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The graph copy function when restricted to the set of trees or of rooted trees is called the tree 
copy function or the rooted tree copy function, respectively. We show that both the set of tree 
copy functions and the set of rooted tree copy functions are strongly linearly independent. We 
also show that the set of all tree copy functions are algebraically independent but the set of all 
rooted tree copy functions are not. An algebraic base for the algebra generated by rooted tree 
copy functions is constructed in this paper. 

1. Definition and introduction - 

For any graph H, the function cH from the set of all graphs % into R is defined 
by setting CH(G)=I{W~ V(G): lGlw=H}I f or every G E 9. In 1932, Whitney [4] 
proved that the functions cH, H connected, are algebraically independent. From 
that time on, mathematicians have tried to get similar results by weakening the 
domain or by working with other graph functions. (See [ 1,2, 31.) In this paper, we 
restrict our discussion to the sets of trees and rooted trees. 

A tree is defined to be a connected graph without cycles and with at least one 
edge. T denotes the family of all trees. For a fixed tree T, c!, is defined to by 
c+= cTls, the restriction of c, to the set of all trees. We say that c$,, c$->, . . . , c$” 
are linearly independent if CFE1 dic$,(T) = 0 for all T E T implies di = 0 for every i ; 
G-,, c$g * . . 9 C$” are strongly linearly independent if CFE1 d&,(T) = do for all TE T 
implies di = 0 for every i; and c;,, ck2, . . . , ct are algebraically independent if for 
any polynomial P in n variables such that p(c$,, c$~,, . . . , &J(T) = 0 for all TE T 
implies p = 0. If B E (~$1 T E T}, we say B is linearly (strongly linearly, algebrui- 
c&y, respectively) independent if any finite elements in B are linearly (strongly 
linearly, algebraically, respectively) independent. If B is not linearly (strongly 
linearly, algebraically, respectively) independent, then we say that B is linearly 
(strongly linearly, algebraically, respectively) dependent It is easy to see that 
algebraic independence implies strongly linear independence which in turn implies 
linear independence. But the converses need not be true. 

2. Dependence of tree copy functions 

Given a tree T, a vertex x is called a brink point if J{y ) deg,(y) = 1, x is adjacent 
to y}l = deg,(x) - 1. Let Br(T) = { x x is a brink point in T} and call Br(T) the 1 
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brink set of T. Note that Br(T) = 0 if and only if T = S, for some m. We define 
the brink degree of T, deg Br(T), to be max{deg,(x) - 11 x E Br(T)} if Br(T) # !I 
and deg Br(T) to be zero if Br(T) = 8. For those T with Br(T) # pI, we pick a fixed 
point x E Br(T) with deg,(x) = deg Br(T) and for those T with Br(T) = 0, we pick 
a fixed point x E V(T) such that deg,(x) = m where T= S,. We call this point a 
cliff point of T. 

Lemma 2.1. Let B ={T,, T,, . . . , T,} be a finite set of distinct trees. Then there 
exists a tree T, in B such that for any E > 0 and K> 0, there exists a tree 
T’ = T’(E, K) satisfying c$JT’)> K and c’,,(T’) < ec$lT’) for all q # T,. 

Proof. Consider C={Ti 1 Br(T,)=P)} a subset of B. If C#@, say C= 
{T,, Thy * * * 9 q,}, where T+ = S,, then take T, to be the tree in C with the largest 
m,. Let B(m) be S,,,. We have c$,(B(m)) = (3 if q E C and c$(B(m)) = 0 if Ti$ C. 
By choosing m sufficiently large, we have c$,(B(m))> K and c$,(B(m))< 
ec;,(B(m)) for Ti # T,. 

