國立交通大學

生物資訊及系統生物研究所

碩士論文

Template-based Homologous Modules through Protein-protein Interaction Families

研究生:林怡瑋 指導教授:楊進木 教授

中華民國一百年八月

Template-based Homologous Modules through Protein-protein Interaction Family

研 究 生:林怡瑋	Student : Yi-Wei Lin
指導教授:楊進木	Advisor: Jinn-Moon Yang

A Thesis Submitted to Institute of Bioinformatics and Systems Biology

College of Biological Science and Technology

National Chiao Tung University in partial Fulfillment of the Requirements

for the Degree of Master in

Bioinformatics and Systems Biology

August 2011

Hsinchu, Taiwan, Republic of China

以蛋白質-蛋白質交互作用家族為基礎建立模板導向之同源模組

學生:林怡瑋

指導教授:楊進木

國立交通大學 生物資訊與系統生物所碩士班

摘 要

在相同時間和空間尺度下,分子間精確地聚集且協同作用對於生物程序是不可或缺 的,例如細胞週期和轉錄作用。模組 (module) 是指一群具有高度連結並執行特定生物 功能的蛋白質所組成。就如同同源蛋白質 (homologous protein) 和同源蛋白質-蛋白質交 互作用 (homologous protein-protein interaction) 的概念,當一群模組來自一個共同的祖 先並且在不同物種中都執行相似的生物功能時,則這些模組被認為是同源模組 (homologous module)。以同源蛋白質-蛋白質交互作用家族為基礎,我們提出一個新概念: 「模組家族 (module family)」。模組家族包含一群同源模組,而同源模組是由一群同源

蛋白質-蛋白質交互作用家族所構成。從多物種的基因組 (genome) 來推論同源模組可提供一個契機去了解模組的演化和蛋白質交互作用體 (protein interactome)。

在本研究中,透過推論模板導向的方法,將模組家族的概念驗證在 MIPS CORUM 資料庫所收集的模組模版 (module template)上。首先,透過同源蛋白質-蛋白質交互作用 家族,從 1,679 個物種定義出同源模組候選者。隨後,當同源模組候選者具備三個條件: 第一,蛋白質相似性 (*E*-values $\leq 10^{-10}$);第二,蛋白質-蛋白質交互作用相似性 (joint *E*-values $\leq 10^{-40}$);第三,拓撲相似性 (蛋白質-蛋白質交互作用對齊比例 ≥ 0.3 和蛋白質 對齊比例 ≥ 0.5),則此模組被認為與它的模組模板相似並稱為模板導向之同源模組 (template-based homologous module)。我們驗證模板導向之同源模組的特性,結果指出其 蛋白質間具有高度連結性,以及在 Gene Ontology 的註解上傾向執行相似的生物功能。

進一步分析模板導向之同源模組的組成特性,我們發現模組家族中的核心組成(core component) 往往是生物體生存所需的必需蛋白質,核心組成乃指跨多物種及物種分群 (division group) 的同源蛋白質-蛋白質交互作用家族,亦即具有高分的蛋白質-蛋白質交 互作用演化程度 (protein-protein interaction evolution score)。 實驗結果指出模組家族中 的核心組成在調控模組的生物功能上扮演重要的角色。綜合以上所述,顯示來自模板導 向之同源模組的蛋白質-蛋白質交互作用演化程度可以反映出模組家族之必需蛋白質。 我們相信同源模組對於了解生命的基本要素有所助益。

Template-based Homologous Modules through Protein-protein

Interaction Families

Student: Yi-Wei Lin

Advisor: Dr. Jinn-Moon Yang

Institute of Bioinformatics and System Biology National Chiao Tung University

ABSTRACT

Precise assembling and cooperation between molecules in time and space scale are essential for biological processes, such as cell cycle and transcription. A module is a group of proteins that are highly connected and perform a certain kind of biological functions. The modules, which often share a common ancestor and perform similar biological functions across species, can be considered homologous modules, just as homologous proteins and homologous protein-protein interactions (PPIs). Based on PPI families, we proposed a new concept "module family", which comprises a group of homologous modules consisting of a group of homologous PPIs across species. To infer homologous modules from multiple genomes provides an opportunity to understand the module evolution and protein interactome.

In this study, we verified the concept through inferring template-based homologous modules from module templates provided by MIPS CORUM database. First, we identified candidates of homologous modules from 1,679 species through PPI families. Subsequently, the identified candidates were regarded as template-based homologous modules, constituting module families, if the modules are similar to their module template with (i) protein similarity (*E*-values $\leq 10^{-10}$), (ii) PPI similarity (joint *E*-values $\leq 10^{-40}$), and (iii) topology similarity (PPI aligned ratio ≥ 0.3 and protein aligned ratio ≥ 0.5). We examined the properties of the template-based homologous modules, and the results showed that the template-based homologous modules often contain the high connectivity and its protein members perform similar biological functions based on Gene Ontology terms.

We further analyzed the component properties of the template-based homologous modules. We found that the core components, which are the consensus of PPI families across multiple species and division groups (i.e. high PPI evolution score), of the module families are often essential proteins for the survival of an organism. Our results showed that the core components of module families play an important role to regulate biological functions of module. In conclusion, the experimental results reveal that the PPI evolution score derived from template-based homologous modules could reflect essential proteins of a module family. We believe that homologous modules are useful to understand essential elements of a life.

誌謝

感謝 主耶穌,在兩年的碩士生涯中,在眾多良師益友的支持和協助下,怡瑋才得 以完成這本論文,謹藉著這小小的篇幅,致上我最深切的謝意。

首先要感謝我的指導教授楊進木老師,很幸運可以進入老師所帶領的實驗室,您嚴 謹的研究態度和寬廣的視野,以及實驗室良好的討論氣氛,讓怡瑋得以初探科學研究的 鎮密邏輯及樂趣。在研究過程中,難免遭遇困難與瓶頸,而您總是不厭其煩地幫助學生 修正方向和提供生涯規劃的建議,更令怡瑋獲益良多。這樣的成長和變化,不但是在治 學上,也更是變化了怡瑋的人生態度。接著我要感謝我的口試委員,包含我的指導教授 楊進木教授、黃奇英教授、鄭添祿教授、彭慧玲教授。感謝每位教授在百忙之中抽空擔 任我的口試委員並且評鑑我的論文,以及在口試期間針對我的研究提供的寶貴意見,有 了他們的指導與建言才使得這本論文能更臻完美。

同時,感謝實驗室的學長姐和各位同學們,感謝研究上同一組的峻字學長和尚文學 弟,因為能與你們有充分的討論還有系統程式方面的協助,使我的研究能夠順利進行。 感謝俊辰學長、宇書學長、怡馨學姊、章維學長、PIKI 學長、志達學長、一原學長和彦 修學長在研究上的種種幫助和論文修訂。也感謝敬立、力仁、超哥、韋帆、伸融、御哲 碩班學長、同學和學弟妹們在實驗室給予的協助,謝謝大家在研究上和生活上的關心與 幫助,怡瑋銘記於心。

我的父母親林國財先生、林月里女士一直是怡瑋最熱情溫暖的避風港,包容我的任性,了解我的徬徨,容忍我的囉唆。謝謝妹妹姿甄、家慧和爽朗的老弟家豪,分擔我的情緒,在忙碌的工作和課業中抽出時間關懷問候,彼此加油打氣,一起撐過最辛苦的四、 五年。

怡瑋何其幸運,竟然能得到這樣多的幫助、愛護。最後容我再說一次說:謝謝,感 恩您們。

Table of Contents

Chinese Abstract	I
English Abstract	
Acknowledgement	
Table of Contents	IV
List of Tables	VI
List of Figures	VII

Chapter 1 Introduction1
1.1 Background
1.2 Motivation
1.3 Thesis overview
Chapter 2 Methods and Materials
2.1 Homologous module
2.2 Essential protein set and mapped essential protein set
2.3 Characteristics of modules and homologous modules of homologous module7
2.3.1 Connectivity of homologous module
2.3.2 Biological function of homologous module
2.4 PPI evolution score
Chapter 3 Results and Discussion9
3.1 Homologous modules
3.2 Characteristics of homologous modules10
3.2.1 Connectivity of homologous modules
3.2.2 Consensus of biological function of homologous modules11
3.3 Core components of homologous modules
3.4 Essential MF terms of GO14
3.5 Core components and Essential MF terms

References	59
4.2 Major contributions and future works	23
4.1 Summary	23
Chapter 4 Conclusions	23
3.8 Discussion	21
3.7 Application: Crystal structure-based homologous modules	
3.6 Example analysis	17

List of Tables

Table 1. The list of the number of modules in TOP 20 organisms from KEGG MODULE	
database	26
Table 2. The list of data sets using definition and verification of module family	27
Table 3. Modified division groups from NCBI taxonomy database	28
Table 4. The 181 essential GO molecular functions (MF) terms	29
Table 5. Validation of unannotated protein in core components by the orthology database	
(PORC) and essential GO MF terms	39
Table 6. The proteins of core components in templates with interface evolution score ≥ 9 .	40

List of Figures

Figure 1. Assembling and cooperating between molecules in time and space scale are essential
for transcription
Figure 2. Module performs in a certain kind of process and relatively autonomous with
respect to other parts of the protein-protein interaction network
Figure 3. Thesis framework45
Figure 4. Overview of identifying homologous modules through protein-protein interaction
(PPI) families using F ₁ -ATPase synthase-IF ₁ of <i>B. taurus</i> as the module template46
Figure 5. Evaluations of the topology similarity
Figure 6. Characteristics of modules and homologous modules
Figure 7. The distribution between the fraction of modules and average RSS scores of GO
Biological Process (BP) and Cellular Components (CC)49
Figure 8. Evaluations the PPI evolution scores using 1,578 module templates50
Figure 9. GO molecular function (MF) terms of essential proteins and core components51
Figure 10. The occur ratios of 181 essential GO MF terms between the essential proteins and
proteins of core components with interface evolution score ≥ 8
Figure 11. The nucleosome remodeling and deacetylase (NuRD) module (CORUM ID: 614)
family and the core components
Figure 12. The BRG1-based SEI/SNF chromatin remodeling module (CORUM ID: 2852)
family and the core components
Figure 13. Overview of identifying module family for homologous modules search using
proteins RPB1, RPB2, and RPB8 of RNA polymerase II module (PDB code 3fki) in
Saccharomyces cerevisiae as the module template
Figure 14. Molecular interfaces change analysis through binding models and multiple
sequence alignments of module family of RNA polymerase II
Figure 15. The mechanisms of intra-module and inter-module (RNA polymerase II- MLL
complex) interactions between Homo sapiens and Saccharomyces cerevisiae58

Chapter 1 Introduction

1.1 Background

Assembling and cooperating between molecules in time and space scale are essential for biological processes, such as the cell cycle and transcription (Fig. 1) [1]. The organization of molecules is regarded as a module which is involving in a certain kind of process (e.g. natural variation, function, and development) and relatively autonomous with respect to other parts of the organisms (Fig. 2) [2, 3]. To identify and characterize the modules in a species, genome-scale module discovery approaches, such as gene expression and graph-based methods [3-5], have been proposed. Modules can provide insights of interactome evolution for two reasons. First, organizing biological systems into modules may permit changes and affect the evolutionary mechanisms within one module without perturbing other module. Second, modules can be combined and reused to create new biological functions [6-9]. The increasing number of complete genomes makes it useful for inferring modules in newly sequenced genomes and identifying the essential elements of modules through multiple species.

Recently, several databases provide modules across multiple species based on orthology (protein family), such as KEGG MODULE database [10, 11] and the online database resource Search Tool for the Retrieval of Interacting Genes (STRING) [10, 11]. KEGG organism-specific modules is defined as a tight functional unit and complexes in the pathway through a set of orthologs [11], which are classified into pathway modules, structural complexes, functional sets, and genomic signatures. TOP 20 organisms assigned with KEGG organism-specific modules are mainly bacteria commonly used in molecular research projects, such as *Klebsiella pneumonia* and *Escherichia coli*, and so on (Table 1). STRING database

provides functional networks through cross-genome homology searches to transfer functional interactions by mapping orthologous proteins. Orthologous protein sequences often provide the clues for understanding the functions of a newly sequenced gene [12]. Furthermore, a protein can be annotated the biological process and molecular functions by considering its interacting proteins in a protein-protein interaction (PPI) network [13]. Therefore, homologous PPIs (PPI family) provide new insights for understanding the functional organization of the proteomes (e.g. conservations of interacting domain-domain pairs and function pairs) [12, 14]. As the increasing number of PPIs become available, to identify homologous modules across multiple species via PPI families should be useful to understand the module evolution, functions, and characteristics which are critical to analyze PPI networks of biological systems.

The discovery of sequence orthologs to a known protein often provides clues for understanding the function of a newly sequenced gene [12]. However, a protein could be annotated new functions by considering its interacting proteins in protein-protein interactions (PPIs) network [13]. Therefore, homologous PPIs (a PPI family) in multiple species networks could provide new insights for understanding the functional organization of the proteomes during evolution (e.g. conservations of interacting domain-domain pairs and function pairs) [12]. As an increasing number of PPIs become available, identifying homologous PPIs should be useful to understand the conserved and divergent intra-module interactions of modules across multiple species. Perhaps conserved proteins and PPIs of modules observed through PPI families are the core components for regulating biological function in the biological system.

1.2 Motivation

To address these issues, we propose a new concept "module family" by through PPI

families [12, 14]. According to our knowledge, module family, which comprises a group of homologous modules, is the first approach that identifies homologous modules of the module template from a large complete genomic database (e.g. Integr8 [15]) through PPI families. Notably, the core components of a module family are the conserved PPIs across multiple division group and species. Our results show that homologous modules are highly connected and perform a certain kind of biological functions, and the core components are often the essential elements for survival of an organism according to essential gene database (DEG) [16] and Gene Ontology (GO) database [17]. We believe that the module families and core components are useful for understanding the module evolution and PPI networks of biological systems across multiple species.

