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Abstract

During evolution, genomes may undergo large-scale mutations called as
genome rearrangements. With more and more genomes have been
sequenced completely, genome rearrangement studies based on
genome-wide analysis of gene orders play an important role in
reconstructing phylogenetic trees. In the past, a variety of traditional
rearrangement  operations, such as reversals, transpositions,
block-interchanges, translocations, fissions and fusions, have Dbeen
proposed to evaluate the evolution  distance between two related
genomes in gene order. Usually, the computational studies of genome
rearrangements are formulated.as a problem of sorting a permutation by
rearrangement operations. In this thesis, we introduce a problem, called
as a sorting problem by cut-circularize-linearize-and-paste (CCLP)
operations, which aims to find a minimum number of CCLP operations to
sort a signed permutation representing a chromosome. The CCLP
operation is a genome rearrangement operation that cuts a segment out of
a chromosome, circularizes the segment into a temporary circle, linearizes
the temporary circle as a linear segment, and possibly inverts the
linearized segment and pastes it into the remaining chromosome. The
CCLP operation can model many well-known rearrangements mentioned
above, such as reversals, transpositions and block-interchanges, and

others not reported in the biological literature. To distinguish those CCLP



operations from the reversal, we call them as non-reversal CCLP
operations. Finally, we propose an 0(dn) time algorithm for solving the
weighted sorting problem by CCLP operations when the weight ratio
between reversals and non-reversal CCLP operations is 1:2, where n is

the number of genes and & is the number of needed CCLP operations.
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Chapter 1

Introduction

Genome rearrangement studies based on genome-wide analysis of gene
orders play an important role in the phylogenetic tree reconstruction [5, 11,
13, 22, 23]. In these studies, a gene is usually represented by a signed
integer, where the associated _sign..indicates on which of the two
complementary DNA strands the,gene is located, a chromosome by a
sequence of genes and a genome by a set of chromosomes. In the last two
decades, a variety of rearrangement-operations have been proposed to
evaluate the evolutionary distance between two related genomes in gene
order. Basically, these operations can be classified into two categories: (1)
‘intra-chromosomal’ rearrangements, such as reversals, transpositions and
block-interchanges (also called ‘generalized transpositions’), and (2)
‘inter-chromosomal’ rearrangements, such as fusions, fissions and
translocations. Reversals, also called inversions, affect a segment of
consecutive integers in the chromosome by reversing the order and
flipping the signs of the integers [2, 13, 14, 17, 24]. Transpositions affect
two adjacent segments in the chromosome by exchanging their positions
[4, 9, 10]. Block-interchanges are generalized transpositions by allowing

the exchanged segments not being adjacent in the chromosome [8, 10, 14,



16, 18]. Translocations exchange the end segments between two
chromosomes [7, 11, 12, 14, 21]. Fusions join two chromosomes into a
bigger one and fissions break a chromosome into two smaller ones [11, 14,

19, 20].

Recently, the study on the genome rearrangement using
block-interchanges has increasingly drawn great attention, since
block-interchanges contain transpositions as a special case and, currently,
the computational models involving block-interchanges are more
tractable than those involving transpositions. More recently, Yancopoulos
et al. introduced the double cut and join (DCJ) operation, which cuts the
chromosome(s) in two places and rejoins the four cut ends in a new way,
as a basis for modeling all «the rearrangement operations described
previously [25]. Particularly, transpositions and block-interchanges can be
modeled by two consecutive DCJ aperations; while others by one DCJ
operation. In fact, as mentioned in“{1],- the two consecutive DCJ
operations can be viewed as‘‘the”following procedure to model
transpositions or block-interchanges (see Figure 1-1 for a reference). (1)
Excision: cut a segment from a chromosome that can be linear or circular.
(2) Circularization: join the ends of the excised segment into a temporary
circle. (3) Linearization: cut the temporary circle in any place as a linear
segment. (4) Reincorporation: paste the linearized segment back to the
remaining chromosome at a new site. As also pointed out in [1], this
process of fragment excision, circularization, linearization and
reincorporation indeed happens in the configuration of the immune
response in higher animals. Here, we make a little modification to the
reincorporation step in the above process by allowing the linearized

segment to be possibly inverted before its reinsertion and also allowing
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Figure 1-1. (1) Excision: a fragment of genes 2, 3 and 4 is cut from a
linear chromosome. (2) Circularization: the two ends of the excised
segment are joined together-as a circular. chromosome that is temporary.
(3) Linearization: the temparary circular chromosome is cut at place a, b
or ¢ so that it becomes again a‘linear'chromosome. (4) Reincorporation:
the linearized chromosome is pasted back to the original chromosome at

new site d, e or f.

