

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

用 於 交 通 預 測 之 二 層 資 料 分 群 法

Clustering Traffic Sensing Data for Traffic Prediction: A

Two-Phase Clustering Approach

研 究 生：榮芊菡

指導教授：彭文志 教授

中 華 民 國 一 百 零 一 年 一 月

用於交通預測之二層資料分群法

Clustering Traffic Sensing Data for Traffic Prediction: A Two-Phase

Clustering Approach

研 究 生：榮芊菡 Student：Han-Chien Jung

指導教授：彭文志 Advisor：Wen-Chih Peng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

January 2012

Hsinchu, Taiwan, Republic of China

中華民國一百零一年一月

用於交通預測之二層資料分群法

學生：榮芊菡

指導教授：彭文志

國立交通大學資訊科學與工程研究所

摘 要

現代城市的運輸系統幾乎已資訊化，而具備交通路網資訊的資料庫經常累積

了相當豐富的歷史交通資料。在目前的系統中，即時的交通資料常被用於估算當

時路況以及預測短期未來的交通路況；然而，隨時間累積的歷史資料實際上隱含

了其路段上路況變化的習性與特徵。若能發掘出這些資訊，我們便能用於推測未

來長期的交通路況，進而增進許多交通資訊服務系統的效率與準確性。我們在此

研究中提出一個二層資料分群方法，從一路段的歷史交通資料探勘出其道路速度

的變化習性。 我們的方法是，首先估算該道路速度變化的基礎樣式，稱之為巨

觀估算，接著再針對交通尖峰時刻的速度樣式做細部估算，我們稱為微觀估算。

其中，此方法的輸入資料格式為時間序列資料，每條序列是連續具時間值的道路

速度紀錄。為了將眾多條時間序列資料分群，我們採用了專門用於量測時間序列

資料間相似度的方法。因此，在本研究實驗部分，我們分析了使用不同的時間序

列量測法於本二層分群法中效能之差異，以及使用不同分群演算法所帶來效能的

差異。另外，我們還提出了三種基於二層分群結果之交通預測函式，並分析了這

三種函式的預測效果。最後，在實驗中，我們的二層分群方法與統計領域中回歸

式的預測方法做比較，數據顯示我們的方法確實能帶來更好的準確度。

Clustering Traffic Sensing Data for Traffic Prediction:

A Two-Phase Clustering Approach

student：Chien-Han Jung

Advisors：Dr. Wen-Chih Peng

Institute of Computer Science

National Chiao Tung University

ABSTRACT

A modernized transport system usually maintains traffic databases with sufficient

historical data. While real-time traffic data can be used to estimate the present traffic

states and the short-term traffic forecast, the aggregated historical data actually imply

some traffic behaviors by which we can depict the future traffic patterns over a long

period and support the on-line traffic information services. In this work, we propose a

two-phase mining method to explore the speed patterns given the historical driving

data of one road segment. Generally, we estimate the speed patterns on a macroscopic

scale in the first phase, and then in the second phase we explore more peak-time

patterns on a microscopic scale from their macroscopic appearances. Additionally, the

input of our method consists of sequences of time series data recorded over numerous

days, and clustering on the sequences is performed based on the similarity measuring

of the time series data. Hence, in this work, we analyze the availability of several

frequently-used time series similarity measuring methods combined with the

clustering methods, and furthermore develop a traffic prediction model with three

kinds of predicting functions to examine our two-phase mining method. Finally, in the

experiment section, we analyze the performance of our two-phase mining method

adopting different selections of similarity measuring method with clustering method,

as well as the accuracy of the proposed three prediction functions.

