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中文摘要 

在演化的過程中，基因體可能會經歷一些被稱為基因體重組的大規

模突變。隨著愈來愈多的基因體被完整地定序，基於基因次序分析

的基因體重組研究在演化樹的重建上扮演著重要的角色。在過去，

有許多傳統的重組運算已被提出以評估兩個相關基因體基因次序的

演化距離，例如反轉、移位、區塊互換、易位、分裂與融合。通常

基因體重組的計算研究被定義成一個利用重組運算來排序一個排列

的問題。在這個論文中，我們介紹一個利用剪下-圓形化-線性化-插

入 (簡稱 CCLP)的運算來進行排序的問題，目的是要找出最少次數

的 CCLP 運算來排序一個表示一條染色體的有號整數排列。CCLP 運

算是一種基因體重組的運算，它會把染色體的某一個片段剪下，然

後再把剪下的片段圓形化成一個暫時性的環狀染色體，接著再把這

個環狀染色體線性化為一條線性染色體，最後再把線性化的染色體

貼回到原來的染色體中，但在線性染色體被貼回去之前允許它被反

轉。CCLP 運算可以模擬一些上述為人所熟知的重組，例如反轉、移

位與區塊互換，以及其他未在生物文獻中被報導的重組。為了與反

轉作區別，我們把其它的 CCLP 運算稱為非反轉的 CCLP 運算。最

後，當反轉與非反轉 CCLP 運算的權重比為 1:2 時，我們提出一個時

間複雜度為 𝑂(𝛿𝑛) 的演算法來解決有加權重的CCLP運算排序問題，

其中 𝑛 為一條染色體內的基因個數，而 𝛿 為排序過程中所需的 CCLP

運算次數。 
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Abstract 

During evolution, genomes may undergo large-scale mutations called as 

genome rearrangements. With more and more genomes have been 

sequenced completely, genome rearrangement studies based on 

genome-wide analysis of gene orders play an important role in 

reconstructing phylogenetic trees. In the past, a variety of traditional 

rearrangement operations, such as reversals, transpositions, 

block-interchanges, translocations, fissions and fusions, have been 

proposed to evaluate the evolution distance between two related 

genomes in gene order. Usually, the computational studies of genome 

rearrangements are formulated as a problem of sorting a permutation by 

rearrangement operations. In this thesis, we introduce a problem, called 

as a sorting problem by cut-circularize-linearize-and-paste (CCLP) 

operations, which aims to find a minimum number of CCLP operations to 

sort a signed permutation representing a chromosome. The CCLP 

operation is a genome rearrangement operation that cuts a segment out of 

a chromosome, circularizes the segment into a temporary circle, linearizes 

the temporary circle as a linear segment, and possibly inverts the 

linearized segment and pastes it into the remaining chromosome. The 

CCLP operation can model many well-known rearrangements mentioned 

above, such as reversals, transpositions and block-interchanges, and 

others not reported in the biological literature. To distinguish those CCLP 



 

 

III 

operations from the reversal, we call them as non-reversal CCLP 

operations. Finally, we propose an 𝑂(𝛿𝑛) time algorithm for solving the 

weighted sorting problem by CCLP operations when the weight ratio 

between reversals and non-reversal CCLP operations is 1:2, where 𝑛 is 

the number of genes and 𝛿 is the number of needed CCLP operations. 
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Chapter 1 

 

Introduction 

Genome rearrangement studies based on genome-wide analysis of gene 

orders play an important role in the phylogenetic tree reconstruction [5, 11, 

13, 22, 23]. In these studies, a gene is usually represented by a signed 

integer, where the associated sign indicates on which of the two 

complementary DNA strands the gene is located, a chromosome by a 

sequence of genes and a genome by a set of chromosomes. In the last two 

decades, a variety of rearrangement operations have been proposed to 

evaluate the evolutionary distance between two related genomes in gene 

order. Basically, these operations can be classified into two categories: (1) 

‘intra-chromosomal’ rearrangements, such as reversals, transpositions and 

block-interchanges (also called ‘generalized transpositions’), and (2) 

‘inter-chromosomal’ rearrangements, such as fusions, fissions and 

translocations. Reversals, also called inversions, affect a segment of 

consecutive integers in the chromosome by reversing the order and 

flipping the signs of the integers [2, 13, 14, 17, 24]. Transpositions affect 

two adjacent segments in the chromosome by exchanging their positions 

[4, 9, 10]. Block-interchanges are generalized transpositions by allowing 

the exchanged segments not being adjacent in the chromosome [8, 10, 14, 
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16, 18]. Translocations exchange the end segments between two 

chromosomes [7, 11, 12, 14, 21]. Fusions join two chromosomes into a 

bigger one and fissions break a chromosome into two smaller ones [11, 14, 

19, 20]. 

Recently, the study on the genome rearrangement using 

block-interchanges has increasingly drawn great attention, since 

block-interchanges contain transpositions as a special case and, currently, 

the computational models involving block-interchanges are more 

tractable than those involving transpositions. More recently, Yancopoulos 

et al. introduced the double cut and join (DCJ) operation, which cuts the 

chromosome(s) in two places and rejoins the four cut ends in a new way, 

as a basis for modeling all the rearrangement operations described 

previously [25]. Particularly, transpositions and block-interchanges can be 

modeled by two consecutive DCJ operations, while others by one DCJ 

operation. In fact, as mentioned in [1], the two consecutive DCJ 

operations can be viewed as the following procedure to model 

transpositions or block-interchanges (see Figure 1-1 for a reference). (1) 

Excision: cut a segment from a chromosome that can be linear or circular. 