1.3 Thesis overview

The thesis consists of the two studies "module family" and "core components of a **1896** module family". Figure 3 and Table 2 show the thesis framework and data sets using in this study. This study infers homologous modules (a module family) from module templates (**Section 2.1**). First, we identified homologous module candidates of a module template from a large complete genomic database (Integr8) through PPI families. Subsequently, these module candidates were regarded as homologous modules (called module family) of this template, if the candidates are significantly similar to their module template: (i) protein similarity (*E*-values $\leq 10^{-10}$) [18, 19], (ii) PPI similarity (joint *E*-values $\leq 10^{-40}$) [12], and (iii) topology similarity (PPI aligned ratio ≥ 0.3 and protein aligned ratio ≥ 0.5) (**Section 3.1**).

We analyzed characteristics of modules and homologous modules, and our results show that the homologous modules often contain the high connectivity (Section 3.2.1) and perform consensus of biological functions (Section 3.2.2). Furthermore, we attempt to identify the core components of homologous modules through PPI families (Section 3.3), orthologs of essential proteins, and essential molecular functions (Section 3.4 and Section 3.5). Furthermore, we applied our concept on the crystal structure to identify template-based homologous modules (Section 3.7). In summary, we could identify homologous modules (module family) across multiple species using PPI families. The module family should be useful for deriving the core components and annotating the modules in a newly sequenced genome. Moreover, the module family can offer the new insight to analyze the module evolution and functions.

Chapter 2 Methods and Materials

Figure 4 shows the details of our method to identify the template-based homologous modules (module family) by the following steps (Fig. 4A): First, we select a module template database, which consists of 1,625 protein complexes (i.e. 1,165 in Homo sapiens, 268 in Mus musculus, 157 in Rattus norvegicus, and 35 in Bos taurus), from comprehensive resource of mammalian protein complexes database (CORUM; release 2.0) [20]. Then internal PPIs of a module template are added using template-based homologous PPIs, including experimental PPIs (i.e. IntAct [21], BioGRID [22], DIP [23], MIPS [24], and MINT [25]) and predicted homologous PPIs [12, 26] when the template is lack of intra-module interactions (Fig. 4B). For each PPI of a template, we derived its PPI family with joint E-value $\leq 10^{-40}$ [12] by searching from a complete genomic database (Integr8 version 103, containing 6,352,363 protein sequences in 2,274 species) using BLASTP [15](Fig. 4C). The homologous modules of a module template are derived from these searched PPI families, combined into homologous module candidates, according to the topology similarity between the module template and these candidates (Fig. 4D). For each module family, the module family profile is constructed to visualize the proteins and PPIs compositions across multiple species. Finally, for each module family, we derive GO biological process (BP), GO cellular component (CC), PPI and interface evolution scores and the core components (Fig. 4E).

2.1 Homologous module

Here, we use the module template M (including proteins A, B, C, D, E and F) with night interfaces A-B, A-C, A-D, B-C, B-D, B-F, C-D, C-E and D-E as an example to define the homologous module of M as follows: (1) A', B', C', D', E' and F' are the homologous proteins

of A, B, C, D, E, and F, respectively, with the significant sequence similarity (BLASTP *E*-values $\leq 10^{-10}$) [18, 19]; (2) A'-B', A'-C', A'-D', B'-C', B'-D', B'-F', C'-D', C'-E' and D'-E' are the template-based homologous PPIs of A-B, A-C, A-D, B-C, B-D, B-F, C-D, C-E and D-E, respectively, with significant joint sequence similarity (*joint* E-value $\leq 10^{-40}$) [12]; (3) A', B', C', D', E' and F' is the homologous module of template M with high topology similarity (here, defined as protein aligned ratio ≥ 0.5 and PPI aligned ratio ≥ 0.3). The protein and PPI aligned ratio are defined as the number of proteins (PPIs) in the homologous module divided by the number of proteins (or PPIs) in the module template, respectively. Here, protein aligned ratio ≥ 0.5 and PPI aligned ratio ≥ 0.3 are considered as topology similarity according to the statistical analysis of 75,706 modules (370 reference modules) in 1,442 species based on KEGG MODULE database [10].

2.2 Essential protein set and mapped essential protein set

To validate the biological meaning of core components in module families, we collected 11,384 essential proteins in 25 species from DEG (version 6.5) database [16], including 8 eukaryotes (e.g. *Homo sapiens* and *Saccharomyces cerevisiae*) and 17 prokaryotes (e.g. *Escherichia coli* and *Bacillus subtilis*).

The functions of essential genes (or proteins) were considered as an essential foundation for all cells [27]. Therefore, the homologous proteins of an essential protein might be also indispensable [16]. Here, the protein of module template was considered as mapped essential protein when this protein is homologs of an essential protein recorded in DEG database. For example, the SMARCB1 (SNF5 homolog) is a mapped essential protein which is a homologous protein of both essential proteins C_c (Snf5-related 1, *D. melanogaster*) and C_s (SNF5 homolog 1, *S. cerevisiae*) recorded in DEG (Fig. 12).

2.3 Characteristics of modules and homologous modules of homologous module

2.3.1 Connectivity of homologous module

To validate a homologous module which is relatively autonomous with respect to the other parts in a PPI network, we quantified the connectivity (C_t) of a module and is defined as

 $C_t = \frac{m}{C_2^n}$ [28], where *n* and *m* are the protein and PPI numbers in a module. For example, C_t is

1 if the proteins are complete connections in a module.

2.3.2 Biological function of homologous module

This study applied the relative specificity similarity (RSS) [29] to define the average RSS (*AvgRSS*) score for measuring the BP and CC similarities based on GO terms between all proteins in a homologous module. The *AvgRSS* score is given as

$$AvgRSS = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} RSS(i,j)}{C_{2}^{n}}, i \neq j$$
(1)

where *i* and *j* are any pair proteins in a module; *n* is the protein number of a module.

We defined the random module sets to measure BP and CC of a module family. Each module template constructed 50 random modules, which were selected randomly the same protein number from the genome of template's organism, and each random module was the same number of proteins with the module template. Among 1,625 template modules, the random data set consisted of 81,250 random modules.

2.4 PPI evolution score

Inferring homologous modules from multiple genomes provides an opportunity to understand the evolution, conserved functions, and core components of modules. Here, we measure the conservation of PPI family using PPI evolution score (*PPIES*). For evaluating *PPIES*, we selected and clustered the division names of NCBI taxonomy database [30] into five division groups, including mammals (MAM), vertebrates (VRT), invertebrates (INV), plants (PLN) and bacteria (BCT) (Table 3). For each PPI (z) of a module family, the PPI evolution score (*PPIES*) is defined as

$$PPIES_{z} = DG + \frac{m}{M} + \frac{v}{V} + \frac{i}{I} + \frac{p}{P} + \frac{b}{B}$$

$$\tag{2}$$

where DG is the number of division groups that contain at least one species in the module family; M, V, I, P, and B are the total numbers of species belong to MAM, VRT, INV, PLN, and BCT, respectively; and m, v, i, p, and b are the numbers of species belong to MAM, VRT, INV, PLN, and BCT for the PPI z, respectively. For each protein (k) in a module, we define its interface evolution score (*IES*) based on the maximum *PPIES* as

$$IES_k = \max_{1 \le j \le g} (PPIES_j) \tag{3}$$

where *g* is the number of proteins interacting to protein *k*. For example, the *IES* of protein α -subunit (ATP5A1) is 9.91 in F₁-ATP synthase-IF₁ module (CORUM ID: 574 [31]) family because of interacting with β -subunit (ATP5B; *PPIES* = 9.91), γ -subunit (ATP5C1; *PPIES* = 9.28), and δ -subunit (ATP5D; *PPIES* = 7.68) (Fig. 4E).

Chapter 3 Results and Discussion

In this study, we proposed a new concept (module family) and a method for inferring the module families and the essential elements of the life across multiple genomes through PPI families. Based on 1,625 module templates in MIPS CORUM database, we inferred 1,578 module families by searching the Integr8 database via 290,137 sequence-based PPI families and 86,252 structure-based PPI families. These homologous modules are often high connectivity and 89% and 96% module families have consensus BP and CC, respectively, based on GO terms. We further derived PPI and interface evolution scores to analyze the evolution and core components of a module family. According to PPI and interface evolution scores, the molecular functions (MF) of 808 proteins of core components are often for the survival of an organism and are highly correlated (Pearson's correlation=0.88) to the MFs of 8,364 essential genes in DEG database. Finally, we applied our concept "template-based homologous module" on the crystal structure (PDB code 3fki [32]) of RNA polymerase II in *Saccharomyces cerevisiae*.

3.1 Homologous modules

To understand the functions and characteristics of module families, we collected 75,706 organism-specific modules of 370 reference modules in 1,442 organisms from KEGG MODULE database. According to the data set, the protein aligned ratios between ~56% (42,065) and ~82% (62,080) organism-specific modules and their respective reference modules were exceed 0.9 and 0.5, respectively (Fig. 5A). Currently, the PPIs of a module are often limited and not consistent for different databases. For example, KEGG organism-specific modules were lack of internal PPI annotations. To decide the topology

similar threshold between modules and module templates, we added module PPIs through three PPI databases: 1) 275,787 experimental PPIs in the annotated PPI database (IntAct, MIPS, DIP, MINT, and BioGRID); 2) 9,016 PPIs derived from PDB crystal structures [26]; and 3) our previous sequence-based and structure-based homologous PPIs with joint *E*-value $\leq 10^{-70}$ [12] and *Z*-score ≥ 4 [14], respectively. Among 75,706 organism-specific modules, 23,092 modules can be added at least one internal PPI and the internal PPIs of the reference module are determined by considering all PPIs of its organism-specific modules. The PPI aligned ratios of 65% organism-specific modules are more than 0.3 (Fig. 5B). Based on these observations, we set the protein aligned ratio and PPI aligned ratio of the topology similarity to 0.5 and 0.3, respectively.

Based on these results, we inferred template-based homologous modules of 1,625 high-quality module templates which were collected from MIPS CORUM database. The CORUM database provides manually annotated protein complexes, which assemble multiple proteins to perform biological functions, from mammalian organisms [20]. These 1,625 complexes include 1,165 (*Homo sapiens*), 268 (*Mus musculus*), 157 (*Rattus norvegicus*), and 35 modules (*Bos Taurus*) with at least three proteins. According to these 1,625 module templates, we identified 1,578 module families (including 53,529 modules in 1,679 species) via our previous 290,137 sequence-based PPI families and 86,252 structure-based PPI families [12, 14].

3.2 Characteristics of homologous modules

3.2.1 Connectivity of homologous modules

A module in the protein network, relatively autonomous with respect to other parts of the

network, is often high connectivity in a PPI network. Figure 6A shows the relationships between the connectivity (C_t) of module templates and their respective extended modules, which extend one-layer PPIs and proteins for each protein in an original module. Among 1,625 module templates, connectivity values of 71% (1,114) templates are more than 0.6; conversely, 4% (71) extended modules are more than 0.6. In addition, 53,529 homologous modules and their extended modules are 78% (41,890) and 1% (752) with connectivity \geq 0.6, respectively (Fig. 6B). 83% templates and 95% homologous modules have higher connectivity than their extended modules. In the F₁-ATP synthase-IF₁ module family, the connectivity of this homologous module in *Homo sapiens* is 0.6 and the connectivity of its extended module decreases to 0.39. These results show that the homologous modules are relatively autonomous and high connectivity in a PPI network.

3.2.2 Consensus of biological function of homologous modules

Components of a module, assembling and cooperating in a PPI network, simultaneously preform a certain kind of biological functions. Here, we applied average RSS (*AvgRSS*) score to measure the consensus of biological functions (e.g. biological process similarity and location similarity) based on the GO terms of BP and CC. We compared the *AvgRSS* scores of BP and CC between the module templates and their respective extended modules. Among 1,625 module templates, the *AvgRSS* scores of BP (89% module templates) and CC (96% module templates) were more than 0.6 (Figs. 6C and 6E). Sequentially, The BP and CC *AvgRSS* scores of 77% and 91% homologous modules, respectively, were more than 0.6 (Figs. 6D and 6F). In contrast, only 2% extended modules of homologous modules have BP *AvgRSS* scores \geq 0.6. The CC *AvgRSS* scores of 72% homologous module and 2% extended modules were more than 0.7.

Relative to the extended modules, 96% (1,451) and 97% (1,493) module templates have higher BP and CC *AvgRSS* scores. Similarly, 91% (27,569) and 95% (21,092) homologous modules have higher BP and CC *AvgRSS* scores than their extended modules. For instance, the BP and CC *AvgRSS* scores of F₁-ATP synthase-IF₁ homologous module in *Homo sapiens* are 0.83 and 0.86, but the *AvgRSS* scores of BP and CC decrease to 0.45 and 0.61 for its extended module, respectively. Additionally, the *AvgRSS* scores of BP and CC of module templates (Figs. 7A and 7C) and homologous (Figs. 7B and 7D) modules are significantly greater than random modules. These results reveal that the homologous modules are high consensus in BP and CC.

3.3 Core components of homologous modules

We identified the core components of homologous modules by observing the relationship between *IES* values and 8,553 proteins in 1,578 module templates. These proteins were divided into two groups, unannotated and mapped essential proteins. Among 3,740 mapped essential proteins, the *IES* values (Equation 3) of 81% and 36% proteins are more than 6 and 8, respectively (Figs. 8A and 8B). To analyze the relationship between *IES* values and 3,740 mapped essential proteins, we defined the accuracy of each *IES* value interval as the number of mapped essential proteins divided by the total number of proteins. The correlation between accuracies and *IES* values is highly correlated (Pearson's correlation = 0.98). According to the annotation reliability (i.e. the number of homologs (recorded as essential proteins) of a template protein), the mapped essential proteins were divided into "mapped≥1 species" and "mapped≥2 species" groups. To compare with "mapped≥1" group, 98% and 62% "mapped≥2 species" essential proteins have *IES* ≥ 6 and ≥ 8, respectively, among 962 proteins (Fig. 8C). Here, we regarded the proteins (*IES* ≥ 8) and PPIs (*PPIES* ≥ 8) are core components of a module family.

