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Chapter 4 Instabilities induced by small pump size 

 

It is commonly believed that spontaneous instabilities are impossible in class B 

lasers described by simple two-level rate equations without an additional degree of 

freedom such as external modulation, light injection, delayed feedback, etc. [1].  

However, the transverse effects such as gain variation and diffraction in the resonator 

provide the additional degree of freedom and have been demonstrated to play 

important roles in lasers [2,3].  Because various transverse modes may be excited 

especially when the laser is operated at near-degeneracy, a degenerate resonator is 

thus a good choice for obtaining laser instabilities.  Previously, we have analyzed an 

iterative map of the q-parameter of the resonator [4] and concluded that a laser will 

become unstable near some degenerate cavity configurations under nonlinear effects.  

Using an end-pumped cw Nd:YVO4 laser, we have studied different laser behaviors 

under various pump sizes [5,6] when the cavity is near 1/3-transverse degeneracy 

(g1g2 = 1/4).  Recently, the Petermann K factor has also been calculated for maxima 

on each side of the degeneracy under strong gain guiding or small pump size [7].  It 

was emphasized that in the vicinity of the degeneracies the empty-cavity degenerate 

transverse modes are phase-locked and the resultant radial phase profile depends 

strongly on the cavity-length detuning. 

In this chapter, we study the cavity-configuration-dependent instability and 

determine the unstable regions with cavity length, pump power, and pump size as the 

control parameters.  When the pump size is small, we found that the laser always 

exhibits a stable cw output, except for a narrow range of cavity tuning on each side of 

the degeneracy.  The temporal behaviors of the laser output show periodic, 

period-doubling, and chaotic evolutions.  We also observed various patterns in the 

far field when we scanned the cavity length.  In particular, an anomalous mode 
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pattern is accompanied with frequency beating close to the point of degeneration.  

The simulation by the use of Collin’s integral and rate equations, while taking into 

account the thermal lens effect, shows good agreement with the experiment.  The 

observed instabilities are new and, as far as we know, this is the first report that 

discusses the relationship between the instability and the thermal lens effect. 

 

4.1 Experimental setup 

The experimental setup that is similar to Fig. 3.1 is schematically shown in Fig. 

4.1.  The plano-concave cavity and the Nd:YVO4 crystal are the same as in Fig. 3.1.  

The OC of 10 % transmission was mounted upon a translation stage so we could tune 

the cavity length (L) near the degenerate configuration.  The degeneration point of 

g1g2 = 1/4, which corresponds to L = 6 cm, was determined by the cavity length 

where the lowest lasing threshold occurs [8].  The laser output was split into two 

beams, one of which was recorded by a CCD camera and the other was further split 

into two beams that were individually collected by two photodiodes (PDs) with rise 

times < 0.3 ns.  The signals of the PDs were then fed into a LECROY-9450A 

oscilloscope (bandwidth 200 MHz) and an HP8560E rf spectrum analyzer (bandwidth 

2.9 GHz), respectively.  The Gaussian pump radius, wp, was determined by the 

standard knife method.  The 1/3-degeneration (or g1g2 = 1/4) point L = 6 cm was 

determined by the position where the lowest lasing threshold occurs [2,3]. 

 

4.2 Experimental results 

4.2.1 Unstable regions 

The output power varied with the cavity length under various pump radii and is 

shown in Fig. 4.2(a).  The bottom three curves for wp = 19 µm show that a higher 

pump power not only widens but also heightens the power hump.  The laser exhibits 
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a stable cw output for almost entire range of the studied 3-mm cavity tuning.  

However, within a narrow range of L on each side of the power hump, denoted as 

stars in Fig. 4.2(a), we always observed spontaneous instabilities.  The top two 

curves are the cavity-length-dependent output power for wp = 25 µm and 34 µm at a 

pump power of 300 mW, in which the triangles and the solid circles denote the 

unstable regions for both cases.  Note that the radius of cold-cavity fundamental 

mode is approximately 108 µm.  Summarized in Fig. 4.2(b) are the unstable regions 

in terms of the cavity length and the pump power for the three pump sizes of 19 µm, 

25 µm, and 34 µm.  We use a single symbol to denote a narrow unstable region 

while twin symbols are used to encompass a wider unstable region of about 100 µm.  

