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Chapter 2 Instabilities induced by wide pumping 

 

From the analysis of the iterative map described in Section 1.2.3, we suspected 

that the dynamical behaviors are cavity-configuration-dependent near some specific 

resonators.  These specific configurations with g1g2 parameters equal to 1/2, 1/4, 3/4 

correspond to the 1/4, 1/3, 1/6-transverse-mode degeneracies [1], respectively.  

However, the previous research on the dynamics near the degeneracies showed some 

conflictive results.  Melnikov et al. [2] found that the laser has continuously smooth 

quasi-periodic threshold throughout the geometrical stable region, except that some 

singular points corresponding to the transverse mode degeneracy may become chaotic 

at high-power pumping.  On the contrary, Hollinger et al. [3-5] found that in a laser 

with high-loss cavity and uniform high-power pumping, the laser’s output appears to 

be chaotic at the configurations that have a g1g2 parameter equal to 0.4 but to be only 

quasi-periodic at g1g2 = 0.5.  In the former case, chaotic behavior was considered a 

condition in which the phase shift between the adjacent transverse modes per round 

trip is an irrational multiple of π and does not lie close to any rational number with a 

small denominator.  As in the configuration of g1g2 = 0.5, whose phase shift is a 

rational multiple of π, the laser output behaves quasi-periodically, even with much 

higher pumping.  This result contradicts the conclusion described in Ref. 2 that the 

laser behaves chaotically at the transverse mode degenerate configurations. 

In this chapter, we focus on the configuration-dependent instabilities around 1/4, 

1/3, and 1/6-transverse-mode degenerate configurations and considered only gain 

saturation as the nonlinear effect when the pump size is larger than the waist of the 

cold cavity.  The Collin integral [6] and the rate equations were used to model the 

dynamics of a Gaussian end-pumped solid-state laser.  Under high Gaussian 

pumping at the point of degeneration, the laser output cannot lead to chaotic behavior, 
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unlike the result described by Melnikov et al. [2] but the same as that of Hollinger and 

Jung [3].  However, the chaotic region is close to the degeneration, a result that is 

different from the results of Ref. 3 because the phase shift between the adjacent 

transverse modes in a round trip is close to 2π/3 for the 1/3-degenerate configuration. 

 

2.1 Numerical model 

Consider a plano-concave axially pumped solid-state laser shown in Fig. 2.1.  

The laser contains of a laser crystal with one of its end faces (I) high-reflection coated 

as the flat mirror and a curved mirror with radius of curvature R separated from it by a 

distance L.  Let the reference plane be the place where the light beam just leaves the 

laser crystal in the direction of the curved mirror.  Under cylindrical symmetry, 

propagation of the light field toward the curved mirror and back to the flat mirror 

(end-face I of the crystal) according to the Collin’s integral is [6] 
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.  Here E+
m(r’) and E-

m+1(r) are the 

electric fields of the m-th and the (m+1)-th round trips at the planes immediately after 

and before the gain medium (denoted by the superscripts + and –), where r’ and r are 

the corresponding radial coordinates, λ is the wavelength of laser, and J0 the Bessel 

function of zero order.  In a thin-slab approximation, we can relate the electric fields 

E+
m+1 to E-

m+1 (after and before the gain medium) in the same round trip as 
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where 1-ρ2 is the round-trip energy loss, σ is the stimulated-emission cross section, 

∆N is the population inversion per unit volume, d is the length of the active medium, 

and Π(r/a) is an aperture function that equals 1 for r less than aperture radius a and 
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equals 0 otherwise.  Furthermore, assuming that the evolution of the population 

inversion follows the rate equation of a four-level system, we can write the rate 

equation as 

t
E

E
ttR m
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m
mpmmm ∆∆Ν−∆∆Ν−∆+∆Ν=∆Ν + 2