Here, we used F_1 -ATP synthase-IF₁ module family as an example to describe the core component and IES scores (Fig. 4). During the process of oxidative phosphorylation, the chemical bond energy of ATP is produced by F_1F_0 ATP synthases through converting energy stored in an electrochemical gradient of H⁺ or Na⁺ across the membrane into mechanical rotation [33]. Three subunits α - (ATP5A1), β - (ATP5B), and γ -subunits (ATP5C1) and their PPIs were considered as core components of F₁-ATP synthase-IF₁ module family through PPI families (*IES* \geq 9.28). For example, the PPI family of β - and γ - subunits across 1,372 species was constructed by the template interface chain D (β - subunits) and G (γ -subunits) of F₁ ATP synthase (PDB code: 2jdi [34]) of Bos taurus. Based on the profile of the F₁-ATP synthase-IF₁ module family in the organisms commonly used in molecular research projects (Fig. 4E), the PPI families of α -, β -, and γ - subunits are more conserved than others, such as ϵ -subunit (ATP5E) and ATPase inhibitor (ATPIF1). The ATP hydrolysis occurs in the $\alpha_3\beta_3$ drives rotation of the γ -subunit, which inserts long coiled-coil helices into central cavity of the $\alpha_3\beta_3$ cylinder [35]. In addition, ATP hydrolysis activity was inhibited by the ε subunit of ATP synthase with C-terminal α -helical domain [33]. The protein sequences of ε subunit in mammals are different with other division groups, such as invertebrates, plants, and bacteria. On the other hand, the natural inhibitor of F_1 ATP synthase regulates ATP synthase activity with the N-terminal inhibitory sequences [36], but no homolog of ATPIF1 has been found in either chloroplasts or bacteria [33].

For the F_1 -ATP synthase-IF₁ module family, the homologous proteins of ATP5A1, ATP5B and ATP5C1 were the essential proteins in 11, 9 and 9 species (e.g. *D. melanogaster* and *M. tuberculosis*), respectively. In contrast, none homologous proteins of other components (e.g. ATPIF1) were essential proteins. These experimental results demonstrate that the core components of a module family preferred to be the essential elements for the survival of an organism.

3.4 Essential MF terms of GO

The GO terms provide the descriptions of BP, CC and MF of a protein (gene), such as catalysis and binding [17]. According to the modification of TF-IDF (term frequency-inverse document frequency) scoring scheme [37], we identified 181 essential GO MF terms to describe functional relationships of essential proteins and core components of module families (Table 4). First, we collected 8,364 essential proteins (called EP8364 set) from DEG database and 160,598 proteins (called CG27 set) in 27 completed genomes (25 species in DEG database and 2 species in module template set). These proteins in these two sets consist of at least one GO MF or GO BP terms. The occur ratio (CR_t) of a GO MF term (t) is defined as $CR_t = P_t/T$, where P_t is the number of proteins with term t and T is the total number of proteins in sets EP8364 (8,364 proteins) or CG27 (160,598 proteins). For example, the occur ratio of the term "rRNA binding" is 0.0497 while $P_t = 416$ and T = 8,364 for the EP8364 set. The distributions of occur ratios of GO MF terms between the proteins in core components and the essential proteins are significantly similar (Pearson's correlation=0.88). In contrast, the Pearson's correlation of GO BP terms is 0.28 because the BP terms often describe a series of events accomplished by one or more ordered assemblies of molecular functions. The MF and BP terms are suitable for a protein and a module, respectively.

Sequentially, we developed "unique ratio (UR)" to statistically measure the GO MF term importance (specificity) to a protein by modifying the *TF-IDF* scoring scheme [37]. The unique ratio of a GO MF term (*t*) is defined as $UR_t = CR_t^{EP}/CR_t^{CG}$, where CR_t^{EP} and CR_t^{CG} are the occur ratios of term *t* in sets EP8364 and CG27, respectively. For example, the unique ratio of term "rRNA binding" is 9.72 while $CR_t^{EP} = 0.0497$ and $CR_t^{CG} = 0.0051$. Finally, we statistically selected 181 essential GO MF terms, which are significant specificity to essential proteins and core components with $UR \ge 2$, to avoid selecting the terms of specific species (e.g. azobenzene reductase activity) and high usage without the specificity (e.g. protein binding).

To analyze characteristics and functions of core components, we classified clustered these 181 essential GO MF terms into 12 groups, such as Translation (30 terms, 16%), Transcription (12 terms, 7%), Carbohydrate (26 terms, 14%) and Lipid (14 terms, 8%) metabolisms, Amino acid metabolism (12 terms, 7%) and RNA degradation (6 terms, 3%), Purine (12 terms, 7%) and Pyrimidine (4 terms, 2%) metabolism, and Oxidative phosphorylation (5 terms, 3%) (Fig. 9A and Table 4). The largest percentage (16%) of the essential GO MF terms is Translation group, such as rRNA binding (UR=9.72), translation release factor activity, codon specific (UR=6.48), structural constituent of ribosome (UR=4.71), and tRNA binding (UR=8.38). In the process of transcription, the information contained in a section of DNA is transferred to a newly assembled piece of messenger RNA (mRNA), which is a part of central dogma. The central dogma of molecular biology, including DNA replication, transcription, and translation, is the fundamental of life for sequence information transfer [38]. Among 181 essential GO MF terms, 30% essential GO MF terms are involving in the central dogma (Fig. 9A). Furthermore, we also analyzed the percentage of GO MF groups in 3,441 essential proteins (Fig. 9B). 71% essential proteins were annotated with GO MF terms which are relative to the central dogma, such as translation (54%).

Among 181 essential GO MF terms, 40 terms (e.g. acetyl-CoA carboxylase activity, UR=9.25) are recorded in Carbohydrate and lipid metabolisms, which are for the energy balance of organisms and for various biochemical processes responsible for the formation, breakdown and interconversion [39, 40]. 22% essential GO MF terms are participated in carbohydrate and lipid metabolisms. 18 essential GO MF terms are included in Amino acid metabolism (e.g. cysteine desulfurase activity, UR=6.89) and RNA degradation (e.g. 3'-5' exonuclease activity, UR=5.27), which play an important role of the energy balance in reuse of RNA and amino acids. Purine (ATP-dependent RNA helicase activity, UR=5.04) and pyrimidine (thymidylate kinase activity, UR=6.98) metabolisms are regarded as a modular

minimal cell model [41]. The generation of the biological energy occurs mainly in oxidative phosphorylation group [42]. These results show that most of these 181 essential GO MF terms are indispensable for the survival of an organism.

3.5 Core components and Essential MF terms

To analyze the characteristics and functional annotations of core components, we compared the essential proteins and the proteins of core component using derived 181 essential GO MF terms (Figs. 9B and 9C). The distributions of occur ratios in 181 essential GO MF terms were significantly similar between the core component set (i.e. 808 proteins of 1,578 template modules) and the essential protein set (i.e. 8,364 essential proteins) (Fig. 10). Both sets have four GO MF terms with high occur ratios, including structural constituent of ribosome, ATPase activity, nucleoside-triphosphatase activity, and identical protein binding. Interestingly, the occur ratio of the MF term chromatin binding (in cell cycle group) in the core component set is much higher than the one in the essential protein set (Fig. 9C). Chromatin is a condensed structure in eukaryotic cells, but prokaryotic cells do not possess histones to form chromatin [43]. Relative to all module templates belong to mammals (eukaryote), most of essential proteins in DEG database are collected from prokaryotes. Therefore, the essential protein set has few chromatin binding annotation.

On the other hand, the essential protein set contains two terms related with translation (i.e. rRNA binding and tRNA binding) with high peaks but not in the core component set (Fig. 9C). Since these two terms are prokaryote specific in GO database, this is the reason, that the core component set has low occur ratios in rRNA binding and tRNA binding annotations. Moreover, Figure 9B shows the percentages of 246 proteins of core components and 3,441 essential proteins in 12 groups of 181 essential GO MF terms. We found that 14% proteins of

core components related with cell cycle but 3% in essential proteins due to chromatin binding. Similarly, rRNA binding and tRNA binding (prokaryote-specific annotation) in translation are the causes of higher percentage in essential proteins (54%) than ones in the core components (25%). Our results suggest that the proteins of core components are considered as the essential proteins due to the significantly similar distributions of the occur ratios in 181 essential GO MF terms.

To verify whether the unannotated proteins of core components implied potential essential proteins, we analyzed orthologous proteins and function annotations of essential proteins. The homologous or orthologous proteins of an essential protein could be considered to be essential [16]. Here, we used the orthologs in PORC database [15] and 181 essential GO MF terms to analyze unannotated proteins of core components. Among 400 unannotated proteins (*IES* \geq 8) of core components, 146 proteins (37%) are the orthologous proteins of essential proteins or annotated at least one of 181 essential GO MF terms. Furthermore, the GO MF term, which is the child of essential GO MF terms could be considered as the essential GO MF terms. Therefore, 116 unannotated proteins (29%) possess the children annotations of 181 essential GO MF terms. Moreover, 73% unannotated proteins with *IES* \geq 9 have at least one of these three aspects (Tables 5 and 6).

3.6 Example analysis

The nucleosome remodeling and deacetylase module (NuRD, CORUM ID: 614) of *Homo sapiens* consists of histone deacetylase 1/2 (HDAC1/HDAC2), histone-binding protein RBBP4 (RBBP4), chromodomain-helicase-DNA-binding protein 3/4 (CHD3/CHD4), metastasis-associated protein MTA1 (MTA1), and lysine-specific histone demethylase 1A (KDM1) (Fig. 11). The NuRD module was considered as a key modulator of ageing associated chromatin defects [44-46] and found widely in mammals, vertebrates, invertebrates,

and plants [47].

Using the NuRD module in *Homo sapiens* as a module template, its homologous modules across 233 species and 5 division groups involve in regulating negative regulation of gene-specific transcription from RNA polymerase II promoter (Fig. 11A). Eight PPI families (e.g. CHD3-CHD4, CHD3-HDAC2, and HDAC1-HDAC2) of this module family were regarded as core components due to their *PPIES* \geq 8 (Fig. 11B). Among five predicted core proteins (i.e. HDAC1/2, RBBP4, and CHD3/CHD4), three proteins (i.e. HDAC1/2 and PBBP4) are the homologous proteins of essential proteins recorded in DEG database (Fig. 11C). CHD3 and CHD4 were annotated with several essential GO MF terms, such as chromatin binding and ATP-dependent DNA helicase activity (Fig. 11D). In addition, the CHD4, which possesses intrinsic ATP-dependent nucleosome-remodeling activity, can prevent accumulation of spontaneous DNA damage and increase ionizing radiation sensitivity [48]. These results show that proteins CHD3 and CHD4 should be core proteins of the NuRD module family.

Figure 11B shows that the PPI families of MTA1-HDAC1/2 and MTA1-CHD3/4 were conserved in mammals, vertebrates, and invertebrates. Metastasis-associated protein 1 (MTA1), the first gene found in the family of cancer progression-related genes, is widely upregulated in human cancers and plays an important role in tumorigenesis and tumor aggressiveness, such as tumor invasion and metastasis in breast cancer [49-51]. The MTA1 was lack of homologous proteins in *Arabidopsis thaliana*, *Schizosaccharomyces pombe* and *Saccharomyces cerevisiae*, in homologene database of NCBI [30]. In addition, cancers in plants (i.e. galls) grow locally rather than by metastasis [52]. Therefore, homologous PPIs of MTA1-HDAC1/2 and MTA1-CHD3/4 are not found in plants and fungi. On the other hand, RBBP4 is a conserved histone-binding protein and shares subunits of several multi-protein complexes involving in the establishment of heterochromatin [53, 54]. Because the

prokaryotic cells do not possess histones to package the DNA to form the chromatin [43], RBBP4-HDAC1/2 and RBBP4-CHD3/4 PPI families are highly conserved in eukaryotes but lack in bacteria (Fig. 11B).

In the second example, we used BRG1-based SWI/SNF chromatin remodeling complex (CORUM ID: 2852, regulating cell proliferation and differentiation [55]) as a module template to identify homologous modules and the core components (Fig. 12). Four proteins of this complex were considered as the core components because their *IES* values \geq 8. In this complex, three proteins (ACTL6A, SMARCC1 and SMARCB1) are the mapped essential proteins based on the DEG database. The protein SMARCC2 should be a mapped essential protein according to its GO MF terms: chromatin binding, transcription coactivator activity and DNA binding. These results indicate that the proteins of core components often are essential proteins based on orthologs of essential proteins, the essential GO MF terms, and children terms of essential GO MF terms.

