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Chapter 4 

The Limit Cycles Induced by The 

Disturbance Observer 
 
4.1 Introduction: 
 

In recent years, disturbance observer is generally introduced into motion control 

systems, to eliminate the unwanted disturbance and plant uncertainty.  The 

disturbance observer has a drawback in regulating control, however.  While the 

system is reaching the desired position, the mutual effect between the disturbance 

observer and the quantization coming from the sensor and digital to analog converter 

will induce limit cycles, which will cause large steady-state error in point-to-point 

control [90].  Therefore, the applicability of the disturbance observer for the 

regulating control becomes questionable.  M. Fischer and M. Tomizuka [95] chose 

suitable controller parameters from several experimental results to reduce the effect of 

the limit cycles.  But simultaneously, it is difficult to maintain the best transient 

performance.  In this chapter, for the absence of zero-input limit cycles in nonlinear 

discrete time systems, we will use the theorem [91] to derive sufficient conditions that 

can avoid limit cycles induced by disturbance observer and quantization.  This 

sufficient condition will help us find adequate controller parameters in velocity loop 

to avoid the unwanted limit cycles.  After that, we will introduce an adaptive 

parameters mechanism which not only maintains the tracking performance in transient 
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but also eliminates the limit cycle in steady state.  The remainder sections of this 

chapter are listed as below: In Section 4.2, the sufficient condition for the absence of 

limit cycle caused by mutual effect between disturbance observer and quantization.   

Application in the motion control systems and an adaptive parameters mechanism are 

introduced in Section 4.3 and Section 4.4 respectively.  The experimental results are 

shown in Section 4.5.  And finally, the summery of this chapter is discussed in 

Section 4.6. 

 

4.2 The sufficient condition for the absence of limit cycle caused by 
mutual effect between disturbance observer and quantization: 
 

The most widespread controller structure adopted in motion control systems is 

illustrated in figure 4.1. 

 
Figure 4.1  Controller structure of the experiment 

 

The controller type of )(sCp  and )(sCv  in position loop and velocity loop can be 

any common used controller except for integrator in position loop, which will induce 

severe limit cycles caused by friction [92].  Therefore, the position loop controller 

which we recommend here is P control.  The velocity loop controller is PI control. 

The feed-forward controller )(sFp  in position loop is a pure differentiator and )(sFv  

in velocity loop is the inverse of the plant )(sP . The friction compensator based on 
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the LueGre model is feed-forward type. The moment to generate limit cycle can be 

described as follow: We give a position command illustrated in figure 4.2. (The 

profile of figure 4.3 is the velocity command relative to this position command.) 

When the system reaches the desired position after acceleration-deceleration 

mechanism within 0~0.25(sec), the signal )(suv ( see figure 4.1 ) fed into the velocity 

loop is almost zero because the signal (velocity command) comes from feed-forward 

controller )(sFp  is zero and the signal from )(sCp  is extremely small.  At this 

moment , the signal to noise ratio (SNR) in the velocity loop is too low, that the 

precision of the system is seriously affected by the quantization error coming from 

encoder and digital to analog converter (DAC).  Therefore, the velocity loop which 

has disturbance observer inside is sustained to correct the errors and generates anxiety 

limit cycles. 

 
Figure 4.2  The typical position command in regulating control. 

 
Figure 4.3  The velocity command relative to position command in figure 4.2. 
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Therefore, we will focus our attention to the velocity loop that has disturbance 

observer in the inner loop (see figure 4.4) and utilize the theorem [91] for the absence 

of zero-input limit cycles in nonlinear discrete time systems to derive sufficient 

conditions that can avoid limit cycle induced by disturbance observer and 

quantization. 

 
Figure 4.4  Velocity loop of the controller structure in the figure 4.1 

 

We have two assumptions in our analysis: 

(a).The friction can be compensated completely by feed-forward type compensator 

based on LueGre model or disturbance observer, so we can omit the effect of the 

friction. 

(b). The limit cycle caused by the mutual effect between the disturbance observer and 

quantization only has harmonic components with no DC component, i.e., a pure 

periodic unbiased signal. This assumption makes sense when we go to the 

experimental results in section 5. 

)(zH in figure 4.4 is the discrete transfer function from sensor output to velocity 

)(zV .  If the sensor were a tachometer, )(zH  would have a constant.  If the 

sensor were a encoder, )(zH  would not have a constant. 1Q  is the truncation type 

quantizer which comes from sensor.  2Q is the truncation type quantizer which 

comes from DAC.  The quantizers 1Q  and 2Q conform to both of the two 

conditions listed as below: 
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0)0( =Q                                                           (4.1) 
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xQ                                              (4.2) 

If the system has a limit cycle of which period length is N samples, we will define a 

function Λ . 
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)(1 kx :signal before sensor quantizer 1Q  in time domain 

)(2 kx :signal before DAC quantizer 2Q  in time domain 

 

According to conditions (4.1) and (4.2), the function Λ  is always positive and can 

be rewritten as below: 
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)(1 ky : signal after sensor quantizer 1Q  in time domain 

)(2 ky : signal after DAC quantizer 2Q  in time domain 

 

Then, we utilize discrete Parseval’s theorem to transfer the function Λ  into 

frequency domain representation. 
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where lNj
l ez ⋅⋅⋅
=

)2( π
, )( lzB  is the discrete transfer function from )(1 lzY  to 

)(2 lzX .  Equation (4.5) can be written by the matrix form. 
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rewritten as below. 
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Take equation (4.9) into equation (4.11). 
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Given that )( lH zA  is negative definite ( 0)( <lH zA ) for 
2

~1 Nl = , then the 

right-hand side of the equation (4.12) is always negative, but the left-hand sideΛ is 

always positive or zero.  Thus, the right-hand side of the equation (4.12) contradicts 

the fact 0≥Λ .  The only condition to avoid the contradiction is 0)(
rr

=lzY  for 

2
~1 Nl = , and no limit cycles will generate. )( lH zA  is negative definite is the 

sufficient condition for the absence of zero-input limit cycles.  Therefore, If we 

could design the controller parameters to make )( lH zA  is negative definite for 

2
~1 Nl = , the system would not have generated limit cycles.  Let’s get the 

eigenvalue of )( lH zA . 
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If all coefficients in the polynomial (4.13) are positive, the eigenvalue λ  of )( lH zA  
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is all negative.  Therefore, )( lH zA  is negative definite Hermitian matrix and 

satisfies the sufficient condition for the absence of limit cycles. 
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Now, we will get the discrete transfer function )( lzB . Let’s take a close look at the 

path from )(1 lzY  to )(2 lzX  in figure 4.4. 
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Take (4.15) into (4.14): 
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Finally, the inequality (4.16) which occurs in the velocity loop of the system 

illustrated in figure 4.4 is the sufficient condition for the absence of zero-input limit 

cycles caused by the mutual effect between disturbance observer and quantization. 

 

Theorem: The N  length limit cycles induced by disturbance observer and 

quantization are absent from the velocity loop illustrated in figure 4.4, if the following 

condition is satisfied. 
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(proof as above paragraph) 

 

4.3 Application in the motion control systems: 
 

To verify the validity of the inequality (4.16), we will give two examples : (1). 

The motion control structure proposed by H. Kobayashi [90]. (2). The structure 

(figure 4.1) we used in our systems.  

(1).The motion control structure proposed by H. Kobayashi is illustrated in the figure 

4.5. 

 

Figure 4.5  The motion control structure proposed by H. Kobayashi (H. Kobayashi 
1996[90]) 

 

According to figure 4.5 proposed by H. Kobayashi[90] we know that the system only 

has position loop but doesn’t have velocity loop, so the )( lv zC  in the inequality 

(4.16) applied in the system is set to zero.  The inverse plant transfer function 

)(1 sP−  in the system is from position to voltage, not from velocity to voltage.  So, 

the )( lzH  equals 1 and the continuous transfer function )(1 sP−  designed by H. 

