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Abstract

Due to various types of uncertainties involved in the estimation of a unit hydrograph (UH), the UH
derived by any method is subject to uncertainties. Based on the concept of the bootstrap resampling
technique, a practical methodology called storm resampling is proposed to quantify the uncertainties
of multiple-storm UH ordinates and any parameters involved in the estimation of the multiple-storm
UH. The important UH ordinates and parameters may include UH peak discharge, UH time-to-peak,
UH volume, condition number related to the effective rainfall matrix, mean square error of the UH,
and ridge parameter. The proposed bootstrap-based storm resampling technique, along with the least
squares and ridge least squares solution techniques, is applied to typhoon storm events over a
watershed in Taiwan. The methodology can be applied to other UH solution techniques and other
hydrological and hydraulic simulation/optimization modets 1997 Elsevier Science B.V.

1. Introduction

Hydraulic structures are subject to uncertainties. Uncertainties are the primary contri-
butors to hydraulic structures failure. It is important to recognize the uncertainties
involved in hydrologic and hydraulic analyses and designs. The uncertainties in hydrology
and hydraulics may be attributed to the following sources: (1) natural uncertainties
associated with the inherent randomness of natural processes; (2) model uncertainty
reflecting the inability of the simulation model or design technique to represent precisely
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the system’s true physical behavior; (3) model parameter uncertainties resulting from
inability to quantify accurately the model inputs and parameters; (4) data uncertainties
including measurement errors, inconsistency and non-homogeneity of data, and data
handling and transcription errors; and (5) operational uncertainties including those
associated with construction, manufacture, deterioration, maintenance, and other human
factors that are not accounted for in the modeling or design procedure (Yen et al., 1986). It
is important to not only recognize but also to quantify the uncertainties involved in
hydrologic and hydraulic analyses and designs. Quantification of uncertainties provides
the information needed for reliability analysis and risk-based design. Detailed discussions
on uncertainty analysis in hydrological and hydraulic applications can be found in Tung
and Yen (1993).

Like other hydrological and hydraulic models, the unit hydrograph (UH) model, which
is one of the most widely used rainfall-runoff tools, is also subject to uncertainties. The
UH theory is based on the assumptions that the surface watershed is a linear, lumped, and
time-invariant system. However, most watershed systems are non-linear, time-variant, and
spatially distributed. Failure to satisfy the assumptions may result in model uncertainty.
Furthermore, measurement and data-processing errors in the effective rainfall hyetograph
and direct runoff hydrograph lead to data uncertainties. In the process of deriving a UH,
these uncertainties will be transmitted to the resulting UH. The uncertainties are indicated
by the fact that UHs derived individually from different storm events vary from one storm
to another.

Once a UH is derived, it is often used in conjunction with a design storm to
calculate the design runoff hydrograph which is then routed through the hydraulic
structure located downstream of the surface watershed. The routed hydrograph pro-
vides important information for the evaluation and modification of the hydraulic
structure. Due to the presence of uncertainties in the UH, the resulting design runoff
hydrograph is also subject to uncertainties, which could have important implications
on the safety performance and the design of hydraulic structures. Therefore, quanti-
fication of uncertainties associated with the derived UH is essential. Uncertainty
analysis for runoff prediction based upon a stochastic integral equation method has
been presented by Hromadka et al. (1992). Also, the stochastic differential equation
technique has been used (Sarino and Serrano, 1990; Hjelmfelt and Wang, 1994) to
quantify uncertainties of an instantaneous UH based on Nash’s model. Yang et al.
(1992) have shown that the estimates of N and K in Nash’s instantaneous UH model
through using a non-linear programming method to fit storm events exhibit mutual corre-
lation between N and K. It was also found that the estimates of N and K are non-normal
random variables.

The conventional way to quantify uncertainties associated with the discrete-time
UH is to apply the single-storm analysis by which the UH corresponding to each
individual storm event is derived. Then, based on the available UHs from a number of
storm events, statistical features for the UH, such as the mean and standard deviation,
can be computed. However, many studies have indicated that the UH resulting from a
multiple-storm analysis is more representative than the single-storm UH because of
noise fluctuations (Bree, 1978a). Two theorems were proposed by Zhao et al. (1994) to
support this claim.
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However, the conventional statistical analysis cannot be directly applied to
multiple-stormanalysis because multiple-storm analysis uses all storms to derive only
one UH.

Suppose there exist data of the effective rainfall hyetograph and direct runoff hydro-
graph for several, saRR, storms. If the multiple-storm analysis is used along with a
solution technique, such as the least squares method, then one can only obtain one UH.
It is necessary to find a general and practical method in order to obtain the uncertainties
such as mean, standard deviation, or higher moments of multiple-storm UH ordinates. This
method should be also suitable to any solution technique when solving for the UH. In this
paper, a storm resampling technique is proposed to compute the uncertainties for a multi-
ple-storm UH. This technique is based on a relatively new but very powerful statistical
resampling technique called bootstrap.

The bootstrap resampling technique is revolutionary for the following reasons given by
Efron and Tibshirani (1993): (1) it allows the data analyst to assess the statistical accuracy
of complicated procedures by exploiting the power of the computer (no matter how
mathematically complicated the procedures are); (2) it relieves the analyst from having
to do complex mathematical derivations; (3) it relieves the analyst from having to make
parametric assumptions about the form of the underlying population; (4) it provides more
accurate answers than textbook formulas; and (5) it can provide answers to problems for
which no analytical answers can be obtained. Since the bootstrap resampling technique
was first proposed by Efron (1977) as a computer-based simulation method for estimating
the standard error of an estimate, it has attracted the attention of many researchers in the
field of statistics. The only assumption for the bootstrap resampling technique is that the
data points to be used are a random sample, which is the case for most observed data.
Excellent descriptions about the bootstrap resampling technique and its applications can
be found in Efron (1982) and Efron and Tibshirani (1993).