1896

3.7 Application: Crystal structure-based homologous modules

We applied our concept, "template-based homologous module", on crystal structures derived from PDB database. In the first step of gene expression in eukaryotic cells, RNA polymerase II and its associated factors form an elaborate protein module that transcribes DNA sequences into pre-mRNAs [56]. To study eukaryotic gene expression machinery, it is essential for understanding the mechanisms that regulate transcription via protein-protein interactions within the RNA polymerase II apparatus [32]. In our results, we used the crystal structure (PDB code 3fki [32]) of RNA polymerase II in *Saccharomyces cerevisiae* as a module template to identify the homologous modules (Fig. 13A). There are 12 proteins involving in this module, including DNA-directed RNA polymerase II subunit RPB1 (RPB1),

DNA-directed RNA polymerase II subunit RPB2 (RPB2) and DNA-directed RNA polymerase II subunit RPB8 (RPB8). Figure 13 shows the method and the searching result of RNA polymerase II module family which comprises seven homologous modules in *Homo sapiens*, Mus musculus, Drosophila melanogaster and Saccharomyces cerevisiae. First, we identified 20 template-based PPI families (e.g. RPB1-RPB2 and RPB1-RPB8 PPI families of interface of chain A-B and A-H, respectively) with interface similarity Z-values \geq 3 from Integr8 database (Fig. 13B). Next, we combined these PPI families to identify homologous modules (a protein module family), including three homologous modules of Homo sapiens, Mus musculus and Drosophila melanogaster which comprise 12 proteins (proteins aligned ratio is 1.00) and 19 PPIs (PPI aligned ratio is 0.94) and a homologous module of Saccharomyces cerevisiae which comprises 12 proteins (proteins aligned ratio is 1.00) and 20 PPIs (PPI aligned ratio is 1.00) (Fig. 13B). These homologous modules are recorded in KEGG complex module (RNA polymerase II, eukaryotes; M00180) [57] for supporting our result. In addition, all proteins of four homologous modules in this module family have the same MF (e.g. DNA-directed RNA polymerase activity) and BP terms (e.g. transcription from RNA polymerase II promoter) in GO database. Similarly, interacting domain pairs [58] (e.g. RNA_pol_Rpb1_3-RNA_pol_Rpb8 of RPB1-RPB8) are conserved in the module family. Moreover, we provided the binding model to analyze the binding forces based on the template, such as hydrogen bonds, including Leu597-Tyr102 and Leu598-Arg25 of interface A-H and Glu846-Arg1135, Lys345-Asp1156 and Asp346-Arg1100 of interface A-B). Our results suggested all interacting residues forming the hydrogen bonds are often highly conserved and useful for observing the interface evolution across multiple species (Fig. 13A).

A tightly associated 10-subunit core and a heterodimeric subcomplex of subunits RPB4 and RPB7 assembled the dodecameric protein of RNA polymerase II [59]. For catalyzing RNA-chain polymerization, the 10-subunit core harbors the central transesterase activity, but the proteins RPB4 and RPB7 enables promoter-dependent initiation by the polymerase and supports yeast growth under stress conditions [60, 61]. Based on above works, the homologous module in Saccharomyces cerevisiae comprised 20 PPIs but only 19 PPIs in Homo sapiens, Mus musculus and Drosophila melanogaster. We found a PPI (i.e. RPB4-RPB2) of homologous module in Saccharomyces cerevisiae does not exists in Homo sapiens, Mus musculus and Drosophila melanogaster (Fig. 14). Through the binding model and multiple species alignments from the template module, we found some contact residues in Saccharomyces cerevisiae are changed (e.g. Tyr1217 of RPB2 in Saccharomyces cerevisiae to Met1172 of POLR2B in Homo sapiens and Ser4 of RPB4 in Saccharomyces cerevisiae change to Gly4 of POLR2D in Homo sapiens) or absent (e.g. Arg1220 and Ser1221 of RPB2 and Arg12, Arg13, Arg14, Leu15 and Lys16 of RPB4) in Homo sapiens that result in the interaction losing (Fig. 14). For the programmed development of multicellular organisms and the homeostasis of cells, it is critical to regulate RNA polymerase II activity [62]. RPB4 involved in yeast growth under stress conditions, but resistance of stress in Homo sapiens, Mus musculus and Drosophila melanogaster is more complicated. These results implied the interactome are diverse between unicellular (e.g. Saccharomyces cerevisiae) and multicellular organisms (e.g. Homo sapiens, Mus musculus and Drosophila melanogaster).

3.8 Discussion

Modules could provide insights of a PPI network evolution for two reasons. First, organizing a biological system into modules permits the changes to affect the mechanisms within one module without perturbing other modules [6]. Second, the new biological functions can be created by the combination and reuse of modules [7, 63]. To identify and analyse homologous modules in the PPI networks across multiple species provide a new opportunity for exploring the evolutionary fundamentals of biological systems. Among 1,578

module families, we found that all proteins of 133 module families were recognized as core components. Interestingly, these module families were often involving in important biological processes, such as central dogma and cell cycle. This observation implied that these modules could be regarded as the essential modules of a life. For instance, BRG1-based SWI/SNF chromatin remodeling module family, which regulates cell proliferation and differentiation in eukaryotes, comprise four proteins which are regarded as core components (e.g. SMARCC1, SMARCC2, SMARCB1, and ACTL6A) (Fig. 12).

Chapter 4 Conclusions

4.1 Summary

This study proposes a new concept "module family" that consists of homologous modules derived from a large complete genomic database through a module template and PPI families. The experimental results show that homologous modules are highly connected and perform a certain kind of biological function. For a module family, its core components, which consist of conserved PPIs across multiple species and division groups, often forms the essential elements for the survival of an organism according to 181 essential GO MF terms. We believe that the module family and core components provide new insights for understanding module evolution and functions in the PPI networks of biological systems.

4.2 Major contributions and future works

According to our knowledge, module family, which comprises a group of homologous modules, is the first approach that identifies homologous modules of the module template from complete genomes through PPI families. We have developed a new method to identify homologous modules based on module templates of manually annotated protein complexes and crystal structures. Furthermore, the conserved and divergent internal PPIs of homologous modules provided clues to infer essential elements of modules.

For the origination and diversity of novel phenotypes, we will focus on two issues: "What is (are) the essential element(s) of life" and "What is the formation of a new species". Some modules are evolutionarily cohesive, in other words, these cohesive modules are conserved across multiple species [64]. The relationships between the connected modules allow construction of the module-module interaction network which is regarded as the connection between different functional modules in the interactome [65]. Intra-module proteins have less widespread mutational effects but inter-module proteins, which integration occurs between modules, have higher rate of amino-acid substitutions [66, 67]. According to previous studies, inter-module interactions have more evolutionary modifications than intra-module interactions.

Inter-module interactions of RNA polymerase II module in human are mediated by protein-protein interaction, such POLR2B-MEN1, POLR2B-WWOX, and as POLR2B-GSK3B (Fig. 15). In other word, the inter-module proteins interacting with POLR2B, including MEN1, WWOX, and GSK3B, and participate other BP annotations of proliferation, steroid metabolic process, and glycogen metabolic process, respectively. Multiple endocrine meoplasia type 1 (MEN1) is a subunit of mixed-lineage leukemia (MLL) complex, a proto-oncogene with implication of development and leukemia pathogenesis [68, 69]. WWOX contains two WW domains at N-terminal and plays a role in regulating steroid metabolism [70]. Glycogen synthase kinase β (GSK3B) is a serine-threenine kinase with potent tumour suppressor qualities and regulates glucose storage and cell proliferation [71, 72]. In this section, we would propose a real case about the module-module interaction between RNA polymerase II module and MLL1 complex module.

The mechanism of RNA polymerase II module is involved in transcription that is the process of creating a complementary RNA copy of a sequence of DNA. MLL core complex uses a non-processive mechanism to catalyze multiple lysine methylations of histones, which is an important epigenetic indexing system for transcriptionally active and inactive chromatin domains in eukaryotic genomes [73]. Based on our concept of module family, we identified the module families of RNA polymerase and MLL complex. The module family of RNA polymerase was descripted above (Fig. 13 and 14). The MLL complex module in *Homo sapiens* consists of six components, including histone-lysine N-methyltransferase MLL

(MLL), menin (MEN1), Set1/Ash2 histone methyltransferase complex subunit ASH2 (ASH2L), rtinoblastoma-binding protein 5 (RBBP5), WD repeat-containing protein 82 (WDR82) and WD repeat-containing protein 5 (WDR5). In the MLL complex module family, there are two homologous modules (6 proteins and 15 PPIs) in Homo sapiens, one module (6 proteins and 15 PPIs) in *Drosophila melanogaster* and one module (5 proteins and 10 PPIs) in Saccharomyces cerevisiae. Interestingly, we found histone-lysine N-methyltransferase MLL2 (MLL2) is the homologs of MLL1 in *Homo sapiens* and could replace the MLL1 to form the MLL complex. However, only one homologs histone-lysine N-methyltransferase trithorax (trx) and histone-lysine N-methyltransferase, H3 lysine-4 specific (SET1) is in Drosophila melanogaster and Saccharomyces cerevisiae, respectively [74]. In addition, menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1 [75-78]. Menin in the MLL complex associated with RNA polymerase II in Homo sapiens [79] and Drosophila melanogaster. However, there are no Menin homologs found in Saccharomyces cerevisiae genome. SET1 replaces the part of interaction between RNA polymerase II module and MLL complex module in Saccharomyces cerevisiae (Fig. 15). According to our results, we could find not only diversity of intra-module interactions but also diversity of inter-module interactions between different organisms. It is useful to homologous modules in across-genome scale and offer biologists to realize evolutions of module and behaviors of interactome.

Tables

Table 1. The	list of the numbe	r of modules in TO	P 20 organisms from	NAME IN TERMINE MADE IN THE NUMBER OF A COMPARISON OF

KEGG Taxonomy ID	NCBI Taxonomy ID	Organism Codes	Organisms	No. of modules in KEGG MODULE database
T00772	507522	kpe	Klebsiella pneumoniae 342	141
T00566	272620	kpn	Klebsiella pneumoniae subsp. pneumoniae MGH 78578	141
T00910	484021	kpu	Klebsiella pneumoniae NTUH-K2044	139
T01170	640131	kva	Klebsiella variicola At-22	138
T01342	701347	esc	Enterobacter cloacae SCF1	135
T00044	155864	ece	Escherichia coli O157:H7 EDL933	134
T00672	439855	ecm	Escherichia coli SMS-3-5	134
T00507	399742	ent	Enterobacter sp. 638	133
T00784	409438	ecy	Escherichia coli O152:H28 SE11	132
T00949	544404	etw	Escherichia coli O157:H7 TW14359	132
T00831	585056	eum	Escherichia coli O17:K52:H18 UMN026	132
T01422	741091	rah	Rahnella sp. Y9602	132
T00778	444450	ecf	Escherichia coli O157:H7 EC4115	131
T00338	364106	eci	Escherichia coli O18:K1:H7 UTI89	131
T00829	585057	ect	Escherichia coli O7:K1 IAI39	131
T00591	331112	ecx	Escherichia coli O9 HS	131
T01098	573235	eoj	Escherichia coli O26:H11 11368	131
T00068	316407	ecj	Escherichia coli K-12 W3110	130
T00828	585034	ecr	Escherichia coli O8 IAI1	130
T00048	386585	ecs	Escherichia coli O157:H7 Sakai	130

Data sets	Comments
MIPS CORUM database [20]	The CORUM database using as module template set provides manually annotated protein complexes, which assemble multiple proteins to perform biological functions, from mammalian organisms.
Annotated PPI database	275,787 experimental PPIs in the annotated PPI database (IntAct [21], BioGRID [22], DIP [23], MIPS [24], and MINT [25])
Predicted homologous PPI set	Our previous sequence-based and structure-based homologous PPIs with joint E-value $\leq 10^{-40}$ [12] and Z-score \geq 3 [14], including 290,137 sequence-based PPI families and 86,252 structure-based PPI families
Integr8 database [15]	A complete genomic database (Integr8 version 103, containing 6,352,363 protein sequences in 2,274 species)
KEGG MODULE database [11]	KEGG organism-specific modules is defined as a tight functional unit and complexes in the pathway through a set of orthologs
Gene Ontology (GO) database [17]	We derive GO biological process (BP) to annotate homologous modules and GO molecular function (MF) to annotate core components of module family.
Extended module data set	Extending one-layer PPIs and proteins for each protein in an original module through homologous PPIs
Random data sets	Each module template constructed 50 random modules, which were selected randomly the same protein number from the genome of template's organism, and each random module was the same number of proteins with the module template.
PORC ortholog database [15]	PORC (putative orthologous clusters) are defined as orthologous families from Integr8 database.
Essential genes database (DEG) [16]	We collected 11,384 essential proteins in 25 species from DEG (version 6.5) database, including 8 eukaryotes and 17 prokaryotes.
EP8364 set	We collected 8,364 essential proteins (called EP8364 set) from DEG database with at least one GO MF or GO BP terms.
CG27 set	160,598 proteins (called CG27 set) in 27 completed genomes (25 species in DEG database and 2 species in module template set) derived from Integr8 database

Table 2. The list of data sets using definition and verification of module family
Division group	Division code ^a	Division name ^b	Number of species used in module family
	PRI	Primates	
MAM	ROD	Rodents	4
	MAM	Mammals	
VRT	VRT	Vertebrates	3
INV	INV	Invertebrates	27
PLN ^c	PLN	Plants	42
BCT	BCT	Bacteria	1,596
	PHG	Phages	
	VRL	Viruses	
N/A ^d	SYN	Synthetic	7
	UNA	Unassigned	
	ENV	Environmental samples	

Table 3. Modified division groups from NCBI taxonomy database

 ^{a,b} The division names and codes are derived from NCBI taxonomy database [30] (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz).
 ^c The PLN division group includes plants and fungi (e.g. Saccharomyces cerevisiae).
 ^d. According to only 478 homologous modules (< 1 %) of 53,529 homologous modules (1,679 species) belong to phages, viruses, synthetic, unassigned, and environmental samples, therefore, we excluded these divisions.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0019843	rRNA binding	Translation	822	0.0051	416	0.0497	9.7173	3	0.0037	0.7254
GO:0004820	glycine-tRNA ligase activity	Translation	53	0.0003	24	0.0029	8.6948	0	0.0000	0.0000
GO:0000049	tRNA binding	Translation	394	0.0025	172	0.0206	8.3822	2	0.0025	1.0089
GO:0004818	glutamate-tRNA ligase activity	Translation	40	0.0002	17	0.0020	8.1605	1	0.0012	4.9690
GO:0004827	proline-tRNA ligase activity	Translation	38	0.0002	16	0.0019	8.0847	1	0.0012	5.2305
GO:0004832	valine-tRNA ligase activity	Translation	41	0.0003	17	0.0020	7.9614	0	0.0000	0.0000
GO:0004825	methionine-tRNA ligase activity	Translation	38	0.0002	15	0.0018	7.5794	1	0.0012	5.2305
GO:0004814	arginine-tRNA ligase activity	Translation	54E S	0.0003	21	0.0025	7.4671	1	0.0012	3.6807
GO:0004824	lysine-tRNA ligase activity	Translation	49	0.0003	19	0.0023	7.4453	1	0.0012	4.0563
GO:0004826	phenylalanine-tRNA ligase activity	Translation	88	0.0005	32	0.0038	6.9822	0	0.0000	0.0000
GO:0004823	leucine-tRNA ligase activity	Translation	⁴³ 18	9 0.0003	15	0.0018	6.6981	0	0.0000	0.0000
GO:0016149	translation release factor activity, codon specific	Translation	83	0.0005	28	0.0033	6.4775	1	0.0012	2.3947
GO:0004831	tyrosine-tRNA ligase activity	Translation	45	0.0003	15	0.0018	6.4004	0	0.0000	0.0000
GO:0004822	isoleucine-tRNA ligase activity	Translation	39	0.0002	13	0.0016	6.4004	1	0.0012	5.0964
GO:0004817	cysteine-tRNA ligase activity	Translation	47	0.0003	15	0.0018	6.1280	0	0.0000	0.0000
GO:0004526	ribonuclease P activity	Translation	71	0.0004	22	0.0026	5.9496	0	0.0000	0.0000
GO:0004829	threonine-tRNA ligase activity	Translation	49	0.0003	15	0.0018	5.8779	0	0.0000	0.0000
GO:0004816	asparagine-tRNA ligase activity	Translation	33	0.0002	10	0.0012	5.8185	0	0.0000	0.0000

Table 4. The 181 essential GO molecular functions (MF) terms

^a The CG27 set (160,598 proteins annotated \geq 1 GO MF terms) consists of 25 species in DEG and 2 species in module template set.

