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Chapter 1 Introduction 

 

The studies on laser beams and resonators are interesting subjects in laser 

physics [1].  For conventional applications, one prefers to operate the laser with 

stable continuous-wave or periodic pulsing while sometimes one may use a chaotic 

laser source, for example, in chaotic communications.  The problems such as 

spontaneous irregular pulsing, unstable mode patterns, etc., coming from intrinsic 

nonlinearities of the lasers are the topics of laser dynamics [2].  This field has 

experienced a flourishing development since late 1970s.  Today laser physics still 

permits questions of nonlinear dynamics to be explored. 

 

1.1  Development of laser dynamics 

Almost as early as the invention of lasers, the irregular burst of short pulses was 

observed in a multimode ruby-maser system [3].  From then on, researchers 

proposed various models to describe the laser instabilities [4,5].  For example, Fleck 

and Kidder [6] derived a coupled-mode model from the Maxwell-Bloch equations and 

concluded that a moderate spatial pumping inhomogeneity could lead to coupling of 

two transverse modes, which gives rise to undamped spiking behavior.  This field 

did not become popular until 1975 when Haken constructed the most famous 

paradigmatic model [7].  He demonstrated that the Maxwell-Bloch equations for a 

single mode laser are equivalent to those of the Lorenz model for fluids.  This work 

is regarded as the cornerstone in laser dynamics.  The instability of single mode laser 

exhibits chaotic emission under the “bad cavity” condition when the pump power is 

larger than nine times of the lasing threshold.  In spite of difficulty, Weiss and Brock 

[8] experimentally observed this kind of instability by using a far infrared NH3 laser. 

For an inhomogeneously broadened laser, Casperson [9] demonstrated the 
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occurrence of transition from cw to pulsed operation.  Abraham et al. [10] made 

further theoretical efforts for a global view of the inhomogeneous broadened laser.  

These instabilities with low second threshold were confirmed in a high-gain He-Xe 

laser [11].  Three routes to chaos including period doubling, two frequency, and 

intermittency scenarios [12] were observed. 

The model for multimode instability was proposed by Risken and Nummedal 

[13], and individually by Graham and Haken [14], therefore it is known as RNGH 

instability.  Strict experiment of RNGH instability was not realized until 1997 by 

using a fiber laser [15].  Another approach for modeling the multimode instability 

was built by Tang et al. who constructed the Tang-Statz-deMars (TSD) equations [4].  

On the basis of TSD equations, K. Otsuka have studied antiphase dynamics of a 

LiNdP4O12 laser system [16]. 

On the other hand, it has been demonstrated that the transverse effects play 

important roles in laser dynamics [17].  Transverse instabilities were explored 

extensively by Lugiato et al. [18-23].  Under both of the uniform-field and the 

good-cavity limits, they expressed the Maxwell-Bloch equations through suitable 

empty-cavity-mode expansion because the Laguerre-Gaussian modes are a set of 

sensitive basis [24].  Because of the competition of transverse modes, a variety of 

spatiotemporal instabilities [21,22] were reported.  Many efforts have been devoted 

to mode selection or phase control to obtain predictable behaviors [25].  Hollinger 

and coworkers [26] used Kirchhoff-Fresnel diffraction integral together with the rate 

equations to model single longitudinal multitransverse-mode lasers.  They also 

obtained chaotic emission at specific cavities.  Recently the nonlinear laser dynamics 

are extensively studied. 

 

1.2  Previous research 
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1.2.1 Transverse mode formation 

It is accepted that the eigenmodes for an open stable optical cavity form an 

orthogonal complete set, which means that the electric field of an arbitrary optical 

beam can be decomposed into the linear combination of either the Hermite-Gaussaian 

modes or the Laguerre-Gaussian modes [1].  In a multimode case the output intensity 

undergoes oscillation caused by the interference among the competing modes.  In 

other words, the simultaneous occurrence of transverse modes, typically, is believed 

to imply emergency of beating effect.  However, there is a stationary complex spatial 

structure that corresponds to nonlinear coupling of the multimodes, in which the 

coexisting modes “cooperatively” select a common frequency via the mode pulling 

effect and enter a regime of synchronous oscillation.  Such a phenomenon was 

termed cooperative frequency locking (CFL) by Lugiato and collaborators [18,19].  

