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.  I 

The sizes of nanodot array influence glial regulation on neuronal 

proliferation . 

 

 

Student: Chiu-Yuan Huang        Advisor: Dr. Guewha Steven Huang 
 

Institute of Material Science and Engineering Graduate Program For 
Nanotechnology 

 
National Chaio Tung University 

 

 

Abstract 

 
Traditionally regarded as supporting cells, glia cells are structurally and 

functionally poised as ideal sensors and regulators of local microenvironments. 

Emerging evidence suggests that glia have key roles in regulating neuronal 

development. The differentiated type of neuroblastoma glioma hybrid cell line, 

NG108-15, has widely used in in vitro studies instead of primary-cultured neurons. 

We culture NG108-15 cells on different sizes of nanodot arrays to examine how glia 

cells sense nanoenvironment stimulis and regulate neuronal development. Here we 

show that different nanodot size arrays change the number of neuroblastoma cells on 

unit area of glioma cells. Our results show that glia can sense nanoenvironment 

stimulis and response in different regulation of neuronal development. By examining 

gene expression, nanodot sizes also influence glia-mediated neuronal factor, such as 

Wnt3 and BDNF. Our results show that glia can sense nanoenvironment stimulis and 

response in different regulation of neuronal development. The nanodot arrays can 

serve as an appropriate tool for investigating glia-neuron interactions.  
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1. Introduction 
 

The nervous system plays a leading role in the body; it controls and regulates the 

various activities of the body organs to maintain the relative balance of the body with 

the internal and external environments(1) . Damage to the nervous system can result 

in lack of body organ function and related diseases, such as Alzheimer’s disease, 

Parkinson’s disease, depressive disorder, and reduced reproductive functions (2-6). To 

date, considerable effort has been focused on the development of new techniques and 

studies involving the molecular and cellular mechanisms that influence axonal 

plasticity and response to injury(7) . However, in contrast to the ability to treat 

peripheral nerve injury, there is no current treatment capable of completely restoring 

functions after central nervous system injury. Generally, the current medical 

treatments achieve limited success in restoring functions and regeneration for severely 

injured nerves(8). 

Traditionally regarded as supporting cells, glia cells are abundant in the adult 

CNS and structurally and functionally poised as ideal sensors and regulators of local 

microenvironments(9). Emerging evidence suggests that glia cells perform a much 

wider range of functions than previously appreciated, such as regulation of axon 

guidance, synapse formation and plasticity(9, 10). Moreover, glia cells promote 

neuronal proliferation(11, 12). This provides a way to regulate neuronal regeneration 

by giving various stimuli to glia cells. 

    Biomechanical cues can be transmitted to cell via micro or nanoscale substrate 

topography(13-21). Morphological and functional changes have been observed for 

various types of cells, including glia cells(22, 23), when cultured on substrates 

presenting topographical features such as pillars and grooves(24-27). In addition, 

these changes were regulated in a size-dependent manner(28, 29). We are interested in 
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the question of whether one can use topography-induced glia-neuron interactions to 

control neuronal proliferation.  

    In this study, we fabricated a nanodevice consisting of a matrix of nine nanodot 

arrays with various dot sizes ranging from a flat surface to 200 nm dots(30). We 

cultured  NG108-15 cells, a hybrid cell line of mouse neuroblastoma and rat glioma, 

on the nanodot arrays to investigate how the sizes of nanodot arrays influence 

glia-mediated proliferation of neurons. We examined the morphological changes and 

gen expression of cells on different sizes of nanodot arrays. 
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2. Materials and methods 
 