The basic idea of the bootstrap resampling technique is to extract more information

from one observed random sample to better understand the population (or the statistics
associated with the population) by resampling this observed random sample a very large
number of times. Suppose there is an observed random sampl@ @éta points. The
conventional statistical analysis relies on the observed random sample in such a way
that the statistics are directly computed from the sample and then an assumed prob-
ability distribution may be fitted to the data. However, the bootstrap resampling
technique goes much beyond this because it extracts more information from this single
observed random sample. This is achieved by randomly selentitgta points, with
replacement, from the original observed random sample a large number of times, say
1000 times. (It must be pointed out “with replacement” mentioned in the previous
sentence is crucial to the bootstrap resampling technigue.) Then, 1000 new samples
are obtained, each of which is called a bootstrap sample consistingdata points.
For each of the 1000 bootstrap samples, one can compute the value of any function
of the observed random sample. Then, the statistics can be obtained. For example,
mean is one of the commonly sought statistics. Thus, the mean value for each of
the 1000 bootstrap samples is computed, resulting in 1000 values for the mean. Then,
the standard deviation for the mean can be found by using these computed 1000
values.
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Suppose there exist data of effective rainfall and direct runoff for severalRsay
storms. Consider thesR storms as an observed random sample in which each data
point corresponds to the data of a storm. The proposed storm resampling technique is to
randomly draw, with replacemerR storms from the originaR storms to form a boot-
strap storm sample. This drawing process is repeated a large number of times, say
1000 times. Then, one will obtain 1000 bootstrap storm samples. From each of the
1000 bootstrap storm samples, a multiple-storm UH is derived by any solution technique,
resulting in 1000 multiple-storm UHs. Therefore, the uncertainties (mean, standard
deviation, covariance matrix, confidence interval or higher moments) of the multiple-
storm UH ordinates can be computed. More interestingly, the uncertainties of any para-
meter such as UH time-to-peak, condition number of the design matrix, and others in the
process of computing a multiple-storm UH can also be found as well as those of the UH
ordinates. The methodology can be applied to uncertainty analysis for other UH solution
techniques.

This paper consists of five major parts: Section 1, introduction; Section 2, review of the
least squares method and ridge least squares method for deriving a multiple-storm UH
with/without storm-scaling technique; Section 3, step-by-step procedures for the proposed
bootstrap-based storm resampling technique for quantifying the uncertainties associated
with a multiple-storm UH and any other parameters; Section 4, application of the proposed
uncertainty analysis methodology to typhoon storm events over a watershed in Taiwan;
and Section 5, summary and conclusions. Pertinent mathematical equations for the general
bootstrap algorithm and bootstrap-based confidence intervals can be found in Appendix A
and Appendix B.

2. Estimating a multiple-storm UH by least squares and ridge least squares methods

This section is a review of the least squares and ridge least squares methods. The UH,
proposed by Sherman (1932), is defined as the direct runoff hydrograph resulting from
one unit of the effective rainfall distributed uniformly over a watershed for a
specified duration. Based upon the UH theory, the surface watershed is considered as a
linear, time-invariant, and lumped system with an effective rainfall hyetograph being the
input, a direct runoff hydrograph being the output, and a UH being the transformation
function. The input, output, and the transformation function can be related by the con-
volution relationship. In matrix form, the convolution relationship can be expressed as
(Chow et al., 1988)

pu=q (1)

in whichuis an N —M +1) x 1 column vector of UH ordinates amps anN x 1 column
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vector of direct runoff hydrograph ordinates gmés anN x (N — M + 1) matrix

Py 0 0O .. 00 .. 0 0
P2 p1 0 .. 0 0 .. 0 0
[ pp ... 0 O .. 0 0
R
P -1 . . .. . .0
P=]1 Pm  Pw-1 ' S R 0 2)
0 Pv Pm-1 P1
0 P B
0
M-1
0 0 0 .. 00 ... pu Pu-1
0 0 0O .. 0 0 .. 0 Pv / Nx(N-M+1)

in which p4, p,,..., andpy are the effective rainfall hyetograph ordinates.

There are different types of algorithms for solving Eq. (1) for the UH. They are linear
programming method (Mays and Coles, 1980; Zhao and Tung, 1994) and non-linear
programming techniques including the least squares methods (Diskin and Boneh, 1975;
Bree, 1978a,b; Kitanidis and Bras, 1979; Mawdsley and Tagg, 1981; Morel-Seytoux,
1982; Mays and Taur, 1982; Singh et al., 1982; Bruen and Dooge, 1984; Singh, 1988;
Dooge and Bruen, 1989; Nalbantis et al., 1995). Recently, Rao and Tirtotjondro (1995)
applied a Bayesian method to UH derivation, and it was shown that the Bayesian method is
a general method which can give UHs with few oscillations among the ordinates. In this
paper, the discussions will be based on the widely used least squares and ridge least
squares methods.

By the ordinary least squares (OLS) method, the UH can be obtained as

uoLs=(P'p) *p'g ©)

in which the superscripts ‘" and+ 1’ represent the transpose and inverse of a matrix,
respectively. Eq. (3) is derived by looking for an optimaluch that the sum of the
squared errorspli—q)'(pu — q) is minimized. This can be done by taking the first deri-
vative of the sum of the squared errors with respeat,teetting the result to zero, and
solving foru.