Kobayashi is listed as below: 
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at kk
BsJssP

⋅
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J :inertia (kg) 

B :viscous friction coefficient (kg/sec) 

ak :gain of current driver (A/Volt) 

tk :force constant of motor(Nt/A) 

 

The author used a third order low-pass filter )(sQ  to make )(1 sP−  become 

realizable. 
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wB :low-pass filter cut-off frequency (Hz) 

 

He transferred the continuous transfer function )(sP  into discrete transfer function 

)(zP  by zero-order hold method and found that )(zP  had zero near -1.  

Consequently, )(1 zP−  in the disturbance observer had pole near -1 (has pole near 

2
sjω±  in s domain. sω :Sampling frequency(rad/sec)).  The author considered the 

outcome became the reason why the system generated limit cycles.  Disregarding the 

nature of the system, he moved the pole of )(1 zP−  much more inside the unit circle 

by a parameter r , see equation (4.17). 
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The author moved the pole of )(1 zP−  to -0.6, and the experimental results showed 

that the limit cycles could be reduced but not eliminated. 

If we take )(1 zP−  with pole near -1 into the inequality (4.16), we are not able to find 

parameters which satisfy the sufficient condition, even if we lower the cut-off 
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frequency of the low-pass filter in the disturbance observer to a very low value (1hz). 

Similar to the method introduced by H.  Kobayashi , the only solution to satisfy the 

inequality (4.16) is to move the pole of )(1 zP−  much more away from -1 pole. The 

parameters that can satisfy the sufficient condition are the pole of )(1 zP−  on the 

right-hand side (approximately on the 0.98 pole), and 1 hz of the low-pass filter 

cut-off frequency.  Therefore, the condition satisfying the inequality (4.16) for the 

absence of the limit cycle is much more stringent than the condition derived from H. 

Kobayashi’s method, but the ways to reduce limit cycles are roughly the same.  

Besides, the inverse plant )(1 zP−  in our system (see fugure 4.1) is designed by 

pole-zero matched method and doesn’t has pole on the left-hand side like H. 

Kobayashi’s systems.  But our system still generate limit cycles.  In the next 

paragraph, we will briefly introduce the way to design controller parameters of our 

system which satisfy inequality (4.16) to eliminate limit cycles. 

 

(2). In order to find a set of parameters in the velocity loop which can not generate 

limit cycles caused by disturbance observer and quantization, we will apply the 

sufficient conditions to the motion control system introduced in section 2 (see figure 

4.1).  In this system, the sensor is encoder, so the discrete transfer function )(zH  is 

a βα −  filter [82] that can differentiate the position measured from the encoder with 

respect to time to obtain the velocity )(zV .  The βα −  filter we used here is 

critical damping second order type and )(zH  is listed as below: (all discrete transfer 

function in this chapter will be expressed as 1−z  form) 
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:T sampling time 

:β a coefficient which can determine the cut-off frequency of the βα −  filter 
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)(1 zD  is the low-pass filter transfer function multiplied by the inverse plant transfer 

function (The inverse plant transfer function in the )(1 zD  is from velocity to 

voltage ).  We use pole-zero matched method to design )(1 zD . 
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wB :low-pass filter cut-off frequency (Hz) 

 

)(3 zD  is the low-pass filter that is identical to the one in )(1 zD . 
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)(zCv  in the velocity loop is PI control. 
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Now we will get the plant transfer )(zP  includes zero-order hold.  See figure 4.6. 

 

Figure 4.6  Velocity loop of the controller structure in the figure 4.1 

 

Take the z-transform of the signal )(1 sX : 
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Now, we can take the discrete transfer functions (4.18), (4.19), (4.21), (4.22), and 

(4.23) into the inequality(4.16) to find appropriate parameters.  The main idea is that 

since the parameters of J , B , tk , ak  are dependent on the nature of the system,  

the parameters we need to find and adjust for absence of limit cycles are only vpk , 

vik , β , and wB .  Let the limit cycles that occur in the system be a length (period) 

of 50 ( 50=N . The larger the N  is, the more stringent the inequality(4.16) is.) 

sample times, and the sample rate is 2 KHz ( )(0005.0 sT = ).  The original 

parameters with limit cycles, and those for absence of limit cycles, found by utilizing 

the inequality (4.16) are compared in the table 4.1. 

 

Table 4.1  The parameters for the cascade control and the parameters for the absence 
of limit cycles 

 
Symbol and name 

The parameters 
for the cascade 

control 

The parameters 
for absence of 

limit cycles 

 
Unit 

J , inertia 2.49 2.49 Kg 
B , viscous friction coefficient 44.14 44.14 kg/sec 

vpk  184 0.025 Volt•sec/m

vik  35537 1 Volt /m 

wB ,low-pass filter cut-off freq 10 1 Hz 
β  0.32 0.001 (none) 

tK , force constant of motor 28.5 28.5 N/A 

aK , gain of current driver 0.349 0.349 A/Volt 
T , sampling time 0.0005 0.0005 sec 

 

From above results, we get that the parameters need to be tuned to satisfy inequality 
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(4.16) is vpk , vik , β , and wB .  We are aware that the value of the parameters for 

absence of the limit cycles is much smaller than the original one, and the system 

designed under these parameters has poor performance.  So, in next section we will 

suggest an adaptive mechanism taking place after acceleration-deceleration period, to 

keep the system performance in transient and also avoid the limit cycle in steady state. 

Besides, the simple method that only reduces the cut-off frequency wB  of the 

low-pass filter in the disturbance observer, without tuning the parameters vpk , vik  of 

the PI controller in the velocity loop and  β  of the βα −  filter, is not able to 

satisfy the inequality (4.16), also generates limit cycles in the experimental results, 

but with smaller amplitude and lower frequency. 

 

4.4 Adaptive parameters mechanism: 
 

According to the parameters we found by conforming to the inequality (4.16) in 

the last section, the performance in the velocity loop is too poor to meet the 

performance demand of the modern motion control system.  In this section, we will 

introduce an adaptive method taking place after the acceleration-deceleration 

mechanism in the regulating control.  The purpose of the adaptive parameters 

mechanism is to maintain the original designed parameters for high performance 

demand within acceleration-deceleration period in the velocity loop.  After the 

period, the system will gradually become steady-state, therefore, we can linearly tune 

the parameters into the values for the absence of the limit cycles without severely 

impacting the overall performance of the system, and linearly increase the P gain in 

the position loop to make the system rapidly reach to the desired position.  The 

reason for increasing the P gain in the position loop is explained as follow.  After 
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acceleration-deceleration mechanism, the system is almost in the steady-state.  The 

velocity of the system is very slow in this phase, so the disturbance observer making 

the system become nominal plant will actually take effect, and in addition, the 

feed-forward controller )(sFv  whose design is based on the nominal plant will make 

the transfer function from velocity command )(suv  to velocity response )(sv  

become one (see figure 4.1).  The block diagram can be simplified as figure 4.7. 

 

Figure 4.7  Equivalent controller structure after acceleration-deceleration period. 

 

The system plant becomes 
s
1  and has a P control in the position loop.  Thus, 

increasing the P gain will make the system quickly move to the desired position and 

decrease the steady-state error.  The linear adaptive mechanism after the 

acceleration-deceleration period will be listed as below: 
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iρ : The parameters before tuning. 

fρ : The parameters after tuning. 

accT : The acceleration-deceleration period in the regulating control (for example, 

accT in figure 4.2 is the period within 0~0.25 second). 

tuneT∆ : The period of tuning parameters (for example, tuneT∆ in figure 4.2 is the 

period after 0.25 second). 
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The time for tuning parameters we recommend here is 0.5 second ( 5.0=∆ tuneT ).  