One can see that the unstable regions on the short-cavity side are well separated for 

different wp and located farther away from degeneracy with increasing the pump 

power; in contrast, those on the long-cavity side are located very close to the point of 

degeneration and are nearly independent of the pump power. 

 

4.2.2 Far-field patterns 

When the cavity length was tuned from the long-cavity side, toward and across 

the point of degeneration, various far-field mode patterns were observed.  The mode 

pattern shows a near-fundamental Gaussian distribution far from degeneracy.  

Tuning L close to the right edge of the unstable region, we observed a slightly 

distorted mode pattern.  When the cavity was set within about 100 µm of the 

unstable region, the mode pattern became non-cylindrically symmetric and strongly 

spread in a special direction as shown in Fig. 4.3(a).  This anomalous spreading 

pattern maintained wider than the whole unstable region by few tens of micrometers.  

When L was tuned across the range that showed the spreading pattern, the far-field 

pattern recovered to a cylindrically symmetric one but turned into many concentric 
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rings with a dark center that is the far-field pattern of the multi-beam-waist mode [6].  

By further tuning of L toward the unstable region on the short-cavity side, we 

observed the cylindrically symmetric mode pattern as shown in Fig. 4.3(b) that differs 

from the patterns in the unstable region of the long-cavity side, as indicated in Fig. 

4.3(a). 

 

4.2.3 Temporal behaviors and spectra 

We further investigated the temporal behaviors of the output power within the 

unstable regions at Ppump = 260 mW and wp = 34 µm.  Figure 4.4(a) shows a periodic 

time trace when the cavity was tuned at the edge of the long-cavity unstable region.  

Its corresponding rf spectrum in Fig. 4.4(b) shows one main peak at 1.33 MHz and 

three harmonics.  When the cavity length was decreased by ~20 µm from the 

position of Fig. 4.4(a), a period-2 evolution was observed.  The time trace and its 

spectrum are shown in Figs. 4.4(c) and 4.4(d), respectively.  On continuing the 

decreasing of the cavity length, we recorded a chaotic evolution in Fig. 4.4(e) with a 

broad low frequency spectrum indicated in Fig. 4.4(f).  Calculation by use of the 

chaos data analyzer (American Institute of Physics) shows that the correlation 

dimension of the chaotic evolution is approximately 2.1. 

Although the temporal behaviors of the cavity-configuration-dependent 

instabilities are similar on each side of the degeneracy, the high-frequency responses 

of their power spectra are quite different.  For the long-cavity instabilities we 

observed multiple beating frequencies at 812 MHz, 1.63 GHz, and 2.44 GHz [see Fig. 

4.4(g)] that were confirmed with a Fabry-Perot interferometer (FPI) having FSR = 15 

GHz and finesse = 150.  The transverse mode beating pertaining to the 

Laguerre-Gaussian LG1,0 and/or LG2,0 modes would induce spatiotemporal instability, 

where the subscripts 1 and 2 are the radial indices and 0 is the azimuthal index.  
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However, within the short-cavity unstable region the spectrum shows only the 

longitudinal mode beating at 2.44 GHz with the absence of transverse mode beating in 

both of the rf and the FPI spectra. 

To investigate the distinction between the instabilities on the long-cavity side and 

those of the short-cavity side, we used two PDs at different transverse positions to 

simultaneously record the laser power.  The first PD was fixed at the center of the 

profile as reference and the second one was located at an off-axis position.  When 

the two detectors were separated within a distance, their temporal traces on the 

oscilloscope were completely the same as shown in Fig. 4.5(a).  However, we found 

for the long-cavity instability that the high peak of one trace coincided with the low 

peak of the other trace as shown in Fig. 4.5(b) when the two detectors were separated 

by some specific distance.  This reveals that the intensity profile varies with time and 

thus indicates spatiotemporal instability.  On the other hand, within the short-cavity 

unstable region, we always observed the same behavior between the two signals no 

matter at what position the second PD was located.  Temporal instability was 

exhibited on the short-cavity side.  In addition, we also found that the instabilities on 

both sides of the degeneracy are closely related to high-order transverse modes 

because the instabilities disappeared when a knife-edge was inserted ~500 µm into the 

cavity beam to inhibit the high-order transverse modes.  This will be explained in the 

following section. 