inverted or non-inverted linearized segment to be pasted back to the
remaining chromosome at any site (see Figure 1-2 for the modified
model). This modification enables the above cut-circularize-linearize-and
-paste (CCLP for short) operation to model seven different kinds of
rearrangements, as will be detailed below. It is interesting to note that in
addition to transposition and block-interchange, a CCLP operation can
model reversal, inverted transposition (or transversal) [3] and others that
are currently not reported in the biological literature. The seven
rearrangements modeled by the CCLP operation are described as follows

(see Figure 1-2 for a reference).



® Case | — Reversal:

As illustrated in Figure 1-2, a segment with genes 2, 3 and 4 is cut
from a chromosome (1,2,3,4,5,6) and joined as a temporary circle,
which is then cut in the same place as it was created by the join (i.e.,
the a site in Figure 1-2), and inverted and pasted back to the
chromosome at the cutting site (i.e., the e site in Figure 1-2). As a
result, this CCLP operation performs as a reversal that changes the
chromosome (1,2,3,4,5,6) into (1,-4,-3,-2,5,6).

® Case Il — Transposition:

The temporary circle is cut at a new place (e.g., the b site in Figure
1-2) and pasted back to the chromosome at the cutting site. This
CCLP operation performs_ as . a - transposition that changes
(1,2,3,4,5,6) into (1,3,4,2,5,6).

® Case Il — Two consecutive, adjacent reversals:

The temporary circle is cut at a new place (e.g., the b site in Figure
1-2), and then inverted and pasted back to the chromosome at the
cutting site. This CCLP operation changes (1,2,3,4,5,6) into
(1,-2,-4,-3,5,6), which is equivalent to that (1,2,3,4,5,6) is first
changed into (1,2,-4,-3,5,6) by a reversal, which is further changed
into (1,-2,-4,-3,5,6) by another reversal. Note that the chromosomal

regions affected by these two consecutive reversals are adjacent.

® Case IV — Transposition:

The temporary circle is cut in the same place as it was joined and
then pasted back to the chromosome at a new site (e.g., the f site in

Figure 1-2). This CCLP operation performs as a transposition that



changes (1,2,3,4,5,6) into (1,5,2,3,4,6).

Case V — Transversal:

The temporary circle is cut in the same place as it was joined, and
then inverted and pasted back to the chromosome at a new site (e.g.,
the f site in Figure 1-2). This CCLP operation performs as an
inverted transposition (i.e., transversal) that changes (1,2,3,4,5,6)
into (1,5,-4,-3,-2,6).

Case VI — Block-interchange:

The temporary circle is cut at a new place (e.g., the b site in Figure
1-2) and then pasted back to the chromosome at a new site (e.g., the
f site in Figure 1-2).» This CCLP operation performs as a
block-interchange that changes:(1,2,3,4,5,6) into (1,5,3,4,2,6).

Case VII — Two consecutive, overlapping reversals:

The temporary circle is cut at a new place (e.g., the b site in Figure
1-2), and then inverted and pasted back to the chromosome at a new
site (e.g., the f site in Figure 1-2). This CCLP operation changes
(1,2,3,4,5,6) into (1,5,-2,-4,-3,6), which is equivalent to that
(1,2,3,4,5,6) is first changed into (1,2,-5,-4,-3,6) by a reversal,
which is further changed into (1,5,-2,-4,-3,6) by another reversal.
Note that the chromosomal regions affected by these two

consecutive reversals are overlapping.
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Figure 1-2. A modified cut-circularize-linearize-and-paste operation that
can model seven different kinds of rearrangement, where the cutting site
of the temporary circle with genes 2,3 and 4 ¢an be either a, b or c, and the
inserting place of the linearized segment at the remaining chromosome

can be either d, e, for g.