The parameters need to be tuned and their values before and after tuning are listed in 

the table 4.2. 

 
Table 4.2  The parameters need to be tuned for the absence of limit cycles  

 
Symbol and name 

The parameters 
values before 

tuning 

The parameters 
values after 

tuning 

ppk , P gain in the position loop 25 2000 

vpk , P gain in the velocity loop 184 0.025 

vik , I gain in the velocity loop 
35537 1 

wB , Low-pass filter cut-off freq
10 1 

β  
0.32 0.001 

 

4.5 Experimental results: 
 

We give a position command to execute the acceleration-deceleration mechanism 

first and then fix the system at the stationary position. The experiments will be 

conducted for three cases to verify the validity of the parameters for the absence of 

the limit cycles and the effect of the adaptive mechanism. (1). )(105 2 mx − regulating 

control. (2). )(101 3 mx − regulating control. (3). )(101 6 mx − regulating control. 

The position command is briefly listed as below. 
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=

acc

acc
rrrr

TtA

Tt
T
t

T
t

T
tAtx

,

0,10156)(

345

                (4.25) 

The index we use to analyze the system performance is listed as follow: 
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∑ −=
N

rtr xx
N

E 2)(1    for rtt ≤≤0                                 (4.26) 

∑ −=
N

rqs xx
N

E 2)(1    for qsr ttt ≤<                                (4.27) 

∑ −=
N

rss xx
N

E 2)(1    for ssqs ttt ≤<                               (4.28) 

trE  is the rms index which can be used to analyze the transient performance within 

the acceleration-deceleration period.  qsE  is the rms index which can be used to 

analyze the system performance of converging the desired position.  ssE  is the rms 

index which can be used to analyze the steady-state performance and judge whether 

the system can reduce the limit cycles. 

(1).Large scale regulating control: 

)(105 2 mxA −=  

(sec)5=accT  

trE  for (sec)50 ≤≤ t , qsE  for (sec)5.75 ≤≤ t , ssE  for (sec)155.7 ≤≤ t . 

 

Figure 4.8  The position command in large position regulating control. 
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Table 4.3  Performance index of the three controller structure 

Controller structure Etr (m) Eqs(m) Ess (m) 
1.TC(tradition controller) 6100296.1 −×  7109772.2 −× 8100685.4 −×
2.TC+FC+DOB(without adaptive) 7103558.4 −×  7105510.2 −× 7108315.1 −×  

3.TC+FC+DOB(with adaptive) 7102532.4 −×  7101481.1 −× 8103806.2 −×

 

Remark: The tradition controller (TC) is the controller structure that is identical to the 

one in figure 4.1 but without disturbance observer and feed-forward type friction 

compensator. 

 

 

 

Figure 4.9  The position errors of the three controller structures in large scale 
regulating control 

 

The encoder resolution we use in the large scale regulating control is 0.0791 )( mµ . 

From table 4.3, we can see that the transient performance of the controller structure 2 

increases by almost 57% as compared with the controller structure 1 (TC), but it has 
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the worst performance in steady-state because it generates the limit cycles. 

The controller structure 3 has good transient performance as well as the controller 

structure 2, but with the adaptive mechanism, the performance of converging desired 

position ( qsE ) and steady-state ( ssE ) is superior to the controller structure 2 and is the 

best of the all three controller structure.  As we can see, the limit cycles in the 

controller structure 2, caused by the mutual effect between the disturbance observer 

and the quantization, are the pure harmonic limit cycles (no dc components), so the 

assumption in section 2 makes sense.  The limit cycles of the controller structure 1 

(TC) within 5~15 (sec) are not identical with the limit cycles of the controller 

structure 2.  The desired position )(105 2 mx −  of the position command cannot be 

divided by the encoder resolution )(1091.7 8 mx −  with no remainder, so there is 

always an offset error of the position.  Therefore, the behavior to continue correcting 

the offset error in the feedback loop cause the limit cycles of the controller structure 1 

which has only one count drift.  The controller structure 3 is not sensitive to the 

offset error because we decrease the gain of the velocity loop controller )(scv  to a 

very low value. 

 

(2).Medium scale regulating control: 

)(101 3 mxA −=  

(sec)25.0=accT  

trE  for (sec)25.00 ≤≤ t , qsE  for (sec)5.225.0 ≤≤ t , ssE  for (sec)155.2 ≤≤ t . 
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Figure 4.10  The position command in medium position regulating control 

 
Table 4.4  Performance index of the four controller structure 

Controller structure Etr (m) Eqs(m) Ess (m) 
1.TC(tradition controller) 6100971.6 −×  7109790.4 −× 8105595.3 −×
2.TC+FC+DOB(without adaptive) 6104605.1 −×  7105158.3 −× 7103249.2 −×
3.TC+FC+DOB(only lower wB ) 6107968.1 −×  7105505.3 −× 8106946.5 −×
4.TC+FC+DOB(with adaptive) 6104448.1 −×  7106204.1 −× 8103081.3 −×  

 

 

 
Figure 4.11  The position errors of the four controller structure in medium scale 

regulating control 
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The encoder resolution we use in the medium scale regulating control is 0.0791 )( mµ . 

The results in the medium scale regulating control is similar to the results in the large 

scale.  The controller structure 4 with adaptive mechanism has the best overall 

performance.  The transient performance of the controller structure 4 is as good as 

the controller structure 2,3 , and increases by 76% as compared with the controller 

structure 1.  Furthermore, the performance of converging to the desired position of 

the controller structure 4 is almost 2 times better than the other three and the 

steady-state error ( ssE ) also decreases by 85% as compared with the controller 

structure 2 without the adaptive mechanism.  As we can see from figure 4.11, the 

controller structure 3 only with lowered the cut-off frequency wB  of the low-pass 

filter can’t completely avoid the limit cycles but can reduce the amplitude and 

frequency of the limit cycles. 

 

(3). Micro scale regulating control: 

)(101 6 mxA −=  

(sec)25.0=accT  

trE  for (sec)25.00 ≤≤ t , qsE  for (sec)225.0 ≤≤ t , ssE  for (sec)122 ≤≤ t . 

Table 4.5  Performance index of the three controller structure 

Controller structure Etr (m) Eqs(m) Ess (m) 
1.TC(tradition controller) 7100239.3 −×  8101596.7 −× 8107378.1 −×  

2.TC+FC+DOB(without adaptive) 7103928.2 −×  8105135.8 −× 8108542.3 −×
3.TC+FC+DOB(with adaptive) 7100317.1 −×  8104583.2 −× 8102608.2 −×
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Figure 4.12  The position response of the three controller structures in micro scale 
regulating control 

 

The encoder resolution we used in the micro scale regulating control is 0.02 )( mµ .  

The controller structure 3 with adaptive mechanism has the best performance in terms 

of trE  and qsE . Although the steady-state performance of the controller structure 3 

is worse than the controller structure 1, it is still much better than the controller 2 by 

reducing the limit cycles. 

 

4.6 Summery: 
 

In this article, we introduce a sufficient condition of eliminating the limit cycles 

induced by the disturbance observer and quantization.  The sufficient condition 

enables us to design appropriate parameters in the velocity loop to avoid the limit 

cycles.  However, we are not satisfied about the performance of the parameters 
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which conforms to the sufficient condition. We further introduce a linear adaptive 

mechanism that not only maintains the transient performance but also reduces the 

limit cycles in the steady-state.  As we can see from the experimental results in 

section 4.5, the TC+FC+DOB control structure with the adaptive mechanism has the 

best overall performance in regulating control. 
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Chapter 5 

The Modified Friction Model for 

Motion Control in Presliding 

Region 
 
5.1  Introduction: 
 

In mechanical system friction is complex and highly nonlinear phenomenon.  