2

1 γ ,                      (2.3) 

where Rpm is the pumping rate, ∆t is the travel time through the gain medium, Es is the 

saturation parameter, γ is the spontaneous decay rate, and N0 is the total density of the 

active medium.  This method was used to model a single-longitudinal 

multi-transversal high-power solid-state ring laser [3-5] and to analyze the decay rate 

of standing-wave laser cavities in the linear regime [7].  It was found that a 

standing-wave resonator can be approximated by a ring resonator if a thin gain 

medium is placed close to one of the end mirrors [8].  For a continuous Gaussian 

pump profile Rpm = Rp0 exp(-2r2/wp
2 ) with constant pumping beam radius wp 

throughout the active medium (thin slab), the total pumping rate over the entire active 

medium is 

∫ =
V

pppm hPdVR ν/ ,                              (2.4) 

where Pp is the effective pumping power and hνp is the photon energy of the pumping 

laser.  Because we considered only single-longitudinal-mode dynamics, we have 

omitted the dispersion of the active medium, so the gain is assumed to be real.  

Therefore, we have four control parameters: ρ, R, wp and Pp, which play important 

roles in the laser system and are investigated in detail as follows. 

In an ordinary axially pumped solid-state laser, the round trip propagation time is 

many orders of magnitude shorter than the spontaneous decay time, especially in a 

short cavity.  As a result, it would take a large number of iterations to arrive at the 

final state (which may be stable or unstable).  To reduce computation time and 
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because the quasi-periodic bifurcation point is just above the stable continuous-wave 

solution, we used the scaling method [7] to magnify γ by 104 times to determine the 

bifurcation points.  We also checked some important points without scaling that 

showed no promising change in the quasi-periodic threshold.  To reduce the 

influence of the diffraction loss, we slightly varied R of the curved mirror rather than 

changing cavity length L to simulate tuning the laser cavity across the point of 

degeneration. 

The parameters of an axially pumped Nd-YVO4 laser were used: λ = 1.064 µm, 

1/γ = 50 µsec, σ = 25×10-19 cm2, N0 = 1.7×1020 cm-3, d = 1 mm, a refractive index of 

1.96, and L = 6 cm at 808-nm pumping and setting aperture radius a = 1 mm, which is 

large enough for g1g2 = 1/4.  In as much as our results are ascribed mainly to the 

dependence of laser dynamics on configuration as discussed below, we chose the 

cavity parameter product g1g2 = 1-L/R to be 1/2, 1/4 and 3/4 for studying nonlinear 

dynamics.  These configurations correspond to R = 8, 12 and 24 cm, respectively. 

In the numerical simulations, we set the initial values of E and ∆N to zero and 

added to Eq. (2.2) a term that simulates the spontaneous emission whose amplitude is 

given by the spontaneous decay term in Eq. (2.3)  and a phase obtained from a 

random generator.  To implement the Collin integral by the Romberg method, we 

divided 1-mm aperture into 1024 segments. 

 

2.2 Beam-propagation-dominant dynamics 

As expected, when the laser is continuously pumped slightly above the lasing 

threshold it starts with relaxation oscillation and eventually converges to the cw 

steady state.  Because ∆t is 1/30 of the round-trip time Tcav under magnification of γ 

by p times, the actual relaxation oscillation frequency fr is equal to the numerical 
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frequency multiplied by t)/p/(Tcav ∆ .  When one increases the pump power beyond 

a certain level, bifurcation, or instability threshold, the laser output is no longer stable 

but becomes multiperiodic.  Figure 2.2(a) shows the evolution of the laser pumped 

with Gaussian pump radius wp = 330 µm at Pp = 313 mW above the bifurcation 309 

mW at the configuration g1g2 = 1/2 with ρ = 0.95.  Note that cavity beam radius w0 is 

~142 µm and that Ψ, defined as wp/w0, equals 2.32.  The laser begins with the 

relaxation oscillation (~6.08 MHz, corresponding to fr = 333 KHz) followed by a 

short period of metastable output and finally develops into a flip-flopping steady-state 

period-2 solution.  The corresponding field intensity profile, like the spot size on the 

flat-mirror end shown in Fig. 2.2(b), also flip-flops to repeat itself after 2 round trips, 

in contradiction to the regular situation of self-consistentency after only one round trip.  

