As long as the simulated distribution is indistinguishable for

the adversary after it corrupts a new player, the entire distribution is indistinguishable for the adversary
after it corrupts up to t players. There is no inconsistency problem between corrupted players.

(5) The shares cj’s are adjusted to c�j ’s for the un-corrupted players (up to now) so that even the adversary
corrupts it later, the partial signature z�j is consistent with the possible check of equation z�j ¼ ðrjsr

j Þ
Lc�j .

In conclusion, the simulator SIMTH-GQ-Sig produces an indistinguishable distribution for the adversary, who
corrupts up to t players in an adaptive way. h

We now show that our threshold GQ signature scheme is secure against the adaptive adversary under the
chosen message attack.

For unforgeability, let Osig be the signing oracle that a forger (in the centralized version) queries for signa-
tures of messages. When Osig returns (r,z) for a message M, the simulator, on input M and (r,z), outputs a
transcript with an indistinguishable distribution for the adaptive adversary (in the distributed version). Thus,
the adversary, who engaged several executions of the TH-GQ-Sig protocol, cannot produce an additional valid
signature without cooperation of un-corrupted players.

Theorem 1. If the underlying GQ signature scheme is (tf, e)-secure, the (t, l)-threshold GQ signature scheme in

Figs. 1 and 2 is ðt0f ; e0Þ-unforgeable against the adaptive adversary who corrupts up to t < l
3 players, where t0f P

tf � qst1ðk; lÞ, e 0 6 e + qs/3
k, t1 is a time-bounded function, qs is the number of times of signature queries, and k is

the security parameter.

Proof. Assume that the adversary A, who controls up to t players during execution of the TH-GQ-Sig scheme
and thus obtains signatures for M1; . . . ;Mqs

, produces a valid signature for M, M 5 Mi. We construct a forger
F to forge a signature of the underlying GQ signature scheme for an un-queried message using the procedure
A and the signing oracle Osig for the underlying GQ signature scheme.

Let (n,e,g,v) be the public key of the underlying GQ signature scheme. This is used in the (simulated)
threshold GQ signature scheme also. First, since F does not know the corresponding secret key, in the key
generation stage F assigns each player Pi a random secret share si 2 Qn. Then, it simulates all players and the
adversary A. When the adversary A executes TH-GQ-Sig to produce a valid signature for Mi; 1 6 i 6 qs; F
queries Osig to obtain a signature (ri,zi) and runs the simulator SIMTH-GQ-Sig, on input Mi and (ri,zi), to
produce a transcript Ti with right distribution (by Lemma 1) for A. Therefore, F simulates A, on input of
these transcripts Ti’s, to produce a valid signature (r,z) for a new message M, M 5 Mi. Thus the underlying
GQ signature is not unforgeable under the chosen message attack, which is a contradiction.

While F performs SIMINT-JOINT-EXP-RVSS (Fig. B.2) in the SIMTH-GQ-Sig, if the player Pu is corrupted by the
adversary, the simulator must rewind the simulation and pick another single-inconsistent-player. The
probability of this inconsistent player being corrupted is at most 1/3 (this is given by the ratio t/l and t < l

3).
Therefore, SIMTH-GQ-Sig would fail with probability at most qs/3

k if the simulator rewinds at most k times in
one of qs times signature queries. The time complexity of the forger F is t0f þ qst1ðk; lÞ while t1 is the additional
rewinding time complexity function of SIMINT-JOINT-EXP-RVSS. SO if the underlying GQ signature scheme is
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(tf, e)-secure, our threshold GQ signature scheme is ðt0f ; e0Þ-unforgeable, where t0f P tf � qst1ðk; lÞ and
e 0 6 e + qs/3

k. h

Theorem 2. If computing the discrete logarithm modulo a safe prime is hard, the TH-GQ-Sig scheme in Fig. 2 is

robust against the adaptive adversary.

Proof. If there is an adversary A0 who participates TH-GQ-Sig on the input messages that it selected such that
the honest players fail to generate a valid signature for a given message, then we can construct an extractor E
to break the discrete-log problem modulo a safe prime. That is, on input ð~p; ~g; ~hÞ;E can compute Dlog~g

~hmod~p
where ~p ¼ 2~p0 þ 1; ~g; ~h are generators of G~p0 .