誌 謝

回想這段研究的過程，其實充滿了很好的回憶--受到許多幫助及關懷的回憶。歷經大三開始做專題到研究所

這兩年，感謝彭文志老師的指導與關照，讓我參與專題製作、國際研討會 MDM 的舉辦以及 demo paper 展示、與

國科會合作的計畫、教育部舉辦的軟體比賽，以及碩士論文研究，真的得到了很多寶貴的經驗與知識。在我們的

前瞻資料庫系統實驗室，老師對我們的要求，如做學問態度需積極並謹慎，對己身任務需負責，與實驗室學長姐

弟妹多加交流與合作等，都是將來出社會仍然非常受用的訓練；因此覺得自己相當幸運，能成為這個實驗室的一

員，尤其是，實驗室的同伴們真的都非常友善，跟大家相處真的很開心。感謝有 01 學姊從大學專題以來的帶領，

我才能順利完成許多任務；還有感謝 Barry 學長，已畢業的 Oshin 學長，Dimension 學長，Young 學姊這些高強

的博班學長姊適時給予我指點建議；以及已畢業的碩士學長姐，至雯學姊，zvn 學長，vcore 學長總是很熱心給

與我討論研究問題及分享經驗；還有一起奮鬥度過歡笑淚水的 acrt，kp 張，Luc，廷威，我也總是受到你們的幫

助，多虧有你們這群熱血的好夥伴，我的碩士兩年生活變得很熱鬧有趣；還有貼心的學弟妹們，拍拍，kerker，

雅婷，wallman，堃偉，感謝你們總是在我慌亂時幫我一把，還有在最後的幾個月的鼓勵與關心對我而言都是很

重要的動力。最後感謝我的家人們，一直在我身旁支持並包容我，因為你們的陪伴，就是我的力量泉源。

Contents

1 Introduction 1

2 Related Work 6

2.1 Traffic Estimation and Prediction . 6

2.2 Time Series Forecasting . 7

2.3 Time Series Distance Function . 8

2.4 Fastest Path Searching . 8

3 Preliminary 10

4 Overview of Prediction Model: Framework and Method 13

4.1 Speed Prediction Based on Clusters . 13

4.2 Two-Phase Clustering Flow . 14

5 Two-phase Clustering Method 17

5.1 The Distance Measuring of Speed-Time Series Data 17

5.2 Clustering By Time Series Data Similarities 19

5.3 Speed Pattern Peak Finding . 22

5.3.1 Sliding-average smoothing . 23

5.3.2 First derivative sequence . 24

5.3.3 Two-way sliding window . 24

6 Speed Pattern Prediction Function 27

7 Experiments 30

7.1 Datasets and Setting . 31

1

7.1.1 Data Preparation . 31

7.1.2 Evaluation Measure . 32

7.2 Clustering Method Performance . 34

7.3 Evaluation of Prediction Models . 36

7.4 Evaluation of Time Series Distance Functions 37

7.4.1 The Accuracy in Normal Time Prediction 37

7.4.2 Accuracy in Peak Time Prediction . 37

8 Conclusion 44

2

List of Figures

1.1 Real data example on the Chubei-to-Hsinchu highway segment 4

4.1 Speed prediction framework . 14

4.2 Two phase clustering flow . 16

5.1 Chubei-to-Hsinchu highway traffic records . 21

5.2 Peak finding sample . 25

7.1 Clustering and regression methods: normal time speed error 35

7.2 Clustering and regression methods: peak time speed error 39

7.3 Conditions of best performance . 40

7.4 Best case of four time series similarities, Chubei-to-Hsinchu data set 41

7.5 Best case of four time series similarities, Hsinchu-to-Chubei data set 43

3

Chapter 1

Introduction

With more traffic data sources available and so more sufficient traffic data that can be ana-

lyzed, mining this data to get meaningful information is of great help to our transport systems.

The most important information is the driving speed on the road. This speed directly reflects

the traffic conditions one the road, and it is also the key to routing services such as fastest

path finding. The driving speed data can be either real-time or historical, and can be ob-

tained from different types of traffic detecting devices. For example, static sensors such as

inductive loop sensors and camera sensors are deployed on the roads, and usually we can

get speed data directly from the inductive loop sensors. In recent years, GPS sensors have

become commonly embedded in portable devices like smart phones, PDAs and mobile navi-

gators(TomTom, Garmin, etc.). Drivers use the applications on these portable devices while

traveling on the road, while at the same time the applications also record and send their GPS

trajectories, with speed information, to some traffic databases. In recent years, the estimation

of real-time traffic [15, 3, 25, 20], and short-term traffic forecasting [16, 18, 21, 27, 5, 7], or

on-line fastest path searching with real-time traffic conditions [22, 19, 26], have been the focus

of numerous research works. However, we believe that mining traffic patterns from off-line

historical data is also both meaningful and necessary. Our motivation comes from both the

applications in the real world and research problems.

Some real world applications, like Google map in some countries, have provided the func-

tion of traffic state prediction according to different weekdays and times. For this function, the

1

historical traffic data can not only support instant traffic data but can also provide information

about the common traffic behavior according to different weekdays. This function would be

even more valuable if it was able to predict the traffic states in the u upcoming week, based on

the recent historical traffic data. Sometimes drivers not only want to know the current traffic

state, but also the predicted traffic state two or more days in advance. Hence, for example,

drivers can get their traveling route several hours and even several days before starting off,

so as to plan their journey well. On the other hand, the commuter can overview the traf-

fic state each weekday and plan more routes to his/her workplace according to the different

weekday traffic situations. In the above examples, we mention the scenario of route planning,

which is also a common function of digital maps and portable devices. Route planning is

often viewed as the fastest path searching problem in research works [10, 14, 17, 22, 19, 26].

Besides the fact that off-line path searching problems need historical traffic data [10, 14, 17],

even on-line fastest path searching cannot just depend on the real-time traffic information

[22, 19, 26]. One reason is that the system may sometimes lack real-time data; another is that

the pre-computation of historical data can reduce on-line traffic forecasting costs.

The above mentioned scenarios imply that the traffic prediction based on historical data

is more likely to find a pattern of traffic states during a long-term period, such as one day or

one week, than to predict one traffic state value in the short-term. In this work, we consider

the pattern of traffic states during one period as a time series of speed values, and define the

predicted time series of speed values in one specific period as a speed pattern . If every road

has its historical data, then our goal is, that given a target road and a queried future time

period, we can predict a speed pattern during the period for this road. If we can predict the

speed pattern during one future period, we can also provide one predicted speed value at a

specific time point in that period. Since the prediction is based on off-line historical data

mining, we can infer a long-term future speed pattern without real-time traffic data, which

provides solutions to the above mentioned scenarios and existing research problems. First, we

can look ahead to future traffic states such as two or more days ahead or all of the days in the

upcoming week. Second, speed patterns created off-line can reduce the on-line computation

cost of fastest path searching. Still there exists one more benefit of mining speed patterns.

The speed pattern in fact stands for the most likely traffic behavior during a given time period

based on past experience. Consequently, once we have real-time traffic data on-line that can

2

be compared with the off-line computed speed pattern, we can easily detect the abnormal

traffic behavior if the real-time data differs greatly from the pattern. With the speed pattern,

we can reduce the on-line computation cost when detecting abnormal traffic behavior.

The speed pattern basically represents the common traffic behavior during a time period.

Take Figure 1.1 for example; we can roughly identify some periodic behavior appearing in the

historical speed record over several days. Assuming that there are no traffic accidents that

will cause abnormal traffic behavior in the future, we can expect that the periodic behaviors

will be repeated in the future. This is our concept of mining the speed patterns, that is, to

find the most frequently appearing periodic pattern from the historical data. However, with

detailed observation of historical data as in Figure 1.1, we can find that although the valley

wave happens in a certain periodic way, the shapes of the valley wave are not always the same,

and the lengths of the intervals between the waves are not equal. This observation leads to

two objectives. First, there may exist more than one kind of periodic behavior, so we should

find an adequate number of patterns that frequently happened and are believed to appear

in the future. Second, after we find one or more than one kind of pattern, such patterns

can be separated into sub-patterns according to some parts of their detailed wave shape. To

achieve these two objectives, our general concept is to develop a clustering method on a set

of time series data of historical speed records. In this work, we define that a sequence of time

series data is the accumulated speed-time records during one day, that is, during a period of

twenty-four hours. The reason why we segment the time series data this way is intrinsic. Since

traffic flow is generated by human activities on the road, and people schedule their lives by

the unit of days, i.e. 24 hours, cutting traffic patterns into days is natural and so an intuitive

truth. Figure 1.1 is a visualization example, where we delimit the continuous two-week time

series by day length (24 hours). To cluster the similar sequences of time series data, we need

to measure the distance between each of them. Hence, before the clustering step, we utilize

the time series distance function to measure the distance between time series data. Generally,

we can get speed patterns from the output clusters. However, we have some issues to deal

with while developing an effective method to achieve the above mentioned two objectives.