Egs. (1)—(3) are associated with single-storm analysis in which the data of the effective
rainfall hyetograph and direct runoff hydrograph of only one storm are used. If the data of
more than one storm, sd& storms, are available, then the matrix convolution equations
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representindR storms are

P1 a1
P2 a2

u=| (4)
Pr Or

wherep, andg, correspond to theth storm and are defined as those in Eq. (1), arsthe
multiple-storm UH.
In a more compact form, Eq. (4) becomes

Pu= q (5)
where
P1 1
P2 02
P= . , Q= . (6)
Pr Or

Recall that the number of UH ordinates for a single storm, saytth&torm, isJ, =N, - M,
+ 1 which may vary with storms. Therefore, before the matrices and column vectors are
stacked as in Eq. (4), adjustment for the direct runoff hydrographs must be made in order
that the individual effective rainfall hyetograph matriggsr =1, 2,..., R, have the same
number of columns. To make this adjustment, a suggestion has been made to let the
number of the multiple-storm UH ordinate}, be the maximal value of the individual
UH ordinate number, that isl = max{J;, Jo, ..., Jr} (Diskin and Boneh, 1975; Bree,
1978a; Singh, 1988). Thed,- J; zeros are added to the end of the direct runoff hydro-
graph ordinates for thgh storm,r =1, 2, ..., R.

Because Eq. (5) has the same mathematical format as Eq. (1), except that Eq. (5) has
larger dimensions of matrix and vector, the ordinary least squares solution of the multiple-
storm UH has the same mathematical format as the single-storm UH

uoLs = (P'P) *P'q @)

R -1/R .
(5m) " (55a)
r<1 r<

in which the second step in Eq. (7) is derived by using Eq. (6).
Sometimes, the computed UH by the ordinary least squares method may have
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significant noise fluctuation among UH ordinates. In this case, the ridge least squares
method can be applied. Ridge least squares essentially adds a positive number called
the ridge parametek to the diagonal of the design matriXP. The multiple-storm UH

by ridge least squares is (Zhao et al., 1994)

UrLs = (P'P+kl)"'P'q (8)

R -1/R .
=< Zprpr+kl> <2prqr>
r=1 r=1

in which | is an identity matrix with the same dimensionRi®.

The ridge parametédtin Eq. (8) can be determined based on one of two criteria: (1)
minimization of the mean square error of the UH and (2) minimization of the mean square
error of the direct runoff hydrograph. The mean square error measures the expected
Euclidean distance between the estimated UH (or direct runoff hydrograph) and the true
but unknown UH (or direct runoff hydrograph). After the optimal ridge parameter is found
by a minimization technique, it is substituted into Eq. (8) to compute the corresponding
UH. For the purpose of demonstration, ridge analysis by minimizing the mean square error
of the UH is used herein. Detailed equations for the mean square error of the UH can be
found in Zhao et al. (1994).

In the framework of multiple-storm analysis, storms with larger effective rainfalls and
direct runoffs will dominate the derived UH, leaving smaller storms with little contribution
to the determination of the UH. This could lead to a potentially biased estimation of the
UH. Zhao et al. (1994) proposed a storm-scaling technique to reduce such a bias. The
storm-scaling technique simply divides the effective rainfall hyetograph and direct runoff
hydrograph ordinates by the effective rainfall amount of the corresponding storm as

r)rzl'?ér, r=1,2,..,R 9)
= (z12. R 10
qr_l‘pr’ r=12, ..., (10)

in which 1 is the column vector with all elements being ones. After the effective rainfall
hyetograph ordinates and direct runoff hydrograph ordinates are scaled, they will replace
the original hyetograph and hydrograph ordinates, and will be used in the setup of the
convolution matrix form. It should be pointed out that very small storms may not be
included in the derivation of a multiple-storm UH when the UH is intended for use in
hydraulic structures design, since very small storms may only cover limited portions of the
watershed and have quite different hydrologic processes from large storms.

3. Bootstrap-based storm resampling for multiple-storm UH uncertainty analysis

ConsiderR storms as an observed random sample (S;,S, ...,SR) in which S,
corresponds to the data of the effective rainfall hyetograph and direct runoff hydro-
graph for therth storm,r = 1, 2, ..., R. The step-by-step procedures for the proposed
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bootstrap-based storm resampling are as follows:

1. Randomly draviR storms fromS, with replacement, to yiel§ = (S;,S;, ..., Sk), which
is called the bootstrap storm sample. For example, suppose there are ten storms which
form S, the original storm sample. A storm is randomly drawn fr8ifeach storm has
an equal chance to be drawn), and is denote&b¥hen, the drawn storm is returned
to S so thatS still consists of the original observed ten storms. Then, another storm is
randomly drawn fron8 and is denoted b$;. The drawn storm is then returned $o
This process of ‘drawing and returning’ is repeated ten times to yield the bootstrap
storm samples’ = (S}, S;, ..., Sio). It may be noted that a storm in the original storm
sampleS may be drawn more than once (because it is returned after it is drawn), and
thus may appear more than once in the bootstrap storm sanpleis also possible
that a storm is never drawn, and thus does not appear in the bootstrap storm sample.
‘Returning’ the randomly drawn storm to the original storm sample is what statisticians
usually call ‘with replacement.’

2. Use a UH solution technique to calculate a multiple-storm Based on th&® storms
in the bootstrap storm sampe. Other parameters corresponding to the multiple-storm
UH" can also be computed. These parameters may include UH time-to-peak, UH
volume, condition number of the design matR¥, MSE of the UH, and the ridge
parameter. These parameters form a parameter ViRAIRA . Consider the example in
Step 1. Calculate a multiple-storm Utdnd PARA" based on the ten storms in the
bootstrap storm samp® =(S;,S;, ..., S;o) by using a solution technique such as least
squares or ridge least squares with/without the storm-scaling technique. It should be
noted that any solution technique can be used, and any other parameters can be
appended t®ARA".