All these seven rearrangements described above are simply called
CCLP operations. But, to distinguish those CCLP operations from the
reversal, we call them as non-reversal CCLP operations in the sequel of
this paper. In this article, we are interested in designing efficient
algorithms to solve the genome rearrangement problem involving all the
seven CCLP operations. If all these CCLP operations are weighted equally,
the problem aims to find a minimum number of operations to sort a signed
permutation of representing a chromosome. In this case, however,
non-reversal CCLP operations are favored in the rearrangement scenario
of the optimal solution, as will be clear later, which contradicts with the
observation made by biologists that in most organisms, reversals are

observed much more frequently when compared with other



rearrangements. Therefore, it may require a reversal to be weighted
differently from other CCLP operations. In this differently weighted case,
the problem is then called weighted sorting problem by CCLP operations,
which is to find a sequence of CCLP operations such that the sum of the
operation weights in the sequence is minimum. In this study, we focus our
attention on the case in which the weight ratio between reversals and
non-reversal CCLP operations is 1:2 and use the permutation group in
algebra to design an 0(én) time algorithm for solving the problem,
where n is the number of genes in the given chromosome and § is the

number of needed CCLP operations.



Chapter 2

Preliminaries

Given a set E = {1,2,...,n} of n positive integer, a permutation is a
one-to-one mapping from E into itself. For instance, as shown in Figure
2-1, we may define a permutation « of the set {1,2,3,4,5,6,7} by a(1) =
4, a(2)=1, a3) =6, a(4) =7ya(5) =3, a(6) =5 and a(7) =
2. In the study of genome rearrangement, it-is convenient to express the
permutation in cycle form“as a =1(1,4,%2)(3,6,5), in which for
each x € E, a(x) is placed directly-right to x. A cycle of length Kk,
say (aq,a,, ..., ay), is simply called'k-cycle and it also can be written as
(a;, aj11, -, Qg, Aq, ..., a;_1) (i.€., indices are cyclic), where 2 < i < k.
Any two cycles are said to be disjoint if they have no elements in common.
Basically, a permutation can be written in a unique way as the product of
disjoint cycles, which is called the cycle decomposition of this
permutation, if we ignore the order of the cycles in the product. Usually, a
1-cycle, in which its element is said to be fixed, in a permutation is not
written explicitly. Especially, the permutation whose elements are all

fixed is called an identity permutation and is denoted by 1, i.e.,, 1=

(1)(2) - (n).



Figure 2-1. The illustration of a permutation a = (1,4,7,2)(3,6,5),
where a(1) =4, a(2) =1, a(3) =6, a(4) =7, a(5) =3, a(6) =
5 and a(7) = 2.

Given two permutations @ and'f of.E, the composition (or product)
of « and £, denote by af, is defined to be a permutation of E with
af(x) = a(B(x)) for all-x € EZTFor instance, let a = (2,1) and
B =(2,53,1,6,4) be two permutations of E = {1,2,3,4,5,6}. Then
af = (2,53)(1,6,4). If a and S are disjoint cycles, then aff = fa. The
inverse of « isapermutation, denoted as ™, suchthat aa™! = a ta =
1. Notably, if a permutation is expressed by the product of disjoint cycles,
then its inverse can be obtained by just reversing the order of the elements
in each cycle. For example, if a =(2,53)(1,64), then a1 =
(3,5,2)(4,6,1). The conjugation of § by a, denoted by a- S, is the
permutation afa~?1, which is a permutation with the same cycle structure
of B but each element x is changed by a(x). More clearly, if g =
( by, by, e, b; )( biy1,bigz, . by ), then a-B = (a(by),..,alb;))
(a(bit1), ..., a(by)).



Let « = (a;,a,) bea?2-cycleand B be an arbitrary permutation of E.

Then the effect of applying a to B can be described as follows:

® |If a, and a, are in the same cycle of S, then this cycle is broken
into two smaller ones in af8 (or Ba), thatis, a functions as a split
operation of B. For instance, a = (1,2) and B = (1,6,4,2,5,3),
then aff = (1,6,4)(2,5,3) and Ba = (5,3,1)(6,4,2).

® |If a, and a, are in two different cycles of S, then these two
cycles are joined into a bigger one in af (or Ba), that is, «a
functions as a join operation of . For instance, « = (1,3) and
g =(1,64)(253) , then af =(16/4,3,25) and Pa=
(6,4,1,2,5,3).