Since we utilize the time series distance function combined with the clustering method, we

should choose an adequate selection for the two steps. There are some existing works of

time series distance functions, such as Euclidean distance, DTW[4], and many other proposed

3

 0

 20

 40

 60

 80

 100

 120

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
S

pe
ed

(in
 k

m
/h

r)

Week

Figure 1.1: Real data example on the Chubei-to-Hsinchu highway segment, Taiwan, recorded
in 2011, May 16-29

methods, not to mention numerous classic clustering methods in data mining theories. Hence,

how to find the most effective selection of time series distance function with the clustering

method is an important issue. Second, to achieve our second objective, i.e. exploring the

sub-patterns of the valley waves among one general all-day speed pattern, we should develop

an extended phase following the first clustering phase. It is another issue that in the second

phase, we should find out the time series distance function that works well under the first phase

clustering conditions. There is still one more issue. With limited background knowledge of

realistic factors that influence the periodic traffic behaviors, how to predict the future traffic

based on our clustering results is the issue. For example, we find that pattern A and pattern B

are the most representative patterns of road R. If we want to predict the traffic state at time t

on a future day d, which pattern is the most likely to happen on the queried date d? Besides,

if pattern A is the predicted pattern on d, but the queried time t is in the peak time, i.e. the

valley wave in a traffic pattern, on d while we have explored the peak-time pattern A − p1

and A − p2 of pattern A, which peak-time pattern should we choose? With consideration of

these three issues, we have developed a two-phase clustering method along with three traffic

prediction functions to accomplish our two above mentioned objectives.

In this paper, we first propose a two-phase clustering method with time series speed data

as input for each target road segment. In the first clustering phase, the data series will be

clustered according to macroscopic scale time series similarities. In the second phase, for

each clustered time series group, the pieces of peak series data will be cut out and clustered

for the second time. This step is also performed as microscopic scale clustering. For

4

traffic prediction problems, the accuracy in peak-time traffic is the most important task;

hence the microscopic scale clustering in the second phase is our revision of the peak-time

traffic estimation. We then propose three traffic prediction functions that choose the output

patterns from the clustering results given a set of time-period features. By the above proposed

methods, for a target road, given the query time with its time-period features, our prediction

model will output a speed pattern during the queried time period or the speed value at the

queried time point. In conclusion, the main contribution of our work can be summarized as

the follows:

1. We propose a traffic prediction model generalized for a traffic service system. This

model provides driving speed predictions at any time at a given date. By considering

the defined features of that date, our model can output the speed pattern for the whole

day at once.

2. As our first-phase clustering method estimates the all-day speed pattern, it can detect

the peak-time interval and revise the peak-time pattern by an extended calculation.

Namely, our prediction model can tell the peak-time behavior and interval given a target

road and date, along with more precise peak-time traffic conditions.

3. We evaluate the performances of the most frequently used time series distance functions

combined with classic clustering methods to find the most effective selection for exploring

speed patterns with intensive experiments.

In the following sections, we first discuss some related topics and works in section 2,

then present the problem definition and data description in section 3. Section 4 introduces

our two-phase traffic prediction model using the framework description, and explains the

clustering method flow. Section 5 is the description of our clustering method along with the

specially formulated peak time finding method. Section 6 defines the three different prediction

functions. The last section is the evaluation of our method with a real data set.

5

Chapter 2

Related Work

2.1 Traffic Estimation and Prediction

The widespread use of GPS sensor embedded portable devices (smart phones, GPS loggers,

etc.) has provided more sources of traffic data besides static sensor data like loop detectors.

Due to this fact, new techniques and issues related to the problem of measuring or forecasting

traffic conditions have also arisen. For measuring traffic, numerous existing works have pro-

posed approaches to deal with either static sensor data [5] or GPS data [25, 20], such as to

estimate traffic conditions accurately when the data are not wide-spread in the road network

or not dense for some roads [3, 15, 24]. In this work, we assume that we have already ob-

tained sufficient data for every queried road and we focus on the prediction problem. Traffic

data from GPS sensors are usually sampled by individual moving objects, and hence form

trajectories: sequential points contain time and speed or location information. Some works

predict traffic in the road network by inferring the next movement of individual trajectories

[16, 18], such as Gaussian process regression [16] or statistical approaches [18]. The input

of this methods is limited to drivers’ trajectories, but we hope to deal with general traffic

data sources. Besides, they focus on inferring the next several steps of traffic conditions given

previous steps of conditions (drivers’ moving) before the current one, but we aim to mine the

traffic patterns of roads and directly infer several days in advance. The goal is thus different

from these works. Other works are not limited to trajectory sources, but the proposed meth-

6

ods such as autoregressive regression (AR) [21, 27], linear regression [5] and support vector

regression (SVR) [7] are also more suitable for predicting next-step traffic conditions with on-

line incoming data rather than the off-line pre-computations that predict future days’ traffic

behavior like our work in this paper.

2.2 Time Series Forecasting

We can see that regression models are frequently used in traffic prediction. In fact, these all

belong to state space models and have been popular in time series modeling and forecasting,

especially in econometrics such as stock prediction [2, 12]. Among the existing methods,

the most popular is ARIMA(Autoregressive Integrated Moving Average)[6]. ARIMA is a

representative statistical approach in econometrics, and a generalization of an autoregressive

moving average (ARMA) model. The latter consists of an autoregressive (AR) part and a

moving average (MA) part. Again, ARIMA model calculates the t step given the p previous

steps’ (in fact, the AR and MA parts need two previous referencing step parameters) real

data. Back to our goal in traffic prediction, we want to predict a whole day (24 hours), new

day traffic condition, or look ahead to three days ahead, just like the scenarios illustrated

in the introduction such as planning a trip several days in advance, or routing system pre-

computation. The steps we want to predict may involve hundreds of steps, and usually we

lack the previous hundreds of steps in our scenarios. The regression models such as ARIMA,

AR and SVR mentioned above are inefficient and difficult to apply to our situations. As a

matter of fact, our predictions are not made by extending the possible trend from the historical

time series. We have explained in the introduction that the traffic naturally forms a daily

pattern. Hence, instead, we view the daily time series as objects generated from a set of

classes, and each of the classes defines a kind of daily traffic pattern profile. Furthermore,

the classes even have extended sub-classes which define the ”peak-time patterns” embedded

in the parent classes. Hence, our approach differs significantly from the existing time-series

prediction works.