3. Repeat Steps 1 and 2 a large number of timesBsay obtain UH*, UH™, ..., UH™®
andPARA™, PARA?, ...,PARA®. For example, suppo= 1000. Then, 1000 UHs
are computed along with 100RARAs.

4. Calculate the statistics such as the mean, standard deviation, skew coefficient, and
confidence intervals for each ordinate of the UH &RA over 1000 values from
Step 3. Covariance matrices for the UH @®RA can also be computed. The formulas
for computing the mean, standard deviation, covariance matrix, and skew coefficient
can be found in any statistics textbooks. The confidence intervals can be computed by
the simple percentile method. Suppose a 90% confidence interval for a UH ordinate is
of interest. Increasingly rank the 1000 values of the ordinate. Soi2nl=90% forq,
which is found to bex = 0.05. Then, the lower and upper limits of the 90% confidence
interval is found from the ranked 1000 values. The lower limit is chosen such that
100% or 5% of the 1000 values are smaller than it. The upper limit of the 90%
confidence interval is chosen such that 106(&)% or 95% of the 1000 values are
smaller than it. Detailed mathematical formulas for the percentile method and other
confidence interval methods can be found in Appendix B.

It should be pointed out that the bootstrap technique requires a considerable amount of
computation time because a large number of bootstrap samples are involved. Efron (1982)
suggested tha® = 200 is generally large enough for estimating the standard deviation of
the statisticsB = 1000 or more would be required for estimating the confidence intervals
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with reasonable accuracy. However, the concern about the computation time is diminish-
ing as the power of computers is greatly enhanced.

Two basic types of bootstrap resampling technique have been developed: unbalanced
bootstrap and balanced bootstrap (Davison et al., 1986; Gleason, 1988). The above step-
by-step procedures for the storm resampling technique are based on the unbalanced boot-
strap. The balanced bootstrap resampling reuses each of the original observed storms
exactly equally often. An efficient algorithm was given by Davison et al. (1986). The
advantage of balanced bootstrap over unbalanced bootstrap is found in bias and variance
reduction.

Table 1
Summary statistics of derived UH and its properties using unbalanced and balanced bootstrap techniques by
ordinary least squares without storm-scaling for Tong-Tou watershed

Unbalanced bootstrap Balanced bootstrap
Mean SD Skew Mean SD Skew
UH(1) 7.805e+ 00 1.834e+00 2.694e-01 7.839e+ 00 1.844et 00 2.547e-01
UH(2) 6.876e+ 00 1.038e+00 1.114e-01 6.864e+00 1.042e+ 00 1.797e-01
UH(3) 2.076e+ 00 5.695e-01 -3.293e-01 2.065e+00 5.783e-01 -2.898e- 01
UH(4) 9.513e-01 4.253e-01 8.277e-01 9.463e-01 4.282e-01 9.849e-01
UH(5) 1.519e+ 00 3.377e-01 6.550e-01 1.525e+00 3.422e-01 7.415e-01
UH(6) 1.310et 00 3.211e-01 5.122e-01 1.314e+00 3.217e-01 5.568e-01
UH(7) 7.252e-01 1.536e-01 2.355e-01 7.198e-01 1.543e-01 6.519e- 02
UH(8) 9.343e-01 1.965e-01 -1.962e-01 9.253e-01 2.042e-01 -1.906e-01
UH(9) 5.043e-01 1.359e-01 -6.269e-01 5.049e-01 1.348e-01 - 4.504e-01
UH(10) 5.942e-01 9.470e-02 —-2.737e-01 5.916e-01 9.575e-02 -5.120e-01
UH(11) 2.525e-01 1.602e-01 -5.062e-01 2.543e-01 1.631e- 01 -5.467e-01
UH(12) 3.394e-01  7.979e- 02 1.243e+ 00 3.401e- 01 8.094e-02 1.378et 00
UH(13) 1.588e-01 7.442e-02 6.686e-02 1.566e-01 7.814e-02 3.980e- 01
UH(14) 1.922e-01 5.148e-02 1.717e+00 1.930e-01 5.420e-02 2.141et+00
UH(15) 1.334e- 01 4.070e-02 -1.482e+00 1.328e-01 4.241e-02 -1.527e+00
UH(16) 1.260e- 01 2.893e-02 1.759e+ 00 1.262e-01 3.092e-02 1.932et+ 00
UH(17) 6.940e- 02 2.242e-02 -4.151e-01 6.925e-02 2.487e- 02 - 1.491e+ 00
UH(18) 6.229e-02 1.723e-02 9.93%9e-02 6.199e-02 1.904e- 02 - 3.859%e- 02
UH(19) 2.314e-02 1.494e-02 -6.092e-01 2.289e-02 1.519e-02 -5.416e-01
UH(20) - 6.450e- 03 8.618e-03 —2.947e-01 -6.512e-03 8.530e- 03 -4.454e-01
Peak 8.506¢- 00 1.262e+00 7.771e-01 8.526e+00 1.287e+00 6.834e-01
TP 4.164e+ 00 1.462e+ 00 4.525e-01 4.123e+00 1.452e+ 00 5.115e-01
Vol 1.027e+00 1.498e-02 -1.605e+02 1.027e+00 1.518e-02 - 1.543e+ 02
Cond 9.288e- 01 6.091e+t 01  2.444et 00 9.435et 01 6.082e+ 01  1.995et+ 00
MSE 7.786e+ 00  3.603e+ 00 1.150e+ 00 7.816e+ 00 3.503e+ 00  1.020e+ 00
Ridge 0.00e+ 00 0.000e+ 00  0.000e+ 00  0.000e+ 00  0.000e+ 00  0.000et+ 00

UH(i), theith ordinate for a multiple-storm UH.