 

4.3 Numerical model 

The model has been described in Section 2.1 except we imposed the phase shift 

∆Φ  induced by thermal lens effect in the Collin integral.  The phase shift is given 

[5] by 
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.  The rate equation [see Eq. (2.3)] 

and the relations for amplification of the field [see Eq. (2.2)] are the same as in 

Section 2.1.  The total pumping rate over the entire active medium is 

∫ =
V

pppm hPdVR ν/ ,                                             (4.3) 

where Pp is the effective pumping power which equals to absP)1( ξ− , hνp is the 

photon energy of the pumping laser, and the integral is integrated for the pump 

volume.  Therefore, we have three control parameters L, wp and Pp if ρ is fixed. 

Given an initial ∆N and E, the field evolution will converge to a stationary 

solution if the final state is stable cw.  Contrarily, if the final state is unstable, the E 

field will automatically evolve to a dynamical state.  To obtain the time evolution of 

the output power, we set the reference plane with 600 µm aperture at the flat end 
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mirror and laterally integrated the intensity profile for each round trip. 

 

4.4 Numerical results 

4.4.1 Unstable regions 

The parameters that we used are ξ = 0.23, α = 1930 m-1, Kc = 5.23 Wm-1K-1, 

dn/dT = 8.5×10-6 K-1, and the others are the same as described in chapter 3.  Figure 

4.6(a) shows the output power as a function of L when considering the thermal lens 

effect.  The curves of output power that are labeled as triangles, empty squares, and 

solid circles for wp = 25 µm, 30 µm, and 35 µm respectively show asymmetric power 

humps with respect to the point of degeneration.  The dependence of the power 

hump on wp and Pp (the effective pump power) are the same as in Fig. 4.2(a).  The 

unstable regions are summarized for four values of wp in Fig. 4.6(b), which are 

similar to those in Fig. 4.2(b) except that the vertical axis of Fig. 4.6 is the effective 

pump power that matches with the pump efficiency of ~0.6 taken from the measured 

pumping.   Again, in Fig. 4.6(b) we use a single symbol to denote a narrow unstable 

region while twin symbols are used to encompass a wider unstable region.  It shows 

similar unstable regions and dependence on wp and Pp as those in Fig. 4.2(b); for 

example, at wp = 35 µm, the unstable region shifts approximately from L = 5.94 cm to 

5.90 cm on the short-cavity side as one increases the effective pump power to match 

with the experiment data in Fig. 4.2(b).  Moreover, the far-field intensity profiles 

beside the long-cavity unstable region are similar to those in Fig. 2(b) of Ref. 6.  In 

addition, no instability can be observed as wp > 40 µm, which is also consistent with 

the experiment. 

To study the influence of the thermal lens effect, we repeated the simulation 

without considering the thermal lens effect.  The calculated output power and the 

obtained unstable regions are shown in Figs. 4.7(a) and 4.7(b), respectively.  As 
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compared with Fig. 4.6, we found the thermal lens effect leads to certain phenomena: 

(1) an asymmetrical shape of the power hump; (2) asymmetrical unstable regions with 

respect to the degeneration point; (3) dependence of the region shift on Pp on the 

short-cavity side but not on the long-cavity side; and (4) much less shift of the power 

maximum than shift of the unstable region (e.g., see wp = 30 µm and Pp = 150 mW). 

 

4.4.2 Temporal behaviors and the origin of the instabilities 

Without the thermal lens effect, not only the power hump but also the dynamical 

behaviors are symmetric with respect to the point of degeneration.  The simulated 

temporal evolution of the unstable output power exhibits self-pulsation on both sides 

of the degeneracy with a pulsing frequency of few hundred kHz [see Fig. 4.8(a)].  