First, E lets the dealer generate the related keys as usual (Fig. 1) except that the dealer chooses (1) p ¼ ~p
(and thus p0 ¼ ~p0) (2) g ¼ ~g2 modn. Note that the probability of g � 1 (mod q ) is only 1/q. Since g is the
generator of both Gp0 and Gq0 ; g is a generator of Qn. For another generator ~h;E simulates h-generation
protocol [27] with A0 and outputs h ¼ ~h. Using the instance ðg; hÞ;E performs TH-GQ-Sig with A0 on behalf
of the honest players. Now, we show that if A0 hinders the signing protocol from producing a valid signature,
E can compute D ¼ Dlogghmodn, and then outputs Dlog~g

~h ¼ 2Dmod ~p.
Let us consider where the protocol may fail to produce the valid signature. First, in executing the INT-

JOINT-RVSS scheme (or INT-JOINT-ZVSS, see Fig. A.1), if a corrupted player Pi distributes his shares
ðfiðjÞ; f 0i ðjÞÞ; 1 6 j 6 n, that pass the verification equation (A.1), but do not lie on a t-degree polynomial, the
extractor E can solve the system of t + 2 linearly independent equations of the form c0 þ c1jþ c2j2 þ � � � þ
ctjt ¼ fiðjÞ þDf 0i ðjÞ with t + 2 unknown variables c0,c1, . . . ,ct and D. Then, the extractor outputs D.

Another situation that A0 may cheat is on the zero-knowledge proof in executing INT-JOINT-EXP-RVSS
(Fig. B.1). If the corrupted player Pi broadcasts ðA�i ;B�i Þ 6¼ ðgai0e; hbi0eÞ in Step 2, E extracts D ¼ Dloggh as
follows. Assume that A�i ¼ ga0 mod n and B�i ¼ hb0 modn. After executing Steps 2a–2c, E gets Ri = ri + da 0e and
R0i ¼ r0i þ db0e. Then E rewinds A0 to run Steps 2b–2c again. This gives E another two equations R�i ¼
ri þ d�a0e and R0�i ¼ r0i þ d�b0e. As long as d 5 d* (the probability of equality is negligible), E can solve the
equations and get the four unknown variables ri; r0i; a

0; b0. Since E knows the value m, the extractor computes D
from ai0 þDbi0 ¼ a0 þDb0mod m. h
4. Achieving optimal resilience

The protocols presented up to now have not yet achieved optimal resilience since in Step 5 of TH-GQ-Sig
(Fig. 2), we have to find t + 1 valid partial signatures. Also, the Step 2(b) of INT-JOINT-EXP-RVSS (Fig. B.1)
needs to correctly reconstruct the challenge d. Without validity proof of these shares, the threshold t cannot be
more than l

3
. Moreover, because all players generate secrets jointly, the number of honest players must be more

than that of dishonest ones. We describe how to modify them to achieve optimal resilience (n P 2t + 1).
4.1. The optimal resilient scheme

The main difference of this modified scheme is that each player proves the correctness of its partial signature
when issued. For this proof, in the key generation stage the dealer directly shares f(i) (instead of gf(i)) to player
Pi. In addition, the dealer shares another random polynomial f 0(x) and broadcasts the public references to f(i)
and f 0(i) for each Pi in the unconditionally-secure form, that is, the value Si ¼ gf ðiÞhf 0ðiÞ where h is another gen-
erator of Qn. The main key share of Pi is still set to si = gf(i), and all other operations are the same. The whole
process OR-TH-GQ-KeyGen is shown in Fig. 4.

In the partial signature generation phase, each Pi gets the additional f 0r ðiÞ and f 0cðiÞ from INT-JOINT-EXP-
RVSS and INT-JOINT-ZVSS, respectively. The unconditionally-secure references Ri ¼ gfrðiÞhf 0r ðiÞ and
Ci ¼ gLfcðiÞhLf 0cðiÞ can be also computed in the corresponding protocols. Now, each Pi knows the secrets f(i),
fr(i), and fc(i), and the corresponding reference information are publicly known. When signing a partial signa-
ture, each player presents a non-interactive zero-knowledge proof of knowledge of the secret shares. The proof
is described as follows:



Fig. 4. OR-TH-GQ-KeyGen: Generating keys.
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P proves to V the knowledge of x and r committed by E = gxhr.
Let H1 be a cryptographic strong hash function.

(1) P chooses two random values w;w0 2 Z�n.
(2) P computes c ¼ H 1ðgkhkEkgwhw0 Þ, and D = w + cx, D 0 = w 0 + cr.
(3) P sends (c,D,D 0) to V.
(4) V checks whether c ¼ H 1ðgkhkEkgDhD0E�cÞ.