TP, time-to-peak for a multiple-storm UH.

Vol, volume of a multiple-storm UH.

Cond, 2-norm condition number (defined as the ratio of the largest eigenvalue to the smallest eigenvalue of
P'P or P'P+kl).

MSE, mean square error of a multiple-storm UH.

Ridge, ridge parametek)

SD, standard deviation.
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Much effort has been devoted to the computation of confidence intervals by the boot-
strap resampling technique. Generally speaking, there are three bootstrap-based methods
for computing the confidence intervals, which are the ‘normality’ method, percentile
method, and bias-corrected percentile method (Efron and Tibshirani, 1986; Efron,
1987). The percentile method and bias-corrected percentile method are better than the
‘normality’ method. The percentile method is the most straightforward method. The bias-
corrected percentile method is more powerful than the percentile method because it can
correct the possible bias.

4. Application and discussion

The proposed storm resampling technique was applied to nine typhoon storm events in
Tong-Tou watershed (259.2 Kiyin Taiwan, which occurred from 1970 to 1981. The peak
discharges of direct runoff hydrographs varied from 95% st to 3149 n? s™*. The

Table 2
Summary statistics of derived UH and its properties using unbalanced and balanced bootstrap techniques by
ordinary least squares with storm-scaling for Tong-Tou watershed

Unbalanced bootstrap Balanced bootstrap
Mean SD Skew Mean SD Skew
UH(1) 7.635e+ 00 1.095e+ 00 —4.991e-01 7.646e+00 1.116et+ 00 - 5.560e- 01
UH(2) 6.296e+ 00 6.792e-01  1.199e+ 00 6.302e+ 00  7.065e- 01  1.346et 00
UH(3) 2.390e+ 00 3.974e- 01 -6.233e-01 2.376e+00 4.134e- 01 -5.46le-01
UH(4) 1.237e+ 00 4.999e-01 -7.786e-01 1.224e+00 5.106e- 01 - 6.470e- 01
UH(5) 1.633e+00 5.089e-01 1.028e+00 1.647e+00 5.149e-01  1.052et 00
UH(6) 1.394e+ 00 2.686e- 01 -1.188e+00 1.399e+00 2.686e- 01 - 1.090e+ 00
UH(7) 8.284e-01 1.462e-01 -6.313e-02 8.219e-01 1.573e-01 4.991e-01
UH(8) 9.035e-01 1.374e-01 3.614e-01 8.959e-01 1.455e-01 6.897e- 02
UH(9) 5.928e-01 1.062e-01 -1.561e+00 5.944e-01 1.034e-01 - 1.628e+ 00
UH(10) 5.507e-01 9.210e- 02 1.062e+00 5.46le-01 9.329e-02 2.115e-01
UH(11) 3.101e- 01 9.906e- 02 -1.844e+00 3.094e-01 1.036e- 01 -1.854e+ 00
UH(12) 3.621e-01 6.062e- 02 1.606et 00 3.639e-01 6.316e-02 2.269et+ 00
UH(13) 2.196e- 01 5.585e-02 -9.580e-01 2.178e-01 5.896e- 02 -5.218e- 02
UH(14) 2.107e-01 3.580e-02 1.831et00 2.115e-01 4.092e-02  4.030et+ 00
UH(15) 1.578e-01 3.107e- 02 -3.076e+00 1.562e-01 3.299e- 02 - 3.172e+ 00
UH(16) 1.373e-01 2.005e-02 2.702e+00 1.375e-01 2.218e-02 3.139et 00
UH(17) 8.293e-02 1.838e-02 -1.070e+00 8.288e-02 2.214e- 02 - 4.964e+ 00
UH(18) 6.784e- 02 1.582e-02 -1.297e-01 6.743e-02 1.813e-02 -2.793e-01
UH(19) 3.173e-02 1.408e- 02 -8.536e-01 3.132e-02 1.473e-02 -7.733e-01
UH(20) -3.102e-04 7.325e- 03 -5.969e-01 -3.088e-04 7.051e- 03 - 7.077e-01
Peak 7.870¢- 00 8.383e-01 9.292e-03 7.897e+00 8.491e- 01 - 4.660e- 02
TP 3.516e+ 00 1.132e+00 1.728e+00 3.510et 00 1.127e+00  1.747et 00
Vol 1.043e+00 1.990e-02 -7.169e+01 1.043e+00 1.953e-02 - 7.583e+ 01
Cond 5.430er 01 5.976et01 2.719et 00 5.494et 01 5.897et01  2.605et 00
MSE 5.394e+ 00 3.843e+ 00 2.146e+00 5.370e+ 00 3.704e+ 00  2.085e+ 00
Ridge 0.000e+ 00  0.000et 00  0.000et 00  0.000e+ 00  0.000et 00  0.000et+ 00

See footnotes to Table 1.
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Table 3
Summary statistics of a derived UH and its properties using unbalanced and balanced bootstrap techniques by
ridge least squares without storm-scaling for the Tong-Tou watershed