Friction deteriorates the tracking performance, especially in presliding region, and 

generates anxiety limit cycle in regulating control.  In order to propose an elaborate 

friction model as a tool to design a friction estimator and predict nonlinear 

phenomena, we need to understand more about friction phenomenon.  The most 

common model for control purpose is LueGre model proposed by C.Canudas de Wit 

[8] in 1995.  This model can caputure the characteristics between presliding region 

and sliding region without any switching function, using the LueGre model to design 

a friction compensator is easy.  However, in the presliding region the LueGre model 

cannot capture some important phenomena like hysteresis loop with non local 

memory, memory wipe out and nonlinear spring after velocity reversal [62], [26], [19]. 

Consequently, we are not able to obtain satisfied control performance based on 

LueGre model in presliding region.  After LueGre model was announced, Jan 

Swevers [62] modified this model into an integrated friction model using multi-state 

technique to capture hysteresis loop with non local memory and memory wipe out 
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phenomenon.  Nevertheless, this model did not have an appropriate transition curve 

(i.e., a function that describe the relationship between friction force and bristles 

displacement) to capture the nonlinear spring characteristic after velocity reversal.  

In this chapter we will introduce a nonlinear function that suitably describes the 

nonlinear spring characteristic and is easy to implement for motion control.  

The sections of this chapter will be organized as below: Firstly, in section 5.2, we 

would present some important friction phenomena in presliding region, point out the 

shortcomings of LueGre model and further propose the modified friction model in the 

section 5.3.  Next, the procedure of identifying modified friction model’s parameters 

is introduced in section 5.4.  In section 5.5, to verify the accuracy of the modified 

model, we use this model to compensate friction in linear motor system. Finally, the 

conclusion is given in section 5.6. 

 

5.2  Important Friction Phenomena in Presliding Region: 
 

There are some characteristics of presliding region that are obviously observed in 

experiments.  We will list those characteristics and explain them in detail as follows: 

(a) elastic-plastic like deformation. (b) hysteresis loop with non local memory and 

memory wipe out. (c) nonlinear-spring phenomenon after velocity reversal. 

(a) Elastic-plastic like deformation: 

Between the two contacting surfaces in the presliding region, it is considered that 

a lot of bristles are randomly distributed and act as spring characteristic.  When 

relative motion between two surfaces is made, the spring will have deformation and 

generate opposite force to counteract the motion.  This opposite force is analogous to 

friction force (figure 5.1). 
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Figure 5.1  Bristles model. 

Initially, the bristles adhere to the surface, so the spring’s deformation rate is equal to 

relative velocity between two surfaces.  As the surfaces continue to move, the 

bristles start to slip.  Therefore, the deformation rate of the spring becomes slower 

than relative velocity, and then the spring ceases deformation while it is slipping 

completely.  After that, the lubricant starts to form, and the system enters sliding 

(macro) region where Stribeck effects, Columb friction and viscous friction are the 

main characteristics (see figure 5.2). 

 
Figure 5.2  Friction characteristics in sliding region 

The phenomenon described above can be thought as elastic-plastic like deformation. 

The elastic term that contributes friction force is analogous to the spring deformation, 

and the plastic term that does not contribute friction force is equal to the bristles’ slip 

phenomenon we mentioned above.  Consequently, relative motion between two 

surfaces only causes elastic (spring) deformation initially, but as the motion goes, it 

causes not only elastic deformation but also plastic deformation. The spring finally 
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has breakaway (completely slip), and the system transits to sliding (macro) region.  

LueGre model has this property.  It uses the z state to represent the elastic 

deformation and has an implicit state to represent the plastic deformation. 

(b) Hysteresis loop with non local memory and memory wipe out: 

In presliding region the friction force depends much on displacement, the relationship 

between friction and displacement is quite important.  One of the most important 

relationships between friction force and displacement in presliding region is hysteresis 

loop with non local memory and memory wipe out.  We will explain this 

characteristic as below.  If one of the velocities of the system changes its direction 

(maybe from positive velocity to negative velocity, or from negative velocity to 

positive velocity), a velocity reversal happens, and the point where the system 

changes its velocity direction is called“turning point”.  After this point, the 

friction-displacement curve will generate new branch (see figure 5.3 ). 

 
Figure 5.3  System has velocity reversal at turning point B and generate a 
new friction-displacement curve )( CB → . 

 

When any friction-displacement curve which has tendency to go back to the last 

turning point passes through the last turning points, there forms a closed 

friction-displacement curve called“hysteresis loop”(see figure 5.4). 
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Figure 5.4  Curve )( BC →  has tendency to go back to its last 

turning point B  and there finally forms a hysteresis loop )( BCB →→ .  
 

If a friction-displacement curve goes after this hysteresis loop, its tendency or shape 

will not follow the former friction-displacement curve that forms this hysteresis loop 

and may follow the earlier generated curve that is not part of this hysteresis loop (see 

figure 5.5) 

 
Figure 5.5  The friction-displacement curve )( DB →  doesn’t follow the 

curve )( BC →  but follow the curve )( BA→  which is generated earlier than the 
curve )( BC → . 

 

The phenomenon described above is “memory wipe out”.  One can imagine that 
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the hysteresis loop immediately vanishes from our memory after it is formed, so any 

curve that goes afterwards is not influenced by this loop and may follow the earlier 

generated curve that isn not part of this loop.  The term“non local memory” is 

similar to the term“memory wipe out”, which means that the friction-displacement 

curve’s tendency is not only influenced by early curve but also by extremely earlier 

curve.  The best example was illustrated in figure 5.5 where curve )( DB →  follows 

from extremely earlier curve )( BA→ not curve )( BC → .  LueGre model can’t 

capture the phenomenon we have described above, but Jan Swevers’s integrated 

friction model can. 

(c) Nonlinear-spring phenomenon after velocity reversal: 

In Futami research [19], the author finds out that a nonlinear spring phenomenon 

appears after the system has velocity reversal.  The main characteristics of the 

nonlinear spring is that the spring’s stiffness is very high after velocity reversal, but 

the stiffness will decline gradually as the system is moving away from the turning 

point (see figure 5.6). 

 

Figure 5.6  Outline of force-to-displacement relationship of a ball screw driven slider 
(Futami et al., 1990 [19]). 
 

So the friction-displacement curve’s slope (spring stiffness) is very steep initially after 
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the system occurs velocity reversal and will gradually become less steep as 

displacement is increasing.  Jan Swevers did not introduce an appropriate friction 

function of elastic deformation )(zf  to describe this phenomenon.  We will use an 

appropriate nonlinear spring function )(zf  to describe this in next section. 

 

5.3  LueGre model and Modified friction model: 
 

LueGre model is briefly listed as below. 

z
vg

v
v

dt
dz

⋅⋅−= 0)(
σ                                                  (5.1) 

vB
dt
dzzF ⋅+⋅+⋅= 10 σσ                                              (5.2) 

sv
v

csc eFFFvg
−

⋅−+= )()(                                             (5.3) 

where z  is the bristles’ deformation; 0σ  is the spring’s stiffness; 1σ  is the micro’s 

viscous coefficient; B is the macro’s viscous coefficient; v  is the system’s velocity; 

sF  is the stick force; cF  is the Columb friction force; )(vg  is the positive function 

that can describe the Stribeck effect, and Columb friction in sliding region.  The 

right term z
vg

v
⋅⋅ 0)(

σ  in equation (5.1) is thought as plastic deformation rate.  The 

system velocity v  minus plastic deformation rate leaves elastic deformation rate.  