^b The occur ratio of a GO MF term is defined as the number of proteins annotated this terms divided by the total number of proteins in the set.

^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004828	serine-tRNA ligase activity	Translation	53	0.0003	16	0.0019	5.7966	0	0.0000	0.0000
GO:0004813	alanine-tRNA ligase activity	Translation	50	0.0003	15	0.0018	5.7603	0	0.0000	0.0000
GO:0004821	histidine-tRNA ligase activity	Translation	50	0.0003	15	0.0018	5.7603	0	0.0000	0.0000
GO:0004815	aspartate-tRNA ligase activity	Translation	77	0.0005	22	0.0026	5.4860	1	0.0012	2.5813
GO:0008097	5S rRNA binding	Translation	34	0.0002	9	0.0011	5.0826	1	0.0012	5.8459
GO:0004830	tryptophan-tRNA ligase activity	Translation	50	0.0003	13	0.0016	4.9923	0	0.0000	0.0000
GO:0003735	structural constituent of ribosome	Translation	2903	0.0181	713	0.0852	4.7159	22	0.0272	1.5063
GO:0004045	aminoacyl-tRNA hydrolase activity	Translation	55E S	0.0003	13	0.0016	4.5384	0	0.0000	0.0000
GO:0008143	poly(A) RNA binding	Translation	31	0.0002	5	0.0006	3.0970	4	0.0050	25.6464
GO:0043022	ribosome binding	Translation	120	0.0007	= 19	0.0023	3.0402	4	0.0050	6.6253
GO:0003746	translation elongation factor activity	Translation	41918	90.0026	55	0.0066	2.5204	2	0.0025	0.9487
GO:0003743	translation initiation factor activity	Translation	749	0.0047	81	0.0097	2.0765	16	0.0198	4.2459
GO:0004807	triose-phosphate isomerase activity	Carbohydrate	34	0.0002	11	0.0013	6.2121	0	0.0000	0.0000
GO:0004751	ribose-5-phosphate isomerase activity	Carbohydrate	31	0.0002	10	0.0012	6.1939	0	0.0000	0.0000
GO:0004148	dihydrolipoyl dehydrogenase activity	Carbohydrate	44	0.0003	14	0.0017	6.1094	0	0.0000	0.0000
GO:0004618	nhosnhoglycerate kingse activity	metabolism Carbohydrate	42	0.0003	13	0.0016	5 0/32	0	0.0000	0.0000
GO.0004010		metabolism Carbohydrate	72	0.0003	15	0.0010	5.7452	0	0.0000	0.0000
GO:0004742	dihydrolipoyllysine-residue acetyltransferase activity	metabolism	30	0.0002	9	0.0011	5.7603	0	0.0000	0.0000
GO:0004477	methenyltetrahydrofolate cyclohydrolase activity	Carbohydrate metabolism	45	0.0003	13	0.0016	5.5470	0	0.0000	0.0000

Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^a The CG27 set (160,598 proteins annotated \geq 1 GO MF terms) consists of 25 species in DEG and 2 species in module template set. ^b The occur ratio of a GO MF term is defined as the number of proteins annotated this terms divided by the total number of proteins in the set. ^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

Table 4	l. The	181	essential	GO	molecular	functions	(MF) terms ((Continued))
---------	--------	-----	-----------	----	-----------	-----------	-----	-----------	-------------	---

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio ($IES \ge 8$; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004488	methylenetetrahydrofolate dehydrogenase (NADP+) activity	Carbohydrate metabolism	42	0.0003	12	0.0014	5.4860	0	0.0000	0.0000
GO:0004802	transketolase activity	Carbohydrate metabolism	44	0.0003	10	0.0012	4.3639	0	0.0000	0.0000
GO:0004634	phosphopyruvate hydratase activity	Carbohydrate metabolism	58	0.0004	13	0.0016	4.3037	0	0.0000	0.0000
GO:0004347	glucose-6-phosphate isomerase activity	Carbohydrate metabolism	37	0.0002	8	0.0010	4.1516	0	0.0000	0.0000
GO:0003983	UTP:glucose-1-phosphate uridylyltransferase activity	Carbohydrate metabolism	32	0.0002	6	0.0007	3.6002	0	0.0000	0.0000
GO:0004615	phosphomannomutase activity	Carbohydrate metabolism	32	0.0002	6	0.0007	3.6002	0	0.0000	0.0000
GO:0004750	ribulose-phosphate 3-epimerase activity	Carbohydrate metabolism	52	0.0003	9	0.0011	3.3233	0	0.0000	0.0000
GO:0004365	glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity	Carbohydrate metabolism	84E S	0.0005	14	0.0017	3.2002	1	0.0012	2.3662
GO:0017176	$phosphatidy linositol\ N-acetyl glucos aminyl transferase\ activity$	Carbohydrate metabolism	33	0.0002	5	0.0006	2.9093	3	0.0037	18.0691
GO:0004739	pyruvate dehydrogenase (acetyl-transferring) activity	Carbohydrate metabolism	53	0.0003	8	0.0010	2.8983	0	0.0000	0.0000
GO:0004619	phosphoglycerate mutase activity	Carbohydrate metabolism	5018	9 0:0003	7	0.0008	2.6882	0	0.0000	0.0000
GO:0004332	fructose-bisphosphate aldolase activity	Carbohydrate metabolism	86	0.0005	12	0.0014	2.6792	0	0.0000	0.0000
GO:0042132	fructose 1,6-bisphosphate 1-phosphatase activity	Carbohydrate metabolism	39	0.0002	5	0.0006	2.4617	0	0.0000	0.0000
GO:0004579	dolichyl-diphosphooligosaccharide-protein glycotransferase activity	Carbohydrate metabolism	64	0.0004	8	0.0010	2.4001	3	0.0037	9.3169
GO:0003872	6-phosphofructokinase activity	Carbohydrate metabolism	58	0.0004	7	0.0008	2.3174	0	0.0000	0.0000
GO:0050661	NADP or NADPH binding	Carbohydrate metabolism	449	0.0028	51	0.0061	2.1810	1	0.0012	0.4427
GO:0004743	pyruvate kinase activity	Carbohydrate metabolism	72	0.0004	8	0.0010	2.1335	0	0.0000	0.0000

^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004614	phosphoglucomutase activity	Carbohydrate metabolism	36	0.0002	4	0.0005	2.1335	0	0.0000	0.0000
GO:0000104	succinate dehydrogenase activity	Carbohydrate metabolism	55	0.0003	6	0.0007	2.0947	2	0.0025	7.2276
GO:0004591	oxoglutarate dehydrogenase (succinyl-transferring) activity	Carbohydrate metabolism	47	0.0003	5	0.0006	2.0427	0	0.0000	0.0000
GO:0003989	acetyl-CoA carboxylase activity	lipid metabolism	81	0.0005	39	0.0047	9.2450	0	0.0000	0.0000
GO:0004314	[acyl-carrier-protein] S-malonyltransferase activity	lipid metabolism	30	0.0002	12	0.0014	7.6804	0	0.0000	0.0000
GO:0004315	3-oxoacyl-[acyl-carrier-protein] synthase activity	lipid metabolism	47	0.0003	16	0.0019	6.5365	0	0.0000	0.0000
GO:0004316	3-oxoacyl-[acyl-carrier-protein] reductase activity	lipid metabolism	45	0.0003	14	0.0017	5.9737	0	0.0000	0.0000
GO:0004659	prenyltransferase activity	lipid metabolism	42 ^E	0.0003	10	0.0012	4.5717	0	0.0000	0.0000
GO:0004077	biotin-[acetyl-CoA-carboxylase] ligase activity	lipid metabolism	32	0.0002	7	0.0008	4.2002	0	0.0000	0.0000
GO:0004609	phosphatidylserine decarboxylase activity	lipid metabolism	41	0.0003	8	0.0010	3.7466	0	0.0000	0.0000
GO:0003841	1-acylglycerol-3-phosphate O-acyltransferase activity	lipid metabolism	₅₈ 18	9 6.0004	11	0.0013	3.6416	0	0.0000	0.0000
GO:0004366	glycerol-3-phosphate O-acyltransferase activity	lipid metabolism	41	0.0003	6	0.0007	2.8099	0	0.0000	0.0000
GO:0000030	mannosyltransferase activity	lipid metabolism	37	0.0002	5	0.0006	2.5947	0	0.0000	0.0000
GO:0004144	diacylglycerol O-acyltransferase activity	lipid metabolism	30	0.0002	4	0.0005	2.5601	0	0.0000	0.0000
GO:0016763	transferase activity, transferring pentosyl groups	lipid metabolism	56	0.0003	7	0.0008	2.4001	0	0.0000	0.0000
GO:0003985	acetyl-CoA C-acetyltransferase activity	lipid metabolism	32	0.0002	4	0.0005	2.4001	0	0.0000	0.0000
GO:0005546	phosphatidylinositol-4,5-bisphosphate binding	lipid metabolism	45	0.0003	5	0.0006	2.1335	0	0.0000	0.0000
GO:0003918	DNA topoisomerase (ATP-hydrolyzing) activity	Transcription	122	0.0008	55	0.0066	8.6562	1	0.0012	1.6292

Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^a The CG27 set (160,598 proteins annotated \geq 1 GO MF terms) consists of 25 species in DEG and 2 species in module template set.

^b The occur ratio of a GO MF term is defined as the number of proteins annotated this terms divided by the total number of proteins in the set.

^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0016251	general RNA polymerase II transcription factor activity	Transcription	103	0.0006	35	0.0042	6.5246	4	0.0050	7.7188
GO:0003715	transcription termination factor activity	Transcription	37	0.0002	11	0.0013	5.7084	0	0.0000	0.0000
GO:0032549	ribonucleoside binding	Transcription	69	0.0004	20	0.0024	5.5655	1	0.0012	2.8806
GO:0016987	sigma factor activity	Transcription	136	0.0008	29	0.0035	4.0944	0	0.0000	0.0000
GO:0003711	transcription elongation regulator activity	Transcription	105	0.0007	20	0.0024	3.6574	2	0.0025	3.7859
GO:0003899	DNA-directed RNA polymerase activity	Transcription	473	0.0029	80	0.0096	3.2475	7	0.0087	2.9415
GO:0003729	mRNA binding	Transcription	162	0.0010	23	0.0027	2.7261	4	0.0050	4.9077
GO:0070491	repressing transcription factor binding	Transcription	30-	0.0002	4	0.0005	2.5601	2	0.0025	13.2507
GO:0003705	sequence-specific enhancer binding RNA polymerase II transcription factor activity	Transcription	151	0.0009	19	0.0023	2.4160	0	0.0000	0.0000
GO:0016944	RNA polymerase II transcription elongation factor activity	Transcription	33	0.0002	4	0.0005	2.3274	1	0.0012	6.0230
GO:0046965	retinoid X receptor binding	Transcription	³³ 1 8	9 0.0002	4	0.0005	2.3274	0	0.0000	0.0000
GO:0004004	ATP-dependent RNA helicase activity	Purine metabolism	61	0.0004	16	0.0019	5.0364	10	0.0124	32.5836
GO:0003922	GMP synthase (glutamine-hydrolyzing) activity	Purine metabolism	30	0.0002	7	0.0008	4.4803	0	0.0000	0.0000
GO:0004385	guanylate kinase activity	Purine metabolism	63	0.0004	14	0.0017	4.2669	0	0.0000	0.0000
GO:0003999	adenine phosphoribosyltransferase activity	Purine metabolism	33	0.0002	6	0.0007	3.4911	0	0.0000	0.0000
GO:0004017	adenylate kinase activity	Purine metabolism	89	0.0006	16	0.0019	3.4519	0	0.0000	0.0000
GO:0004639	phosphoribosylaminoimidazolesuccinocarboxamide synthase activity	Purine metabolism	30	0.0002	5	0.0006	3.2002	0	0.0000	0.0000
GO:0004749	ribose phosphate diphosphokinase activity	Purine metabolism	78	0.0005	13	0.0016	3.2002	0	0.0000	0.0000
GO:0003938	IMP dehydrogenase activity	Purine metabolism	46	0.0003	7	0.0008	2.9219	0	0.0000	0.0000

 Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^a The CG27 set (160,598 proteins annotated \geq 1 GO MF terms) consists of 25 species in DEG and 2 species in module template set. ^b The occur ratio of a GO MF term is defined as the number of proteins annotated this terms divided by the total number of proteins in the set. ^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004422	hypoxanthine phosphoribosyltransferase activity	Purine metabolism	33	0.0002	5	0.0006	2.9093	0	0.0000	0.0000
GO:0016887	ATPase activity	Purine metabolism	1174	0.0073	134	0.0160	2.1916	18	0.0223	3.0474
GO:0017111	nucleoside-triphosphatase activity	Purine metabolism	952	0.0059	104	0.0124	2.0976	16	0.0198	3.3405
GO:0004781	sulfate adenylyltransferase (ATP) activity	Purine metabolism	38	0.0002	4	0.0005	2.0212	0	0.0000	0.0000
GO:0003688	DNA replication origin binding	DNA replication	58	0.0004	35	0.0042	11.5869	5	0.0062	17.1345
GO:0004127	cytidylate kinase activity	DNA replication	30	0.0002	13	0.0016	8.3205	0	0.0000	0.0000
GO:0004605	phosphatidate cytidylyltransferase activity	DNA replication	46	0.0003	15	0.0018	6.2612	0	0.0000	0.0000
GO:0003896	DNA primase activity	DNA replication	59E S	0.0004	17	0.0020	5.5325	2	0.0025	6.7376
GO:0009378	four-way junction helicase activity	DNA replication	45	0.0003	10	0.0012	4.2669	2	0.0025	8.8338
GO:0003678	DNA helicase activity	DNA replication	89	0.0006	18	0.0022	3.8834	3	0.0037	6.6998
GO:0003887	DNA-directed DNA polymerase activity	DNA replication	⁵¹⁸ 18	9 0.0032	102	0.0122	3.7809	5	0.0062	1.9185
GO:0003917	DNA topoisomerase type I activity	DNA replication	83	0.0005	14	0.0017	3.2387	1	0.0012	2.3947
GO:0003689	DNA clamp loader activity	DNA replication	47	0.0003	6	0.0007	2.4512	9	0.0111	38.0604
GO:0003697	single-stranded DNA binding	DNA replication	271	0.0017	33	0.0039	2.3381	10	0.0124	7.3343
GO:0043140	ATP-dependent 3'-5' DNA helicase activity	DNA replication	35	0.0002	4	0.0005	2.1944	3	0.0037	17.0366
GO:0004003	ATP-dependent DNA helicase activity	DNA replication	219	0.0014	23	0.0027	2.0166	7	0.0087	6.3531
GO:0031071	cysteine desulfurase activity	Amino acid metabolism	39	0.0002	14	0.0017	6.8927	0	0.0000	0.0000
GO:0004478	methionine adenosyltransferase activity	Amino acid metabolism	51	0.0003	14	0.0017	5.2709	0	0.0000	0.0000

 Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

Table 4. The 181 essential GO molecular functions (MF) t	terms ((Continued)
--	----------	------------

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio ($IES \ge 8$; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004764	shikimate 5-dehydrogenase activity	Amino acid metabolism	45	0.0003	12	0.0014	5.1203	0	0.0000	0.0000
GO:0004834	tryptophan synthase activity	Amino acid metabolism	39	0.0002	9	0.0011	4.4310	0	0.0000	0.0000
GO:0004360	glutamine-fructose-6-phosphate transaminase (isomerizing) activity	Amino acid metabolism	35	0.0002	8	0.0010	4.3888	0	0.0000	0.0000
GO:0003886	DNA (cytosine-5-)-methyltransferase activity	Amino acid metabolism	36	0.0002	6	0.0007	3.2002	2	0.0025	11.0422
GO:0004372	glycine hydroxymethyltransferase activity	Amino acid metabolism	61	0.0004	10	0.0012	3.1477	0	0.0000	0.0000
GO:0003861	3-isopropylmalate dehydratase activity	Amino acid metabolism	34	0.0002	5	0.0006	2.8237	0	0.0000	0.0000
GO:0004072	aspartate kinase activity	Amino acid metabolism	37E S	0.0002	5	0.0006	2.5947	0	0.0000	0.0000
GO:0004765	shikimate kinase activity	Amino acid metabolism	52	0.0003	7	0.0008	2.5848	0	0.0000	0.0000
GO:0004349	glutamate 5-kinase activity	Amino acid metabolism	30	0.0002	Ε 4	0.0005	2.5601	0	0.0000	0.0000
GO:0004049	anthranilate synthase activity	Amino acid metabolism	⁵³ 18	9 0:0003	6	0.0007	2.1737	0	0.0000	0.0000
GO:0008408	3'-5' exonuclease activity	RNA degradation	175	0.0011	48	0.0057	5.2666	4	0.0050	4.5431
GO:0000175	3'-5'-exoribonuclease activity	RNA degradation	108	0.0007	15	0.0018	2.6668	6	0.0074	11.0422
GO:0004540	ribonuclease activity	RNA degradation	128	0.0008	17	0.0020	2.5501	0	0.0000	0.0000
GO:0004525	ribonuclease III activity	RNA degradation	70	0.0004	9	0.0011	2.4687	1	0.0012	2.8394
GO:0008409	5'-3' exonuclease activity	RNA degradation	67	0.0004	8	0.0010	2.2927	2	0.0025	5.9331
GO:0004518	nuclease activity	RNA degradation	177	0.0011	20	0.0024	2.1696	1	0.0012	1.1229
GO:0005109	frizzled binding	Cell cycle	40	0.0002	7	0.0008	3.3602	0	0.0000	0.0000

^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004861	cyclin-dependent protein kinase inhibitor activity	Cell cycle	50	0.0003	7	0.0008	2.6882	1	0.0012	3.9752
GO:0017147	Wnt-protein binding	Cell cycle	70	0.0004	9	0.0011	2.4687	0	0.0000	0.0000
GO:0003682	chromatin binding	Cell cycle	710	0.0044	83	0.0099	2.2446	34	0.0421	9.5181
GO:0001619	lysosphingolipid and lysophosphatidic acid receptor activity	Cell cycle	47	0.0003	5	0.0006	2.0427	0	0.0000	0.0000
GO:0005021	vascular endothelial growth factor receptor activity	Cell cycle	38	0.0002	4	0.0005	2.0212	0	0.0000	0.0000
GO:0004427	inorganic diphosphatase activity	Oxidative phosphorylation	65	0.0004	14	0.0017	4.1356	0	0.0000	0.0000
GO:0051538	3 iron, 4 sulfur cluster binding	Oxidative phosphorylation	43	0.0003	8	0.0010	3.5723	3	0.0037	13.8670
GO:0046933	hydrogen ion transporting ATP synthase activity, rotational mechanism	Oxidative phosphorylation	280-	0.0017	48	0.0057	3.2916	5	0.0062	3.5493
GO:0046961	proton-transporting ATPase activity, rotational mechanism	Oxidative phosphorylation	285	0.0018	42	0.0050	2.8296	5	0.0062	3.4870
GO:0008553	hydrogen-exporting ATPase activity, phosphorylative mechanism	Oxidative phosphorylation	86	0.0005	59	0.0011	2.0094	1	0.0012	2.3112
GO:0004798	thymidylate kinase activity	Pyrimidine metabolism	33	0.0002	12	0.0014	6.9822	0	0.0000	0.0000
GO:0004799	thymidylate synthase activity	Pyrimidine metabolism	33	0.0002	12	0.0014	6.9822	0	0.0000	0.0000
GO:0004791	thioredoxin-disulfide reductase activity	Pyrimidine metabolism	49	0.0003	9	0.0011	3.5267	0	0.0000	0.0000
GO:0030515	snoRNA binding	Others	49	0.0003	19	0.0023	7.4453	0	0.0000	0.0000
GO:0042586	peptide deformylase activity	Others	31	0.0002	12	0.0014	7.4327	0	0.0000	0.0000
GO:0004146	dihydrofolate reductase activity	Others	34	0.0002	12	0.0014	6.7769	0	0.0000	0.0000
GO:0004746	riboflavin synthase activity	Others	32	0.0002	11	0.0013	6.6004	0	0.0000	0.0000
GO:0004748	ribonucleoside-diphosphate reductase activity	Others	89	0.0006	29	0.0035	6.2565	0	0.0000	0.0000

 Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio $(IES \ge 8)$
GO:0004140	dephospho-CoA kinase activity	Others	35	0.0002	11	0.0013	6.0346	0	0.0000	0.0000
GO:0008897	holo-[acyl-carrier-protein] synthase activity	Others	47	0.0003	14	0.0017	5.7195	0	0.0000	0.0000
GO:0000774	adenyl-nucleotide exchange factor activity	Others	42	0.0003	12	0.0014	5.4860	0	0.0000	0.0000
GO:0015450	P-P-bond-hydrolysis-driven protein transmembrane transporter activity	Others	189	0.0012	50	0.0060	5.0797	1	0.0012	1.0516
GO:0016836	hydro-lyase activity	Others	40	0.0002	10	0.0012	4.8003	0	0.0000	0.0000
GO:0016783	sulfurtransferase activity	Others	33	0.0002	8	0.0010	4.6548	0	0.0000	0.0000
GO:0004594	pantothenate kinase activity	Others	48	0.0003	11	0.0013	4.4003	0	0.0000	0.0000
GO:0016624	oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor	Others	40E S	0.0002	9	0.0011	4.3202	0	0.0000	0.0000
GO:0008312	7S RNA binding	Others	76	0.0005	17	0.0020	4.2950	1	0.0012	2.6153
GO:0008658	penicillin binding	Others	86	0.0005	18	0.0022	4.0188	0	0.0000	0.0000
GO:0009374	biotin binding	Others	1091 8	9 0:0007	22	0.0026	3.8755	0	0.0000	0.0000
GO:0016709	oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NADH or NADPH as one donor, and incorporation of one atom of oxygen	Others	50	0.0003	9	0.0011	3.4562	0	0.0000	0.0000
GO:0046914	transition metal ion binding	Others	106	0.0007	19	0.0023	3.4417	0	0.0000	0.0000
GO:0003951	NAD+ kinase activity	Others	67	0.0004	12	0.0014	3.4390	0	0.0000	0.0000
GO:0016820	hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances	Others	74	0.0005	13	0.0016	3.3732	0	0.0000	0.0000
GO:0051087	chaperone binding	Others	137	0.0009	24	0.0029	3.3637	3	0.0037	4.3524
GO:0016884	carbon-nitrogen ligase activity, with glutamine as amido-N-donor	Others	109	0.0007	19	0.0023	3.3470	0	0.0000	0.0000

 Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^a The CG27 set (160,598 proteins annotated \geq 1 GO MF terms) consists of 25 species in DEG and 2 species in module template set.

^b The occur ratio of a GO MF term is defined as the number of proteins annotated this terms divided by the total number of proteins in the set. ^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set.

GO ID	GO term	Classification	Number of proteins (CG27 ^a)	Occur Ratio ^b (CG27; total 160,598 proteins)	Number of essential proteins	Occur Ratio (essential proteins; total 8,364 proteins)	Unique ratio ^c (essential proteins)	Number of proteins of templates $(IES \ge 8)^{d}$	Occur Ratio (<i>IES</i> ≥ 8; total 808 proteins)	Unique ratio (IES ≥ 8)
GO:0004716	receptor signaling protein tyrosine kinase activity	Others	31	0.0002	5	0.0006	3.0970	2	0.0025	12.8232
GO:0009381	excinuclease ABC activity	Others	50	0.0003	8	0.0010	3.0722	0	0.0000	0.0000
GO:0046332	SMAD binding	Others	45	0.0003	7	0.0008	2.9868	1	0.0012	4.4169
GO:0050136	NADH dehydrogenase (quinone) activity	Others	33	0.0002	5	0.0006	2.9093	0	0.0000	0.0000
GO:0005200	structural constituent of cytoskeleton	Others	210	0.0013	31	0.0037	2.8344	7	0.0087	6.6253
GO:0017056	structural constituent of nuclear pore	Others	37	0.0002	5	0.0006	2.5947	0	0.0000	0.0000
GO:0015087	cobalt ion transmembrane transporter activity	Others	45	0.0003	6	0.0007	2.5601	0	0.0000	0.0000
GO:0004326	tetrahydrofolylpolyglutamate synthase activity	Others	53	0.0003	7	0.0008	2.5360	0	0.0000	0.0000
GO:0004516	nicotinate phosphoribosyltransferase activity	Others	31	0.0002	4	0.0005	2.4776	0	0.0000	0.0000
GO:0008047	enzyme activator activity	Others	103	0.0006	13	0.0016	2.4234	1	0.0012	1.9297
GO:0004514	nicotinate-nucleotide diphosphorylase (carboxylating) activity	Others	66	0.0004	5 8	0.0010	2.3274	0	0.0000	0.0000
GO:0005112	Notch binding	Others	331 8	9 0.0002	4	0.0005	2.3274	2	0.0025	12.0461
GO:0031177	phosphopantetheine binding	Others	111	0.0007	13	0.0016	2.2488	0	0.0000	0.0000
GO:0000287	magnesium ion binding	Others	1506	0.0094	176	0.0210	2.2440	6	0.0074	0.7919
GO:0017127	cholesterol transporter activity	Others	35	0.0002	4	0.0005	2.1944	0	0.0000	0.0000
GO:0030955	potassium ion binding	Others	89	0.0006	10	0.0012	2.1574	0	0.0000	0.0000
GO:0004109	coproporphyrinogen oxidase activity	Others	45	0.0003	5	0.0006	2.1335	0	0.0000	0.0000
GO:0042802	identical protein binding	Others	1235	0.0077	132	0.0158	2.0523	27	0.0334	4.3454
GO:0000036	acyl carrier activity	Others	188	0.0012	20	0.0024	2.0427	0	0.0000	0.0000
GO:0005099	Ras GTPase activator activity	Others	38	0.0002	4	0.0005	2.0212	0	0.0000	0.0000

 Table 4. The 181 essential GO molecular functions (MF) terms (Continued)

^a The CG27 set (160,598 proteins annotated \geq 1 GO MF terms) consists of 25 species in DEG and 2 species in module template set. ^b The occur ratio of a GO MF term is defined as the number of proteins annotated this terms divided by the total number of proteins in the set. ^c The unique ratio of a GO MF term is defined as the occur ratio of a GO MF term divided by the occur ratio in 27 species genome set. ^d The core components of module templates represent the core components in module families with PPI evolution score \geq 8 and at least one GO MF term annotation in GO database.