We let E ¼ ðRiS
r
i Þ

LCi modn be the commitment of (fr(i) + f(i)r)L + fc(i), and each Pi can prove the knowl-
edge of them. Therefore each Pi generates a partial signature PSi ¼ ðzi; z0i; ci;Di;D0iÞ instead of zi. When con-
structing the signature, all players first check that ðRiS

r
i Þ

LCi � ziz0i modn to ensure that zi and z0i are correct with
respect to the reference value. Then the verification of the non-interactive proof makes sure that Pi knows the
committed value. After that, we can pick up exactly t + 1 correct partial signatures to reconstruct the signature
of M. The modified signing protocol OR-TH-GQ-Sig is described in Fig. 5.

For the case of Step 2(b) of INT-JOINT-EXP-RVSS in Fig. B.1, since all players perform INT-JOINT-RVSS
to generate their shares, the verification equation (1) in Fig. A.1 will sieve out the bad shares. Therefore, the
reconstruction of d in INT-JOINT-EXP-RVSS achieves optimal resilience.

4.2. Security analysis

We prove that our optimal resilient threshold GQ signature scheme described above is secure against the
chosen message attack in the adaptive adversary and random oracle model. As in the previous proof, we need
to check both unforgeability and robustness properties. First, we construct a simulator SIMOR-TH-GQ-Sig to
simulate the adversarial view of the execution of OR-TH-GQ-Sig, and get the following lemma.

Lemma 2. If the adaptive adversary corrupts at most t < l
2 players, its view of an execution of OR-TH-GQ-Sig on

input message M and output signature (r, z) is the same as the view of an execution of SIMOR-TH-GQ-Sig on input M

and signature (r, z).

Proof. The simulation steps of SIMOR-TH-GQ-Sig are the same as SIMTH-GQ-Sig, except that we need to simulate
the additional view of Ri; Ci; z0i; ci; Di, and D0i for each i 2 G. Since the simulation performs INT-JOINT-
RVSS (or INT-JOINT-ZVSS) as the usual execution, the reference values Ri’s, Ci’s have the right distribution.



Fig. 5. OR-TH-GQ-Sig: Signing a message.
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Moreover, the partial signatures zi’s can be perfectly simulated in the Step 4 of SIMTH-GQ-Sig. So we can sim-
ulate the values z0i ¼ ðRiS

r
i Þ

LCi=zi modn for each i 2 G s.t. these z0i’s are all correctly distributed.
For the non-interactive proof, we need a random oracle to simulate the hash function H1. The simulator

first randomly chooses ci, Di, and D0i for each i 2 G, and adds ðgkhkziz0i modnkgDi hD0iðziz0iÞ
�ci modn; ciÞ to a list
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LH1
. Then SIMOR-TH-GQ-Sig need not choose wi and w0i because these values are erased before outputting the

partial signature. If there is a query Q* made to H1, SIMOR-TH-GQ-Sig returns the corresponding c* if Q* is on the
list LH1

, or returns a random value otherwise. Therefore, the values ci’s, Di’s, and D0i’s are all in the proper
distribution and would pass the verification of partial signatures. h

Because of the successful simulation, we have the same unforgeability property as TH-GQ-Sig.

Theorem 3. If the underlying GQ signature scheme is (tF, �)-secure, the optimal resilient (t, l)-threshold GQ

signature scheme in Figs. 4 and 5 is ðt0f ; e0Þ-unforgeable against the adaptive adversary who corrupts up to t < 1
2

players, where t0f P tf � qst1ðk; lÞ, e 0 6 e + gs/2
k, t1 is a time-bounded function, gs is the number of times of

signature queries, and k is the security parameter.

Proof. The proof is the same as the proof of Theorem 1 except that we replace SIMTH-GQ-Sig with SIMOR-TH-GQ-

Sig to simulate the execution of OR-TH-GQ-Sig. By Lemma 2, SIMOR-TH-GQ-Sig outputs the transcripts with right
distribution. So the theorem holds. h

For the robustness property, we get the same argument as Theorem 2.
Fig. 6. TH-FS-GQ: Generating and updating keys.



Fig. 7. TH-FS-GQ: Signing and verifying.
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Theorem 4. If computing the discrete logarithm modulo a safe prime is hard, the OR-TH-GQ-Sig scheme in Fig. 5
is robust against the adaptive adversary.