So 
dt
dz  can be considered as elastic deformation rate.  Equation (5.1) can describe 

the elastic-plastic like deformation we have described in the last section.  To explain 

this, let’s give an example of a system moving at positive velocity.  At the beginning 

of the motion, there is no bristles’ deformation )0( =z , so the rate of the plastic 

deformation is also zero.  Consequently, v
vg

v
v

dt
dz

=⋅−= 0
)(

.  Only elastic 

deformation happens initially, but as the system moves further, there also has plastic 

deformation. As motion goes, the elastic deformation 
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rate )0,0
)(

( 0 >><⋅⋅−= zvforvz
vg

v
v

dt
dz σ  is getting less than the system’s 

velocity.  The elastic part of the bristles stops deformation when the value of the 

term z⋅0σ  reaches the positive function )(vg  that can describe sliding region 

phenomenon.   

At the moment, 0)(
)()( 0 =⋅−=⋅⋅−= vg

vg
v

vz
vg

v
v

dt
dz σ .  Equation (5.2) can be 

rewritten as bellow: 

vBvgF ⋅+= )( .                                                    (5.4) 

The elastic deformation transits into steady state, and we can call “The bristle has 

breakaway”.  According to equation (5.4), the physical characteristics of friction 

switch from presliding region into sliding region.  As mentioned above, LueGre 

model can adequately describe the elastic-plastic like deformation but can’t actually 

describe hysteresis loop with non local memory, memory wipe out phenomenon.  Jan 

Swevers modified the plastic deformation term of LueGre model and used a multi 

state technique to overcome this deficiency in LueGre model.  Before we discuss the 

reason why Jan Swevers’ integrated friction model can describe this phenomenon, 

let’s introduce this model first.  This model is listed as below: 

)(
)(

zf
fvs

vv
dt
dz

d
r

⋅
−

−=                                              (5.5) 

vB
dt
dzzffF dr ⋅+⋅++= 1)( σ                                          (5.6) 

])([)sgn()( sv
v

csc eFFFvvs
−

⋅−+⋅=                                      (5.7) 

where rf  is the friction force at turning point (the point where the system has 

velocity reversal), )(zfd  is the transition curve (the function that describes the 

relationship between friction and elastic deformation), )(vs  is similar to the )(vg  

in the LueGre model.  The only difference between them is that )(vs  has to 

multiply by )sgn(v .  So )(vs  is not always a positive function like )(vg , it will 
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change between positive or negative function according to the system’s velocity.  rf , 

)(zfd  are not always unchanged, whereas they change according to some rules. 

Before we list these rules, we now present a new thing called“memory stack”.  

Memory stack is a stack that stores information of turning points and is important for 

the integrated friction model.  Initially, it stores the information of starting point and 

will add or eliminate information of turning points according to the rules as below: 

Rule 1): If one system has new turning point (velocity reversal), rf  in equation (5.5) 

will change from the old turning point’s friction force to the new turning point’s 

friction force and add the new turning point’s information to the memory stack from 

top of it and resets )(zfd  to zero, so the transition curve )(zfd  after the new 

turning point will start from zero (see figure 5.7 and 5.8). 

Memory stack (after initial point 0p ): 
 
equation(5.5) (after initial point 0p ): 
 
 
 
 
 
 
 
 
 
Figure 5.7  Status of memory stack and equation (5.5) after initial turning point 0p . 
 
 
 
 
 
 
 
 
 

[ ]0rf

)(
)( 0

0

zf
fvs

vv
dt
dz

d
r

⋅
−

−=
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Memory stack (after turning point 1p ): 
 
 
Equation(5.5) (after turning point 1p ): 
 
 
 
 
 
 
 
Figure 5.8  Status of memory stack and equation (5.5) after turning point 1p . 
 

Rule 2): The friction-displacement transition curve has tendency to pass through the 

last turning point and forms a hysteresis loop.  When it forms a hysteresis loop, we 

must update the memory stack to execute the operation called“memory wipe out”. 

There are two update laws of the “memory wipe out”, which is dependent on the 

size of the memory stack. 

  2-1): If the amount of the turning point information in the memory stack exceeds 

two, we clean up the top two turning point in the memory stack.  After 

cleaning up the memory stack, set the top one as the current turning point 

information.  The value of )(zfd  doesn’t need to be set to zero, but its 

tendency or shape afterward will change to follow from (or be influenced by) 

top turning point in the memory stack which has been cleaned up (see figure 

5.9 and 5.10). 
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Memory stack: 
 
 
 
Equation (5.5): 
 
 
 
 
 

 
Figure 5.9  Status of memory stack and equation (5.5) before the 

friction-displacement transition curve completes the hysteresis loop. 
 
 
Memory stack: 
 
Equation (5.5): 
 
 

 

 

 

 

Figure 5.10  Status of memory stack and equation (5.5) after the 
friction-displacement transition curve completes the hysteresis loop. 

 

  2-2):If there are only two turning points information in the memory stack, set the 

bottom turning point information equal to the top one.  Then, clean up the top 

turning point information and set the bottom one as current turning point 

information.  The value of )(zfd  doesn’t need to be set to zero, and its 

tendency or shape afterward will remain unchanged (see figure 5.11, 5.12). 
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Memory stack: 
 
 
Equation (5.5): 
 
 
 
 
 
 

 
Figure 5.11  Status of memory stack and equation (5.5) before the 

friction-displacement transition curve completes the hysteresis loop. 
 
 
Memory stack: 
 
Equation(5.5): 
 
 
 
 
 
 
 
 

Figure 5.12  Status of memory stack and equation (5.5) after the 
friction-displacement transition curve completes the hysteresis loop. 

 

Now we start to explain why LueGre model can not capture hysteresis loop with non 

local memory and memory wipe out phenomenon.  First, we obtain the relationship 

between solid friction force and displacement, which is implied implicitly in LueGre 

model. 

Let solid friction term as follow: 
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zFsolid ⋅= 0σ                                                       (5.8) 

Differentiate solid friction with respect to displacement: 

dx
dz

dx
dFsolid ⋅= 0σ                                                    (5.9) 

)
)(
)sgn(1(0 solid

solid F
vg
v

dx
dF

⋅−⋅=σ                                        (5.10) 

As we can see, equation (5.10) indicates the relationship between solid friction force 

and displacement.  LueGre model has some shortcoming in presliding region and we 

will use equation (5.10) to show them by a simple example (note: In the following 

example, the value of solid friction solidF  is represented in the form of stick friction 

sF  multiplied by some value, for example, sF⋅5.0 , sF⋅25.0 ,..etc, and sFvg =)(  

because all of the examples is in the presliding region).  

Example 1): If one system’s motion does not exceed presliding region, and its 

friction-displacement transition curve is illustrated in figure 5.13.  The initial value 

of 
1p

solid

dx
dF  after turning point 1P  can be calculated as follow: 

00 5.1)5.011(
1

σσ ⋅=⋅⋅
−

−⋅= s
sp

solid F
Fdx

dF  

The initial value of 
2p

solid

dx
dF  after turning point 2P  is: 

00 75.0)25.011(
2

σσ ⋅=⋅⋅−⋅= s
sp

solid F
Fdx

dF  

We find that the friction-displacement curve’s slope after turning point 1P  is much 

steeper than the slope after turning point 2P  from above calculation, so the 

friction-displacement curve after turning point 2P  can never pass through 1P  to 

form a hysteresis loop. 
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Figure 5.13  The friction-displacement transition curve caused by LueGre model. 
 