2.1 Fabrication of the nanodevice/matrix of nanodot arrays 

Nanodot arrays were fabricated as described(31). A tantalum nitride (TaN) thin 

film with a 200 nm thickness was deposited onto a 6 in silicon wafer followed by 

deposition of 400 nm thick aluminium on top of the TaN layer. Anodization was 

carried out in 1.8 M sulfuric acid at 5 V for the 10 nm nanodot array, and in 0.3 M 

oxalic acid at 25 V and 100 V for the 50 nm and 100 nm nanodot arrays or in 5% (w/v) 

phosphate acid (H3PO4) at 100 V for 200 nm nanodot arrays. Porous anodic alumina 

was formed during the anodic oxidation. The underlying TaN layer was oxidized into 

tantalum oxide nanodots using the alumina nanopores as a template. The porous 

alumina was removed by immersion in 5% (w/v) H3PO4 overnight. A thin layer of 

platinum (ca. 5 nm) was sputtered onto the structure to improve biocompatibility and 

to unify the surface chemistry. The dimensions and homogeneity of the nanodot arrays 

were measured and calculated from images taken using JEOL JSM- 6500 

TFE-scanning electron microscopy (SEM).  

 

2.2 Cell culture 

NG108-15 cells were cultured in high glucose-containing Dulbecco’s 

Modified Eagle’s Medium supplemented with 0.1 mM hypoxanthine, 1 μ M 

aminopterin, 16 μM thymidine, 50 U/mL penicillin, and 10% FBS. The cells were 

harvested and reseeded at a density of 1 *105/mL in 6 wells, filled with 2 mL of the 

above medium. 

 

2.3 Scanning electron microscopy 

Harvested cells were fixed with 1% glutaraldehyde in phosphate buffered saline 
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(PBS) at 4 。C for 20 min, followed by post-fixation in 1% osmium tetroxide for 30 

min. Dehydration was performed through a series of ethanol concentrations (5 min 

incubation each in 50%, 60%, 70%, 80%, 90%, 95%, and 100% ethanol) followed by 

air drying. The specimens were sputtercoated with platinum and examined by JEOL 

JSM-6500 TFESEM at an accelerating voltage of 10 keV. We randomly picked 

six SEM pictures for each condition, and we calculated the number of abnormal cells 

and the total number of cells.   

 

2.4 Immunostaining of vinculin and phalloidin 

Cells were harvested and fixed with 4% paraformaldehyde in PBS for 15 min, 

followed by three washes in PBS. The membrane was permeabilized by incubation in 

0.1% Triton X-100 for 10 min. Permeabilization was followed by three PBS washes, 

blocking with 1% bovine serum albumin (BSA) in PBS for 1 h, and three washes in 

PBS. The sample was incubated with anti-vinculin antibody (properly diluted in 0.5% 

BSA) and phalloidin for 1 h, followed by incubation with Alexa Fluor 488 goat 

anti-mouse antibody for 1 h, followed by three washes in PBS. We randomly 

picked 100 fluorescent cells for each condition and calculated the processes of glioma 

cells. 

 

2.5 RT-PCR 

Reverse-Transcription PCR and Real-Time Reverse-Transcription PCR Analysis. 

Analysis was performed using the following oligonucleotide primers : Wnt3 , Frizzled 

1 , β- catenin(L) , β- catenin(S) , BDNF , GFAP . We used GAPDH as control. 

Primers are listed in Table 1. 

 The PCR program consisted of initial denaturation at 95°C for 30 seconds, 

annealing at temperatures suggested by data sheet for 40 seconds, and extension at 
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72°C for 30 seconds for 25-30 cycles. Specificity of all PCR reactions was tested via 

parallel reactions using water instead of cDNA . The PCR products were subjected to 

1% agarose gel electrophoresis and visualized via ethidium bromide.    

 

 

Gene Primer sequences 

F : 5’- GCCTCTGACAAGCCCGAAA - 3’  Wnt3 

R: 5’- GCGACGCCCCCAATAGTT -3’  

F: 5’- GCTGACCTGATGGAGTTGGA -3’ β-catenin(L) 

R: 5’- GCTACTTGCTCTTGCGTGAA -3’ 

F: 5’- GCTGACCTGATGGAGTTGGA -3’ β-catenin(S) 

R: 5’- TCTTCTTCTCAGGATTGCC -3’ 

F: 5’- GCGCACCTGGATAGGCAT -3’ Frizzled 1 

 R: 5’- TACTAGGTACGTGAGCACCGTGA-3’ 

F: 5’- CGTGATCGAGGAGCTGTTGG -3’ BDNF 

R: 5’- CTGCTTCAGTTGGCCTTTCG -3’ 

F: 5’- CAAGCCAGACCTCACAGCG -3’ GFAP 

R: 5’- GGTGTCCAGGCTGGTTTCTC -3’ 

F: 5’- CCTGCACCACCAACTGCTTAGC -3’ GAPDH 

R: 5’- GCCAGTGAGCTTCCCGTTCAGC -3’ 

Table 1. The gene-specific primers used for real time-PCR. 