The simulated intensity profile of each round trip show the variation of the on-axis 

peak intensity with time as the characteristic feature of Fig. 4.8(a), but the normalized 

profile varies only a little.  We plotted four normalized intensity profiles in Fig. 4.8(b) 

from the pulse peak to valley to show the variation.  Their corresponding far-field 

intensity profiles [insets in Fig. 4.8(b)], having two obvious rings, agree with the 

photograph of Fig. 4.3(b).  Moreover, the far-field intensity profile decreases 

smoothly and then increases when the pulse is growing.  This leads to pure temporal 

instability.  The modal analysis shows that the modes in Fig. 4.8(b) can be 

decomposed into the combination of the near-degenerate LG0,0, LG3,0,…, LG18,0 

modes with mode weights and relative phase shifts because LG21,0 undergoes large 

diffraction losses for a 600 µm aperture at the reference plane.  These phase shifts 

must be included because the phase pattern is important as emphasized in Ref. 7.  

We give a fitted result in the figure caption of Fig. 4.8(b).  When the thermal lens 

effect is included, the feature of self-pulsation is unchanged for the short-cavity side.  

This matches with the general expectation that the thermal lens effect will only shift 
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the cavity length. 

However, on the long-cavity side the region shift seems independent of Pp and the 

self-pulsation becomes the characteristic feature of Fig. 4.8(c), in which the output 

power forms three branches of oscillation.  The first 20 iterations in the inset show 

that the output evolution nearly comes back the same value after three round trips; 

that is the power spectrum indicates one peak at roughly 1/3-longitudinal beating 

frequency that corresponds to the experimental data of 812 MHz.  The intensity 

profiles of three successive round trips are shown in Fig. 4.8(d), which are not 

normalized due to the large difference.  The corresponding far-field intensity profiles 

in the inset of Fig. 4.8(d) exhibit a complex feature, which is different from that of the 

short-cavity side.  Unfortunately, we could not yet obtain good fitting data by 

running the same fitting parameters, even when the LG1,0 mode was included.  This 

may be due to the peculiar phase pattern that is deformed strongly by the thermal lens 

effect in the vicinity of the degeneracy.  Because the beating frequency between the 

near-degenerate LG modes are absent on both long-cavity and short-cavity 

instabilities, the frequencies of the near-degenerate LG modes are locked together to a 

single frequency.  Therefore the frequency-locked mode, a supermode [13], interacts 

with the inverted populations and thus leads to the short-cavity instabilities.  

However, the long-cavity instabilities arise mainly from the frequency beating 

between the supermode and the other empty-cavity modes.  Although the 

asymmetric (spreading) mode pattern of Fig. 4.3(a) cannot be produced by using the 

cylindrically symmetric model with single optical frequency, the simulated results 

agree with the experiment of transverse mode beating.  As far as we know, this is the 

first report that discusses the relationship between the instability and the thermal lens 

effect. 

Furthermore, when the aperture on the reference plane is decreased to 450 µm, in 
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accordance with the experiment described in Section 2, the instability disappears.    

The stationary mode now consists of the near-degenerate LG modes with the same 

frequency but lack of the higher-order LG15,0 and LG18,0 modes.  This fact of 

transverse mode locking was confirmed by the absence of the near-degenerate mode 

beating and by the observation of the intensity profile variation with the propagation 

distance as done in Ref. 6.  The supermode lack of the components of the LG15,0 and 

LG18,0 modes is unable to arise the instability.  Inserting a knife-edge into the cavity 

beam in our experiment also results in a cylindrically symmetric pattern instead of a 

spreading pattern.  Apparently, the high-order modes with small amplitude may play 

important roles in symmetry breaking as indicated in Ref. 14.  However, the origin 

of the symmetry breaking is still unknown. 

 

4.4.3 Transverse mode locking 

In mode expansion we decomposed the gain-guided mode into LGp,0 modes with 

p = 0, 3, 6, …18.  The mode weight of the LG0,0 mode is fixed unity and the other 

six are limited between 0 and 1 and their relative phase shifts are between π−  and 

π  for these LG modes.  Both of the intensity profile and the phase pattern are fitted 

well.  We show in Fig. 4.9 for the degenerate case of L = 6.0 cm without the thermal 

lens effect.  In Figs. 4.9(a) and 4.9(b) the solid circles and the open circles are 

respectively the results of mode calculation and the fitted mode expansion.  The 

central lobe of the intensity profile is near-Gaussian with the waist radius of ~30 µm 

(see the solid curve in the inset of Fig. 4.9(a) with linear scale) approximately equals 

to the pump radius, which shows that the laser is strongly gain-guided.  The 

seriously saturated gain distribution is also shown with the dashed curve in the inset 

of Fig. 4.9(a).  Figure 4.9(b) shows that the phase pattern is flat within r = 200 µm 

but discontinuously jumps π  phase at some positions of r.  The first phase jump at 
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r = 200 µm corresponds to the position of the second intensity zero of the LG3,0 mode, 

where 3 is the radial mode index and 0 is the azimuthal index.  The fitted data [also 

see Fig. 4.10] for L = 6.0 cm shows the degenerate empty-cavity LG modes are not 

only phase-locked but also nearly in-phase at the reference plane. 