7

2.3 Time Series Distance Function

There are numerous existing time series similarity measuring methods, such as Euclidean

distance, DTW [4], LCSS [23], EDR [9], ERP [8] and many other proposed novel methods.

According to the experimental survey in Querying and Mining of Time Series Data: Ex-

perimental Comparison of Representations and Distance Measures [11], the conclusion is that

elastic measuring methods such as DTW, LCSS, EDR and ERP are significantly more ac-

curate than lock-step methods like Lp − norms[13] and DISSIM when the data set is not

huge. Moreover, the elastic measuring methods also generally outperforms some novel meth-

ods (TQuEST, SpADe) in accuracy. For comparison between the elastic measuring methods,

the experimental results also show that the edit distance based methods like LCSS, EDR and

ERP in fact have very close accuracy compared to DTW. Based on this conclusion in [11], we

implement DTW, EDR and LCSS for our time series data similarity measuring.

2.4 Fastest Path Searching

Thinking that the traffic states on roads may change all the time instead of being static,

recent works on fastest path searching have often defined the road network as a dynamic

road network. Some of the works view the path searching problem as a time-dependent

shortest path problem [10], that is, the routing algorithm should use the traffic condition at

the time when the road was actually driven. Hence, each edge in the graph has a function

for telling the traveling time length given a time point. This traveling-time function can be

transferred from a pattern of speed variation according to time axis, hence some of the works

say their methods use speed patterns [14, 17]. However, although the above works have detailed

methods for routing algorithms, they do not include much discussion of how the speed pattern

or traveling time functions are created. On the other hand, some of the works have proposed

a framework for a path searching system with real time traffic information from the road

network continually updating to the system [22, 19, 26]. In the previous works like [22, 19],

the fastest path re-evaluation is triggered by every traffic state alteration regarded as impacting

the present computed route. Without prediction of the upcoming traffic state alternation, the

above mentioned system is encumbered by the heavy cost of online computation, because it

8

has to deal with all updated traffic data. If the traffic pattern can be estimated off-line, the

path searching system will not always be tied up by real-time traffic data, but will only be

required when the updating traffic data are contrary to prediction.

9

Chapter 3

Preliminary

Our problem is that, given a road segment r, the historical speed-time data set of r, and a

query time tq, the proposed model should output a predicted speed value V . In this work,

we view the predictable road segments as those possessing sensors to record the driving speed

at each specific time point of a sampling frequency, no matter what kind of sensor it really

used. Due to this fact, the raw data point can be presented as a speed-time data tuple, 〈speed
value, time value〉. Note that our problem is to predict the speed of one given road segment

by its historical traffic data and not to consider data sources from other road segments, so we

do not add the road segment attributes, such as road ID, to the data tuple format. Since the

speed data are sampled continuously along the time axis, the data source becomes a kind of

time series data which is also a typical data type used in the data mining field. We define

the 〈speed value, time value〉 data sequence as speed-time series data to emphasize that

the time series data used in this work features only speed values.

Definition 1. (Speed-time Series data): The speed-time series data S is a sequence of

speed values, with each value si sampled at a specific time point ti, i.e.; S = [(s1, t1), . . . , (sn, tn)],

where n is the length of S.

According to the speed-time series data definition, a sequence S with its time value spread

over 24 hours of one specific date, is a daily speed-time series. The daily speed-time

series files of the past dates are the standard input format of our prediction model learning

10

process.

Definition 2. (Daily Speed-time Series): The daily speed-time series SD is a speed-

time series data[(s1, t1), . . . , (sn, tn)], where ∀ti ∈ [t1, . . . , tn], ti is located on the time points

during the 24 hours of the specified date D. For each pair of [ti, ti+1] in SD, the time gap

∆t = ti+1 − ti, and ∆t < Γg, where Γg is a system defined parameter.

In the experiments of the prediction model learning process, we set Γg as 10 minutes. With

the daily speed-time series files of the past dates, our model can learn to predict the speed

variation given a query date. This is the problem we aim to solve in this work. Formally

speaking, the output will be a sequence of daily speed-time series , but for a future date

on query Dq, and since the predicted sequence represents the average traffic state at each time

scale of query date, the time distance between each element is also equalized. We defined the

predicted time-speed sequence, which is the output of our prediction model, as the all-day

speed pattern.

Definition 3. (All-day Speed Pattern): The all-day speed pattern SDq is a speed-time

series data[(s1, t1), . . . , (sn, tn)], where ∀ti ∈ [t1, . . . , tn], ti is located on the time scales during

[00 : 00 24 : 00) on the queried date Dq. For each pair of [ti, ti+1] in SDq , τt = ti+1 − ti is a

system defined parameter.

In the experiments of the prediction model learning process, we set τt as 5 minutes, and

all the speed values use with km/hour units. With the standard input and output format

defined, we then present the problem definition below.

Definition 4. (All-day Speed Pattern Query): The all-day speed pattern query is that,

given a road segment r, a query date Dq, and its day features df(Dq) = 〈f1, f2, · · · 〉, the Speed

Prediction Model returns an all-day speed pattern SDq .

Another form of speed prediction problem is the query of a single time on the given query

date. Considering that the system applying this prediction model may send a query of this

kind, we give the alternative form of our problem definition below.

11

Definition 5. (Single-time Speed Query): The single-time speed query is that, given a

road segment r, a query date Dq with its day features df(Dq) = 〈f1, f2, · · · 〉, and the query

time tq, the Speed Prediction Model returns a speed value sq by referencing the all-day

speed pattern SDq which is simultaneously output by the Speed Prediction Model, where

sq = si and ti ≤ tq < ti+1, (ti, si) ∈ SDq .