(2) Circularization: join the ends of the excised segment into a temporary 

circle. (3) Linearization: cut the temporary circle in any place as a linear 

segment. (4) Reincorporation: paste the linearized segment back to the 

remaining chromosome at a new site. As also pointed out in [1], this 

process of fragment excision, circularization, linearization and 

reincorporation indeed happens in the configuration of the immune 

response in higher animals. Here, we make a little modification to the 

reincorporation step in the above process by allowing the linearized 

segment to be possibly inverted before its reinsertion and also allowing  
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Figure 1-1. (1) Excision: a fragment of genes 2, 3 and 4 is cut from a 

linear chromosome. (2) Circularization: the two ends of the excised 

segment are joined together as a circular chromosome that is temporary. 

(3) Linearization: the temporary circular chromosome is cut at place a, b 

or c so that it becomes again a linear chromosome. (4) Reincorporation: 

the linearized chromosome is pasted back to the original chromosome at 

new site d, e or f.  

inverted or non-inverted linearized segment to be pasted back to the 

remaining chromosome at any site (see Figure 1-2 for the modified 

model). This modification enables the above cut-circularize-linearize-and 

-paste (CCLP for short) operation to model seven different kinds of 

rearrangements, as will be detailed below. It is interesting to note that in 

addition to transposition and block-interchange, a CCLP operation can 

model reversal, inverted transposition (or transversal) [3] and others that 

are currently not reported in the biological literature. The seven 

rearrangements modeled by the CCLP operation are described as follows 

(see Figure 1-2 for a reference). 
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 Case I – Reversal: 

As illustrated in Figure 1-2, a segment with genes 2, 3 and 4 is cut 

from a chromosome (1,2,3,4,5,6) and joined as a temporary circle, 

which is then cut in the same place as it was created by the join (i.e., 

the a site in Figure 1-2), and inverted and pasted back to the 

chromosome at the cutting site (i.e., the e site in Figure 1-2). As a 

result, this CCLP operation performs as a reversal that changes the 

chromosome (1,2,3,4,5,6) into (1,-4,-3,-2,5,6). 

 Case II – Transposition: 

The temporary circle is cut at a new place (e.g., the b site in Figure 

1-2) and pasted back to the chromosome at the cutting site. This 

CCLP operation performs as a transposition that changes 

(1,2,3,4,5,6) into (1,3,4,2,5,6). 

 Case III – Two consecutive, adjacent reversals: 

The temporary circle is cut at a new place (e.g., the b site in Figure 

1-2), and then inverted and pasted back to the chromosome at the 

cutting site. This CCLP operation changes (1,2,3,4,5,6) into 

(1,-2,-4,-3,5,6), which is equivalent to that (1,2,3,4,5,6) is first 

changed into (1,2,-4,-3,5,6) by a reversal, which is further changed 

into (1,-2,-4,-3,5,6) by another reversal. Note that the chromosomal 

regions affected by these two consecutive reversals are adjacent. 

 Case IV – Transposition: 

The temporary circle is cut in the same place as it was joined and 

then pasted back to the chromosome at a new site (e.g., the f site in 

Figure 1-2). This CCLP operation performs as a transposition that 
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changes (1,2,3,4,5,6) into (1,5,2,3,4,6). 

 Case V – Transversal:  

The temporary circle is cut in the same place as it was joined, and 

then inverted and pasted back to the chromosome at a new site (e.g., 

the f site in Figure 1-2). This CCLP operation performs as an 

inverted transposition (i.e., transversal) that changes (1,2,3,4,5,6) 

into (1,5,-4,-3,-2,6). 

 Case VI – Block-interchange: 

The temporary circle is cut at a new place (e.g., the b site in Figure 

1-2) and then pasted back to the chromosome at a new site (e.g., the 

f site in Figure 1-2). This CCLP operation performs as a 

block-interchange that changes (1,2,3,4,5,6) into (1,5,3,4,2,6). 

 Case VII – Two consecutive, overlapping reversals: 

The temporary circle is cut at a new place (e.g., the b site in Figure 

1-2), and then inverted and pasted back to the chromosome at a new 

site (e.g., the f site in Figure 1-2). This CCLP operation changes 

(1,2,3,4,5,6) into (1,5,-2,-4,-3,6), which is equivalent to that 

(1,2,3,4,5,6) is first changed into (1,2,-5,-4,-3,6) by a reversal, 

which is further changed into (1,5,-2,-4,-3,6) by another reversal. 

Note that the chromosomal regions affected by these two 

consecutive reversals are overlapping. 
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Figure 1-2. A modified cut-circularize-linearize-and-paste operation that 

can model seven different kinds of rearrangement, where the cutting site 

of the temporary circle with genes 2, 3 and 4 can be either a, b or c, and the 

inserting place of the linearized segment at the remaining chromosome 

can be either d, e, f or g. 