Since the mode is phase-locked, its intensity profile will vary with the 

propagation distance due to the Gouy phase of the LGp,0 mode being (2p+1) 

arctan(z/zR), where zR is the Rayleigh length and z is propagation distance from the 

reference plane.  The simulation of the propagation behavior has been shown in Fig. 

3(a) of Ref. 6 but we did not understand it by mode expansion.  We know here that 

the in-phase position of z is located at Rz3 ~ 6 cm where the second waist will be 

formed.  Out-of-phase between LG0,0 and LG3,0 occurs at the positions of 

3/~ Rzz = 2 cm and at the far field, where the intensity profile has a dark center.  

Three beam waists can be observed as described in chapter 3 when a simple 

convergent lens is set behind the output coupler. 

When the cavity length is tuned to L = 6.01 cm, the intensity profile and the 

phase pattern are shown in Figs. 4.9(c) and 4.9(d), respectively.  The central lobe of 

the intensity profile is a slightly distorted Gaussian that is shown in the inset of Fig. 

4.9(c) with the solid curve using linear scale.  Also shown with the dashed curve in 

the inset is the saturated gain distribution.  We can see in Fig. 4.9(d) that the phase 

pattern is already highly curved for r < 100 µm and no longer jumps π  at some 

positions of r.  Note that the phase jump at r = 223 µm is π2 , so it is a continuous 

phase.  The fitted result in Fig. 4.10 for L = 6.01 cm shows that the empty-cavity LG 

modes are no longer in-phase at the reference plane but have monotonically 

increasing relative phases with the increase of the radial mode index.  Even so, these 

empty-cavity LG modes are still phase-locked and the Gouy phase variation with z 
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still results in the multi-beam waists.  It is worthy to note that nearly the same 

behavior for the case of L = 5.99 cm except that the phase pattern is inverted within r 

= 100 µm.  So the fitted relative phases of the LG modes decrease monotonically 

with the increase of the radial mode index. 

The fitted mode weights and the relative phases of the LG modes are 

summarized in Fig. 4.10(a) and 4.10(b) when L is tuned away from the degeneracy, 

where the case of L = 6.04 cm is absent because the laser instability occurs there.  

For wp = 30 µm and L = 6.04 cm, the simulations show the intensity profile [see Fig. 

4.8(b)] and the phase pattern vary with time approximately between those of L = 6.03 

cm and those of L = 6.05 cm.  We may understand the amplitude and phase variation 

of the LG modes from Fig. 4.10.  We see that the mode weights for the case of L = 

6.05 cm have meaningful decrease for p = 3, 6, 9 as compared with that of L = 6.03 

cm and that the relative phases no longer monotonically increase but alternate for p > 

6. 

 

4.4.4 Discussions 

Going back to Fig. 4.8(a), the pulsation is damped by the relaxation oscillation so 

the pulsing frequency depends on the pump power and the cavity length.  

Theoretically, the pulsing spectrum can be calculated from the Fourier transform of 

the output power evolution.  Interestingly, by using 15101 −×= sγ  we obtained 

periodic pulsing [Figs. 4.11(a) and 4.11(b)], period-2 [Figs. 4.11(c) and 4.11(d)], and 

chaotic [Figs. 4.11(e) and 4.11(f)] time evolution of the output power when L was 

tuned from 5.96 cm to 5.951 cm with wp = 30 µ m and an effective pump power of 

100 mW.  For L = 5.948 cm a homoclinic orbit shown in [Figs. 4.11(g) and 4.11(h)] 

was clearly seen in the phase portrait reconstructed from the standard time-delay 

technique.  The routes to chaos both through Hopf bifurcation and through 
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intermittency associated with the homoclinic orbit were shown in an end-pumped 

standing-wave alexandrite laser [15].  It is possible that our laser performs 

homoclinic dynamics because our simulation is consistent with the experiment and 

this needs further be studied 
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Fig. 4.3.  The far-field mode patterns inside the long-cavity unstable region 

(a) and inside the short-cavity unstable region (b).