12

Chapter 4

Overview of Prediction Model:

Framework and Method

In this section, we first present our speed prediction framework with Figure 4.1, and briefly

introduce the 2-phase clustering method with Figure 4.2.

4.1 Speed Prediction Based on Clusters

The main goal of our model is to predict the all-day speed pattern given a query date of a

target road segment based on historical speed records. Since the all-day speed pattern is figured

out at once, the single speed value at any queried time point during the queried date can be

obtained directly by looking up the all-day speed pattern. Moreover, according to the structure

of our 2-phase prediction model, the computation process can be separated into two parts,

the 1st phase operation and the 2nd phase operation. When receiving the queried date and

road segment, the 1st prediction model outputs the all-day speed pattern along with the

peak-time interval information. After the 1st phase operation, the queried time point will be

labeled as either normal-time query or peak-time query if the query is a single-time speed query

instead of an all-day speed pattern query. The normal-time query in fact only needs the 1st

prediction process. Note that the peak-time speed pattern is estimated in the 1st prediction

13

Date and DayType, Query timeDate and DayType

Peak-time Query
Normal-time Query

1111stststst Prediction Model :Prediction Model :Prediction Model :Prediction Model :Based onTime Series ClustersAll-day Speed Pattern,Peak Time Intervalpeak2222ndndndnd Prediction Model :Prediction Model :Prediction Model :Prediction Model :Based onPeak-Time Series ClustersAll-day with Peak-time Enhanced Pattern

Query in Peak?

All-day-time Query

No Yes
Predicted Speed

Figure 4.1: Speed prediction framework

model, too, but the speed values will be more precise after the 2nd phase operation. Hence,

if the system requires a more precise prediction for a peak-time query, the 2nd phase operation

should be executed then. By the 2nd prediction model, the revised peak-time pattern is

computed and embedded back into the all-day speed pattern. Consequently, after the 2nd

phase operation, the model can answer either a peak-time query or an all-day speed pattern

query precisely.

4.2 Two-Phase Clustering Flow

As shown in the Figure 4.2, we have developed a 2-phase model to solve the speed prediction

problem. The 2-phase prediction model learns to predict using the 2-phase clustering method.

14

For each target road segment, the driving speed has been continuously recorded day by day

during a past period such as two months. These raw traffic data are initialized as a daily

speed-time series as defined in the third section. These daily files are the input of the 2-

phase clustering method. In the first phase, the time series similarity measuring method

such as DTW is adopted to evaluate the distance between arbitrary pairs of daily speed-time

series. Then, for clustering the time series data, the classic clustering methods like K-means,

hierarchical clustering, and DBSCAN are all implemented. After the first time clustering, the

input daily speed-time series turns into several clusters, and some are noise. For those series

in the same cluster, the general speed variation during a whole day is viewed as more similar

than it is for other series which are not in their cluster. In the next phase, the method digs

more deeply into the shape of the peak-time patterns, where speed usually drops intensely to

a valley and climb back to normal driving speed. Here we develop a peak finding approach to

detect and cut out the peak-time interval by scanning the all-day speed pattern at once. The

daily speed-time series in the same cluster is averaged into one all-day speed pattern firstly,

then the peak finding approach is applied to find every representative peak-time interval from

each cluster’s all-day speed pattern.

In the second phase clustering, the daily speed-time series in one cluster will be separated

into sub-clusters according to their peak-time pieces. That is, for each daily speed-time series

in one cluster, the sequence segment fitting the peak-time interval of its own cluster will be

extracted. These peak-time pieces of speed-time series data are the input files of the second

phase clustering. The steps of the second phase clustering are the same as those of the first

phase, but they are performed for each of the cluster outputs from the first phase clustering

in order to find their own sub-clusters focusing on peak-time patterns.

15

cluster n...............

daily speed records
cluster n…..…..cluster 0

Time series clustering methodTime series clustering methodTime series clustering methodTime series clustering methodSimilarity Measuring MethodClustering Method
Peak findingPeak findingPeak findingPeak findingAverage series of a cluster

Time series Time series Time series Time series clustering clustering clustering clustering on on on on peak peak peak peak subsubsubsub----seriesseriesseriesseries cluster 0
……....cluster 0-1 ……...cluster n-1……

Figure 4.2: Two phase clustering flow

16

Chapter 5

Two-phase Clustering Method

In the last section we introduced the framework of our 2-phase clustering method. The details

of each steps of the clustering method are described in the following sections.

5.1 The Distance Measuring of Speed-Time Series Data

To cluster the speed-time series data, we need to measure the closeness between every input

sequence of speed-time series data. In the clustering process, each piece of speed-time series

data can be viewed as a point located in an abstract space, and the distances between these

points are usually figured by time series distance functions. It can be said that a time series

distance function quantifies the distance between the sequences of time series data as points

in the clustering space. Based on the observation in [11], which was also described in the

related works section, we chose to implement the elastic measuring methods DTW, LCSS,

EDR and ERP for our speed-time series data distance function. One important point about

speed-time series data is that time shifting constraint needs to be added when applying elastic

measuring methods. That is, the range of local time shift should be limited. We can not say

that the speed falling during morning hours is the same behavior as speed falling during night

hours, although the speed falling slope may look alike in the two cases. This is for an intuitive

reason. We define the time shifting constraint as ω. For example, if we set ω = 30(minutes),

the similarity of any two elements from the two sequences can be counted only when their

17

Table I: Notations
Symbols Meaning

S a speed sequence with timestamps [(s1,v, s1,t), · · · , (sn,v, sn,t)]
s1 the 1st element vector of S
s1,v the speed value of 1st element vector of S
s1,t the timestamp of 1st element vector of S
Rest(S) the sub-sequence of S without the first element: [(s2,v, s2,t), · · · , (sn,v, sn,t)]
ω time shifting constraint of elastic measuring
ε matching threshold on speed for edit distance based measuring methods: EDR, LCSS
g a constant value for ERP computing the distance for gaps

time distance is still below 30 minutes. The similarity measuring methods for speed-time series

data are formally described below, along with the notation table used in the formulas.