All these seven rearrangements described above are simply called 

CCLP operations. But, to distinguish those CCLP operations from the 

reversal, we call them as non-reversal CCLP operations in the sequel of 

this paper. In this article, we are interested in designing efficient 

algorithms to solve the genome rearrangement problem involving all the 

seven CCLP operations. If all these CCLP operations are weighted equally, 

the problem aims to find a minimum number of operations to sort a signed 

permutation of representing a chromosome. In this case, however, 

non-reversal CCLP operations are favored in the rearrangement scenario 

of the optimal solution, as will be clear later, which contradicts with the 

observation made by biologists that in most organisms, reversals are 

observed much more frequently when compared with other 
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rearrangements. Therefore, it may require a reversal to be weighted 

differently from other CCLP operations. In this differently weighted case, 

the problem is then called weighted sorting problem by CCLP operations, 

which is to find a sequence of CCLP operations such that the sum of the 

operation weights in the sequence is minimum. In this study, we focus our 

attention on the case in which the weight ratio between reversals and 

non-reversal CCLP operations is 1:2 and use the permutation group in 

algebra to design an 𝑂(𝛿𝑛) time algorithm for solving the problem, 

where n is the number of genes in the given chromosome and 𝛿 is the 

number of needed CCLP operations. 
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Chapter 2 

 

Preliminaries 

Given a set 𝐸 = *1,2,… , 𝑛+ of n positive integer, a permutation is a 

one-to-one mapping from E into itself. For instance, as shown in Figure 

2-1, we may define a permutation 𝛼 of the set *1,2,3,4,5,6,7+ by 𝛼(1) =

4, 𝛼(2) = 1 , 𝛼(3) = 6, 𝛼(4) = 7, 𝛼(5) = 3, 𝛼(6) = 5 and 𝛼(7) =

2. In the study of genome rearrangement, it is convenient to express the 

permutation in cycle form as 𝛼 = (1,4,7,2)(3,6,5) , in which for 

each  𝑥 ∈ 𝐸 , 𝛼(𝑥)  is placed directly right to x. A cycle of length k, 

say (𝑎1, 𝑎2, … , 𝑎𝑘), is simply called k-cycle and it also can be written as 

(𝑎𝑖 , 𝑎𝑖+1, … , 𝑎𝑘 , 𝑎1, … , 𝑎𝑖−1) (i.e., indices are cyclic), where 2 ≤ 𝑖 ≤ 𝑘. 

Any two cycles are said to be disjoint if they have no elements in common. 

Basically, a permutation can be written in a unique way as the product of 

disjoint cycles, which is called the cycle decomposition of this 

permutation, if we ignore the order of the cycles in the product. Usually, a 

1-cycle, in which its element is said to be fixed, in a permutation is not 

written explicitly. Especially, the permutation whose elements are all 

fixed is called an identity permutation and is denoted by 1, i.e., 𝟏 =

(1)(2)⋯ (𝑛). 
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Figure 2-1. The illustration of a permutation 𝛼 = (1,4,7,2)(3,6,5) , 

where 𝛼(1) = 4, 𝛼(2) = 1, 𝛼(3) = 6, 𝛼(4) = 7, 𝛼(5) = 3 , 𝛼(6) =

5 and 𝛼(7) = 2. 

Given two permutations 𝛼 and 𝛽 of E, the composition (or product) 

of 𝛼 and 𝛽, denote by 𝛼𝛽, is defined to be a permutation of E with 

𝛼𝛽(𝑥) = 𝛼(𝛽(𝑥))  for all  𝑥 ∈ 𝐸 . For instance, let 𝛼 = (2,1)  and 

𝛽 = (2,5,3,1,6,4)  be two permutations of 𝐸 = *1,2,3,4,5,6+ . Then 

𝛼𝛽 = (2,5,3)(1,6,4). If 𝛼 and 𝛽 are disjoint cycles, then 𝛼𝛽 = 𝛽𝛼. The 

inverse of 𝛼 is a permutation, denoted as 𝛼−1, such that 𝛼𝛼−1 = 𝛼−1𝛼 =

𝟏. Notably, if a permutation is expressed by the product of disjoint cycles, 

then its inverse can be obtained by just reversing the order of the elements 

in each cycle. For example, if  𝛼 = (2,5,3)(1,6,4) , then  𝛼−1 =

(3,5,2)(4,6,1). The conjugation of 𝛽  by 𝛼 , denoted by 𝛼 ∙ 𝛽 , is the 

permutation α𝛽𝛼−1, which is a permutation with the same cycle structure 

of 𝛽  but each element x is changed by 𝛼(𝑥) . More clearly, if 𝛽 = 

( 𝑏1, 𝑏2, … , 𝑏𝑖 )(  𝑏𝑖+1, 𝑏𝑖+2, … , 𝑏𝑘 ), then 𝛼 ∙ 𝛽 =  ( 𝛼(𝑏1), … , 𝛼(𝑏𝑖) ) 

( 𝛼(𝑏𝑖+1), … , 𝛼(𝑏𝑘)). 
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Let 𝛼 = (𝑎1, 𝑎2) be a 2-cycle and 𝛽 be an arbitrary permutation of E. 

Then the effect of applying 𝛼 to 𝛽 can be described as follows: 

 If 𝑎1 and 𝑎2 are in the same cycle of 𝛽, then this cycle is broken 

into two smaller ones in 𝛼𝛽 (or 𝛽𝛼), that is, 𝛼 functions as a split 

operation of 𝛽 . For instance, 𝛼 = (1,2) and 𝛽 = (1,6,4,2,5,3) , 

then 𝛼𝛽 = (1,6,4)(2,5,3) and 𝛽𝛼 = (5,3,1)(6,4,2).  

 If 𝑎1  and 𝑎2  are in two different cycles of 𝛽 , then these two 

cycles are joined into a bigger one in 𝛼𝛽  (or 𝛽𝛼 ), that is, 𝛼 

functions as a join operation of 𝛽. For instance, 𝛼 = (1,3) and 

𝛽 = (1,6,4)(2,5,3) , then 𝛼𝛽 = (1,6,4,3,2,5)  and 𝛽𝛼 =

(6,4,1,2,5,3). 