Every permutation a of E can e expressed as a product of 2-cycles.
However, there are many ways of expressing ‘« as a product of 2-cycles.
For instance, (a4, a,, ..., ag) = (ag,az)(aas) - (ax_q1, a;) = (a, ai)
(ay,ai—1) -+ (a4, a;), where k'=3The'norm of «a, denoted by ||«]|, is
defined to be the minimum number k such that @ can be expressed by a
product of k 2-cycles. Let n.(a) denote the number of disjoint cycles in
the cycle decomposition of «a. Notice that n.(a) also counts the
non-expressed 1-cycles. For example, if a=(1,3,2)(5,6) is a
permutation of {1,2,3,4,5,6}, then we have n.(a) =3, instead of
n.(a) = 2, since a = (1,3,2)(4)(5,6). For any permutation « of E, it
can be shown that ||a|| = |E| — n.(a) [14, 18]. For two permutations a
and S of E, « is said to divide 8, simply denoted by «|g, if and only if
NlBa~t|| =Bl — llall . For example, let a=(2,1) and
B =(2,53,1,6,4) be two permutations of E = {1,2,3,4,5,6}. Then
pa~t=(153)(2,6,4). Thus we have ||fa”l||=4, ||f]l=5 and

10



la|l = 1. As a result, ||[Ba|| = |IBIl — |la|| and hence «|B. Actually,

we can easily determine if a divides 8 using the following lemma.

Lemma 1 [14]. Let aq,a,, ...,a; € E and B be any permutation of E.
Then a4, a,, ..., a; are in the same cycle of § and appear in this cycle in

the order of a,, a,, ...,a; ifandonlyif (a,,a,, ..., a;)|B.

As mentioned before, a gene is usually represented by a signed integer
in the genome rearrangement studies. To properly model a DNA, which is
well known as a double stranded molecule, we let E = {+1,+2, ..., +n},
in which n is the number of genes and each gene i has counterpart gene
-1 in the same location in the opposite strand. Let
I'=(1,-1)(2,-2) - (n,—n). Clearly; I'> = 1, thatis "1 =T. Acycle
Is said to be admissible if it does net contain i and —i simultaneously for
some gene i € E. Then we can use an admissible n-cycle to represent a
DNA strand that is constituted by n genesin some order. Given a DNA
strand, say w*, m~ =T - (w*)7tuis its reverse complement, since
()™t is the reverse of = and T'- ()1 is the complement of
(*)~1. For our purpose, we here represent the DNA molecule, named ,
by the product of the two strands ©* and =~, that is, t = n~ =

n-m* (since ™ and 7~ are disjoint).

Lemma 2 [14]. Let = and o represent two different chromosomes. If «

isacyclein o™, then (nl') -a~ ! isalso acycle in o1,

According to Lemma 2, a and (nT") - ™! are each other’s mate cycle

in o1,

Lemma 3 [14]. Let u and v be in the different strands of a chromosome m,

11



that is, (u,v) tm. Then y = (nl'(v),nl'(u)) (u,v) acts on m as a

reversal.

Note that in Lemma 3, (u,v) acts on m as a join operation and
(nT'(v), nT'(u)) acts on (u,v)m as a split operation. In other words, a
reversal acting on m can be implemented by the composition of two
2-cycles and m. In fact, it can be verified that other non-reversal CCLP
operations can be implemented by multiplying four 2-cycles
(nl(x), il (w))(w, x) (nl'(v), el (w)) (u, v) with the given chromosome
m if the following conditions are satisfied: (1) (u,v)|m, (2) (w,x) ¢
(u,v)r 3) w#TI(x) or Tw)# x and 4) (W,T(x)) {1 (w,v)m or
('(w),x) t (u, v)m. The first condition is to make sure that (u,v) and
(nT'(v), nT'(u)) respectively act.on the:two strands of m as splits, which
lead to two temporary circles excised. from . Note that these two
temporary circles are complement to each other. The second condition is
to make sure that (w, x) and (zT(x),@C(w)) respectively act on the two
temporary circles and the cycles of the.remaining m as joins, which paste
back the two temporary circles into the remaining m. It is worth
mentioning that the joins also fulfill the process of linearization with
possible inversion. The inversion is performed when the temporary circles
are reinserted into the chromosome strands different from the ones they
come from. The third and fourth conditions are to make sure that the
resulting m are admissible (i.e., no i and —i are in the same

chromosome strand). Therefore, we have the following lemma.