(b)(a) 
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Fig. 4.6.  The numerical output power as a function of cavity length with 

considering the thermal lens effect (a) and the unstable regions (b) for 

different wp.  The symbols for wp are the same for (a) and (b). 
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Fig. 4.7.  The numerical output power as a function of cavity length (a) 

and the unstable regions (b) without considering the thermal lens effect. 

The symbols for wp are the same for (a) and (b). 
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Fig. 4.8.  (a) A self-pulsing temporal evolution of the simulated output power without the 
thermal lens effect.  (b) The normalized intensity profiles and their corresponding far-field 
profiles (inset) from the pulse peak (solid circles) changes to open circles, solid squares and 
then to the pulse valley (open triangles).  The normalized profiles of the open triangles are 
covered by the solid squares.  The modal analysis for the profile of solid squares are LG0,0 

(0o)+ 0.63 LG3,0(-75o) + 0.34 LG6,0(-105o) + 0.16 LG9,0(-90o) + 0.08 LG12,0(-83o) + 0.08 
LG15,0(-116o) + 0.07 LG18,0(-93o). 
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Fig. 4.8  (c) The numerical temporal evolution of the output power in the vicinity of the 
degeneracy with the thermal lens effect for L = 6.005 cm.  Inset is the first 20 iterations. 
(d) The intensity profiles and their corresponding far-field profiles (inset) of three 
successive round trips. 
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Fig. 4.9.  The intensity profile (a) and the phase pattern (b) for the exact degeneracy 

at L = 6.0 cm for the mode-calculation solution (solid circles) and the fitted mode 

expansion (empty circles).  Inset in (a) are the intensity profile (solid curve) with 

linear scale and the gain distribution (dashed curve). 
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Fig. 4.9  (c) The intensity profile and (d) the phase pattern for L = 6.01 cm.  The 

mode-calculation solution (filled circles) and the fitted mode expansion solution (open 

circles) match well.  Inset of (c) are the intensity profile (solid curve) with linear 

scale and the gain distribution (dashed curve). 
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Fig. 4.10.  The mode weight ratio (a) and the relative phase shift (b) of the 

empty-cavity LGp,0 modes as L is tuned away from the degeneracy. 
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Fig. 4.11.  Periodic self-pulsing (a) and its spectrum (b) for L = 5.955 cm. 
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Fig. 4.11  (c) Period-2 self-pulsing and (d) its spectrum for L = 5.9523 cm. 
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Fig. 4.11  (e) Chaotic output power and (f) its spectrum for L = 5.9505 cm. 
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Fig. 4.11  (g) An output power evolution associated with a homoclinic orbit. 

(h) Phase portrait of a homoclinic orbit. τ is chosen 20 iterations. 
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Chapter 5 Conclusions 

5.1 Summary 

Numerically propagating a cavity field through Collin’s integral and using the 

rate equations for a homogeneous broadened gain medium with Gaussian pumping, 

we obtained propagation-dominant laser instabilities when the pump size is larger 

than the fundamental Gaussian beam waist size under the high-Q cavity (good cavity) 

condition.  We have investigated in detail on the temporal behaviors of the 

instabilities near the 1/3-degenerate configuration.  We determined the 

quasi-periodic threshold as the cavity was tuned across the degenerate configuration.  

A laser with a good cavity including a saturated gain medium shows a V-shaped 

quasi-periodic threshold; however, a high-loss cavity has not a V-shaped but a smooth 

monotonic curve.  Furthermore, the propagation-dominant V-shaped threshold 

depends not only on the resonator configuration but also on the pump size.  There is 

a best value Ψ in good cavity to produce the lowest-instability pump power.  In 

addition to a quasi-periodic region, we obtained another region of the 

propagation-dominant instability outside the chaotic region near the 1/3-degenerate 

configuration in the good cavity conditions.  We ascribed this type of instability to 

the special dependence of the geometrical configuration. 