Every permutation 𝛼 of E can be expressed as a product of 2-cycles. 

However, there are many ways of expressing 𝛼 as a product of 2-cycles. 

For instance, (𝑎1, 𝑎2, … , 𝑎𝑘) = (𝑎1, 𝑎2)(𝑎2, 𝑎3)⋯ (𝑎𝑘−1, 𝑎𝑘) = (𝑎1, 𝑎𝑘) 

(𝑎1, 𝑎𝑘−1)⋯ (𝑎1, 𝑎2), where 𝑘 ≥ 3. The norm of 𝛼, denoted by ‖𝛼‖, is 

defined to be the minimum number k such that 𝛼 can be expressed by a 

product of k 2-cycles. Let 𝑛𝑐(𝛼) denote the number of disjoint cycles in 

the cycle decomposition of 𝛼 . Notice that 𝑛𝑐(𝛼)  also counts the 

non-expressed 1-cycles. For example, if 𝛼 = (1,3,2)(5,6)  is a 

permutation of *1,2,3,4,5,6+ , then we have 𝑛𝑐(𝛼) = 3 , instead of 

𝑛𝑐(𝛼) = 2, since 𝛼 = (1,3,2)(4)(5,6). For any permutation 𝛼 of E, it 

can be shown that ‖𝛼‖ = |𝐸| − 𝑛𝑐(𝛼) [14, 18]. For two permutations 𝛼 

and 𝛽 of E, 𝛼 is said to divide 𝛽, simply denoted by 𝛼|𝛽, if and only if 

‖𝛽𝛼−1‖ = ‖𝛽‖ − ‖𝛼‖ . For example, let 𝛼 = (2,1)  and 

𝛽 = (2,5,3,1,6,4)  be two permutations of 𝐸 = *1,2,3,4,5,6+ . Then 

𝛽𝛼−1 = (1,5,3)(2,6,4) . Thus we have ‖𝛽𝛼−1‖ = 4 , ‖𝛽‖ = 5  and 
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‖𝛼‖ = 1. As a result, ‖𝛽𝛼−1‖ = ‖𝛽‖ − ‖𝛼‖ and hence 𝛼|𝛽. Actually, 

we can easily determine if 𝛼 divides 𝛽 using the following lemma. 

Lemma 1 [14]. Let 𝑎1, 𝑎2, … , 𝑎𝑘 ∈ 𝐸 and 𝛽 be any permutation of 𝐸. 

Then 𝑎1, 𝑎2, … , 𝑎𝑘 are in the same cycle of 𝛽 and appear in this cycle in 

the order of 𝑎1, 𝑎2, … , 𝑎𝑘 if and only if (𝑎1, 𝑎2, … , 𝑎𝑘)|𝛽. 

As mentioned before, a gene is usually represented by a signed integer 

in the genome rearrangement studies. To properly model a DNA, which is 

well known as a double stranded molecule, we let 𝐸 = *±1,±2,… ,±𝑛+, 

in which 𝑛 is the number of genes and each gene 𝑖 has counterpart gene 

– 𝑖  in the same location in the opposite strand. Let 

Γ = (1,−1)(2,−2)⋯(𝑛,−𝑛). Clearly, Γ2 = 𝟏, that is Γ−1 = Γ. A cycle 

is said to be admissible if it does not contain 𝑖 and – 𝑖 simultaneously for 

some gene 𝑖 ∈ 𝐸. Then we can use an admissible 𝑛-cycle to represent a 

DNA strand that is constituted by 𝑛 genes in some order. Given a DNA 

strand, say 𝜋+ , 𝜋− = Γ ∙ (𝜋+)−1  is its reverse complement, since 

(𝜋+)−1  is the reverse of 𝜋+  and Γ ∙ (𝜋+)−1  is the complement of 

(𝜋+)−1. For our purpose, we here represent the DNA molecule, named 𝜋, 

by the product of the two strands 𝜋+  and 𝜋− , that is, 𝜋 = 𝜋+𝜋− =

𝜋−𝜋+ (since 𝜋+ and 𝜋− are disjoint).  

Lemma 2 [14]. Let 𝜋 and 𝜎 represent two different chromosomes. If 𝛼 

is a cycle in 𝜎𝜋−1, then (𝜋𝛤) ∙ 𝛼−1 is also a cycle in 𝜎𝜋−1. 

According to Lemma 2, 𝛼 and (𝜋Γ) ∙ 𝛼−1 are each other’s mate cycle 

in 𝜎𝜋−1.  

Lemma 3 [14]. Let u and v be in the different strands of a chromosome 𝜋, 
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that is, (𝑢, 𝑣) ∤ 𝜋 . Then 𝛾 = (𝜋𝛤(𝑣), 𝜋𝛤(𝑢)) (𝑢, 𝑣)  acts on 𝜋  as a 

reversal. 