This result is equivalent to what is obtained from the stability analysis of a 

conservative map involving only Gaussian beam propagation, as in Fig. 4(a) of Ref. 9, 

where the rotation angle in phase space (spanned by spot size w and the curvature 

1/Rg) per round trip equalsπfor g1g2 = 1/2. 

Similarly, both of the transverse-mode-degenerate configurations for the 

1/3-degenerate configuration at g1g2 = 1/4 and the 1/6-degenerate configuration at g1g2 

= 3/4 belong to the third-order resonance and need 3 round trips to repeat themselves 

(or period-3 solutions) in phase space [9].  For the configuration slightly tuned away 

from its corresponding point of degeneration, e.g., at g1g2 = 0.25466 or R = 8.05cm, 

the laser shows non-decaying quasi-periodic oscillation [Fig. 2.3(a) and its inset].  

We can see that the laser emission successively circulates in the resonator to form 

three branches of oscillation with a period of roughly 293 iterations.  This is similar 

to the evolution of spot size in Fig. 1.2(b) of this thesis. 

This period can be determined by 2π/|θ-2π/n|, where θ is the rotation angle in 
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phase space per round trip [9], 2π/n is the closest rational fraction rotation angle in 

phase space, and n=3 in this case.  In Fig. 2.3(b), we plot the evolution of three 

consecutive states 1, 2, and 3, in (w, 1/Rg) space for the quasi-periodic case.  Assume 

that the initial state is state 1 and that it will evolve in sequence and rotate at an angle 

θ per iteration (or per round trip).  If θ/2π is a rational number, the dynamics is 

periodic.  Contrarily, if θ/2π is irrational, the initial state will never repeat itself but 

will precede an angle n(θ-2π/n) (or recede for a negative angle) in phase space after n 

iterations.  As a consequence, an arbitrary initial state will nearly return to itself but 

will precede (or recede) a minimal angle after Tp = 2π/(n|θ-2π/n|) iterations.  We 

therefore define the precession frequency fp as 
pLT

c
2

. 

The power spectrum [see Fig. 2.3(c)] of Fig. 2.3(a) shows that a low-frequency 

peak at 25.6 MHz is fp, which equals to the beat frequency (fb) of the two nearly 

degenerate Laguerre-Gauss modes, LGq,0,0 and LGq-2,3,0.  Although there is a lower 

order LGq-1,1,1 mode that degenerates with the fundamental mode, it will not be 

excited under cylindrical symmetry.  The highest peak at 842 MHz results from 

circulating among those three oscillating branches and returning to the initial branch 

every three round trips (as the longitudinal mode spacing is 2.5 GHz).  This peak is 

accompanied by a sideband owing to beating with 25.6-MHz peak.  We say that the 

laser is beam-propagation dominant because it behaves as a conservative system 

governed by Gaussian beam propagation.  Therefore, when the laser is axially 

pumped a bit above the quasi-periodic threshold about the point of degeneration, the 

laser behaves as if the beam propagation were dominant. 

It is interesting to note that the laser output behaves the same as in a lossless 

optical resonator described by a conservative map.  It seems that the laser will 

become a conservative system, although it does include dissipative elements such as 
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gain and gaussian (pump) aperture.  For low pumping, the Guassian gain profile is a 

weak Gaussian aperture and provides the damping mechanism; however, because 

there is already saturated gain above the instability threshold, the effective radius of 

the aperture increases.  As a result, cavity field propagation dominates the laser 

dynamics and behaves as a conservative system as illustrated in Ref [9]. 