Let’s see the friction-displacement transition curve in Jan Swever’s Integrated friction 

model.  First, we derive the relationship between solid friction and displacement. 

Let solid friction term as follow: 

)(zffF drsolid +=                                                  (5.11) 

Differentiate solid friction with respect to displacement: 

dx
dz

dz
zdf

dx
dF dsolid ⋅=

)(                                                (5.12) 

We can rewrite equation (5.5) as follow: 

 

 

 

(5.13) 

Take equation (5.13) into equation (5.12): 

)
)(

)(1()(

r

ddsolid

fvs
zf

dz
zdf

dx
dF

−
−⋅=                                        (5.14) 

If the relationship between friction and bristles’ deformation is a simple linear spring 

which is similar to LueGre model and the spring’s stiffness is k  .  Equation (5.14) 

can be rewritten as follow: 
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)
)(

)(1(
r

dsolid

fvs
zfk

dx
dF

−
−⋅=                                            (5.15) 

Thus, equation (5.15) is the relationship between friction force and displacement.  

Then, we will give example 2 to show why Jan Swever’s Integrated friction model 

can show the hysteresis loop with non local memory characteristic. 

Example 2): If one system’s motion doesn’t exceed presliding region, and its 

friction-displacement transition curve is illustrated in figure 5.14, the initial value of 

1p

solid

dx
dF  after turning point 1P  can be calculated as follow: 

k
FF

k
dx

dF

ssp

solid =
⋅−−

−⋅= )
5.0

01(
1

 

The initial value of 
2p

solid

dx
dF  after turning point 2P  is: 

k
FF

k
dx
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ssp

solid =
⋅−

−⋅= )
25.0

01(
2

 

We find that the the friction-displacement curve’s slope caused by integrated friction 

model after turning point 1P  is almost as steep as the curve’s slope after turning point 

2P . In details, the curve after turning point 1P  is a little bit steeper than the curve 

after turning point 2P  because the denominator of the negative term 
r

d

fvs
zf
−

−
)(

)(  in 

equation (5.15) after turning point 1P  is higher than the denominator after turning 

point 2P . 
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Figure 5.14  The friction-displacement transition curve caused by Jan Swevers’ 
integrated friction model. 

 

To conclude, the main objective of the multi state dynamic model proposed by Jan 

Swevers is to avoid the slope of the friction-displacement transition curve after 

current turning point being quite different from the friction-displacement transition 

curve after the last turning point. Therefore, it is possible that the transition curve 

passes through the last turning point and forms a hysteresis loop.  The integrated 

friction model is much more accurate than LueGre model (which doesn’t have this 

property) in presliding region. 

Nonetheless, Jan Swevers did not introduce a suitable friction-bristles’ deformation 

transition curve )(zfd  which is convenient to implement and can certainly have the 

nonlinear spring phenomenon after velocity reversal.  We will introduce a nonlinear 

spring function [26] that can capture this characteristic and is easy to implement for 

motion control.   

This nonlinear spring function is described as bellow: 

rzzekk
dz
df −−⋅+= 21                                                 (5.16) 

where 1k  and 2k  is the spring’s stiffness, z  is the bristles’ deformation, rz  is the 
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bristles’ deformation at a turning point.  As we observe from equation (5.16), a 

nonlinear spring’s initial stiffness is 21 kk +  and its stiffness will decay exponentially 

to 1k  as the spring’s deformation goes far from the turning point rz .  We will 

integrate equation (5.16) from turning point rz  to any point after rz  . Then, obtain 

the relationship between friction force and bristles’ deformation. The integration will 

have two cases: 1. positive velocity. 2. negative velocity. 

1. positive velocity. 

dzekdzkdf rzz ⋅⋅+⋅= −−
21  

( )∫ ∫ ⋅⋅+= −−f

f

z

z

zz

r r

r dzekkdf )(
21  

2
)(

21
11)( kekzzkff rzz

rr ⋅+⋅⋅−−⋅+= −⋅−

ββ
β  

where rf  is the friction force at turning point, so the friction-bristles’ deformation 

transition curve )(zfd  in positive velocity case is: 

2
)(

21
11)()( kekzzkzf rzz

rd ⋅+⋅⋅−−⋅= −⋅−

ββ
β                              (5.17) 

2. negative velocity: 

( )∫ ∫ ⋅⋅+= −f

f

z

z

zz

r r

r dzekkdf )(
21  

2
)(

21
11)( kekzzkff rzz

rr ⋅−⋅⋅+−⋅+= −⋅

ββ
β  

So, the friction-bristles’ deformation transition curve )(zfd  in negative velocity case 

is: 

2
)(

21
11)()( kekzzkzf rzz

rd ⋅−⋅⋅+−⋅= −⋅

ββ
β                               (5.18) 

Now the memory stack we have introduced above must store two kind of information.  

One is friction force at a turning point; the other is bristles’ deformation at a turning 

point.  The information of bristles’ deformation at a turning point is so convenient to 

us.  While velocity reversal happens, we just set rf  of equation (5.5) as current 
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)()( 11 zffzf dr +=

2
)(

2111
11)( 1 kekzzkf rzz

rr ⋅−⋅⋅+−⋅+= −⋅

ββ
β

friction force and )(zfd  starts by setting rz  as current bristles’ deformation.  Then, 

)(zfd  will go from zero value and have high initial stiffness after a turning point in 

order to capture the nonlinear spring phenomenon.  If a friction-displacement curve 

forms a hysteresis loop, we just clean up the top two data of memory stack and set rz  

of )(zfd  and rf  in equation (5.5) equal to the value recorded in the top 

information of memory stack after cleaning up.  Then tendency of the curve 

( )(zff dr + ) after the hysteresis loop will be influenced by a extremely early curve or 

turning point that is not the part of the hysteresis loop, and then the curve have the 

hysteresis loop with non local memory characteristic.  Let’s take an example from 

figure 5.5.  When the transition curve forms a hysteresis loop at turning point B, we 

set rz  of )(zfd  and rf  in quation (5.5) after turning point B equal to bristles’ 

deformation and solid friction force at turning point A.  The curve )( DB →  after 

turning point B will follow from the curve )( BA→ , not )( BC → . Therefore, the 

curve has the characteristic of hysteresis loop with non local memory.   

The nonlinear spring function in equation (5.17) and (5.18) which can return to the 

last turning point is another convenient property.  Therefore, with this property, to 

determine whether a friction-displacement curve forms a hysteresis loop becomes 

easy.  For illustration, we take an example that a system’s motion has positive 

velocity first, changes to negative velocity, and the curve goes back to the original 

point (see figure 5.15). 

The value of 1rf  can be written as follow: 

2
)(

201101
11)( 01 kekzzkff rr zz

rrrr ⋅+⋅⋅−−⋅+= −⋅−

ββ
β                        (5.19) 

The solid friction force after turning point 1P  can be written as follows: 

 

                                                                (5.20) 
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If the curve returned to original point 0P  , )(zf  equaled to 0rf .  Equation (5.20) 

can be written as follows: 

2
)(

21110
11)( 1 kekzzkff rzz

rrr ⋅−⋅⋅+−⋅+= −⋅

ββ
β                            (5.21) 

Take equation (5.19) into equation (5.21): 

2
)(

2112
)(

201100
11)(11)( 101 kekzzkkekzzkff rrr zz

r
zz

rrrr ⋅−⋅⋅+−⋅+⋅+⋅⋅−−⋅+= −⋅−⋅−

ββββ
ββ

Solve the above equation to obtain the value of z  , which make the solid friction 

force after turning point 1P  equal to original point 0P ’s solid friction force.  The 

solution is 0rzz = , so the curve can go back to the original point (The counterpart can 

be shown in the same way).   