The absence of transverse mode beating produces a stationary output pattern instead 

of the more familiar beating. 

The extended Maxwell-Bloch equations in Ref. [21] for a ring laser are written 

as 
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where F is the slowly varying envelope amplitude of the electric field that is related to 

the Maxwell field by 
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P is the slowly varying envelope of the atomic polarization, and D is the population 

difference.  η and ρ are the scaled longitudinal and transversal coordinates, 
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respectively.  τ = γ⊥t is the scaled time variable, ν = c/Λγ⊥, γ⊥ is the transverse 

relaxation rate, α is the unsaturated gain parameter of the field per unit length, Λ is the 

cavity length, δΩ is the frequency offset in unit of γ⊥ between the operating laser 

frequency and the empty-cavity resonance wo, ∆ is the difference between (wA-wo)/γ⊥ 

and δΩ, wA is the atomic transition frequency, γ = ≈γ /γ⊥, ≈γ is the population 

relaxation rate, χ is the pump profile, µ is the modulus of the atomic transition dipole 

moment.  In the condition of the single longitudinal mode operation with uniform 

field limit [19] and the empty-cavity-mode expansion, i.e., 
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, Eq. (1.1) can be transformed, according to Refs. [19] 

and [21], to 
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Significant mode mixing and considerable distortion of the transverse intensity 

profiles were obtained from solving the steady-state solution of Eq. (1.3) with 

uniformly radial-pump profile.  This stationary solution, however, has a common 

frequency due to strong mode-mode coupling so this phenomenon was termed as 

cooperative frequency locking.  The analytical and numerical studies show that CFL 

occurs under good cavity limit (κ << γº, γ⊥) for Laguerre-Gaussian basis [18] and for 

trigonometric basis [19] when the neighboring transverse mode spacing is small, 

where κ is the cavity decay rate. 
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1.2.2 Numerical approaches in laser dynamics 

The “Recirculating Pulse” approach [1] such as the “Fox and Li” approach [27] 

is usually used to elucidate the physical picture of radiation, which repeatedly 

circulates around the cavity that contains a thin slab gain medium.  The transverse 

mode profile can be calculated based on the central laser wavelength because the 

diffraction effect experienced by transverse modes will be essentially the same for 

those any one of the axial mode frequencies within the oscillation bandwidth.  In the 

numerical procedure for an empty cavity, an arbitrary initial field will eventually 

converge to a state; that is the mode profile reproduces itself after one round trip.  

However, as the gain of the active medium is considered, the field may evolve 

automatically to a dynamical state.  In our work, we use this approach to study 

dynamics of an end-pumped solid-state laser by using the diffraction integral together 

with the rate equations. 

The second approach usually used in laser dynamics is the optical 

Maxwell-Bloch equations as described in Eq. (1.1) when the diffraction effect due to 

finite section of the field, the transverse gain variation, and the wave-front curvature 

caused by the spherical mirrors [19-21] were included.  To be easily used in 

simulation, the electric field, atomic polarization, and the population inversion were 

expanded with the empty cavity modes and then the equations can be represented as 

the modal equations as in Eq. (1.3).  The third approach is the iterative map stated 

below. 

 

1.2.3 Iterative map 

The iterative map is another widely used method to study the nonlinear 

dynamics.  The study of a continuous system can be reduced to a discrete time 

system on a surface of section transverse to the flow.  If the time period is taken as 
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the round-trip time of the laser cavity, the iterative map can be constructed.  