 

2.3 Quasi-periodic threshold 

2.3.1 “Good cavity” 

  Here a “good cavity” means that the cavity loss per round trip is < 10% and 

also that a class-B laser condition [10] rather than a bad-cavity condition that 

produces Lorenz-Haken instability [10].  Plotted in Fig. 2.4(a) is a three-dimensional 

bifurcation diagram that shows quasi-periodic instability threshold P2 at various 

values of Ψ near g1g2=1/4 for ρ = 0.95.  It is obvious that the system has a V-shaped 

quasi-periodic threshold with a local minimum at the point of degeneration over 

1<Ψ ≤ 2.  The farther the cavity is tuned away from the degenerate, the higher the 

quasi-periodic threshold is.  This result confirms our previous prediction [9] that the 

degenerate configuration is unstable under the nonlinear effect.  Moreover, the 

V-shaped threshold is deeper as Ψ is close to 1 and becomes flat for large Ψ.  This 

shows that the quasi-periodic threshold is independent of cavity configuration if a 

uniform pump is used, as reported in Ref. 11.  Similar results can be obtained with 

other degenerate configurations. 

Fixing g1g2=1/4, we plotted the ratio (P2/P1) of quasi-periodic threshold P2 to 

lasing threshold P1 versus Ψ [Fig. 2.4(b)].  The ratio approaches 1 with uniform 

pumping for Ψ approaching infinity, and it increases sharply as Ψ becomes close to 1.  

The result is the same as that derived by Lugiato et al., namely, that instability in 

terms of the threshold ratio favors a cavity operated with large Ψ, where it is easier to 
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excite multitransverse modes to develop spatiotemporal instabilities.  However, as 

the lasing threshold increases monotonically as a function of Ψ, a minimal 

quasi-periodic threshold power of 175 mW occurs at Ψ ≈ 2.3, where P2/P1 ≈ 1.8.  

Furthermore, the lasing threshold is almost independent of g1g2 about the point of 

degeneration asΨ>1; thus the lowest quasi-periodic threshold at the degeneration that 

is due to sensitivity to nonlinear effects is demonstrated in Ref. (9). 

 

2.3.2 High-loss cavities 

We have discussed cavity-configuration-dependent laser dynamics under the 

good-cavity condition with ρ = 0.95.  To examine the influence of cavity loss on 

laser dynamics, we have chosen values of ρ of 0.95, 0.9, 0.8 and 0.7 for Ψ = 1.3.  

From Fig. 2.4(c) we found that the V-shaped threshold behavior disappears as ρ 

decreases to 0.7.  It develops into a monotonically increasing smooth curve with 

respect to g1g2, and the threshold at degeneration is no longer a local minimum.  This 

smooth curve is similar to that described in Ref. 2 for 50% mirror reflection or ρ2 = 

0.5.  As mentioned above, the laser with high mirror reflectivity mimics a 

conservative system and becomes propagation dominant when it is operated in a 

quasi-periodic state.  Thus, the V-shaped quasi-periodic threshold will not be found 

in the research reported in Ref. 2, where a high-loss cavity was considered, nor in Ref. 

12, with uniform pumping.  Note that these curves are asymmetric.  Normally, if 

the aperture radius and the cavity length are both constant, the larger the g1g2 

parameter, the larger the spot size is on the flat mirror, which is also a gain medium.  

Because diffraction loss is minimized by choice of a sufficiently large aperture, in our 

simulation the asymmetry is ascribed mainly to a change in the overlap integral of the 

cavity field with the pumping as g1g2 varies. 
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2.4 Bifurcation diagram 

It is worth noting that when the laser is pumped just above the bifurcation, the 

stripe denoted for quasi-period oscillation in Fig. 2.3(a) has less than a 1% variation.  

Raising the pump power makes the stripe wider.  When the pump power is further 

increased, the laser is operated far away from the linear regime, and its highly 

saturated gain may cause serious instabilities.  Because the instabilities induced by 

higher pumping may depend on the spontaneous decay rate, we magnify γ only 10 

times to investigate the high-pumping condition.  In fact, there are minor differences 

compared with scaling γ by 10 times and 100 times if we simply want to classify the 

types of instability. 

Under a spatially inhomogeneous pump, because of competition between two 

transverse modes a laser can produce chaotic emission [13].  Thus we suspect that it 

might be easier to obtain chaos at a minimal quasi-periodic threshold where Ψ = 2.32.  