DTW (R, S) =





0 if m = n = 0

∞ if m = 0 or n = 0

∞ if |r1,t − s1,t| > ω

|r1,v − s1,v|+ min{DTW (Rest(R), Rest(S)), otherwise

DTW (Rest(R), S), DTW (R,Rest(S))}

ERP (R, S) =





∑n
1 |si − g| if m = 0

∑m
1 |ri − g| if n = 0

∞ if |r1,t − s1,t| > ω

min{ERP (Rest(R), Rest(S)) + |r1,v − s1,v|, otherwise

ERP (Rest(R), S) + |r1,v − g|,
ERP (R, Rest(S)) + |s1,v − g|}

EDR(R, S) =





n if m = 0

m if n = 0

min{EDR(Rest(R), Rest(S)) + subcost(r1, s1), otherwise

EDR(Rest(R), S) + 1, EDR(R, Rest(S)) + 1}
, where subcost(r1, s1) = 0 if |r1,t − s1,t| ≤ ω ∧ |r1,v − s1,v| ≤ ε

and subcost(r1, s1) = 1 otherwise

18

Table II: Notations
Time shifting Time scaling Noise Amplitude distance Metric

Euclidean very sensitive delicate X
DTW X X relatively sensitive delicate
ERP X X relatively sensitive delicate X
LCSS X X available coarse
EDR X X available coarse

LCSS(R, S) =





0 if m = 0 or n = 0

LCSS(Rest(R), Rest(S)) + 1 if |r1,t − s1,t| ≤ ω ∧ |r1,v − s1,v| ≤ ε

max{LCSS(Rest(R), S),

LCSS(R, Rest(S))} otherwise

Among the four methods, DTW was first proposed as an elastic distance function that

aims to find the optimal alignment between two time series sequences because the earliest

method, Euclidean distance, has been found to be very weak at handling noise and local time

shifting. DTW can handle local time shifting, but is still sensitive to noise. Later, LCSS

and EDR were proposed to measure distance allowing the skipping of some points to match

similar common subsequences. ERP is another method that handles local time shifting and

remains metric. In this work, we want to find the distance function that can deal with local

time shifting under a time shifting constraint, and can which deal adequately with noise, but

which does not allow too much amplitude shifting. We may even need two kinds of distance

functions of which one is optimal to find the general pattern in the first phase while the other

works better when finding the more delicate peak-time patterns. We first list the feature

table, Table. II, of the four distance functions, and the availabilities of these functions are

evaluated in the experiment section.

5.2 Clustering By Time Series Data Similarities

In this work, our main goal is to predict the one-day speed pattern given a query date and

the target road segment. With this pattern, the prediction model can report an estimated

19

driving speed given any queried time point during the day.

By observing the historical speed-time records, it can be discovered that the traffic behavior

of one road reflects similar patterns at the same time on different days. We further find that

there exist a few kinds of one-day patterns on different day types. For example, the peak and

off-peak time intervals are located very closely on some of the weekdays. However, when it

comes to the weekends, the traffic behavior is very likely to exhibit other patterns. In fact,

weekdays do not always exhibit only as one pattern, and moreover, Saturdays and Sundays

usually exhibit different patterns for some of the roads. It is obvious that categorizing traffic

patterns according to weekday and weekend is not specific enough. Due to this observation,

we believe that some basic day-types should have their own traffic behavior patterns. For

example with Figure 5.1, in our observing experiment of a chosen highway segment in Taiwan

(Chubei-to-Hsinchu), the Sunday time-speed records in May 2011 are very similar, appearing

to be peaceful and close to the speed limit for the whole 24 hours. Hence, if the path searching

system requires referencing the traffic condition of the Chubei-Hsinchu segment on a day that

is a Sunday, the prediction model can report that the speed value should be close to the speed

limit at all the query times throughout the whole day.

With the above observations, we have come up with the concept of finding the day-types

with their own speed patterns of a target road segment. For example, we know that it is not

specific enough to only define two day-types as weekdays and weekends, and the fact is that if

we gather all the Monday records of one road, they are not all the same kind of pattern; hence

we need to do clustering on the daily speed-time series data, and identify rules to conduct

different day-types to different clusters. However, the detailed shape of the peak-time pattern

may further turn into two more variations. Take the Saturday time-speed records of the

Chubei-to-Hsinchu highway segment in May for example(Figure 5.1). Most of the Saturday

traffic conditions tend to be congested (driving at a low speed) around noon; however, the

length of the peak time and the amplitude of the speed drop varies. This is our motivation for

proposing the second phase clustering, which aims to find more detailed types of peak-time

traffic patterns.

Since we decided to take clustering as our mining method, it is an issue to choose a

clustering algorithm that can lead our model to the best performance and accuracy. In this

work, we implemented K-means, hierarchical clustering and DBSCAN, which are three typical

20

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(a) Monday records

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(b) Tuesday records

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(c) Wednesday records

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(d) Thursday records

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(e) Friday records

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(f) Saturday records

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

Speed(in km/hr)

T
im

e(
24

 h
ou

rs
)

(g) Sunday records

Figure 5.1: Real data example on the Chubei-to-Hsinchu highway segment recorded in
May,2011

kinds of clustering algorithms. K-means is the most basic Partitional clustering approach. At

the initial step of K-means, the number of cluster centroids should be specified, that is, the

value of K of K-means should be assigned. For the initial centroids of the clusters, we choose

to randomly select them out. Afterwards, the K-means algorithm will recursively assign each

point to the cluster with the closest centroid and recompute the centroid of each cluster.

K-means terminates when the centroid of each cluster remains same as the one in previous

iteration. Since we take every sequence of time series data as one point in our clustering

process, the centroid of each cluster is the data point with the minimal aggregated distance

to all the other points in the same cluster. For the distance measuring between each point

to another, we have mentioned in the last subsection that we utilize the time series distance

functions: DTW, ERP, LCSS, and EDR. The hierarchical clustering algorithm we choose

to implement is the agglomerative clustering method. The basic agglomerative hierarchical

clustering method starts with the points as individual clusters, and merges the closest pair of

21

clusters at each step until only one cluster is left. There are two parameters that we need to

determine when applying the agglomerative clustering method to our model.