Lemma 4. Let /[ be a chromosome and
B = (nF (x),nl’ (W))(W, x)(nF (v),nlr (u))(u, v) . Suppose that the
following four conditions are satisfied: (1) (u,v)|m, (2) (w,x) t (u,v)1
B w=#rI'(x) or 'wW)#x and (4) W, I'(x))+t (uv)m or

12



(rw),x) t (u,v)m. Then B acts on m as a non-reversal CCLP

operation.

13



Chapter 3

Algorithm

In this chapter, we shall utilize the permutation groups to design an
efficient algorithm for sorting a given chromosome m into I =
(1,2, ...,n)(—n, ...,—2,—1) using the CCLP operations when the weight
ratio between reversals and non-reversal CCLP operations is 1:2. Recall
that any permutation can be-expressed as a product of 2-cycles and every
reversal (respectively, non-reversal CCLP operation) affecting  can be
implemented by a product-of two (respectively, four) 2-cycles and .
Furthermore, the composition of ‘Tw=t"and  is I, suggesting that /7!
can be expressed as a product of 2-cycles that functions as a sequence of
CCLP operations to optimally transform = into I. In the following, we
shall show how to fulfill such an idea. For simplicity, we say that x and y

are adjacent in a permutation a if a(x) =y or a(y) = x.

Lemma 5. Let m = ntm~ be a chromosome. Suppose that (x,y)|I7 ™1
and (x,y)|m, that is, there are two elements x and y in a cycle of Iz~1
such that (x,y) acts on 7 as a split. Let g = (r['(y), nT'(x))(x, ).
Then there are two adjacent elements x’ and y' in a cycle of I(fm)~?!
such that (x',y") and (Brnl'(y"),pnl(x")) act on Bm as joins.

Moreover, the cycles in p'Bm are admissible, where

14



B’ = (Bal(y"), BT (x)N(x", ¥").

Proof. For convenience, let m=n"n" = (a,,a,,..a,)
(—a,,—a,_4,...,—aq). The assumption (x,y)|r indicates that x and y
are in the same cycle of 7, say in *, and hence nl'(x) and n['(y) arein
n~. Hence, both (x,¥) and (nT'(y),ml'(x)) act on 7 as splits and
B = (nT'(y),nl(x))(x,y) divides 7 into four cycles. Let Bm =
iy, = (aq, o, Qr_1) (g, o) Q) (—Ag—q, ooy —ay) (—ay, ..., — ).
For simplicity of our further discussion, we assume that a; < a;,; <n
for 1 <i < k — 2. This indicates that a,_, is the maximum in 7z and
hence a,_; + 1 is not in m;}. Moreover, I1(fm) 1(a;) = I(ay_,) =
ax_, + 1, meaning that a; and a,_, + 1 are adjacent in I(m)~1. In
other words, there are two_.adjacent elements a; and a;_; +1 in
I(pm)™t  such  thats (apapi4+ 1D , as  well as
(BrT(ay-, + 1),nl'(a,)), acts on Bm as a join. If the two cycles in
(BrT(ay-, + 1),nl'(a,))(ay, a;,_, + 1) are admissible (i.e., they
represent a chromosome), then ‘we ‘have completed the proof of this
lemma based on Lemma 4. Now, suppose that the two cycles in
(BrT(ay-, + 1),6nl'(ay))(ay, ar—, + 1)Bm are not admissible (i.e., for
some 1 <i<n, both i and -i are in the same cycle). We then show
below that we can still find two other adjacent elements x" and y' in a
cycle of I(Bm)~1 such that (x',y") and (Bnl(y"), Bnl(x")) can join
B into two admissible cycles. First of all, a;,_,; + 1 must be in m]
(otherwise,  (Bnl'(ay_, +1),Bnl'(ay))(as, ap1 + 1) is an
admissible chromosome), leading to that the cycle created by joining
nimy using (a;,a,_; + 1) is not admissible. Further suppose that a; is
the minimum in 7. Then T'(a;) = —a;, which is the maximum in 7.

Therefore, we have —a; = ay_; + 1 (since ax_; + 1 is also in 7y). In

15



addition, —a;_, and I(—a;) are adjacent in I(Bm)~" because
I(Brn)~'(=a;_1) =I1(—a;) . In the following, we consider five

possibilities.