 

2.5 Statistics 

Throughout, student’s t-test (for two samples, assuming unequal variances) was 

used to compare statistical significance of test materials against the control. Results 
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of p <0.05 were considered significant (differences p<0.05 denoted by *�, p<0.01 

denoted by **��). 
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3. Result and discussion 
 

3.1 Fabrication of an integrated nanodot array device 

Nanodot arrays with dot sizes range from 10 nm to 200 nm (Fig. 1). Nanodot 

arrays were fabricated by AAO processing on a tantalum-coated wafer.26 Tantalum 

oxide nanodot arrays with dot diameters of 10 nm, 50 nm, 100 nm, and 200 nm were 

constructed using different solutions and voltages on a silicon wafer. To provide a 

biocompatible and unique interaction surface, platinum of ca. 5 nm thickness was 

sputter-coated onto the top of the nanodots. SEM showed diameters of 10* 2.8 

nm,52* 5.6 nm, 102 * 9.2 nm, and 212 * 18.6 nm for 10 nm, 50 nm, 100 nm, and 200 

nm dot arrays, respectively . The dimensions of the nanodots were well-controlled and 

highly defined. 

   

 

3.2 Different morphological changes of NG108-15 on nanodot arrays 

SEM examination of NG108-15 cell morphology following cell seeding on 

different sizes of nanodot arrays revealed that nanoscale topography influenced cell 

morphology (Fig. 2). We measure the area of glioma (Fig. 3A and 3C) and the ratio of 

the neuroblastoma numbers divided by the area of glioma (Fig. 3B and 3D). The area 

of glioma represents the viability of glioma. On day1, glioma grows well on glass and 

100nm, but on other surfaces, glioma shows no specific distribution. On day2, we can 

see nanotopography really inhibit glioma growth, and the tendency remains 

unchanged.  

The ratio of the neuroblastoma numbers / the area of glioma also showed no 

apparent trend between glia – neuron interaction on day 1. On day 2, the ratio of 

50nm nanodot arrays is significantly higher than other surface. This result indicates 
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50nm nanodot can promote neuronal proliferation by stimulating glioma cells. This 

tendency is similar to our previous research. 

  

3.3 The sizes of nanodot influence glia-neuron interaction 

We measure the perimeter of each neuroblastoma and calculate the filopodia 

numbers and length (Fig. 4). The tendency of filopodia length is similar to the ratio of 

the neuroblastoma numbers / the area of glioma, which shows that 50nm nanodot 

array has significant effect (Fig. 5). 50nm nanodot array also promote the filopodia 

formation, this suggest influences cellular motility, and also give us a new insight into 

the guide of cell and axonal growth cone migration. Individual filopodia can behave 

independently within one neuronal growth cone and contact of a single filopodium 

with an appropriate target is sufficient to induce a growth cone to turn . Actin 

polymerization occurs at the tip of a filopodium and regulating the rate of F-actin 

assembly has been proposed to be the dominant factor controlling the rate of 

filopodial extension in neuronal growth cones Since neuroblastoma cells grow on 

glioma, the 50nm nanodot array directly influences glioma, which then changes 

glia-mediated interaction with neuroblastoma. 
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3.4 The sizes of nanodot array also influence processes of glioma cells  

Glioma can be stained by phalloidin, thus we can count the processes of glioma 

cells (Fig. 6). We counted the number of processes and set the range of numcers into 

several groups, for example, we put cells that have 0~2 processes into a group, then 

3~5, 6~8,  9 and more (Fig. 7). We found that glioma cells have less processes on 

10nm, 50nm and 100nm nanodot arrays, especially 50nm. Glioma cells on 200nm 

nanodot array have similar distribution of process numbers with flat surface. 