If C = @, take D to the subset of trees in B with the largest brink degree and 
take T, to be a tree in D with the least number of edges. Construct B(m) by 
adding m - deg Br(T,) pendant edges to the cliff point of T,. For those tree Ti not 
in D, c$,(B(m)) = Pi(m) where Pi is a polynomial with degree at most deg Br(Ti) 
with degBr(T,><degBr(T,), and c$,(B(m)) =Ps(m), where P, is a polynomial 
with degree degBr(T,). However, for those trees Tj in D and Tj# T,, we have 
c$,(B(m)) = 0. Therefore we can choose sufficiently large m such that c$,(B(m))> 
K and c$(B(m))< ec$,(B(m)) for q# T,. Cl 

Lemma 2.2. The set of all tree copy functions is strongly linearly independent and 
hence it is linearly independent. 

Proof. If it is not strongly linearly independent, we can find T1, T,, . . . , T, such 
that there exist do, d,, . . . , d, with di# 0 for j# 0 which satisfy cyEI &c;,(T) = do 
for all TE 5. By Lemma 2.1, we can find T, such that for O<E < 
min{(d,(l((di( n) 1 jfs} and K> n ld,,/dsl, there exists a tree T’ which satisfies 
c$,(T’)>K and c$@‘)<~c$,(T’) for Ti# T,. Since CyzI dic$(T’) = do, we have 
d,c~~T’)=d,-Cizo.,dic~,(T’). Therefore 

G-,0-‘) c; U-7 <-+(n-l)- 
n n 

= c$,(T’). 

We get a contradiction. Therefore the set of all tree copy functions is strongly 
linearly independent. q 
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Definition. A tree T is accessible from T1, T2, . . . , T, if 
(1) there exist subtrees AO, A,, . . . , A,, of T such that Ti = Ai for is 1, 
(2) all the pendant of A, is identified with some node of Ai, is 1 and 
(3) the subtree of T generated by AO, A,, . . . , A, is T itself. 

Let A(Ti, Ta, . . . , T,,) denote the set of all trees accessible from 
T,, Tz, . . . , T,,; and for TEA(T,, T2,. . . , T,,), we let +r,.TZ ,._., ,(T) be the number 
of all possible ways to select A,, A,, . . . , A,, such that 

(1) Ti~Ai for isl; 
(2) all pendant of A0 is identified with some node of Ai where i 3 1; 
(3) the subtree of T generated by AO, Al,. . . , A,, is T itself; and 
(4) A, is minimum with the properties (l), (2) and (3). 

Lemma 2.3. 

T=A(T,.T, . . . . . T.) 

Proof. For any BE 3, we have c$,c$~. . . c%“(B)= [{(A,, A,, . . . , A,) 1 Ai is a 
subtree of B and Ai ~1 Ti for all i}\. 

For each (A,, Al, . . . , A,,) with Ai a subtree of B and Ai s Ti for all i, let T be 
a minimum subtree of B containing Ai for all i. Then TE A(T,, T2, . . . , T,). By 
summing over all T E A(T1, T2, . . . , T,,), we have 

c:,c&. . . C%“(B) = C JIT,.T~ ._._. T~(‘OCG@)- •I 
TeA(T,.T, . . . . . Tn) 

Example 1. Let T1 = T2z Pi. Then A(T,, T2) = A(2PJ = {Pi 1 i 3 l}, where Pi is 
the path graph of length i. Therefore we have cz, = c& + 2 CTZZ cb,. 

Theorem 2.1. (~$1 TE F} is algebraically independent. 

Proof. If this theorem is not true, there is a polynomial which is zero for all 
trees but not identically zero. Let P be such a polynomial containing q variables 
c;,, c;*, . . ’ , Go where Ti are arranged in descending order on the number of 
edges. Then P can be written as 

where ap=l (Yi.j, ai. (Yi.2, . . . , ’ cYi.9) 1s greater than a?=1 arsj, akl, alsZ, . . . , q,,) lex- 
&graphically if and only if i < k. By Lemma 2.3 P can be written as 

=i c ai+a,,T,.qzT2 ,.... ,aTq(T)c!, 
i=l TEA(~,.TI.~.zTz . . . . . PC-T.) 