Unbalanced bootstrap Balanced bootstrap

Mean SD Skew Mean SD Skew
UH(1) 7.318e+ 00 1.474e+00 4.257e-01 7.342e+00 1.481e+ 00 3.931le-01
UH(2) 6.366e+ 00 8.040e- 01 9.045e-01 6.363e+00 8.121e-01 9.552e-01
UH(3) 2.495e+ 00 4.854e-01 -8.572e-01 2.482e+00 4.891e- 01 -8.277e-01
UH(4) 1.073e+ 00 3.202e-01 7.932e-01 1.070e+ 00 3.228e-01 9.912e-01
UH(5) 1.349e+ 00 2.493e-01 1.223e+00 1.352e+00 2.538e-01 1.381e+ 00
UH(6) 1.244e+ 00 2.394e-01 7.345e-01 1.246e+00 2.419e-01 7.291e-01
UH(7) 8.335e-01 1.186e-01 —-5.113e-02 8.290e-01 1.227e-01 -9.002e- 02
UH(8) 8.252e-01 1.620e-01 2.941e-01 8.184e-01 1.654e-01 2.678e-01
UH(9) 5.608e-01 9.517e-02 - 1.045e+00 5.58%9e-01 9.651e- 02 -9.330e-01
UH(10) 5.148e-01 6.377e-02 -7.968e-02 5.140e-01 6.497e-02 -3.233e-01
UH(11) 3.080e-01 1.08%9e-01 -1.036e+00 3.087e-01 1.109e-01 - 1.089e+ 00
UH(12) 2.973e-01 5.200e-02 1.660e+ 00 2.979e-01 5.361e-02 1.863e+ 00
UH(13) 1.839e-01 5.632e-02 —-6.915e-02 1.825e-01 5.929e-02 3.534e-01
UH(14) 1.716e-01 4.020e-02 1.276e+00 1.718e-01 4.295e-02 1.817et+ 00
UH(15) 1.416e-01 2.447e-02 —-1.061e+00 1.413e-01 2.601e- 02 - 1.004e+ 00
UH(16) 1.140e-01 1.921e-02 1.128e+00 1.140e-01 2.058e-02  1.480et+ 00
UH(17) 7.716e-02 1.464e-02 5.180e-02 7.717e-02 1.666e- 02 - 1.432e+ 00
UH(18) 5.495e- 02 1.255e-02 -1.560e+00 5.460e-02 1.453e-02 -1.193e+00
UH(19) 2.417e-02 1.128e-02 -1.002e+00 2.385e-02 1.164e-02 -9.535e-01
UH(20) -3.837e-03 5.857e- 03 -6.023e-01 -3.890e-03 5.792e- 03 -6.992e- 01
Peak 7.7586-00 1.152e+00 7.997e-01 7.779e+00 1.167e+00 6.929e- 01
TP 3.948e+ 00 1.395e+00 7.846e-01 3.906e+ 00 1.377e+00  8.555e- 01
Vol 9.979e-01 2.018e-02 -6.031le+01 9.978e-01 2.037e-02 -5.867e+ 01
Cond 3.537e+ 01 2.281et 01  4.459e+00 3.575e+01 2.301let 01  4.526e+ 00
MSE 3.545e+ 00 9.040e-01 6.511e-01 3.555e+00 8.927e-01 6.610e- 01
Ridge 1.860e- 04  7.466e+ 03 9.230e-02 1.861let04  7.427e+03  9.340e- 02

See footnotes to Table 1.

duration of the UH was 3 h. The number of bootstrap samples was choseBte b@00.

Both unbalanced and balanced bootstrap techniques were used. For each bootstrap sample,
the multiple-storm analysis was implemented to derive a multiple-storm UH. The solution
methods for determining the multiple-storm UH were the ordinary least squares and ridge
least squares methods with/without storm-scaling.

4.1. Uncertainty of multiple-storm UH ordinates

The uncertainties of UH ordinates derived by different methods are given on the upper
parts of Tables 1-4. Comparing the results for UH ordinates in Tables 1-4 between the
unbalanced and balanced bootstrap techniques, it can be found that there is no significant
difference between the unbalanced and balanced bootstrap techniques in quantifying the
uncertainties for UH ordinates. Figs 1—3 show, respectively, the mean, standard deviation,
and skew coefficient of multiple-storm UHs derived from the unbalanced bootstrap
procedure along with the ordinary least squares method and ridge least squares method
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Table 4
Summary statistics of a derived UH and its properties using unbalanced and balanced bootstrap techniques by
ridge least squares with storm-scaling for Tong-Tou watershed