 

Figure 5.15  Solid friction force versus bristles’ deformation 
 

Because of the property mentioned above, the principle that can be used to determine 

whether a friction-displacement curve forms a hysteresis loop can be briefly listed as 

below. 

Positive velocity case: 

If the current bristles’ deformation z  is larger than the bristles’ deformation at the 

last turning point, then a curve has formed a hysteresis loop. 
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end
loophysteresisaformedhascurvea

thenindexzzIf r ]1[ −≥
 

 

Negative velocity case: 

If the current bristles’ deformation z  is smaller than the bristles’ deformation at the 

last turning point, then a curve has formed a hysteresis loop. 

end
loophysteresisaformedhascurvea

thenindexzzIf r ]1[ −≤
 

 

Now we will take a look at the features of the modified friction model in sliding 

region.  While the system is entering into the sliding region, 
dt
dz  in equation (5.5) 

equals to zero. 

0)(
)(

=⋅
−

− zf
fvs

vv d
r

 

then, )()( vszff dr =+                                            (5.22) 

Take equation (5.22) into equation (5.6): 

vBvsF ⋅+= )(                                                   (5.23) 

According to equation (5.23), the modified friction model also has the Stribeck effect, 

Columb friction, and viscous friction characteristics in sliding region.   

As we have discussed previously, the modified friction model could capture 

phenomena much more accurately than LueGre model in presliding region and the 

properties of the two models in sliding region are the same.  The nonlinear spring 

function we use in the modified friction model make this model easy to implement 

and could certainly capture the phenomenon in reality.  In the end of this section, we 

will use a block diagram to illustrate the procedure of estimating friction by the 

modified friction model in real-time system (see figure5.16 ). 
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Figure 5.16  The procedure of estimating friction force by the modified friction 
model. 
 
5.4  Identifying the modified friction model’s parameters: 
 

In this section, we will briefly introduce the procedure of identifying parameters 

1k , 2k , β , and 1σ . 

1. Identification of the nonlinear spring parameters, 1k , 2k , β : 

If we can estimate or measure solid friction force and bristles’ deformation z , we can 

exploit equation (5.17) to identify these parameters by nonlinear least square method. 

[lsqcurvefit(), tool box in Matlab] The goal of the nonlinear least square is to find 

appropriate value of spring parameters 1k , 2k , β  that can minimize the error 
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function ∑
=

−
N

i
iii zkkff

1

2
21 )]ˆ,,,(ˆ[ β .  Now the major problem is how to measure the 

solid friction force and estimate the bristles’ deformation z .  The solid friction force 

can be approximately obtained by the following simple experiment.  We give a 

position command in position feedback loop.  If the velocity and acceleration 

response of the system is close to zero, the viscous and inertia term in equation (5.24) 

can be omitted. 

vB
dt
dzfuaJ ⋅−⋅−−=⋅ 1σ                                           (5.24) 

So, uf = .  The control force u  is almost equal to solid friction force f .  In 

equation (5.5), the initial value of the solid friction force rf  at an initial point is zero, 

ufzfd ==)( , and sFvs =)(  in presliding region, then equation (5.5) can be 

rewritten as below: 

)1(
sF

uv
dt
dz

−⋅=                                                    (5.25) 

In the above equation, velocity response v , control force u , and stick force sF  are 

known, we can solve the differential equation (5.25) to obtain the bristles’ 

deformation z .  Therefore, the information about friction force and bristles’ 

deformation z  are all known, then we can use nonlinear least square to identify 

spring’s parameters 1k , 2k , and β . 

 

2. Identification of the micro viscous parameter 1σ : 

At the beginning of the motion, bristles’ deformation is almost equal to system’s 

displacement, we can write down equations (5.26) and (5.27). 

xz =                                                            (5.26) 

dt
dx

dt
dz

=                                                          (5.27) 

where x  is displacement of the system.  The initial stiffness of the nonlinear spring 
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is 21 kk + .  Therefore, we can write down validly the dynamic equation of the 

system in extremely small range after the beginning of the motion as below. 

 

uxkkxBxJ =⋅++⋅++⋅ )()( 211 &&& σ                                     (5.28) 

Take the Laplace transform of equation (5.29): 

 

 

                                                                (5.29) 

where 
Jkk

B
⋅+⋅

+
=

)(2 21

1σξ  and 
J

kk
n

)( 21 +=ω  . 

With a K (Nt) step force applying to the open loop system and considering the 

system as an over-damped second-order system, we can take inverse Laplace 

transform of equation (5.29) to obtain the analytic solution of position response )(tx  

in time domain. 
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In the above equation, 1k , 2k , J , and B  are known.  Therefore, we can choose 

proper 1σ  value to make the position response from equation (5.30) to match the 

measured experimental data.  Then, we get the value of micro viscous coefficient 

1σ  . 

Now, we give a 2 hz, 5 )( mµ  amplitude sinusoidal position command (equation 

(5.31)) and collect the data before 0.17 (sec), prior to the point where velocity reversal 

happens.  Then, we can estimate bristles’ deformation z  and solid friction force.  

Use nonlinear least square method to identify spring parameters, and obtain 
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1
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2 kksBsJsU
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)/(102704.1 6
1 mNxk = , )/(101444.6 6

2 mNxk = and )/1(106110.1 7 mx=β  (see 

figure 5.17 and 5.18 ). 











⋅−⋅= )2cos(1

2
)(

pT
tAtXr π                                         (5.31) 

)(5 mA µ= , (sec)5.0=pT  

All of the parameters in the modified friction model are listed in table 5.1. 

 

Table 5.1  The value of the parameters of the modified friction model we 
identified in the experiments. 

Symbol and name value unit 

1k , nonlinear spring stiffness(1) 6102704.1 x  N/m 

2k , nonlinear spring stiffness(2) 6101444.6 x  N/m 

β  7106110.1 x  1/m 

1σ , micro damping (modified friction model) 3105531.8 x  Kg/sec 

 

 
Figure 5.17  Position response and estimated bristles’ deformation z . 
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Figure 5.18  Solid friction force vs bristles’ deformation z . 

 

Finally, we use a )(3 Nt  step force command and catch the position response which 

is less than 0.4 )( mµ to identify 1σ  parameter and get sec)/(105531.8 4
1 kgx=σ  (see 

figure 5.19). 

 
Figure 5.19  A )(3 Nt  step response for identifying 1σ . 

 
5.5  Experimental results: 
 

In this section, we will verify the modified friction model’s validity by 

conducting some experiments.  The controller structure (see figure 5.20) is divided 

into three categories: 
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(1) traditional controller (tc), 

(2) traditional controller (tc) + feedforward friction compensator based on LueGre 

model, 

(3).traditional controller (tc) + feedforward friction compensator based on modified 

friction model.   

We will give some position commands to analyze the tracking performance of the 

three controller structures in both presliding region and sliding region.  The 

performance index we adopt here is listed as below. 

xxE r
t

−=
≤≤ 0.30

max max                                                 (5.32) 

∑ −=
N

rrms xx
N

E 2)(1   ,for 0.30 ≤≤ t                                (5.33) 

 

 
Figure 5.20  Controller structure in experiments 
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All of the parameters used in the controller are listed in table 5.2, 5.3. 
 