Furthermore, chaos was found in a good cavity close to the 1/3-degenerate 

configuration.  Although the phase shift between adjacent transverse modes in one 

round trip is irrational multiples of π and lies close to 2π/3, the laser output can 

become chaotic in a good cavity under Gaussian pumping.  This result is different 

from the results of Hollinger et al.  We believe that, as the cavity is tuned toward 

1/3-degeneration, the beam-propagation-dominant laser dynamics is transformed into 

an interplay of beam propagation and gain dynamics.  Thus the route to chaos close 

to the degenerate configuration involves the mixing effect of the quasi-periodic and 
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period-multiplying bifurcation. 

When the pump size is sufficient less than the fundamental Gaussian beam-waist 

size, we have demonstrated that a laser mode is capable of exhibiting N beam waists 

when it is propagated through a transform lens, where N = 2 corresponds to g1g2 = 1/2 

and N = 3 to g1g2 = 1/4, 3/4 with plano-concave cavity.  For g1g2 = 1/4 the 

multibeam-waist mode has an additional waist close to the curved mirror end; 

similarly, for g1g2 = 3/4 one can detect an additional waist outside the cavity without 

using a transform lens.  It is easier to excite the multibeam-waist mode with a 

smaller pump size because of the stronger gain-guiding effect near specific 

degenerations within a certain range of cavity tuning.   The multibeam-waist mode 

has a small beam-waist size that is close to the pump size in the near field at the flat 

mirror end; however, its far-field pattern has a concentric-ring structure.  The gain 

guiding effect dominates the formation of a transverse mode pattern near degeneracy; 

nevertheless the diffraction effect is more important away from degeneracy. 

Moreover, by simultaneously considering the wavelike and the raylike 

characteristics of the multibeam-waist mode we expand the mode as a superposition 

of N consecutive electric fields of period-N solution but not for the orthogonal bases.  

Because these N fields act as independent in-phase sources located in different 

positions with different waist sizes, the mode can converge to form N beam waists at 

different positions after the transform lens.  The beam profile variation with 

propagation distance, in particular those profiles with low intensity on the axis, is well 

simulated.  The additional waist in the absence of a transform lens is due to the 

convergence of the field with negative curvature of the period-N solution.  The ring 

pattern in the far field or in any position is the result of interference of the N 

consecutive round-trip electric fields.  Because the axially pumped solid-state lasers 

are widely used, the multibeam-waist modes may be important because there are 
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many degenerate positions within the geometrically stable region. 

Also due to small-size pumping, we have found the new transverse instabilities 

and determined the unstable regions on each side of the degeneracy near g1g2 = 1/4.  

We illustrated the temporal behaviors including periodic self-pulsing, period-2 

self-pulsing, and chaotic output.  Various far-field patterns beside the unstable 

regions were observed; in particular, an asymmetrical mode pattern was observed in 

the vicinity of the degeneracy.  Our numerical results agree well with the 

experiments and reveal the influence of the thermal lens effect.  As far as we know, 

this is the first time to discuss the relationship between the instability and the thermal 

lens effect.  In the short-cavity side a supermode that interacts with the inverted 

population leads to the temporal instabilities.  However, the spatiotemporal 

instability in the long-cavity side arises mainly from the frequency beating between 

the supermode and the other empty-cavity modes. 

 

5.2 Suggestions for future work 

  Because the laser instabilities induced by the wide pump have been numerically 

studied, the experimental investigation is the first work we can do.  The second is to 

clear out whether the cavity-configuration-dependent instabilities induced by a small 

pump size are associated with a homoclinic orbit.  Moreover, the transverse mode 

locking has been obtained from calculations and then we can determine the exact 

locking range of cavity length detuning by experiments.  The transverse mode 

locking leads to the phase pattern of the transverse modes depending sensitively on 

the cavity configuration near degeneracies, which in turn results in the Petermann K 

factor being cavity-configuration-dependent.  So we can take into account the 

thermal lens effect to calculate the Petermann K factor and we can do an experiment 

to detect the excess noise.  Finally, the MBW mode is potential to be used in optical 
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trapping since there are three waists in the proximity of the beam focus.  One may 

try the single MBW beam to trap high-index particles in multiple axial sites. 

 