Unbalanced bootstrap Balanced bootstrap
Mean SD Skew Mean SD Skew
UH(1) 7.147e+ 00 9.502e- 01 —-1.226e-01 7.154e+00 9.573e-01 - 2.165e-01
UH(2) 5.902e+ 00 4.959e- 01 1.311e+ 00 5.914et+ 00 5.291e- 01 1.588e+ 00
UH(3) 2.586e+ 00 3.035e-01 -5.784e-01 2.571e+00 3.114e- 01 -6.435e-01
UH(4) 1.378e+ 00 3.127e- 01 -4.695e- 01 1.370e+ 00 3.200e- 01 -2.681e-01
UH(5) 1.483e+00 3.116e-01 8.040e-01 1.495e+00 3.206e-01 1.012et+ 00
UH(6) 1.385e+ 00 1.832e- 01 -4.122e-01 1.389e+ 00 1.848e- 01 -3.314e-01
UH(7) 8.768e-01 9.410e- 02 -7.068e-01 8.707e-01 1.033e-01 3.250e- 02
UH(8) 8.228e- 01 9.713e- 02 3.642e- 01 8.175e- 01 1.019e- 01 9.237e- 02
UH(9) 6.107e- 01 5.581e-02 -1.492e+00 6.092e-01 5.855e-02 -2.687e+ 00
UH(10) 5.080e- 01 5.143e- 02 6.844e- 02 5.061e- 01 5.592e- 02 - 2.049e+ 00
UH(11) 3.379e- 01 6.209e- 02 -2.042e+00 3.366e-01 6.669e- 02 - 2.149e+ 00
UH(12) 3.335e- 01 3.727e- 02 6.814e- 01 3.349e-01 4.102e- 02 1.711e+ 00
UH(13) 2.301e-01 3.862e-02 -7.266e-01 2.290e-01 4.184e-02 1.017e+00
UH(14) 1.997e- 01 2.599e- 02 3.783e- 01 1.996e- 01 3.029e- 02 3.560et+ 00
UH(15) 1.598e-01 1.837e-02 —2.378e+00 1.589e-01 1.994e- 02 - 1.995e+ 00
UH(16) 1.282e- 01 1.307e- 02 8.832e- 01 1.280e- 01 1.436e- 02 1.050e+ 00
UH(17) 8.708e-02 1.161e-02 7.938e-01 8.713e-02 1.488e-02 - 6.088e+ 00
UH(18) 6.301e- 02 1.229e-02 -2.042e+00 6.263e-02 1.466e- 02 - 1.802e+ 00
UH(19) 3.139e-02 1.222e-02 -1.471e+00 3.095e-02 1.287e- 02 -1.374e+00
UH(20) 1.961e- 03 5.593e- 03 5.140e- 02 1.920e- 03 5.446e- 03 3.918e- 02
Peak 7.267¢ 00 8.334e-01 1.768e-01 7.290e+ 00 8.325e-01 8.138e- 02
TP 3.358et+ 00 9.733e- 01 2.331e+ 00 3.372e+ 00 9.889e- 01 2.267et+ 00
Vol 1.011e+00 2.432e-02 -3.553e+01 1.011e+00 2.377e-02 -3.813e+01
Cond 2.261ler 01 1.743e+01 5.702e+ 00 2.327e+01 1.90ler 01 5.688et 00
MSE 2.878et+ 00 1.070et 00 2.754et+ 00 2.901et+ 00 1.059e+ 00 2.551et+ 00
Ridge 1.942e- 01 6.163e- 02 5.062e- 02 1.929e- 01 6.264e- 02 1.470e- 01

See footnotes to Table 1.

with/without storm-scaling. Fig. 1 indicates that the ordinary least squares method pro-
duces a UH with a slightly higher mean peak than the ridge least squares method. Further-
more, consideration of storm-scaling results in slightly lower mean peak discharge in the
derived UH. As clearly indicated by Fig. 2, the ridge least squares method yields smaller
values of standard deviation than the ordinary least squares method for either ‘with storm-
scaling’ or ‘without storm-scaling’. Using the storm-scaling procedure further lowers the
standard deviation associated with UH ordinates. Skew coefficients of UH ordinates could
be positive or negative, and there is no clearly discernable pattern indicating the relative
magnitude among different methods. From the viewpoint of reducing UH uncertainty,
using the ridge least squares method in conjunction with the storm-scaling procedure
would be the most desirable of the methods considered herein.

The overall uncertainty of a UH can be represented by the covariance matrix for UH
ordinates. Determinant and trace of the covariance matrix can be used to measure the
overall uncertainty associated with a random vector. A larger value of the determinant or
trace implies larger uncertainty associated with a random vector. Table 5 provides the
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Fig. 1. Comparison of mean UHs by unbalanced bootstrap using ordinary and ridge least squares methods.
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Fig. 2. Comparison of standard deviations of UHs by unbalanced bootstrap using ordinary and ridge least squares
methods.
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Fig. 3. Comparison of skew coefficients of UHs by unbalanced bootstrap using ordinary and ridge least squares
methods.

determinant and trace of the covariance matrix of multiple-storm UHs derived by the
various methods. It can be seen that the values of determinant are essentially zero. There-
fore, comparison of these values may not be meaningful. Under this condition, the trace of
a covariance matrix should be used for comparison. In Table 5, one observes that the trace
of the UH derived by the ridge least squares method is smaller than that by the ordinary
least squares method for either ‘with storm-scaling’ or ‘without storm-scaling.’” Further-
more, the use of storm-scaling reduces the trace compared with ‘without storm-scaling.’
Although the unbalanced bootstrap yields a slightly smaller trace than the balanced boot-
strap, both methods can be considered the same.

Table 5
Properties of covariance matrix (C) of UH derived from multiple-storm analysis by ordinary least squares and
ridge least squares for the Tong-Tou watershed

Least squares method Storm scaling Bootstrap algorithm Determinant (C)  Trace (C)
Ordinary least squares  Yes Unbalanced 1.9988 2.481e+ 00
Yes Balanced 4.517e52 2.602et 00
No Unbalanced 1.163e 52 5.300e+ 00
No Balanced 4.464e 52 5.367et 00
Ridge least squares Yes Unbalanced 4.0380 1.502e+ 00
Yes Balanced 2.291e 58 1.570et+ 00
No Unbalanced 1.312e58 3.352e+ 00

No Balanced 5.746e 58 3.398e+ 00
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4.2. Uncertainty of the important UH ordinate and parameters

The lower parts of Tables 1—4 list the uncertainties of the important UH ordinate (i.e.
the UH peak discharge) and parameters such as UH time-to-peak, UH volume, 2-norm
condition number, mean square error, and ridge parameter. One observes that there is no
significant difference between the unbalanced and balanced bootstrap algorithms. Since
the unbalanced bootstrap and balanced bootstrap practically yield the same results, the
unbalanced algorithm may be recommended because its algorithm is easier than that for
the balanced bootstrap.