=c aT& 
TEA 

(*I 
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where T E A if and only if 

i c &J/qlTl,Pt.zT2 . . . . . pl..Tq(T) 
i=l TEA(P~,T,.P~.~T~.....~~T~) 

is not zero. 
The cardinality of A can be zero, a positive integer or infinite. First, we claim 

that IAl #O. Consider the first term of P, alc$‘yc~21.2- . . C%I.Q. Let k = 
max{d(Ti) 1 i = 1,2, . . . , q}, where d(T) is the length of the longest path in T. 
Form a tree B as follows: For each of the m given Pk where m = Cy=r ~lr,~, pick up 
an endpoint and identity all these m points to get a star like graph, Pmk. We 
identify each cliff point of trees in almIT1, alm2T2, . . . , almqTq with one and only 
one pendant vertex of P,,,k. B is the resultant graph. It is easy to check that B is 
an element of A(cx,.,T,, OL~.~T~, . . . ,a l,qTq) but not of A(ai.17’1, ai,2T2, 
. . .) ai,qTq) where i32. Therefore the term a,cb cannot be cancelled out in (*). 
Hence (Al # 0. Second, we assume that IAl is a positive integer. Then we have 
0 = P(c;,, +, . . . , c;,) = Ifinite a,& which contradicts Lemma 2.2. Finally, as- 
sume that IAl is infinite. Choose B in A with the least number of edges. We have 
c TEA a-+$(B) = a,cb(B) # 0, a contradiction. From the discussions above, we 
conclude that (c; 1 TE 3} is algebraically independent. Cl 

Remark. We must exclude K, as a tree for otherwise we have ck,-c;(2= 1. 

3. Dependence of rooted tree copy functions 

A tree with one point, its root, distinguished from the other points is called a 
rooted tree. Let T, be a rooted tree with root x1, and T2 be a rooted tree with 
root yl. c?;,(TJ is the number of rooted subtrees in T2 which is isomorphic to T1. 
Let T,, T2 be the rooted trees in Fig. 1, with roots xi, yr, respectively. Then 
c+,(TJ = 1. Note that the subtree generated by y2, ys is not a rooted subtree of 
7-2. 

The term of linearly (strongly linearly, algebraically) dependence for rooted 
tree copy function is similarly defined to that for tree copy function. In this section 
we are going to discuss the dependence of rooted tree copy functions. Our result 

Fig. 1. 
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is that they are strongly linearly independent but not algebraically independent 
but not algebraically independent. One trivial example is 

Since every rooted tree T is planar, we can map it on the plane in such a way 
that the root x of T is always at bottom and those vertices with equal distance to 
the root x are on the same level. The height of a rooted tree is the maximum 
distance from the root x to any particular point. Therefore for every rooted tree 
T, we can associate with it at least one pictured-tree on paper, say PF We may 
represent p-r by a unique sentence, the first word of which reflects the number of 
branches P1- has, and the (i + 1)th word reflects the number of sub-branches for 
that of the ith step, recorded from left to right. We denote the ith word by 
Wi(P-,-); the jth digit in Wi(P,) by d{(PT). The sentence representing P, is called a 
representation of T. 

Example 2. 

It is easy to see that xi di = the number of digits in Wi+l and Ciaj di = the number 
of edges in T. Since every rooted tree T may have many PT’s associated with it, 
the representation of T is not uniquely defined. To avoid this complexity, we may 
define the principal representation, PR(T), of T to be the largest representations 
for T. Then PR(T) is the representation for the most left-tilted pictured-tree PT 
which T may form. In the following discussions, the representation of T refers to 
the principal representation of T; and the order refers to the lexicographical 
order. We have the following lemma whose proof is similar to that of the strongly 
linear independence for tree copy functions. 