Note that in Lemma 3, (𝑢, 𝑣)  acts on 𝜋  as a join operation and 

(𝜋Γ(𝑣), 𝜋Γ(𝑢)) acts on (𝑢, 𝑣)𝜋 as a split operation. In other words, a 

reversal acting on 𝜋  can be implemented by the composition of two 

2-cycles and 𝜋. In fact, it can be verified that other non-reversal CCLP 

operations can be implemented by multiplying four 2-cycles 

(𝜋Γ(𝑥), 𝜋Γ(𝑤))(𝑤, 𝑥)(𝜋Γ(𝑣), 𝜋Γ(𝑢))(𝑢, 𝑣) with the given chromosome 

𝜋  if the following conditions are satisfied: (1) (𝑢, 𝑣)|𝜋 , (2) (𝑤, 𝑥) ∤

(𝑢, 𝑣)𝜋  (3) 𝑤 ≠ Γ(𝑥)  or Γ(𝑤) ≠  𝑥  and (4) (𝑤, Γ(𝑥)) ∤ (𝑢, 𝑣)𝜋  or 

(Γ(𝑤), 𝑥) ∤ (𝑢, 𝑣)𝜋. The first condition is to make sure that (𝑢, 𝑣) and 

(𝜋Γ(𝑣), 𝜋Γ(𝑢)) respectively act on the two strands of 𝜋 as splits, which 

lead to two temporary circles excised from 𝜋 . Note that these two 

temporary circles are complement to each other. The second condition is 

to make sure that (𝑤, 𝑥) and (𝜋Γ(𝑥), 𝜋Γ(𝑤)) respectively act on the two 

temporary circles and the cycles of the remaining 𝜋 as joins, which paste 

back the two temporary circles into the remaining 𝜋 . It is worth 

mentioning that the joins also fulfill the process of linearization with 

possible inversion. The inversion is performed when the temporary circles 

are reinserted into the chromosome strands different from the ones they 

come from. The third and fourth conditions are to make sure that the 

resulting 𝜋  are admissible (i.e., no 𝑖  and −𝑖  are in the same 

chromosome strand). Therefore, we have the following lemma. 

Lemma 4. Let 𝜋  be a chromosome and 

𝛽 = (𝜋𝛤(𝑥), 𝜋𝛤(𝑤))(𝑤, 𝑥)(𝜋𝛤(𝑣), 𝜋𝛤(𝑢))(𝑢, 𝑣) . Suppose that the 

following four conditions are satisfied: (1) (𝑢, 𝑣)|𝜋, (2) (𝑤, 𝑥) ∤ (𝑢, 𝑣)𝜋 

(3) 𝑤 ≠ 𝛤(𝑥)  or 𝛤(𝑤) ≠  𝑥  and (4) (𝑤, 𝛤(𝑥)) ∤ (𝑢, 𝑣)𝜋  or 



 

 

13 

(𝛤(𝑤), 𝑥) ∤ (𝑢, 𝑣)𝜋 . Then 𝛽  acts on 𝜋  as a non-reversal CCLP 

operation. 
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Chapter 3 

 

Algorithm 

In this chapter, we shall utilize the permutation groups to design an 

efficient algorithm for sorting a given chromosome 𝜋  into 𝐼 =

(1,2,… , 𝑛)(−𝑛,… ,−2,−1) using the CCLP operations when the weight 

ratio between reversals and non-reversal CCLP operations is 1:2. Recall 

that any permutation can be expressed as a product of 2-cycles and every 

reversal (respectively, non-reversal CCLP operation) affecting 𝜋 can be 

implemented by a product of two (respectively, four) 2-cycles and 𝜋. 

Furthermore, the composition of 𝐼𝜋−1 and 𝜋 is I, suggesting that 𝐼𝜋−1 

can be expressed as a product of 2-cycles that functions as a sequence of 

CCLP operations to optimally transform 𝜋 into I. In the following, we 

shall show how to fulfill such an idea. For simplicity, we say that x and y 

are adjacent in a permutation 𝛼 if 𝛼(𝑥) = 𝑦 or 𝛼(𝑦) = 𝑥. 

Lemma 5. Let 𝜋 = 𝜋+𝜋− be a chromosome. Suppose that (𝑥, 𝑦)|𝐼𝜋−1 

and (𝑥, 𝑦)|𝜋, that is, there are two elements 𝑥 and 𝑦 in a cycle of 𝐼𝜋−1 

such that (𝑥, 𝑦) acts on 𝜋  as a split. Let 𝛽 = (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦) . 

Then there are two adjacent elements 𝑥′ and 𝑦′ in a cycle of 𝐼(𝛽𝜋)−1 

such that (𝑥′, 𝑦′)  and (𝛽𝜋Γ(𝑦′), 𝛽𝜋Γ(𝑥′))  act on 𝛽𝜋  as joins. 

Moreover, the cycles in 𝛽′𝛽𝜋  are admissible, where 
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𝛽′ = (𝛽𝜋Γ(𝑦′), 𝛽𝜋Γ(𝑥′))(𝑥′, 𝑦′). 

Proof. For convenience, let 𝜋 = 𝜋+𝜋− = (𝑎1, 𝑎2, … 𝑎𝑛) 

(−𝑎𝑛, −𝑎𝑛−1, … , −𝑎1). The assumption (𝑥, 𝑦)|𝜋 indicates that 𝑥 and 𝑦 

are in the same cycle of 𝜋, say in 𝜋+, and hence 𝜋Γ(𝑥) and 𝜋Γ(𝑦) are in 

𝜋− . Hence, both (𝑥, 𝑦)  and (𝜋Γ(𝑦), 𝜋Γ(𝑥))  act on 𝜋  as splits and 

𝛽 = (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦)  divides 𝜋  into four cycles. Let 𝛽𝜋 =

𝜋1
+𝜋2

+𝜋1
−𝜋2

− = (𝑎1, … , 𝑎𝑘−1)(𝑎𝑘, … , 𝑎𝑛)(−𝑎𝑘−1, … ,−𝑎1)(−𝑎𝑛, … ,−𝑎𝑘). 