Consider a two dimensional iterative map 

⎩
⎨
⎧

=
=

+

+

),,(
),,(

21

11

nnn

nnn

vufv
vufu

                                              (1.4) 

where (un, vn) = xn are the dynamical variables for the n-th iterations and (f1, f2) = F 

represents a set of difference equations.  A fixed point x0 is therefore a stationary 

solution that satisfies F(x0) = x0.  If there exists the smallest positive integer p such 

that F(p)(x0) = x0, where F(p)(x0) = F(F(…F(x0)…)), then x0 is said a fixed point of 

period-p and the orbit is a periodic orbit with period p.  The stability of a fixed point 

can be determined by the linear stability analysis.  If the system is perturbed from the 

fixed point and the perturbation does not be amplified, then the fixed point is stable; 

otherwise, it is unstable. 

Applying the ABCD law in a two mirror cavity with the reference plane at one 

of the mirrors [28], the q-parameter ( 2//1/1 wiRq πλ−= ) of the Gaussian beam of 

the (n+1)-th round trip to the n-th one can be written as 
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where w is the spot size and R is the radius of curvature.  This map belongs to the 

conservative one because the resonator is lossless.  The stability condition )( pJTr < 

2 depends only on the trace Tr(Jp) with the Jocobian matrix Jp evaluated at the studied 

fixed point.  The stability condition depends on the residue that defined as [29] 

( ) )2/(sin)(2
4
1Re 2 θ=−= pJTrs , where θ is the phase shift per iteration of the map.  

For 0 < Res < 1, the system is stable that corresponds to the conventional geometric 

stable regime 0 < g1g2 < 1, where g1,2 = (1-d/R1,2) of the two-mirror cavity is the 
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so-called g-parameter of the optical cavity.  For Res < 0 and Res >1, the system is 

unstable.  By applying the Greene’s residue theorem, Wei et al. [30] indicated that 

the special case of Res = 0, 1, 3/4, 1/2 correspond to the low order resonance that 

correspond to the cavity configuration with specific g1g2 parameter.  For a simple 

two mirror cavity, Res = 1-(2g1g2 -1)2 = 0 (critical stable) corresponds to g1g2 = 0 and 

1; Res = 1 (critical stable) to g1g2 = 1/2; Res = 3/4 to g1g2 = 1/4 and 3/4; and Res = 1/2 

to 
4

22
21

±
=gg , respectively. 

The dynamical behavior can be realized from constructing the iterative map of 

Eq. (1.5).  Figure 1.1(a) is a period-2 evolution that shows the spot size flip-flops at 

two values for the case of g1g2 = 1/2.  When a Gaussian aperture was added in the 

cavity, the spot size evolves to a convergent value as shown in Fig. 1.1(b).  A 

quasi-periodic evolution of the two-dimensional map was drawn in the phase space of 

(1/R, w) in Fig. 1.2(a) for g1g2 = 0.9.  The evolution of spot size shown in Fig. 1.2(b) 

exhibits some oscillating braches and converges to a value when a loss component 

was added [Fig. 1.2(c)]. 

The aforementioned dynamics depending on the cavity configuration has been 

studied in a Kerr-lens mode locked (KLM) Ti-sapphire laser [30].  When the optical 

Kerr effect was considered as the nonlinear dynamical parameter, optical bistability 

and multiple-period bifurcation were numerically demonstrated.  From the guidance, 

some peculiar phenomena were found by using an end-pumped Nd-YVO4 laser under 

small-size pumping near g1g2 = 1/4: (1) Low lasing threshold and a power dip [31] 

occurred (see Fig. 1.3) nearly at the degeneracy of g1g2 = 1/4; (2) When an aperture 

was added in the cavity, a power peak instead of dip was at the degeneracy (see Fig. 

1.4); (3) The beam waist shrinks abruptly near degeneracy; (4) The beam profile in 

the far field has many concentric rings (see Fig. 1.5).  In particular, the beam could 



 8

exhibit three beam waists when it was propagated through a transform lens [32]. 

 

1.3  Aim of this research: 

Since the gain saturation is the inherent nonlinear effect in lasers, the 

configuration-dependent dynamics near the low-order resonances may exhibit some 

important behaviors.  In this research we numerically investigate the nonlinear 

dynamics of a simple plano-concave end-pumped Nd-YVO4 laser near the degenerate 

resonator configurations by using Collin’s integral together with the rate equations.  