Table 5.2  The parameters of plant and friction 

Symbol and name Value Unit 
J , inertia 2.49 kg 
B , viscous friction coefficient 44.14 kg/sec 

SF , static friction force 20.00 N 

CF , Coulomb friction force 4.21 N 

sv , Stribeck velocity 0.005 m/sec 

0σ , bristle stiffness (LueGre) 6106484.1 × N/m 

1σ , micro damping (LueGre) 4101.1861× kg/sec 

1k , nonlinear spring stiffness (1) 6102704.1 x N/m 

2k , nonlinear spring stiffness (2) 6101444.6 x N/m 
β  7106110.1 x 1/m 

1σ , micro damping (modified model) 3105531.8 x kg/sec 

tK , force constant of motor 28.5 N/A 

aK , gain of current driver 0.349 Volt/A 
T, sampling rate 0.00025 sec 

 
Table 5.3  The parameters of the controller 

Symbol and name Value 
Kp , position loop P gain 25.1327 
Kvp , velocity loop P gain 184.0914 
Kvi , velocity loop I gain 35537 

 

Remark: According to Olsson [93] research, the micro viscous coefficient must decay 

with velocity to hold dissipative (see equation (5.34), and sec/101 8 mxvd
−= ). 

2)/(
1

'
1

dvve−⋅=σσ                                                    (5.34) 

 

1) Experiments in presliding region: 

 1-a)  We will give a sinusoidal position command listed in equation (5.31), of 

which A  is 1 )( mµ , and pT  is 0.5 (sec).  The tracking performance is listed in 
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table 5.4. 

Table 5.4  Performance index of the three controller structure. 

Controller structure Erms (m) Emax (m) 
1.TC (tradition controller) 7106133.3 −x 7107354.5 −x  
2.TC+FC (LueGre) 7107872.1 −x 7103878.3 −x  
3.TC+FC (Modified) 8108055.6 −x 7102447.2 −x  

                                

figure 5.21  Position response of the three controller structure. 
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Figure 5.22  Tracking error of the three controller structure. 

 

The friction compensator based on modified friction model decrease the tracking error 

rmsE  by 61.92% as compared with the friction compensator based on LueGre model 

and by 81.17% as compared with the system without the friction compensator.  As 

we expect, the tracking performance of the friction compensator based on modified 

friction model is much better than the other two. 

 

1-b)  We will give a sinusoidal position command listed in equation (5.31), of which 

A  is 5 )( mµ , and pT  is 0.5 (sec).  The tracking performance is listed in table 

5.5. 

Table 5.5  Performance index of the three controller structure. 

Controller structure Erms (m) Emax (m) 
1.TC (tradition controller) 6104223.1 −x 6103117.2 −x  
2.TC+FC (LueGre) 7105682.7 −x 6101968.1 −x  
3.TC+FC (Modified) 7101449.4 −x 7100740.8 −x  
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Figure 5.23  Position response of the three controller structure. 

 

 
Figure 5.24  Tracking error of the three controller structure. 
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The friction compensator based on modified friction model decrease the tracking error 

rmsE  by 45.23% as compared with the friction compensator based on LueGre model 

and by 70.86% as compared with the system without the friction compensator.  The 

result is as same as experiment (1-a).  The friction compensator based on modified 

friction model has the best performance.  

 

1-c) We will give a ramp-up and ramp-down position command and check whether 

the friction-position curve generated by the modified friction model is valid.  The 

tracking performance is listed in table 5.6. 

Table 5.6  Performance index of the three controller structure. 

Controller structure Erms (m) Emax (m) 
1.TC (tradition controller) 7105127.1 −x 710040.3 −x  
2.TC+FC (LueGre) 7101195.1 −x 710060.2 −x  
3.TC+FC (Modified) 8105523.4 −x 710500.1 −x  

                                 

 
Figure 5.25  Position response of the three controller structure. 
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Figure 5.26  Tracking error of the three controller structure. 

 

 

Figure 5.27  Control input force (u) from only TC controller structure versus position 
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Figure 5.28  Estimated friction force from LueGre model versus position 

 

Figure 5.29  Estimated friction force from modified friction model versus position 
 

The friction compensator based on modified friction model decrease the tracking error 

rmsE  by 59.34% as compared with the friction compensator based on LueGre model 
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and by 69.91% as compared with the system without the friction compensator.  As 

we can see from the above experimental results, the friction compensator based on 

LueGre model can not improve the tracking performance effectively under ramp up 

and ramp down type position command because the relationship between friction 

force and displacement predicted by LueGre model is not correct.  The control input 

force in figure 5.27 can be considered as friction force because the velocity and 

acceleration of the system is extremely small.  Because the velocity command (see 

figure 5.20) fed into the feedforward type friction compensator based on the modified 

friction model is not the same as the velocity response of the TC controller structure, 

the friction value estimated by the compensator is different from the real friction force 

(control input force of TC controller structure), but the estimated friction-position 

curve is much more similar to the real friction-position curve in figure 5.27 than 

LueGre model.  Obviously, the friction compensator based on modified friction 

model has the best tracking performance. 

 

2) Experiments in sliding region: 

We gave a sinusoidal position command listed in equation (5.31), of which A  is 1 

)(mm , and pT  is 0.5 (sec).  This command will make the system slide, so we can 

analyze the performance of the friction compensator based on modified friction 

model in sliding region.  The tracking performance is listed in table 5.7. 

 

Table 5.7  Performance index of the three controller structure. 

Controller structure Erms (m) Emax (m) 
1.TC (tradition controller) 6108832.8 −x 5101683.3 −x  
2.TC+FC (LueGre) 6105728.4 −x 5109841.1 −x  
3.TC+FC (Modified) 6105041.4 −x 5109509.1 −x  
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Figure 5.30  Position response of the three controller structure. 

 
Figure 5.31  Position response at start-up period 
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Figure 5.32  Position response near the first velocity reversal 

 
Figure 5.33  Position response near the second velocity reversal 



 109

 
Figure 5.34  Tracking error of the three controller structure. 

 

From the above experiments, we can verify that the performance of the friction 

compensator based on modified friction model is the same as the one based on 

LueGre model in sliding region. 

 

5.6  Summery: 

In this chapter, we applied a nonlinear spring function to the friction model 

proposed by Jan Swevers in order to make this model easier to implement and to 

capture the nonlinear spring phenomenon after velocity reversal more accurately. 

From experimental results in this chapter, we verify that the modified friction model 

is superior to LueGre model in presliding region, and they have same performance in 

sliding region.  The future work will be focused on developing a friction observer 

based on this modified friction model to outperform the performance of the 

feedforward type compensator based on this model. 
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Chapter 6 

Conclusions and Future Work 
 
6.1 Conclusions 
 

 Among the eight control structures compared in Chapter 3, the combination of 

feed-forward control design plus disturbance observer, and feed-forward-type friction and 

cogging force compensators is the best.  It can significantly improve the control performance 

as compared with the traditional feedforward design.  Nevertheless, disturbance observer 

generates limit cycles in regulating control, which severely deteriorates its applicability.  

This thesis derives a sufficient condition for the absence of limit cycles and introduces an 

adaptive mechanism that can actually solve this problem.  Finally, a modified friction model 

whose performance is much better than the LueGre model in the micro scale region is 

proposed and several experimental results verify its validity. 

 
6.2  Future work 
 

Most applications of friction models are assumed to be only on two-surface contacting 

condition.  However, there exist several contact surfaces in a controlled mechanical system.  

For example, a ball-screw-driven system includes many pairs of contact surfaces that induce 

friction.  Between these friction sources, there exist several flexible and inertia elements.  

To analyze this kind of high-dimension motion system with a single friction model sometimes 

is not sufficient.  However, to identify each friction sources is still a difficult task.  

Multi-source friction phenomena in a complicated system require further study.  

The friction compensator in this thesis is simple feedforward type.  Its performance is 
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influenced by environmental variation and some uncertainties.  If we designed the friction 

compensator which have an adaptive mechanism to cancel the effects of those uncertainties, 

the system performance and robustness would have to be further improved. 
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