For simplicity of our further discussion, we assume that 𝑎𝑖 < 𝑎𝑖+1 < 𝑛 

for 1 ≤ 𝑖 ≤ 𝑘 − 2. This indicates that 𝑎𝑘−1 is the maximum in 𝜋1
+ and 

hence 𝑎𝑘−1 + 1  is not in 𝜋1
+.  Moreover, 𝐼(𝛽𝜋)−1(𝑎1) = 𝐼(𝑎𝑘−1) =

𝑎𝑘−1 + 1, meaning that 𝑎1  and 𝑎𝑘−1 + 1 are adjacent in 𝐼(𝛽𝜋)−1 . In 

other words, there are two adjacent elements 𝑎1  and 𝑎𝑘−1 + 1  in 

𝐼(𝛽𝜋)−1  such that (𝑎1, 𝑎𝑘−1 + 1) , as well as 

(𝛽𝜋Γ(𝑎𝑘−1 + 1), 𝛽𝜋Γ(𝑎1)), acts on 𝛽𝜋 as a join. If the two cycles in 

(𝛽𝜋Γ(𝑎𝑘−1 + 1), 𝛽𝜋Γ(𝑎1))(𝑎1, 𝑎𝑘−1 + 1)𝛽𝜋  are admissible (i.e., they 

represent a chromosome), then we have completed the proof of this 

lemma based on Lemma 4. Now, suppose that the two cycles in 

(𝛽𝜋Γ(𝑎𝑘−1 + 1), 𝛽𝜋Γ(𝑎1))(𝑎1, 𝑎𝑘−1 + 1)𝛽𝜋 are not admissible (i.e., for 

some 1 ≤ 𝑖 ≤ 𝑛, both 𝑖 and – 𝑖 are in the same cycle). We then show 

below that we can still find two other adjacent elements 𝑥′ and 𝑦′ in a 

cycle of 𝐼(𝛽𝜋)−1  such that (𝑥′, 𝑦′) and (𝛽𝜋Γ(𝑦′), 𝛽𝜋Γ(𝑥′)) can join 

𝛽𝜋 into two admissible cycles. First of all, 𝑎𝑘−1 + 1 must be in 𝜋1
− 

(otherwise, (𝛽𝜋Γ(𝑎𝑘−1 + 1), 𝛽𝜋Γ(𝑎1))(𝑎1, 𝑎𝑘−1 + 1)𝛽𝜋  is an 

admissible chromosome), leading to that the cycle created by joining 

𝜋1
+𝜋1

− using (𝑎1, 𝑎𝑘−1 + 1) is not admissible. Further suppose that 𝑎𝑗 is 

the minimum in 𝜋1
+. Then Γ(𝑎𝑗) = −𝑎𝑗, which is the maximum in 𝜋1

−. 

Therefore, we have −𝑎𝑗 ≥ 𝑎𝑘−1 + 1 (since 𝑎𝑘−1 + 1 is also in 𝜋1
−). In 
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addition, −𝑎𝑗−1  and 𝐼(−𝑎𝑗)  are adjacent in 𝐼(𝛽𝜋)−1  because 

𝐼(𝛽𝜋)−1(−𝑎𝑗−1) = 𝐼(−𝑎𝑗) . In the following, we consider five 

possibilities. 

Case 1. 𝑎𝑗 ≠ −𝑛 and 𝑎𝑗 ≠ 1. Then 𝐼(−𝑎𝑗) = −𝑎𝑗 + 1, which is not 

in 𝜋1
−  since −𝑎𝑗  is the maximum in 𝜋1

−.  If −𝑎𝑗 + 1  is in 𝜋1
+ , then 

𝑎𝑘−1 cannot be the maximum in 𝜋1
+, since −𝑎𝑗 ≥ 𝑎𝑘−1 + 1 and hence 

−𝑎𝑗 + 1 > 𝑎𝑘−1, which contradicts to our assumption that 𝑎𝑘−1 is the 

maximum in 𝜋1
+. In other words, 𝐼(−𝑎𝑗) belongs to either 𝜋2

+ or 𝜋2
− 

and hence (−𝑎𝑗−1, 𝐼(−𝑎𝑗))  acts on 𝛽𝜋  as a join and the cycles in 

(𝛽𝜋Γ𝐼(−𝑎𝑗), 𝛽𝜋Γ(−𝑎𝑗−1))(−𝑎𝑗−1, 𝐼(−𝑎𝑗))𝛽𝜋 are admissible. 

Case 2. 𝑎𝑗 = −𝑛 and both 1 and −1 are not in 𝜋1
+. Then 𝐼(−𝑎𝑗) =

1  (instead of 𝐼(−𝑎𝑗) = −𝑎𝑗 + 1 = 𝑛 + 1 ). Because 𝜋1
+  and 𝜋1

−  are 

complement to each other from chromosomal point of view, both of them 

contains no 1 and −1, as a result, 𝐼(−𝑎𝑗) belongs to either 𝜋2
+ or 𝜋2

−. 

Therefore, (−𝑎𝑗−1, 𝐼(−𝑎𝑗))  acts on 𝛽𝜋  as a join and 

(𝛽𝜋Γ𝐼(−𝑎𝑗), 𝛽𝜋Γ(−𝑎𝑗−1))(−𝑎𝑗−1, 𝐼(−𝑎𝑗))𝛽𝜋 contains only admissible 

cycles. 