Sets (Interface evolution score)	Number of total proteins in core components	Number of unannotated proteins in core components	Validated by orthologs (PORC) ^a	Validated by 181 essential GO MF terms ^b	Validated by Children of 181 essential GO MF terms ^c	Total
≥ 9	146	33	12	10	18	24 (73%)
≥ 8	850	400	76	101	116	198 (50%)

Table 5. Validation of unannotated protein in core components by the orthology database (PORC) and essential GO MF terms

^a The number of proteins which have at least a orthologous protein, recorded as the essential protein in DEG, of PORC orthology database [15] ^b The number of proteins which have at least an essential GO MF terms.

^c The number of proteins which have at least an child of 181 essential GO MF terms.

Uniprot Module		Interface	Orthologs (PORC) are	DEG ID °	Sequence	similarity ^d	Essential	Essential GO	Children of essential GO	
AC	family ID ^a	score	recorded in DEG ^b		<i>E</i> -value	Sequence Identity	GO MF ID	MF terms	MF terms ^e	
08K2B3	10000 440	10	A0Q8D0	DEG10120353	1e-171	0.520			GO:0008177	
Q8K2D3	10090_440	10	Q02K68	DEG10150207	1e-167	0.520	-	-	00.0008177	
	9606_2884	10	O01602	DEG20020046	3e-79	0.627				
O75489	9606_2898	10	A0Q8H0	DEG10120379	1e-33	0.590	-	-	GO:0008137	
	9606_2903	9.01								
075306	9606_2903	10	400869	DEG10120378	1e-1/1	0 567	_	_	GO:0008137	
075500	9606_2898	10	AUQUU	DE010120370	10-1+1	0.507	-	-	00.0000137	
000010	10000 110	10	Q6F8L0	DEG10130346	4e-71	0.567	00.0051500	3 iron, 4 sulfur	60.0000177	
Q9CQA3	10090_440	10	Q02K69	DEG10150206	1e-70	0.560	GO:0051538	cluster binding	GO:0008177	
O3T189	9913 116	10	Q6F8L0	DEG10130346	1e-71	0.569	GO:0051538	3 iron, 4 sulfur	GO:0008177	
Q31107	JJ13_440	10	Q02K69	DEG10150206	5e-71	0.552	00.0051558	cluster binding	00.0000177	
	9606_286	10								
P52701	9606_434	10	-	-			-	-	GO:0008094	
	9606_2226	10								
P00125	9913_403	10	-	-			-	-	GO:0020037	
Q9D0M3	10090_495	10	-	-		81=	-	-	GO:0020037	
P19404	9606_2905	10	_	_			_	_	GO:0008137	
119404	9606_2948	10	-	-			-	-	00.0008137	
						56	GO:0003682	Chromatin binding	GO:0008270	
Q12873	9606_614	10	-	-	mm		GO:0004003	ATP-dependent DNA helicase activity	GO:0004003	

Table 6. The proteins of core components in templates with interface evolution score \geq 9.

^a The module family ID is combination of taxonomy ID and CORUM ID.

^b The orthologs recorded in PORC database of the core protein are essential proteins in DEG database.

^c The essential protein ID in DEG. Each ID represented the orthologs of core components regarded as the essential proteins. For example, the DEG ID of Q8K2B3 (Uniprot AC) is DEG10120353.

^d The sequence similarity (BLASTP *E*-value and sequence identity) of orthologs using the protein of core components as the query.

^e The GO MF term that is the children of essential GO MF terms could be considered as the essential GO MF terms.

Uniprot	Uniprot Module AC family ID ^a		Orthologs (PORC) are	DEG ID ^c	Sequence	similarity ^d	Essential GO MF	Essential GO	Children of essential GO	Essential GO MF ancestor
AC			recorded in DEG ^b		<i>E</i> -value	Sequence Identity	term ID	MF term name	MF terms ^e	term ID ^f
							GO:0003682	Chromatin binding	GO:0008270	GO:0046914
Q14839	9606_614	10	-	-	-	-	GO:0004003	ATP-dependent DNA helicase activity	GO:0004003	GO:0017111
							GO:0003682	Chromatin binding	GO:0008270	GO:0046914
Q92900	9606_784	10	-	-	-	-	GO:0004003	ATP-dependent DNA helicase activity	GO:0004003	GO:0017111
Q15477	9606_1168	10	-	-	-	-	GO:0004004	ATP-dependent RNA helicase activity	GO:0004004	GO:0017111
P06882	10116_5497	10	-	-		-	GO:0051087	chaperone binding	-	-
Q2HJI1	9913_446	10	-	-		-	-	-	-	-
Q6PGP7	9606_1168	10	-	-		-	-	-	-	-
P25686	9606_2129	10	-	-		- 4	-	-	-	-
Q14164	9606_5269	10	-	-		8 -	-	-	-	-
P49821	9606_2948	9.96	A0Q8G7	DEG10120376	1e-115	0.509	-	-	GO:0008137	GO:0050136
P04406	9606_280	9.96	Q6F9D5	DEG10130309;	189 8e-50	0,376	GO:0004365	glyceraldehyde-3- phosphate dehydrogenase (phosphorylating) activity	-	-
P24369	10090_413 10090_414	9.96 9.92	-	-		_	-	-	-	-
P08107	9606_1308	9.96	-	-	-	-	-	-	-	-

Table 6. The proteins of core components in templates with interface evolution score \geq 9. (Continued)

^a The module family ID is combination of taxonomy ID and CORUM ID.
 ^b The orthologs recorded in PORC database of the core protein are essential proteins in DEG database.
 ^c The essential protein ID in DEG. Each ID represented the orthologs of core components regarded as the essential proteins. For example, the DEG ID of Q8K2B3 (Uniprot AC) is DEG10120353.
 ^d The sequence similarity (BLASTP *E*-value and sequence identity) of orthologs using the protein of core components as the query.

^e The GO MF term that is the children of essential GO MF terms could be considered as the essential GO MF terms.

Uniprot	Module	Interface	Orthologs (PORC) are	DEC ID ^c	Sequenc	e similarity ^d	Essential	Essential GO	Children of	Essential GO
AC	family ID ^a	score	recorded in DEG ^b	DEGID	<i>E</i> -value	Sequence Identity	term ID	MF term name	MF terms ^e	term ID ^f
P08113	10090_414 10090_413	9.93 9.9	-	-	-	-	-	-	-	-
P11142	9606_1308	9.92	P44669 P0A6Z1 P0A6Z1 Q6FCE6	DEG10050129 DEG10180385 DEG10040390 DEG10130207	1e-112 1e-105 1e-105 1e-102	0.428 0.408 0.408 0.410	-	-	GO:0042623	GO:0017111
P00157	9913_403	9.92	O26064	DEG10080311	8e-61	0.365	-	-	-	-
P00158	10090_495	9.92	O26064	DEG10080311	3e-61	0.383	-	-	-	-
Q8WVB6	9606_2804 9606_3070	9.72 9.2	-	-		<u> </u>	GO:0017111	nucleoside- triphosphatase activity	-	-
P11507	10116_1442	9.67	Q8R429	DEG20050999	0.0	0.842	-	-	GO:0005388 GO:0005388	GO:0016820 GO:0017111
P97582	10116_1442	9.67	-	-	E	A	GO:0005200	structural constituent of cytoskeleton	-	-
P34932	9606_3135	9.67	-	-	EI - //	8 E	-	-	-	-
075251	9606_2905 9606_2948	9.5 9.46	-	-	E		-	-	GO:0008137	GO:0050136
Q04724	9606_3135	9.33	-	-		96	-	-	-	-
P03886	9606_2905	9.11	A0Q8G5	DEG10120374	4e-71	0.443	-	-	GO:0008137	GO:0050136
^a The modul	e family ID is com	oination of taxor	nomy ID and CORUN	AID.						

Table 6. The p	proteins of core co	mponents in tem	plates with i	interface evo	olution score \geq 9.	(Continued)
-----------------------	---------------------	-----------------	---------------	---------------	-------------------------	-------------

^b The orthologs recorded in PORC database of the core protein are essential proteins in DEG database.

^c The essential protein ID in DEG. Each ID represented the orthologs of core components regarded as the essential proteins. For example, the DEG ID of Q8K2B3 (Uniprot AC) is DEG10120353. ^d The sequence similarity (BLASTP *E*-value and sequence identity) of orthologs using the protein of core components as the query.

^e The GO MF term that is the children of essential GO MF terms could be considered as the essential GO MF terms.

Figures

Figure 1. Assembling and cooperating between molecules in time and space scale are essential for transcription.

RNA polymerase II module of *Homo sapiens* in protein-protein interaction (PPI) network transcribes DNA sequences into pre-mRNAs by assembling the transcription factors. The protein and PPI annotations (e.g. POLR2A and POLR2B) provide clues for understanding the mechanism and the annotations of other unknown proteins of RNA polymerase II module.

Figure 2. Module performs in a certain kind of process and relatively autonomous with respect to other parts of the protein-protein interaction network.

The module is a group of proteins that are highly connected and perform a certain kind of biological functions, such as RNA polymerase II and F-type ATPase. Protein-protein interactions between different modules could observe module-module interactions and cooperation of modules in biological system.

Figure 3. Thesis framework

The thesis is divided into three parts: 1) definition of homologous modules (a module family); 2) characteristics of modules and homologous modules; 3) analysis core components of module family.

(A) The main procedure. (B) Adding internal PPIs of a template module using experimental PPIs and predicted homologous PPIs. (C) The PPI families of protein pairs A-D, B-C, and C-D of the template searching on Integr8 database. (D) Homologous modules of F_1 -ATP synthase. (E) The homologous module profile of F_1 -ATP synthase-IF₁ using the organisms commonly used in molecular research projects and the core components of this module.

Figure 5. Evaluations of the topology similarity

(A) The distribution between protein aligned ratios and the fraction of 75,706 KEGG organism-specific modules.(B) The distribution between PPI aligned ratios and the fraction of 23,092 KEGG modules added intra-module interactions using three PPI databases.

The connectivity distributions between (A) 1,625 module templates and (B) 53,529 homologous modules and their extended modules, respectively. The extended module is a sub-network including one-layer extending PPIs and proteins of each protein in the original module. The average RSS score distributions of GO Biological Process between (C) 1,625 module templates and (D) 53,529 homologous modules and their extended modules, respectively. The connectivity values and average RSS scores of modules (red) are much higher than ones of extended modules (black). The average RSS score distributions of GO CC between (E) 1,625 module templates and (F) 53,529 homologous modules and their extended modules, respectively.

Figure 7. The distribution between the fraction of modules and average RSS scores of GO Biological Process (BP) and Cellular Components (CC).

The average RSS score distributions of GO BP between (A) 1,625 module templates and (B) 53,529 homologous modules and 81,250 random modules, respectively. The average RSS score distributions of GO CC between (C) module templates and (D) homologous modules and random modules, respectively.

(A) The distributions between PPI evolution scores and the numbers of unannotated (red) and mapped essential proteins (\geq 1 species) (black). (B) The relationship between accuracies and PPI evolution scores. The PPI evolution scores of 81% mapped essential proteins are more than 0.6. (C) The distributions between PPI evolution scores and the percentages of 3,740 (\geq 1 species, black) and 962 (\geq 2 species, blue) mapped essential proteins.

Figure 9. GO molecular function (MF) terms of essential proteins and core components.

(A) The 12 groups of 181 essential GO MF terms derived from 8,364 essential proteins based on the KEGG pathways and the GO database. (B) The percentages of GO MF groups in 3,441 essential proteins (blue) and 246 proteins of core components (red). (C) The occur ratios of essential GO MF terms related with translation and cell cycle for the essential proteins and proteins of core components (interface evolution score \geq 8).

Essential GO MF terms

Figure 10. The occur ratios of 181 essential GO MF terms between the essential proteins and proteins of core components with interface evolution score ≥ 8 .

Figure 10. The occur ratios of 181 essential GO MF terms between the essential proteins and proteins of core components with interface evolution score \geq 8.(Continued)

Figure 11. The nucleosome remodeling and deacetylase (NuRD) module (CORUM ID: 614) family and the core components.

(A) The NuRD templates and its module family (B) The NuRD module family profile of 19 PPI families. (C) The eight PPIs and five proteins of core components with the PPI evolution score ≥ 8 in the module family. (D) The GO molecular function (MF) terms of genes CHD3 and CHD4.

Figure 12. The BRG1-based SEI/SNF chromatin remodeling module (CORUM ID: 2852) family and the core components.

(A) The BRG1-based SEI/SNF chromatin remodeling templates and its module family. The SMARCB1 is a mapped essential protein which is a homologous protein of both essential proteins C_c (*D. melanogaster*) and C_s (*S. cerevisiae*) recorded in DEG. (B) The BRG1-based SEI/SNF chromatin remodeling module family profile of 6 PPI families. (C) The five PPIs and four proteins of core components with *PPIES* and *IES* \geq 8 in the module family, respectively. (D) The GO molecular function (MF) terms of proteins SMARCC2.