Proof. The proof steps are exactly the same as the proof of Theorem 2. h
5. Other extensions

5.1. Threshold identity-based signatures

From our threshold GQ signature scheme, we get a threshold identity-based signature scheme immediately.
The dealer first chooses n, g, e like performing in Fig. 1. For an identity ID, the dealer computes vID = H2(ID),
where H2 : {0,1}*! Qn is a hash function. Then the main secret sID is computed as v�d

ID modn. For each player
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Pi, the dealer generates si = gf(i) mod n such that gf(0) = sID. After generating keys, players can sign messages as
usual, and the verifier can verify signatures from the public key vID = H2(ID).
5.2. Threshold forward-secure signatures

Based on our threshold GQ signature scheme and Itkis and Reyzin’s forward signature scheme [26], we con-
struct a threshold forward-secure signature scheme TH-FS-GQ.
5.2.1. Key generation

The key generation process is in Fig. 6. Let T be the total number of time periods. The first two steps are the
same as those of TH-GQ-KeyGen. Each player Pi gets si as his initial share. The dealer chooses primes ej,
1 6 j 6 T, in the range between 2k2ð1þ ðj� 1Þ=T Þ and 2k2ð1þ j=T Þ. That is, we divide the interval between
2k2 and 2k2þ1 into T buckets, and choose each prime ej from the jth bucket. The public key is v ¼ 1=se1e2...eT

modn. At time period j, 1 6 j 6 T, the player Pi, 1 6 i 6 n, holds two secrets:
Fig. A.1. INT-JOINT-RVSS.



Fig. B.1. INT-JOINT-EXP-RVSS.
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sij ¼ s
e1���ej�iejþ1���eT
i mod n and tij ¼ se1e2���ej

i modn
where sij is the signing share and tij is an auxiliary secret for share update. Finally, the dealer sends the player
Pi two shares si1 and ti1. Hence, the secret key for player Pi at initial time period is SKi1 = (1, T,n, si1, ti1,e1) and
the system public key is PK = (n,v,T).

5.2.2. Key update

To compute the keys of the (j + 1)th time period, each player Pi computes the exponents ej+1,ej+2, . . . ,eT for
evolving the secret.1 Then, Pi computes its signing share siðjþ1Þ ¼ t

ejþ2ejþ3���eT
ij modn and key evolving secret

tiðjþ1Þ ¼ t
ejþ1

ij mod n. Thus, Pi’s signing share in the (j + 1)th period is
SKiðjþ1Þ ¼ ðjþ 1; T ; n; siðjþ1Þ; tiðjþ1Þ; ejþ1Þ:
5.2.3. Signing messages

The signing protocol, shown in Fig. 7, is quite similar to TH-GQ-Sig except that it involves time parameters
and replaces the values e and si, with ej and sij for time period j. Note that the time period j and the exponent ej
can also take all ej’s as the part of the secret key, but this would increase the storage space linear in T. Therefore, we only put ej into
ret key for each message signing, and regenerate others when updating keys. We assume that the dealer chooses these primes by a
inistic algorithm such that players can regenerate ej+1, . . . ,eT based on ej.
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are put into the hash function in computing r. Since the verifier does not know ej exactly, the hashing ensures
that the signer cannot output arbitrary ej after seeing the challenge r. Finally, the signature for the message M

is (z,r, j,ej).

5.2.4. Signature verification

In order to have a constant-size public key, the time period exponents e1,e2, . . . ,eT are not contained in the
public key. Since the verifier gets e0 from the signature, it needs to make sure that e0 is a value between 2k2ð1þ
ðj� 1Þ=T Þ and 2k2ð1þ j=T Þ. Once e0 is verified, the remaining verification is the same as that in TH-GQ-Ver.

6. Conclusion

We have presented the first threshold GQ signature scheme and extended it to achieve optimal resilience in
the random oracle model. Our schemes are secure against the adaptive adversary. It is interesting to improve
the efficiency of the schemes.

Appendix A. INT-JOINT-RVSS protocol

The INT-JOINT-RVSS protocol allows players jointly generate a random secret, and each player holds a
share of the secret. Since we do not know the order of Qn, the sharing polynomial should be over integers.
We can find the unconditionally-secure verifiable secret sharing protocol over integers (INT-VSS) in
Fig. B.2. SIMINT-JOINT-EXP-RVSS.
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[17,19,21]. So we let each player perform INT-VSS as a dealer to share a random value. After joint execution,
the random secret is implicitly defined as the sum of all random values. The protocol is shown in Fig. A.1.

Appendix B. INT-JOINT-EXP-RVSS protocol

Our INT-JOINT-EXP-RVSS (Fig. B.1) is like the adaptively-secure distributed key generation protocol [7]
except for the composite modulus and an additional constant exponent. In our protocol, players first jointly
perform INT-JOINT-RVSS to share a random secret x. To compute y = gxe modn, each player Pi broadcasts
Ai ¼ gai0e; Bi ¼ gbi0e where

P
i2QUALai0 ¼ x, and proves the knowledge of ai0e,bi0e by simultaneous proof tech-

nique [7,27].
We also provide a simulator for INT-JOINT-EXP-RVSS in Fig. B.2. On input y = gxe mod n, the simulator

constructs the same adversarial view as in the real protocol running.
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