• plev: The partition level of the agglomerative hierarchical tree structure that partitions

the tree structure into its sub-trees at the cutting level plev as output clusters. The plev

of the root in the tree is set as 0.

• linkType: The definition of proximity between clusters, i.e., how to measure the distance

between clusters. Here we implement three basic proximity types for our agglomerative

hierarchical clustering: MIN, MAX and Group average.

The above mentioned three types of proximity definitions are the simplest ones among existing

methods. MIN defines cluster proximity as the proximity between the closest two points in

different clusters. On the contrary, MAX defines that with the farthest. Group average defines

proximity as the average pairwise proximities of all pairs of points from different clusters.

Still another clustering method for our model is DBSCAN, the most common density-based

clustering algorithm. For DBSCAN, two parameters should be given:

• Eps: The maximum radius of the neighborhood

• MinPts: The minimum number of points in an Eps-neighborhood of that point

In our experiments, the MinPts is initialized to be 2. After the distances between all the

input elements, that is, all the sequences of daily speed-time series, are measured, we then set

Eps as the value between minimum dist(R, S) returned value and the maximum dist(R,S)

returned value. Again, dist is one of the four time series distance functions: DTW, ERP,

LCSS, and EDR, used to measure the distance between different sequences of time series

data.

5.3 Speed Pattern Peak Finding

We referenced the peak finding Matlab tool and modified it into our own speed pattern peak

finding method. As mentioned in the third section, before the second phase clustering, the

peak-time interval should be figured out by inputting the all-day speed pattern SDq =

22

[(s1, t1), . . . , (sn, tn)] to the peak-finding method. The peak finding steps can be sumed up as

the following list.

1. Smooth the sequence SDq by sliding-average smoothing

2. Calculate the first derivative of smoothed SDq

3. Scan the first derivative sequence to find the zero-crossing point.

4. Start the two-way sliding window from the zero-crossing point, as the two-way sliding

window respectively moves toward left and right, determine whether it conforms to the

peak derivative requirements and stop the two-way sliding until all the requirements are

totally satisfied, or stop when any conflict with the requirements occurs.

In fact, after step 3, the existing method uses least-squares curve-fitting to estimate the po-

sition, height, and width at each detected peak location, and ignores the noise single which

does not fit the threshold of the peak height and width. However, the existing method is

used when the peak-time interval is required to be very accurately estimated, while the least-

squares curve-fitting needs extensive computation because it is used to infer the polynomial

equation fitting the given sequence data, and then uses the equation coefficients to infer the

peak height and width. This method is not efficient when applying it to the peak-finding case

in this work. Since the motivation for finding the peak-time interval of a speed pattern is

that we can cut out the peak-time pieces and do more detailed clustering on the peak-time

pattern, the peak-time interval estimation do not need to be very accurate, because even if

we make the peak-time interval slightly longer, the clustering quality will not be influenced,

and we can still save the real peak-time data points. On the other hand, our own solution

to find the peak-time interval in the fourth step can still estimate the interval correctly, and

it is only necessary to scan the sequence once, with time complexity O(n). In the following

subsections, we describe each step in detail.

5.3.1 Sliding-average smoothing

This smoothing simply replaces each point in the sequence with the average of m adjacent

points, where m is a positive integer called the smooth width. Given speed-time series data

23

S = [(s1, t1), . . . , (sn, tn)] and a smooth width m, the sliding-average smoothing function can

be expressed as

S̃j = {
∑k=j+rh

k=j−lh sj

m
, tj},

where lh = b (m−1)
2
c and rh = d (m−1)

2
e,

for j = lh to n− rh, n is the length of input sequence S

, in which S̃j is the jth element in the smoothed sequence S̃ for original sequence S. In the

experiments, we set m = 3. Figure 5.2(a) shows an example, where the cross-dotted sequence

is the original sequence, a real sample of speed-time series data, and the green-dotted sequence

is the smoothed sequence where m = 3. Smoothing eliminates the sawteeth shape of the raw

sequence. It is useful because the very small or narrow peaks appearing like sawteeth are

noise when we are finding a ”traffic jam time” from the real world data.

5.3.2 First derivative sequence

The first derivative of a sequence is the rate of change of y coordinate to x coordinate, in

mathematics, dy/dx, which is interpreted as the slope of the tangent to the sequence at each

point. Here we use the most simple differentiation concept to calculate the first derivative of

the given speed-time series data.

S ′j = { sj+1−sj−1

tj+1−tj−1
, tj},

for j = 2 to n− 1, n is the length of input sequence S

, in which S ′j is the jth element in the first derivative sequence S ′ for original sequence S. Since

the input sequence is an all-day speed pattern defined in section.3, each time scale ti+1 − ti

is a constant τt. Hence, tj+1 − tj−1 in the above equation is in fact equal to 2τ , which is a

constant, so we not then need to normalize the derivative.

5.3.3 Two-way sliding window

According to the meaning of tangent value presented in Section 5.3.2, the critical point in

the original peak curve is the zero-cross point in the first derivative curve. Before the critical

24

60708090100110120speed(km/hr) 數列2數列3original sequencesmoothed sequence

time(hh:mm)00:00 10:0005:00 15:00 20:00
(a) smoothing step

(b) first derivative and two-way sliding window

Figure 5.2: Peak finding sample

25

point is a speed falling series from a normal peace curve, hence the tangent value should

be negative. During the speed falling interval, in the normal traffic jam case, the driving

speed starts to decrease with a small degree and then decreases faster and faster. When

the traffic flow nearly reaches saturation point, the decrease in speed becomes slow again.

Mapping to the first derivative, before the zero-crossing point, the negative point breaks up

the peace line composed of a series of zero-around points and then the following are all negative

points, and the absolute value of the negative point first keeps increasing until achieving the

top(largest absolute y-axis value) and then decreasing until it arrives at the zero-cross point.

Vice versa, after the zero-cross point, the shape of the positive sequence in the first derivative

is symmetrical to that in the negative sequence, except that the y-axis value is located in the

positive field. To sum up, we want to use the above mentioned behavior of the first derivative

sequence while mapping to the peak interval of the original sequence.