Indeed, we tried the pump power up to 7 P1 at Ψ = 2.32, but chaos was not found.  

By using Ψ = 2.78, we can classify many kinds of instabilities shown in Fig. 2.5(a) for 

ρ = 0.95.  For instance, we defined the so-called modulated quasi-periodic state 

shown in Fig. 2.5(b) for R = 8.0075cm and Pp = 400 mW.  Further increasing the 

pump power, we found so-called modulated pulsing and chaos when R = 8.0075 cm as 

shown in Fig. 2.5(c) and 2-5(d) for Pp = 500 and 600 mW, respectively.  In the region 

where R > 8.015 cm, the laser is in the so-called precession oscillation state, showing 

three overlapped sinusoidal-like oscillations, as illustrated in Fig. 2.6(a) for R = 8.05 

cm and Pp = 650 mW.  Its corresponding power spectrum is shown in Fig. 2.6(b).  

We can see that the power spectrum has a precession frequency of 24.75 MHz that is 

close to 25.6 MHz for lower pumping as in Fig. 2.3(c).  The precession oscillation 

appears to be soft in amplitude and hard in frequency, even for Pp as much as 1 Watt.  

The inset in Fig. 2.6(b) is the expansion of high-frequency spectrum.  The main peak 
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at 841.6 MHz again corresponds to one third of the longitudinal mode spacing, and the 

peak at 816 MHz, which has down-shifted ~25 MHz, corresponds to fp.  The 

presence of small peak, located 150±25 KHz beside the main peaks, is ascribed to 

beating with the subharmonics of the relaxation oscillation.  Note that the numerical 

relaxation oscillation frequency is now ~350 kHz. 

We have plotted in Fig. 2.7(a) the frequencies of the spectral peaks as Pp 

increases for R = 8.05 cm.  At low pump, we had only two peaks, separated by fp, 

until Pp = 400 mW, a sideband attributed to frequency beating with relaxation 

oscillation, appears in the high-frequency region.  To show how the spectrum 

develops as Pp increases, we used a filled circle bisected by a short line to mark the 

highest peak in that group of spectral peaks.  We found not only that the precession 

frequency is slightly redshifted but also that the subharmonic of the relaxation 

oscillation appears as increasing Pp; for instance, the frequency spacing of the main 

peak and its side band at Pp = 600 mW is half that at Pp = 500 mW.  Figure 2.7(b) 

shows the bifurcation diagram for R = 8.0075cm, which is closer to the 1/3-degenerate 

configuration.  As Pp = 350 - 400 mW, the difference between the two peaks near 834 

MHz approaches the third harmonic of the relaxation oscillation frequency.  Each of 

the three main peaks shows sideband frequencies due to beating with the relaxation 

oscillation at Pp = 450 mW.  Further increasing the pumping, we observed 

increasingly more sidebands caused by beating with the subharmonics of the 

relaxation oscillation; finally the laser became chaos.  We believe that either 

increasing the pumping or tuning the cavity configuration toward the point of 

degenerates will enhance the gain dynamic effect that will cause subharmonic 

bifurcation owing to nonlinear gain.  A transition from a mechanism that is 

dominated by beam propagation to one dominated by gain dynamics will result.  We 

can also suppress the diffraction effect by reducing the reflectance; for example, when 
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ρ = 0.8, the region of chaos becomes wider and farther away from degeneration than 

for ρ = 0.95. 

 

2.5 Interplay of beam propagation and gain dynamic bifurcation 

If we maintain proper pump power and scan over the whole range of R in Fig. 

2.5(a) we will obtain instabilities similar to those described in Ref. 12 in which the 

transverse mode spacing varies about g1g2 = 1.  We can also achieve the results of Fig. 

2.5(a) by using Fig. 6 of Ref. 14 where chaos exists within small ranges of phase 

difference (corresponds to R in our case) and round trip loss (or 1-ρ2). 