Lemma 3.1. Let BO = {T,, T2, . . . , T,} be a family of distinct rooted trees. Then there 
exists a rooted tree in B,, say T,, such that for any E > 0 and K> 0, there exists a 
rooted tree T which satisfies c+,(T)>K and c+,(T)~ec~,(T) for every Ti# T,. 

Proof. We need an algorithm to find T, and to construct T. We define a sequence 
of sets by BL = {TE Biel 1 Wi(T) is the least with respect to the lexicographic 
order}. After finite steps, we have an OL such that B, contains only one element, 
say Tk. In fact, Tk is the least element in B,,. Let (Y be the first index such that 
B, = {T,..}. If the height of Tk is greater than OL, take T, to be Tk. Let dj be the hrst 
nonzero digit of the last word in PR(T,). Construct T(m) to be the rooted tree 
whose representation differs from that of T, by changing d{ to m. If the height of 
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Tk equals CY, consider A = {TE B,-, 1 height of T is a}. Since A# 8, we can 
choose T, to be the largest element in A. Let i(1) < i(2) < * * * < i(p) be the indices 
such that dL”,O“# 0. Construct T(m) to be the rooted tree whose representation 
differs from that of T, by a replacement of dLG,O” by m(p- i+ l), where m(1) = m, 
m (i + 1) = 2m(i). Now we can show that T(m) and T, satisfy our requirement for 
large m. For the 6rst case, that is, the height of Tk is greater than a, we have 
c:,((T(m)) = 0 for all i # s. Therefore a sufhciently large m may be chosen to do 
the job. For the second case, that is, the height of Tk equals a, we have 
c+,(T(m)) = 0 for those rooted trees not in A ; and 

c;,(T(m)) = (a, +0(l)) fi ( m$,&l)) P 
j=l a s 

where a, is a positive constant. For those rooted trees Ti in A with Ti# T,, 
c$,(T(m)) is at most 

(Ui +0(l)) fj, ( m$bT(!~y)l)) 3 
i=l Lx L 

where ai is a positive constant. Since W,(Ti)< W,(T,), we can choose a sufh- 
ciently large m such that c+,(T(m))>K and c+,(T(m))<ac=,(T(m)). Cl 

Theorem 3.1. {c; 1 T is a rooted free} is strongly linearly independent. 

Proof. Similar to the proof of Lemma 2.2. Cl 

As we mentioned above, {CT ) T is a rooted tree} is algebraically dependent. We 
would like to find an algebraic base for it. For this purpose, we consider the set of 
stem trees. 

A rooted tree T with root x is called a stem tree if deg,(x) = 1. Given an 
arbitrary rooted tree T, we can decompose it into branches of stem trees 
8, B*, . . ., B,. Then we write T=B,@B,C3~ * -@B,. We let iT denote 
T@T@- . *CDT (i times); and ST= {T) T is a stem tree}. (See Fig. 2). 

Fig. 2. T, and T, are both stem trees but TX is not. Moreover T3 = T,@2T,. 
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Lemma 3.2. {c~ 1 TEST} is algebraically independent. 

Proof. We follow Whitney’s idea. If the assertion is not true, there is a non-zero 
polynomial which is zero for all graphs. Let P be such a polynomial containing the 
least possible number, say q(>O), of variables. Let us call the variables 
c;,, cg, . . . ) c$ where TI is one of the stem trees with the least number of vertices 
among {Ti}q=r. Arrange the polynomial in descending power of CT and assume 
that it is of degree OL in this variable: 

P(C&,, C$;, . . . ) C$) = P,(c& . . . , c;Jc;~ +Iqc1;2, . . . ) c;Jc;~-’ 

+* * *+P,(c;z,. . .) CqJ (P()#O). 