Because the excited transverse modes would be different by controlling the pump size 

or the gain volume of the active medium, our studies were divided into two parts: the 

pump size wp is larger than and is less than the fundamental Gaussian beam waist wc.  

We found that these two cases exhibit very different dynamical behaviors as we 

anticipated. 

For the case of wp > wc, we found the propagation-dominant instabilities and 

chaos under high-Q cavity condition near g1g2 = 1/4 that had not numerically studied 

before.  We call it “propagation dominant” because the laser behaves as a 

conservative system governed by the beam propagation.  We also obtained a 

V-shaped configuration-dependent quasi-periodic threshold.  Although chaos were 

previously predicted impossible under nearly degenerate configurations, we have 

recognized that the laser is transformed into chaos as a result of the interplay of beam 

propagation and gain dynamics as the cavity is tuned close to degeneracy. 

For the case of wp < wc, we found there are the stationary modes that show an 

additional beam waist besides the well-known waist on the flat mirror end near g1g2 = 

1/4 and 3/4.  The numerical results show good agreement with the previous 

experimental observations that the specific modes were capable of exhibiting multiple 

beam waists when they were propagated through a transform lens.  The numerical 
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results give deep insight and lead to the other experimental observations near g1g2 = 

3/4.  In addition, by simultaneously considering the wavelike and the raylike 

character of the multibeam-waist mode, we found that it can be represented as a 

superposition of N consecutive round-trip electric fields of period-N solution in the 

degenerate empty cavity, where N = 2 for g1g2 = 1/2 and N = 3 for g1g2 = 1/4, 3/4. 

Furthermore, we found that the laser instability occurs in a very narrow range of 

cavity tuning on each side of the point of degeneration, which shows periodic, 

period-doubling, and chaotic time evolutions as wp < wc.  We determined both 

experimentally and numerically the unstable regions and clarify the origin of the 

instabilities.  The temporal instabilities in the short-cavity side comes from the 

interaction among the transverse modes that constitute a supermode; while the 

long-cavity instabilities are spatiotemporal, which result from the nonlinear coupling 

between the supermode and the other Laguerre-Gaussian modes.  These observed 

instabilities are new and, as far as we know, this is the first time to discuss the 

relationship between the instability and the thermal lens effect. 

In Chapter 2, we focus on the dynamical behaviors induced by the wide pump 

(wp > wc) and compare our work with previous research.  In Chapter 3, we study the 

multibeam-waist modes as wp < wc.  In Chapter 4, we study the laser instabilities 

near the degeneracy when wp < wc.  Finally, in Chapter 5 we state the conclusions 

and then give suggestions for future work. 
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Fig. 1.1.  Evolution of spot size as g1g2 = 1/2 with initial values (1/R0,w0) = (0,1.5) 

for conservative system (a) and for a Gaussian aperture inside (b). 
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Fig. 1.2.  Evolution of iterative map for g1g2 = 0.9 with initial values (1/R0,w0) = 
(0,1.5) in phase space (a), the diamond marks with 0-7 represent the first 7 iterations;  
(b) the evolution of spot size for the same map as (a);  (c) the evolution of spot size 
for a Gaussian aperture. 
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Fig. 1.3.  Total output power of the laser as a function of cavity length measured 
with different pumping power. 
 

-10
0

10
20
30

40
50
60
70
80

59 61 63 65
Cavity Length (mm)

Po
w

er
 (m

W
)

400 mW

355 mW

308 mW

262 mW

215 mW

170 mW

123 mW

76 mW
30 mW



 16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.4.  Average output power of a diode-pumped Nd:YVO4 laser as a function of 
cavity length. Curve (a) measured without an aperture, curve (b) with an aperture, and 
curve (c) the difference between them. 
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Fig. 1.5.  Beam profile of the laser with different resonator configurations.  
Photographs shown in the upper and lower rows refer to near-field and far-field 
patterns, respectively.  (a) and (e) away from, (b) and (c) near the degeneration point, 
and (d) in the power bump region. 
 