Case 3. 𝑎𝑗 = 1 and both 𝑛 and −n are not in 𝜋1
+. Then 𝐼(−𝑎𝑗) =

−𝑛  (instead of 𝐼(−𝑎𝑗) = −𝑎𝑗 + 1 = 0 ). Clearly, 𝐼(−𝑎𝑗)  belongs to 

either 𝜋2
+ or 𝜋2

−. Therefore, (−𝑎𝑗−1, 𝐼(−𝑎𝑗)) acts on 𝛽𝜋 as a join and 

(𝛽𝜋Γ𝐼(−𝑎𝑗), 𝛽𝜋Γ(−𝑎𝑗−1))(−𝑎𝑗−1, 𝐼(−𝑎𝑗))𝛽𝜋  have two admissible 

cycles. 
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Case 4. 𝑎𝑗 = −𝑛  and 1 or −1 is in 𝜋1
+ . Because 𝜋1

+  and 𝜋1
−  are 

complement strands, 1 is in 𝜋1
+ if and only if −1 is in 𝜋1

−. Hence, both 

𝜋2
+ and 𝜋2

− contains no −𝑛, 1 and −1. Then we can exchange the roles 

of 𝜋1
+  and 𝜋1

−  with 𝜋2
+  and 𝜋2

− , respectively, and follow the similar 

discussion as given in Case 1 to show that we can still find two adjacent 

elements 𝑥′  and 𝑦′  in a cycle of 𝐼(𝛽𝜋)−1  such that (𝑥′, 𝑦′)  and 

(𝛽𝜋Γ(𝑦′), 𝛽𝜋Γ(𝑥′)) can join the four cycles of 𝛽𝜋 into two admissible 

cycles.  

Case 5. 𝑎𝑗 = 1 and 𝑛 or −n is in 𝜋1
+. Actually, we need not consider 

this case, because we have initially assumed that all the elements in 𝜋1
+ 

are less than 𝑛 and among them, 𝑎𝑗 is the smallest. 

Based on the above discussion, we have completed the proof of this 

lemma. ∎ 

Theorem 1. Let Φ denote a minimum weighted sequence of CCLP 

operations needed to transform 𝜋 into 𝐼. Then the weight of Φ is great 

than or equal to 
|𝐸|−𝑛𝑐(𝐼𝜋

−1)

2
. 

Proof.  Let Φ contain a reversals and b non-reversal CCLP operations. 

Clearly, the weight of Φ is 𝑎 + 2𝑏. As discussed previously, a reversal 

can be expressed by a product of two 2-cycles and a non-reversal CCLP 

operation by a product of four 2-cycles. Therefore, Φ can be written as a 

product of 2𝑎 + 4𝑏 2-cycles such that Φ𝜋 = 𝐼 , equivalently meaning 

that 𝐼𝜋−1  can be expressed by a product of 2𝑎 + 4𝑏  2-cycles and, 

therefore, ‖𝐼𝜋−1‖ ≤ 2𝑎 + 4𝑏. As mentioned before, based on the lemma 

proposed in [14,18], we can obtain that ‖𝐼𝜋−1‖ = |𝐸| − 𝑛𝑐(𝐼𝜋
−1). In 

other words, |𝐸| − 𝑛𝑐(𝐼𝜋
−1) ≤ 2𝑎 + 4𝑏 and , consequently, the weight 
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of Φ is great than or equal to 
|𝐸|−𝑛𝑐(𝐼𝜋

−1)

2
. ∎ 

Suppose that there are at least two adjacent elements 𝑥 and 𝑦 in a 

cycle of 𝐼𝜋−1 such that (𝑥, 𝑦)|𝜋. Then, according to Lemma 5, we can 

always find a non-reversal CCLP operation 𝛽′𝛽 from 𝐼𝜋−1 to rearrange 

𝜋  into 𝛽′𝛽𝜋 , where 𝛽 = (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦)  and 𝛽′ = (𝛽𝜋Γ(𝑦′) 

, 𝛽𝜋Γ(𝑥′))(𝑥′, 𝑦′). Suppose that there are no any two adjacent elements 𝑥 

and 𝑦  in a cycle of 𝐼𝜋−1  such that (𝑥, 𝑦)|𝜋 , which implies that 

(𝑥, 𝑦) ∤ 𝜋. Then based on Lemma 3, (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦) can serve as a 

reversal to transform 𝜋  into (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦)𝜋 . Using these 

properties, we design Algorithm 1 to sort 𝜋 into I by CCLP operations. It 

is not hard to see that a non-reversal CCLP operation derived in Algorithm 

1 decreases the norm of 𝐼𝜋−1 by 4 and a reversal by 2. Since non-reversal 

CCLP operations are weighted 2 and reversals are weighted 1, Algorithm 

1 decreases the norm of 𝐼𝜋−1 by 1 at the weight of 
1

2
 and hence its total 

weight equals to 
‖𝐼𝜋−1‖

2
=

|𝐸|−𝑛𝑐(𝐼𝜋
−1)

2
, which is optimal according to 

Theorem 1. 

Algorithm 1  

Input: A chromosome 𝜋 = (𝑎1, 𝑎2, … , 𝑎𝑛)(−𝑎𝑛, −𝑎𝑛−1, … ,−𝑎1). 

Output: An optimal scenario Φ of CCLP operations with weight 𝜔(𝜋, 𝐼). 