Take any rooted tree B, and form B,, B,, . . . , B, by letting Bi = B, 6l3 iT, for 
i = 1,2, . . . , (Y. We get C9,(Bi)=C~,(Bi-,+ 1 and C~~(Bi)=C~,(Bi-1) for i = 
1,2 ,..., a,2SjS q. P vanishes for these CY + 1 distinct values of c:, and the 
coefficients PO, P,, . . . , P, are constants for these rooted trees. They vanish, in 
particular, for the rooted tree BO. Since B, is arbitrary, we get P,(cT*, . . . , c1;4) = 0 
for all rooted trees, which contradict the choice of P. Therefore {c: 1 TEST} is 
algebraically independent. [I 

Our goal is to prove that {cq 1 TEST} is actually an algebraic base for the 
algebra generated by {cg 1 T is a rooted tree}. All we need is to prove that for any 
given rooted tree T, c’; can be expressed algebraically by elements of {cI; I TEST}. 

Let T,, T2, . . . , T,, be stem trees. We say a stem tree T is constructible by 
T1, Tz, . . . , T, if there exist rooted subtrees AI, AZ,. . . , A,, of T such that 
Ti =Ai for every i and the rooted subtree of T generated by the union of 
AI, AZ, . . . , A,, is T itself. Let I(T,, T,, . . . , T,,) denote the set of all constructible 
stem trees of T,, T2,. . . , T,; and for TEI(T~, T2, . . . , T,), let ?&r,.Tz ,,,., ,(‘I’) be 
the number of all possible ways to select rooted subtrees AI, AZ, . . . , A,, of T 
such that Ti =Ai for every i and their union generates T. 

For simplicity, we work on 2-branch rooted trees. 

Lemma 3.3. Let T= T,@T,, where T1, Tz are stem trees. Then c$ can be 
algebraically expressed in terms of c:,, cz and those c$ with T”E I(T,, Tz). To be 
more precise, 

kc;= c;,clf;- c !I’~,.,(T”)c;,,, 
T’EI(T,.Td 

where k = 1 if TI # T2 and k = 2 otherwise. 

Proof. For any n-branch rooted tree T’ with branches B,, BZ, . . . , B,, we have 
kcT(T’) = I{(A, B) I A, B are rooted subtrees of T’ such that A = T, and B = T2; 
A, B are not in the same branch}1 and cl;;cGz(T’) = [{(A, B) I A, B are rooted 
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subtrees of T’ such that A = T,, I3 = T& Thus 

<cl;,c;* - kc;)(T’) 

= I-W, B) 1 A B are in the same branch of T’ and A = T1, B = T2)1 

= 2 ]{(A, B) 1 A = T1, B = T2, A, B both in Bi}J. 
i=l 

For T” EI(T~, TJ, we get 

c ~T,Z (T”)c$(T’) = f 1 ‘P~,.,(T”)C!$(Bi). 
-rEI(T,.T*) i = 1 T”EI(T,.T,) 

For each Bi, we define an equivalence relation ‘-i’ on the set {(A, B) 1 A = T1, 
B = T2, A, B in Bi}: (A, B) -i (A’, B’) if the union of A and B is equal to the 
union of A’ and B’. Consider the equivalent class of -i) we get 

<c;,cg2- kcq)(Bi) = C IyT,,T2(T”)C~,(Bi). 
7-‘d(T,.T,) 

Summing over all i, we have 

(c;,c;>- kc;)(T’) = c ?PjT,.TJT”)cXT’). •I 
T”d(T,.T,) 

Corollary. Let T = T,@ Tz@. * *@T,,, where each Ti is a stem tree. Then 

kc”cc” c” . . . 
T .-f-l Tz 4” + 1 c;,c;; * * * c;; 

finite 

where Tf is a stem tree and k depend on the repetition type of Tr, T2, . . . , T,. 

Combining Lemma 3.2 and the above corollary, we have the following 
theorem. 

Theorem 3.2. {c;j TEST} is a base for the algebra generated by {CT/ T is a rooted 
tree}. 
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