Case 1. a¢; # —n and a; # 1. Then I(—q;) = —a; + 1, which is not
in my since —a; is the maximum in my. If —a; +1 is in my", then
a1 cannot be the maximum in m", since —a; > a;_; + 1 and hence
—a;j + 1 > aj,_4, Which contradicts to our assumption that a,_; is the
maximum in 7. In other words, I(—a;) belongs to either w3 or m;

and hence (—a;_;,1(—q;)) acts on Br as a join and the cycles in

(BrTI(—a)), Bl (—a;_1))(—a;—1,1(—a;))Bn are admissible.

Case 2. a; = —n and both’1 and —1"are not in w{. Then I(—q;) =
1 (instead of I(—a;) = =ap+1=mn+1). Because n{ and mj are
complement to each other fromchromesemal point of view, both of them
contains no 1 and —1, as a result, /(—a,) belongs to either 73 or 73
Therefore, (—a;_;,I(—a;)) acts on pBm as a join and
(BrTI(—a;), Bl (—a;_1))(—a;—1,1(—a;))Bm contains only admissible

cycles.

Case 3. a; =1 and both n and —n are not in f. Then I(—q;) =
—n (instead of I(—a;) = —a;j +1=0). Clearly, I(—a;) belongs to
either 3 or m;. Therefore, (—a;_;,1(—a;)) acts on Bm as a join and
(BrTI(—a;), pul(—a;-1))(—aj_1,1(—a;))Bm have two admissible

cycles.
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Case 4. aj =-n and 1 or —1 is in n{. Because m{ and m; are
complement strands, 1 isin 7z if and only if —1 isin 7. Hence, both
m; and m; containsno —n, 1 and —1. Then we can exchange the roles
of m and m; with 5 and m;, respectively, and follow the similar
discussion as given in Case 1 to show that we can still find two adjacent
elements x’ and y’ in a cycle of I(fm)~! such that (x’,y") and
(BT (y"), frT(x")) can join the four cycles of Bm into two admissible

cycles.

Case 5. a; =1 and n or —nisin my". Actually, we need not consider

this case, because we have initially assumed that all the elements in 7}

are less than n and among them, a; is the smallest.

Based on the above discussion, we have.completed the proof of this

lemma. ]

Theorem 1. Let ® denote “a -minimum weighted sequence of CCLP

operations needed to transform m into I. Then the weight of ® is great

_ -1
than or equal to =™ ),

Proof. Let @ contain a reversals and b non-reversal CCLP operations.
Clearly, the weight of @ is a + 2b. As discussed previously, a reversal
can be expressed by a product of two 2-cycles and a non-reversal CCLP
operation by a product of four 2-cycles. Therefore, @ can be written as a
product of 2a + 4b 2-cycles such that & = I, equivalently meaning
that I7~1 can be expressed by a product of 2a + 4b 2-cycles and,
therefore, ||Im~t|| < 2a + 4b. As mentioned before, based on the lemma
proposed in [14,18], we can obtain that ||[Iz~Y|| = |E| — n.(Iz™1). In

other words, |E| —n.(Ir™1) < 2a + 4b and , consequently, the weight
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_ -1
of @ is great than or equal to Z=2<d™ )

Suppose that there are at least two adjacent elements x and y in a
cycle of Im~1 such that (x,y)|m. Then, according to Lemma 5, we can
always find a non-reversal CCLP operation 5’8 from Iz~ to rearrange
m into B'Bm, where B = (nF(y),nF(x))(x,y) and B' = (Bnl'(y")
,Brl(x")(x',y"). Suppose that there are no any two adjacent elements x
and y in a cycle of Im~! such that (x,y)|m, which implies that
(x,y) + 7. Then based on Lemma 3, (wI'(y), nI'(x))(x,y) can serve asa
reversal to transform = into (nl(y),nl(x))(x,y)m . Using these
properties, we design Algorithm 1 to sort = into | by CCLP operations. It
Is not hard to see that a non-reversal CCLP operation derived in Algorithm
1 decreases the norm of I~ by 4 and a reversal by 2. Since non-reversal
CCLP operations are weighted:2 and reversals are weighted 1, Algorithm
1 decreases the norm of I7=! by i-at:the weight of % and hence its total

lim=|| _ 1El=nglm=2)

weight equals to S = > , which is optimal according to
Theorem 1.