Maintaining Pp at 650 mW, we show in Fig. 2.8 the transverse beat frequency (fb) 

of the cold cavity and the precession frequency (fp) relative to R for ρ = 0.95.  We 

have found that the numerical precession frequency nearly equals the transverse beat 

frequency when the laser is propagation dominant as R≥ 8.03 cm.  Another evidence 

that the propagation-dominant instability surely governed by the diffraction integral is 

that the precession frequency is independent of the spontaneous-emission rate or gain.  

As R is tuned toward the degenerate or the chaotic region, however, precession 

frequency fp deviates from the transverse beat frequency because the gain dynamics, 

via the rate equations, begin to play a crucial role in change of the precession 

frequency.  The gain aperture and saturation effects take control of the dynamics 

when the precession frequency declines to several times the relaxation oscillation 

frequency as R ≈ 8.01 cm.  In Fig. 2.7(b), for small Pp, two frequencies, ~834 and 

~831 MHz, appear to be quasi-periodic, mainly because of beam propagation or 

diffraction, so their difference is understood as fp.  The laser has increasingly 

sideband frequencies as a result of period multiplication owing to the nonlinear gain 

through the rate equations for larger Pp.  It seems that the route to chaos close to 

degeneration is the interplay (or the mixing effect) of the quasi-period and the period 
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multiplied as shown in Fig. 2.7(b). 

We believe that the cavity loss 1-ρ2 is the key factor that differentiates the results 

of Melnikov et al. and Hollinger et al. from ours.  The V-shaped threshold becomes 

as smooth as Melnikov’s result [Fig. 2.4(c)] for a high-loss cavity.  Hollinger et al. 

obtained their results with a high-loss cavity, but they didn’t investigate how close 

g1g2 should be to 0.5 for the laser output to be quasi-periodic but not to become 

chaotic, [3] however, in our good cavity case the chaotic region becomes narrower 

and can be close to the degeneracy. 
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Fig. 2.1.  The laser configuration. 
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Fig. 2.2.  Output power evolution (a) and beam profile (b) of the period-2 steady 

state for g1g2 = 1/2 with ρ = 0.95 above the instability threshold. 
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Fig. 2.3.  (a) Evolution of the output power of the quasi-periodic oscillation at g1g2 = 

0.25466, ρ = 0.95, Ψ= 2.32, and Pp = 210mW.  Inset (a) is the magnification of six 

precession periods. 
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Fig. 2.3.  (b) The spot size evolution in (w, 1/Rg) phase space as in Ref. (9).  The 

precession explains the output power evolution (a) and the power spectrum (c) of the 

quasi-periodic oscillation for g1g2 = 0.25466, ρ = 0.95, Ψ= 2.32, and Pp = 210mW. 
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Fig. 2.4.  (a) The 3D quasi-periodical bifurcation diagram in terms of Pp, Ψ, and g1g2 
for ρ = 0.95. 
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Fig. 2.4.  (b) Dependence of the ratio of the instability threshold to the lasing 

threshold P2/P1 on the parameter Ψ for g1g2 = 1/4 and ρ = 0.95.  (c) Dependence of 

on g1g2 for Ψ= 1.3 with different ρ indicated. 
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Fig. 2.5.  (a) Bifurcation diagram for higher pumping with ρ = 0.95 and Ψ = 2.78 
around g1g2 = 1/4. 
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Fig. 2.5.  (b)(c)(d) The output power evolution of modulated quasi-period(b), 
modulated pulsing(c), and chaos(d). 
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Fig. 2.6.  Precession oscillation (a) and power spectrum (b) at g1g2 = 0.25466 with 

ρ = 0.95, Ψ = 2.78, and Pp = 650mW. 
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Fig. 2.7.  The frequency bifurcation plot using Pp as the parameter for (a) R = 

8.05cm and (b) 8.0075cm. 
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Fig. 2.8.  Transverse beat frequency of the cold cavity and the precession frequency 
versus R for Pp fixed at 650mW. 
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