1: Compute 𝐼𝜋−1 and 𝜋Γ; 

2: Let 𝜔(𝜋, 𝐼) =
|𝐸|−𝑛𝑐(𝐼𝜋

−1)

2
 and 𝛿 = 0; 
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3: while 𝜋 ≠ 𝐼 do 

3.1: if there exist two adjacent elements 𝑥 and y in a cycle of 𝐼𝜋−1 

such that (𝑥, 𝑦)|𝜋 then  

3.1.1: Let 𝛿 = 𝛿 + 1 and 𝛽 = (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦);  

3.1.2: Find two adjacent elements 𝑥′ and 𝑦′ in a cycle of 𝐼𝜋−1𝛽 

such that (1) (𝑥′, 𝑦′) ∤ 𝛽𝜋, (2) 𝑥′ ≠ Γ(𝑦′) or Γ(𝑥′) ≠ 𝑦′ and 

(3) (Γ(𝑥′), 𝑦) ∤  𝛽𝜋 or (𝑥′, Γ(𝑦′)) ∤  𝛽𝜋;  

3.1.3: Let 𝛽′ = (𝛽𝜋Γ(𝑦′), 𝛽𝜋Γ(𝑥′))(𝑥′, 𝑦′) and 𝛽𝛿 =  𝛽′𝛽;  

3.1.4: Compute new 𝜋 = 𝛽𝛿𝜋 and new 𝜋Γ = 𝛽𝛿𝜋Γ;  

3.1.5: Obtain new 𝐼𝜋−1  by removing 𝑦, 𝜋Γ(𝑥), 𝑦′ and 𝛽𝜋Γ(𝑥′) 

from the cycles in original 𝐼𝜋−1;  

3.2: else  

3.2.1: Find two adjacent elements x and y in a cycle of 𝐼𝜋−1 such 

that (𝑥, 𝑦) ∤ 𝜋;  

3.2.2: Let 𝛿 = 𝛿 + 1 and 𝛽𝛿 = (𝜋Γ(𝑦), 𝜋Γ(𝑥))(𝑥, 𝑦);  

3.2.3: Compute new 𝜋 = 𝛽𝛿𝜋 and new 𝜋Γ = 𝛽𝛿𝜋Γ;  

3.2.4: Obtain new 𝐼𝜋−1  by removing 𝑦  and 𝜋Γ(𝑥)  from the 

cycles in original 𝐼𝜋−1;  

 end if 
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 end while 

4: Output Φ = 𝛽1, 𝛽2, … , 𝛽𝛿  as an optimal scenario with weight 

𝜔(𝜋, 𝐼); 

Theorem 2. Given a chromosome 𝜋, the weighted sorting problem by 

CCLP operations can be solved in 𝑂(𝛿𝑛) time when with weight ratio 

between reversals and non-reversal CCLP operations is 1:2, where 𝛿 is 

the number of CCLP operations needed to transform 𝜋 into 𝐼. Moreover, 

the weight of the optimal solution is 
|𝐸|−𝑛𝑐(𝐼𝜋

−1)

2
 that can be calculated in 

𝑂(𝑛) time in advance. 

Proof.  As discussed previously, Algorithm 1 transforms 𝜋 into 𝐼 with a 

minimum weighted sequence of 𝛿 CCLP operations, whose total weight 

is 
|𝐸|−𝑛𝑐(𝐼𝜋

−1)

2
 that can be calculated in 𝑂(𝑛) time. Below, we analyze the 

time-complexity of Algorithm 1. Basically, steps 1 and 2 can be done in 

𝑂(𝑛) time. There are 𝛿 iterations to perform in step 3. For each iteration 

of step 3, it takes 𝑂(𝑛) time to find (𝑥, 𝑦) and (𝑥′, 𝑦′) by determining 

every pair of adjacent elements in all the cycles of 𝐼𝜋−1 and 𝐼𝜋−1𝛽, 

respectively, and a constant time to perform other operations in step 3.1, 

and also takes 𝑂(𝑛) time to perform step 3.2. Therefore, the total cost of 

step 3 is 𝑂(𝛿𝑛) . Step 4 is executed in constant time. Totally, the 

time-complexity of Algorithm 1 is 𝑂(𝛿𝑛).  ∎ 

It should be noted that although the algorithm we presented above 

takes the circular chromosomes as the instances, it still works for the 

linear chromosomes because it can be shown that the problem of sorting 

by CCLP operations is equivalent for circular and linear chromosomes 
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based on a property, that is, a CCLP operation acting on a gene, say 𝑢, on 

a circular chromosome has an equivalent one that does not act on 𝑢 (see 

Figure 4-1 for an example). 

 

Figure 4-1. A CCLP operation acting on genes -1 and -5 on a circular 

chromosome has an equivalent one acting on genes 2, 3 and 4. 
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Chapter 4 

 

Conclusion 

In this thesis, we have introduced and studied the sorting problem by 

CCLP operations, where CCLP is a cut-circularize-linearize-and-paste 

operation that can model several known and unknown rearrangements. In 

addition, we have proposed an 𝑂(𝛿𝑛) time algorithm for solving the 

weighted sorting problem by CCLP operations when the weight ratio 

between reversals and non-reversal CCLP operations is 1:2, where n is the 

number of genes and 𝛿 is the number of needed CLLP operations. As 

described in this thesis, this algorithm is very simple so that it can be 

easily implemented using data structure of 1-dimensional arrays and 

useful in the studies of phylogenetic tree reconstruction and human 

immune response to tumors. As a future work, it would be interesting to 

design efficient algorithms for solving the problem of sorting by CCLP 

operations when all the CCLP operations are weighted equally. 
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