Algorithm 1

Input: Achromosome © = (a4, a,, ...,a,)(—a,, —a,_q1, ..., —Q4).

Output: An optimal scenario @ of CCLP operations with weight w(m, I).

1: Compute Iz~ and nT;

|E| _nc(“'f_l)

2. Let w(mI) = and 6 = 0;
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3: whiler#1 do

3.1: if there exist two adjacent elements x and y in a cycle of Iz~1

such that (x,y)|m then
3.1.1: Let § =6+ 1 and g = (al'(y), wl'(x))(x,¥);

3.1.2: Find two adjacent elements x"and y’ in a cycle of Iz~1p
suchthat (1) (x',y") + B, (2) x' # T'(y") or I'(x") = y' and
3) TGN, y) + Bmor (x,T(y)) + Bm;

3.1.3: Let B’ = (BrI'(y"), Brl(x"))(x',y") and Bs = B'B;
3.1.4: Compute new = Bsm andnew nl' = Bsnl’;

3.1.5: Obtain new Iz~% by removing y, nl'(x), y' and Bnl(x")

from the cycles’in original=17 ~%;
3.2: else

3.2.1: Find two adjacent elements x and y in a cycle of I7~1 such
that (x,y) t m;

3.2.2: Let 5§ =8+1 and Bs = (nF(y),nF(x))(x, y);
3.2.3: Compute new m = Bsm and new nl"' = SsnT;
3.2.4: Obtain new I7~! by removing y and =nl'(x) from the

cycles in original I™?;

end if
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end while

4. OQutput & = B4,B,,...,0s as an optimal scenario with weight
w(m, I);

Theorem 2. Given a chromosome m, the weighted sorting problem by
CCLP operations can be solved in 0(én) time when with weight ratio
between reversals and non-reversal CCLP operations is 1:2, where & is

the number of CCLP operations needed to transform 7 into 1. Moreover,

|E|-n.(In™1)

the weight of the optimal solution is that can be calculated in

0(n) time in advance.

Proof. As discussed previously, Algerithm 1 transforms m into I with a

minimum weighted sequence of §:CCLP operations, whose total weight

. |[El=nc(n™h) : .
Is ————— that can be calculated in O(n) time. Below, we analyze the

time-complexity of Algorithm 1.7Basically, steps 1 and 2 can be done in
0(n) time. There are § iterationsto perform in step 3. For each iteration
of step 3, it takes O(n) time to find (x,y) and (x,y") by determining
every pair of adjacent elements in all the cycles of Iz~ and I7~1p,
respectively, and a constant time to perform other operations in step 3.1,
and also takes O(n) time to perform step 3.2. Therefore, the total cost of
step 3 is O(én). Step 4 is executed in constant time. Totally, the
time-complexity of Algorithm 1 is O(én). |

It should be noted that although the algorithm we presented above
takes the circular chromosomes as the instances, it still works for the
linear chromosomes because it can be shown that the problem of sorting

by CCLP operations is equivalent for circular and linear chromosomes
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based on a property, that is, a CCLP operation acting on a gene, say u, on
a circular chromosome has an equivalent one that does not act on u (see

Figure 4-1 for an example).

leversal ' reversal

5 2 equivalence s, 1

Figure 4-1. A CCLP operation acting on genes -1 and -5 on a circular

chromosome has an equivalent one acting on genes 2, 3 and 4.
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Chapter 4

Conclusion

In this thesis, we have introduced and studied the sorting problem by
CCLP operations, where CCLP is a cut-circularize-linearize-and-paste
operation that can model several known and unknown rearrangements. In
addition, we have proposed an Q(én) time algorithm for solving the
weighted sorting problem by CCLP oeperations when the weight ratio
between reversals and non-reversal CCLP operations is 1:2, where n is the
number of genes and § is the ‘number-of needed CLLP operations. As
described in this thesis, this algorithm is very simple so that it can be
easily implemented using data structure of 1-dimensional arrays and
useful in the studies of phylogenetic tree reconstruction and human
immune response to tumors. As a future work, it would be interesting to
design efficient algorithms for solving the problem of sorting by CCLP

operations when all the CCLP operations are weighted equally.
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