More processes can enhance the ability of cells to explore the local environment 

and guide the direction of processes extension. Formation of highly ramified 

processes indicates maturation of glioma cells. The number of glioma cell process 

significantly decreased in cells on 10nm, 50nm and 100nm nanodot surfaceas 

compared with cells on flat and 200nm surfaces.  
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3.5 The gene expression of glioma cells that influences neuronal 

proliferation. 

 

We now want to examine the mechanism of neuronal proliferation caused by 

glioma cells since nanodot arrays affected glioma cells directly. From previous studies, 

Wnt3 is known for its neurogenesis ability, thus we choosed the related pathway of 

Wnt3(32-34), including β-catenin(L) , β-catenin(S) , and Frizzled 1, which is the 

inhibitor of Wnt3. We also choosed another neurogenesis factor – Brain-derived 

neurotrophic factor(BDNF)(35-37). Because glioma cells has directly contact with 

nanotopography, so we choosed GFAP to examine the characterization of glioma. 

GAPDH is used as our control. The genes above are all for rat. 

The result of real-time PCR shows on the Fig.8 .We compared each size of 

nanodot arrays with flat surface and calculated the fold change of each gene. 

    Among the proliferation-related genes, only β-catenin(S) shows a similar trend 

as Fig.3D. Glioma cells on 50nm remained the same as flat surface, gene expression 

of other nanodot arrays significantly reduced. β-catenin(S) may be the key factor that 

affected glioma-induced neuronal proliferation through the stimuli of 50nm nanodot. 

It is well known that expression of glial fibrillary acidic protein (GFAP) provided 

a phenotypic marker characteristic of astrocytes, which is induced by activation of 

intracellular signaling mechanisms that directly stimulate GFAP gene transcription. 

Althrough the morphology of glioma cells indicated that 50 nm were more immature, 

gene expression of GFAP showed an opposite result.
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4. Conclusion 
 

Different sizes of nanodot arrays have different influence on NG108-15 cells. 

The nanodot arrays affect neuroblastoma through glioma cells because only glioma 

cells directly contacted to surfaces. Although glioma on 50nm nanodot showed less 

maturation, the GFAP gene expression showed an opposite result. β-catenin(S) may 

be the key factor that induce significant neuroblastoma proliferation through glial 

regulation. 
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Fig. 1 Fabrication of different sizes of nanodot arrays. (a) Schematic representation of fabrication of 

tantalum-based nanodot arrays using AAO processing. (b) SEM images of tantalum oxide nanodot 

arrays with dot diameters of 10 nm, 50 nm, 100 nm, and 200 nm constructed on a silicon wafer. 
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Figure 2. SEM images of NG108-15 cells on different sizes of nanodot arrays, we cultured cells for 1 

day and 2 da

100nm 

200nm 
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Figure3. (A) Area of Glioma on day 1. (B) The number of neuroblastoma cells divided by the area of 

glioma cells on day 1. (C) Area of Glioma on day 2. (D) The number of neuroblastoma cells divided by 

the area of glioma cells on day 2 
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Figure 4. Filopodia of neuroblastoma cells on nanodot arrays on day 2. 

 

 

 

Figure 5.  (A) Filopodia numbers of neuroblastoma cell  (B) Perimeter of neuroblastoma  (C) 

Filopodia number of neuroblastoma divided by perimeter (D) Filopodia length of neuroblastoma 



 18 

 

Figure 6. Confocal images of NG108-15 cells on different nanodat arrays. Green: Vinculin ,  

Red: Phalloidin. 

 

 

 

 

 

 

 

 

 

Figure 7. Percentage of glioma processes number distribution range on different sizes nanodot arrays. 
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Figure 8. Fold change of each gene. We use GAPDH and flat surface as our control.
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