Figure 13. Overview of identifying module family for homologous modules search using proteins RPB1, RPB2, and RPB8 of RNA polymerase II module (PDB code 3fki) in *Saccharomyces cerevisiae* as the module template.

(A) The module template of RNA polymerase II and the atomic binding model with hydrogen bonds (green dash lines) for interfaces of the template. (B) The homologous PPI families of interfaces A-B and A-H of the template searching on Integr8 database. Dark blue dash box: interacting domains of RPB2 in interface A-B; red dash box: interacting domains of RPB1 in interface A-B; brown dash box: interacting domains of RPB1 in interface A-H; dark green dash box: interacting domains of RPB8 in interface A-H.

Figure 14. Molecular interfaces change analysis through binding models and multiple seq alignments of module family of RNA polymerase II. 1896

References

- Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B *et al*: Proteome survey reveals modularity of the yeast cell machinery. *Nature* 2006, 440(7084):631-636.
- 2. Wagner GP, Pavlicev M, Cheverud JM: The road to modularity. *Nature Reviews Genetics* 2007, 8(12):921-931.
- 3. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. *Nature Genetics* 2003, 34(2):166-176.
- 4. Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. *Bioinformatics* 2002, 18 Suppl 1:S233-240.
- 5. Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. *Bmc Bioinformatics* 2003, 4.
- 6. Espinosa-Soto C, Wagner A: Specialization Can Drive the Evolution of Modularity. *Plos Comput Biol* 2010, 6(3).
- 7. Kirschner M, Gerhart J: Evolvability. *Proceedings of the National Academy of Sciences of the United States of America* 1998, 95(15):8420-8427.
- Lenski RE, Barrick JE, Ofria C: Balancing robustness and evolvability. *Plos Biol* 2006, 4(12):2190-2192.
- 9. Wagner A: Robustness, evolvability, and neutrality. *Febs Lett* 2005, 579(8):1772-1778.
- 10. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T *et al*: KEGG for linking genomes to life and the environment. *Nucleic Acids Res* 2008, 36:D480-D484.
- 11. Bork P, Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A *et al*: STRING 8-a global view on proteins and their functional interactions in 630 organisms. *Nucleic Acids Res* 2009, 37:D412-D416.
- 12. Chen C-C, Lin C-Y, Lo Y-S, Yang J-M: PPISearch: a web server for searching homologous protein-protein interactions across multiple species. *Nucleic Acids Res* 2009, 37:W369-W375.
- Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S *et al*: A human protein-protein interaction network: A resource for annotating the proteome. *Cell* 2005, 122(6):957-968.
- 14. Chen Y-C, Lo Y-S, Hsu W-C, Yang J-M: 3D-partner: a web server to infer interacting partners and binding models. *Nucleic Acids Res* 2007, 35:W561-W567.
- Kersey P, Bower L, Morris L, Horne A, Petryszak R, Kanz C, Kanapin A, Das U, Michoud K, Phan I *et al*: Integr8 and Genome Reviews: integrated views of complete genomes and proteomes. *Nucleic Acids Res* 2005, 33:D297-D302.

- 16. Zhang R, Lin Y: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. *Nucleic Acids Res* 2009, 37:D455-D458.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT *et al*: Gene Ontology: tool for the unification of biology. *Nature Genetics* 2000, 25(1):25-29.
- Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M: Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". *Genome Research* 2001, 11(12):2120-2126.
- Yu HY, Luscombe NM, Lu HX, Zhu XW, Xia Y, Han JDJ, Bertin N, Chung S, Vidal M, Gerstein M: Annotation transfer between genomes: Protein-protein interologs and protein-DNA regulogs. *Genome Research* 2004, 14(6):1107-1118.
- Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, Waegele B, Schmidt T, Doudieu ON, Mpflen VS *et al*: CORUM: the comprehensive resource of mammalian protein complexes. *Nucleic Acids Res* 2008, 36:D646-D650.
- 21. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J *et al*: The IntAct molecular interaction database in 2010. *Nucleic Acids Res* 2010, 38:D525-D531.
- 22. Stark C, Breitkreutz B-J, Chatr-aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X *et al*: The BioGRID Interaction Database: 2011 update. *Nucleic Acids Res* 2011, 39:D698-D704.
- 23. Xenarios I, Salwinski L, Duan XQJ, Higney P, Kim SM, Eisenberg D: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. *Nucleic Acids Res* 2002, 30(1):303-305.
- 24. Mewes HW, Dietmann S, Frishman D, Gregory R, Mannhaupt G, Mayer KFX, Muensterkoetter M, Ruepp A, Spannagl M, Stuempflen V *et al*: MIPS: analysis and annotation of genome information in 2007. *Nucleic Acids Res* 2008, 36:D196-D201.
- Ceol A, Aryamontri AC, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G: MINT, the molecular interaction database: 2009 update. *Nucleic Acids Res* 2010, 38:D532-D539.
- 26. Lo Y-S, Chen Y-C, Yang J-M: 3D-interologs: an evolution database of physical protein- protein interactions across multiple genomes. *Bmc Genomics* 2010, 11.
- 27. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P *et al*: Essential Bacillus subtilis genes. *Proceedings of the National Academy of Sciences of the United States of America* 2003, 100(8):4678-4683.
- 28. Campillos M, von Mering C, Jensen LJ, Bork P: Identification and analysis of evolutionarily cohesive functional modules in protein networks. *Genome Research*

2006, 16(3):374-382.

- 29. Wu XM, Zhu L, Guo J, Zhang DY, Lin K: Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. *Nucleic Acids Res* 2006, 34(7):2137-2150.
- Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S *et al*: Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res* 2011, 39:D38-D51.
- Cabezon E, Montgomery MG, Leslie AGW, Walker JE: The structure of bovine F1-ATPase in complex with its regulatory protein IF1. *Nature Structural Biology* 2003, 10(9):744-750.
- Meyer PA, Ye P, Suh MH, Zhang M, Fu J: Structure of the 12-Subunit RNA Polymerase II Refined with the Aid of Anomalous Diffraction Data. *Journal of Biological Chemistry* 2009, 284:12933-12939.
- 33. von Ballmoos C, Cook GM, Dimroth P: Unique rotary ATP synthase and its biological diversity. *Annual Review of Biophysics* 2008, 37:43-64.
- 34. Bowler MW, Montgomery MG, Leslie AGW, Walker JE: Ground state structure of F-1-ATPase from bovine heart mitochondria at 1.9 a resolution. *Journal of Biological Chemistry* 2007, 282(19):14238-14242.
- 35. Abrahams JP, Leslie AGW, Lutter R, Walker JE: Structure at 2.8-Angstrom Resolution of F1-ATPase from Bovine Heart-Mitochondria. *Nature* 1994, 370(6491):621-628.
- Gordon-Smith DJ, Carbajo RJ, Yang JC, Videler H, Runswick MJ, Walker JE, Neuhaus D: Solution structure of a C-terminal coiled-coil domain from bovine IF1: The inhibitor protein of F-1 ATPase. *Journal of Molecular Biology* 2001, 308(2):325-339.
- 37. Chen YC, Chen HC, Yang JM: DAPID: a 3D-domain annotated protein-protein interaction database. *Genome Inform* 2006, 17(2):206-215.
- 38. Crick F: Central dogma of molecular biology. *Nature* 1970, 227(5258):561-563.
- 39. Neely JR, Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. *Annu Rev Physiol* 1974, 36:413-459.
- 40. Havel PJ: Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. *Nutrition Reviews* 2005, 63(5):133-157.
- 41. Castellanos M, Wilson DB, Shuler ML: A modular minimal cell model: Purine and pyrimidine transport and metabolism. *Proceedings of the National Academy of Sciences of the United States of America* 2004, 101(17):6681-6686.
- 42. Smeitink J, van den Heuvel L, DiMauro S: The genetics and pathology of oxidative phosphorylation. *Nature Reviews Genetics* 2001, 2(5):342-352.
- 43. Griffith JD: Visualization of prokaryotic DNA in a regularly condensed chromatin-like fiber. *Proceedings of the National Academy of Sciences of the United States of*

America 1976, 73(2):563-567.

- 44. Reddy BA, Bajpe PK, Bassett A, Moshkin YM, Kozhevnikova E, Bezstarosti K, Demmers JAA, Travers AA, Verrijzer CP: Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD. *Molecular and Cellular Biology* 2010, 30(21):5234-5244.
- 45. Xue YT, Wong JM, Moreno GT, Young MK, Cote J, Wang WD: NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. *Molecular Cell* 1998, 2(6):851-861.
- 46. Pegoraro G, Kubben N, Wickert U, Goehler H, Hoffmann K, Misteli T: Ageing-related chromatin defects through loss of the NURD complex. *Nature Cell Biology* 2009, 11(10):1261-U1251.
- 47. Hayakawa T, Nakayama J-i: Physiological Roles of Class I HDAC Complex and Histone Demethylase. *Journal of Biomedicine and Biotechnology* 2011.
- 48. Smeenk G, Wiegant WW, Vrolijk H, Solari AP, Pastink A, van Attikum H: The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. *Journal of Cell Biology* 2010, 190(5):741-749.
- 49. Toh Y, Nicolson GL: The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. *Clinical & Experimental Metastasis* 2009, 26(3):215-227.
- 50. Li D-Q, Ohshiro K, Reddy SDN, Pakala SB, Lee M-H, Zhang Y, Rayala SK, Kumar R: E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. *Proceedings* of the National Academy of Sciences of the United States of America 2009, 106(41):17493-17498.
- 51. Toh Y, Pencil SD, Nicolson GL: A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. *Journal of Biological Chemistry* 1994, 269(37):22958-22963.
- 52. Thompson EW, Newgreen DF: Carcinoma invasion and metastasis: A role for epithelial-mesenchymal transition? *Cancer Research* 2005, 65(14):5991-5995.
- 53. Verreault A, Kaufman PD, Kobayashi R, Stillman B: Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. *Current Biology* 1997, 8(2):96-108.
- 54. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. *Genes & Development* 1999, 13(15):1924-1935.
- 55. Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J: ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. *Molecular Cell* 2006,

21(1):51-64.

- 56. Roeder RG: The role of general initiation factors in transcription by RNA polymerase II. *Trends in Biochemical Sciences* 1996, 21:327-335.
- 57. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. *Nucleic Acids Res* 2010, 38:D355-D360.
- 58. Finn RD, Marshall M, Bateman A: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. *Bioinformatics* 2005, 21:410-412.
- 59. Edwards AM, Kane CM, Young RA, Kornberg RD: Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. *Journal of Biological Chemistry* 1991, 266:71-75.
- 60. Woychik NA, Young RA: Rna Polymerase-Ii Subunit Rpb4 Is Essential for High-Temperature and Low-Temperature Yeast-Cell Growth. *Molecular and Cellular Biology* 1989, 9:2854-2859.
- 61. Rosenheck S, Choder M: Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro. *Journal of Bacteriology* 1998, 180:6187-6192.
- 62. Fuda NJ, Ardehali MB, Lis JT: Defining mechanisms that regulate RNA polymerase II transcription in vivo. *Nature* 2009, 461:186-192.
- 63. Wagner GP, Altenberg L: Perspective: Complex adaptations and the evolution of evolvability. *Evolution* 1996, 50(3):967-976.
- 64. Campillos M, von Mering C, Jensen LJ, Bork P: Identification and analysis of evolutionarily cohesive functional modules in protein networks. *Genome Research* 2006, 16:374-382.
- 65. Rende D, Baysal N, Kirdar B: Modular organization of cardiovascular disease related protein interaction network. *New Biotechnology* 2009, 25:S344-S344.
- 66. Fraser HB: Modularity and evolutionary constraint on proteins. *Nature Genetics* 2005, 37:351-352.
- 67. Fraser HB: Coevolution, modularity and human disease. *Current Opinion in Genetics* & *Development* 2006, 16:637-644.
- 68. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML: Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. *Molecular and Cellular Biology* 2004, 24:5639-5649.
- Kim YS, Burns AL, Goldsmith PK, Heppner C, Park SY, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ: Stable overexpression of MEN1 suppresses tumorigenicity of RAS. *Oncogene* 1999, 18:5936-5942.
- 70. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, Hauck WW, McCue P, Huebner K:
The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma - Correlations with clinical features. *Cancer* 2004, 100:1605-1614.

- 71. Mulholland DJ, Dedhar S, Wu H, Nelson CC: PTEN and GSK3 beta: Key regulators of progression to androgen- independent prostate cancer. *Oncogene* 2006, 25:329-337.
- 72. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR: Glycogen synthase kinase-3: functions in oncogenesis and development. *BRITISH JOURNAL OF PHARMACOLOGY* 1992, 1114:147-162.
- 73. Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G: Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. *Science* 2001, 293:2453-2455.
- 74. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG: Regulation of MLL1 H3K4 methyltransferase activity by its core components. *Nature Structural & Molecular Biology* 2006, 13:713-719.
- 75. Lemos MC, Thakker RV: Multiple endocrine neoplaslia type 1 (MEN 1): Analysis of 1336 mutations reported in the first decade following identification of the gene. *Human Mutation* 2008, 29:22-32.
- 76. Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurr NK, Besser GM, Oriordan JLH: Association of Parathyroid Tumors in Multiple Endocrine Neoplasia Type-1 with Loss of Alleles on Chromosome-11. New England Journal of Medicine 1989, 321:218-224.
- 177. Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M: Multiple Endocrine Neoplasia Type-1 Gene Maps to Chromosome-11 and Is Lost in Insulinoma. *Nature* 1988, 332:85-87.
- 78. Friedman E, Sakaguchi K, Bale AE, Falchetti A, Streeten E, Zimering MB, Weinstein LS, Mcbride WO, Nakamura Y, Brandi ML *et al*: Clonality of Parathyroid Tumors in Familial Multiple Endocrine Neoplasia Type-1. *New England Journal of Medicine* 1989, 321:213-218.
- 79. Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA *et al*: Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. *Molecular Cell* 2004, 13:587-597.