The storm-scaling results in smaller mean values of UH peak, time-to-peak, 2-norm
condition number, mean square error, and ridge parameter (only for the ridge least squares
method). Smaller mean values of 2-norm condition number and mean square error of a UH
imply that, on average, the corresponding UH has fewer noise oscillations.

4.3. Confidence intervals of the multiple-storm UH

Fig. 4 and Fig. 5 show the 90% confidence intervals for the multiple-storm UH by the
various procedures when the ridge least squares method is applied. Each figure shows
confidence intervals for three different confidence interval methods. Fig. 4 compares the
unbalanced and balanced bootstrap algorithms, indicating that there is no difference
between the two. Fig. 5 compares the differences in UH confidence intervals for storm-
scaling and no storm-scaling. One sees that the storm-scaling produces a narrower con-
fidence interval around the peak discharge than no storm-scaling does.
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Fig. 4. Comparison of 90% confidence intervals by unbalanced and balanced methods for UH derived from ridge
least squares with storm-scaling for Tong-Tou watershed.
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Fig. 5. Comparison of 90% confidence intervals by storm-scaling and no storm-scaling with balanced bootstrap
for UH derived from ridge least squares for Tong-Tou watershed.

5. Summary and conclusions

A computed UH can be used along with a design rainfall to develop a design runoff
hydrograph. Quantification of uncertainties associated with the derived UH provides essen-
tial information for safety evaluation of hydraulic structures and risk-based designs. This
paper proposed a practical methodology called storm resampling based on the bootstrap
resampling technique to quantify the uncertainties such as mean, covariance matrix, skew-
ness, and confidence intervals for multiple-storm UH ordinates and any parameters involved
in the process for estimating the UH. The important UH ordinates and parameters included
UH peak discharge, UH time-to-peak, UH volume, 2-norm condition number related to the
effective rainfall matrix, mean square error of the UH, and ridge parameter. The observed
storms were considered as an observed random sample in which each data point involves the
data of the direct runoff hydrograph and effective rainfall hyetograph for each storm.

The proposed methodology was applied to typhoon storm events for a watershed in
Taiwan. The uncertainties such as the mean, standard deviation, and skewness associated
with the ordinates and parameters for the multiple-storm UH were computed. Confidence
intervals for the multiple-storm UH were also computed by three different methods. The
computed uncertainties will be useful in risk and reliability analysis for hydraulic struc-
tures. Numerical results indicate that both balanced and unbalanced bootstrap resampling
algorithms produce practically identical results. Therefore, the unbalanced algorithm may
be recommended because its algorithm is easier than that for the balanced bootstrap. The
results indicate that the storm-scaling produces tighter confidence intervals around the
peak than the no storm-scaling does.
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Although the storm resampling technique was used to quantify the uncertainties for a
multiple-storm UH derived from the ordinary and ridge least squares methods, it can be
applied to other solution techniques for UH determination. The storm resampling technique
can also be applied to other hydrological and hydraulic simulation/optimization models.
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Appendix A. General algorithm for bootstrap resampling technique

Supposd(X) is an estimate of interest which is a function of a random sample con-
sisting ofR data pointsX = (Xq, Xs, ..., Xg). For exampleg is the sample mean. Suppose
we are interested in estimating the standard deviation of the sample mean. The bootstrap
technique can be used to estimate any aspeds afistribution as follows:

1. Randomly dravR data points fromx, with replacement, to yielat” = (3}, %5, ..., Xg)
which is called the bootstrap sample.

2. Calculated” = 6(x’). For example, compute the mean value for this bootstrap sample.

3. Repeat 1-2 a large number of times, say 1000, to ol#tding™, ..., 6% For
example, 1000 sample mean values are obtained.

4. Calculate whichever aspect @$ distribution based ofi". For example, compute the
standard deviation of the mean over these 1000 values.

To see how the bootstrap resampling technique is linked to the proposed storm-
resampling technique, consider the obser®dtorms asx, and each ordinate of a
multiple-storm UH ad. Then, any procedures for computing a multiple-storm UH are
the functionaB(X) (no matter how mathematically complicated they are). Any parameters
in the process of computing a UH can also be dealt with as UH ordinates were.

Appendix B. Computation of bootstrap confidence intervals for UH ordinates

Suppose that the number of bootstrap samplBsker thejth ordinate of the UHy;, the
‘normality’ method assumes th& u;" ordinates are observed random samples from a
univariate normal distribution. Since the mean and standard deviatiap afe known
from the bootstrap distribution af ", the confidence interval far, at a specified coverage
probability 1- 2« can be found based on the normal distribution.

The percentile method is to find the interval between thexl®8d 100(1- «) of the
bootstrap distribution ofi;” where 1- 2« is the probability that the true; will be
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contained in the interval. Let the cumulative distribution function (CDF) ofu;ﬁebased
on the bootstrap sample be

G(9=Pr.(y <9 (B1)

wherePr.() indicates the probability computed according to the bootstrap distribution of
u;". The percentile method is to take

uel6 (@), 61— )] (B2)

as an approximated 4 2« confidence interval fou;.
Efron and Tibshirani (1986) showed that if

G(y) # 05 (B3)

whereu; is the estimate ofi; based on the original storm events, then the bias-corrected
percentile method should be used. Eq. (B3) implies th# not the median of the boot-
strap distribution oUJ-*. The bias-corrected percentile method (BC method) takes

Ue[GH(®(22 + 7)), G H(®(22 + 71 Y))] (B4)

wherez® andz®™ are, respectively, the quantiles;atind 1- « for the standard normal
distribution, and

2=d"[G(0)] (BS)

where® ™ is the inverse function of the standard normal CDF.
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