Here we propose a two-way sliding window to help us detect the start time and end time

of the ”during-peak pattern” of the first derivative sequence. Intuitively, the rightward sliding

window aims to detect the end point of the ”during-peak pattern”, which moves towards

24:00, while the leftward sliding window moves in the opposite direction, towards 00:00, until

it detects the start point of the ”during-peak pattern”. The y-axis absolute value of points

in the current sliding window is averaged, so according to the ”during-peak pattern”, this

value should first climb, and then fall, until the value in the next sliding window does not fall

anymore. In our algorithm, we add a buffer mechanism to the two-way sliding window. This

is to avoid being too sensitive to some slight vibration of the derivative sequence, while still

conforming to the during-peak features in general.

26

Chapter 6

Speed Pattern Prediction Function

Prediction Function Based on WeekID: This prediction chooses the speed pattern of

the cluster containing the maximum number of the same weekID days identical to the

queried date weekID. We formally describe this function by the following definitions.

Definition 6. (first phase hit cluster): For each Ci ∈ 〈C1, . . . , Cn〉, the set of output

clusters of first-phase clustering, Ci = {SD1 , . . . , SDm}, where m is the element numbers

contained in Ci, and for each SDj
∈ Ci, its day feature df(Dj) = 〈WeekID on Dj〉, and

WeekID = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}. Let Weeknum(WeekID,Ci) =

|{SD|SD ∈ Ci, and df(SD) = WeekID}|. Given a query date Dq, the first phase

hit cluster is the cluster having max(Week num(df(Dq), Ci)) among the clusters set

Ci ∈ 〈C1, . . . , Cn〉.

Definition 7. (first phase pattern): Given a query date Dq, the first phase pat-

tern is the all-day speed pattern averaged from all the daily speed-time series

27

{SD1 , . . . , SDm} in the first phase hit cluster Cfirst.

Definition 8. (second phase hit cluster): Given the first phase hit cluster Cfirst, with

its sub clusters set output from the second-phase clustering cfirst,i ∈ 〈cfirst,1, . . . , cfirst,n〉,

and a query date Dq, the second phase hit cluster is the cluster with

max(Week num(df(Dq), cfirst,i)) among the cluster set cfirst,i ∈ 〈cfirst,1, . . . , cfirst,n〉

Definition 9. (second phase revised peak-time pattern): Given a query date Dq and the

second phase hit cluster cfirst,second, the revised peak-time pattern is the speed-

time series data averaged from all the speed-time series data {Speak,D1 , . . . , Speak,Dm}

in the second phase hit cluster cfirst,second, where each Speak,Di
∈ cfirst,second is the

cropped part of SDi
, i.e.; [(s1, t1), . . . , (sn, tn)], where ∀ti ∈ 〈t1, . . . , tn〉, peakstart ≤ ti <

peakend.

Prediction Function Based on Max Probability: This prediction directly choose the

biggest cluster and take its average speed pattern as the predicted pattern, no matter

whether in the first phase or the second phase clustering. The first phase pattern

and revised peak-time pattern definitions are identical to those in the Prediction

Function Based on WeekID, so we do not repeat them in this part.

Definition 10. (first phase hit cluster): For each Ci ∈ 〈C1, . . . , Cn〉, the set of output

clusters of first-phase clustering, Ci = {SD1 , . . . , SDm}, where m is the element numbers

contained in Ci. Let cluster size(Ci) = |{SD|SD ∈ Ci}|. Given a query date Dq, the

28

first phase hit cluster is the cluster with max(cluster size(Ci)) among the cluster

set Ci ∈ 〈C1, . . . , Cn〉.

Definition 11. (second phase hit cluster): Given the first phase hit cluster Cfirst,

with its sub clusters set output from the second-phase clustering cfirst,i ∈ 〈cfirst,1, . . . , cfirst,n〉,

and a query date Dq, the second phase hit cluster is the cluster with

max(cluster size(cfirst,i)) among the cluster set cfirst,i ∈ 〈cfirst,1, . . . , cfirst,n〉

WeekID and Max Probability Feature Combined Prediction This prediction uses the

weekID based prediction function as the first phase prediction, and utilizes the max

probability based prediction function as the second phase prediction.

first phase hit cluster:

The first phase hit cluster is the same as definition.6, that is, given a query

date Dq, the first phase hit cluster is the cluster with max(Week num(df(Dq), Ci))

among the cluster set Ci ∈ 〈C1, . . . , Cn〉

second phase hit cluster:

The second phase hit cluster definition is identical to definition.11, that

is, given a query date Dq, the second phase hit cluster is the cluster with

max(cluster size(cfirst,i)) among the cluster set cfirst,i ∈ 〈cfirst,1, . . . , cfirst,n〉.

29

Chapter 7

Experiments

In this section, we first introduce our data sets and related setting in Section 7.1.1, then

describe how we measure the performance of our method in Section 7.1.2. In Section 7.2, we

show the performance of our approach adopting the different clustering methods, and compare

all of the clustering results to another time series forecasting method, ARIMA. In Section 7.3,

We analyze the performance of different models we have proposed in this work. Furthermore,

we study the effects of using different time series distance functions in our two-phase clustering

approach in Section 7.3. Table I lists the notations used in this section.

Table I: Notations in experiment
Γg Boundary of time gap in the Definition 2, daily speed-time series
omega Time shifting constraint of DTW, ERP, LCSS and EDR
K The number of clusters to be determined in the initial step of K-means
plev The partition level of the agglomerative hierarchical tree structure
linkType The definition of proximity between clusters
MinPts DBSCAN parameter, default value is 2 in experiment
Eps DBSCAN parameter to be adjusted in experiment

30

7.1 Datasets and Setting

7.1.1 Data Preparation

Traffic data source: The real data set we used is acquired from the freeway traffic database of

the Taiwan National Freeway Bureau[1], with access to the database authorized in advance.

The official freeway traffic database receives real-time traffic data from all the inductive loop

sensors spread over Taiwan National Freeway Road Network every 3 to 5 minutes, and the

data received at every update time point were recorded as an XML file. Simultaneously, the

server in our laboratory copies the real-time updated XML file every 5 minutes. In this way,

our server stored the historical traffic data of the freeway road network for more than one

year.

Data set preparation: We extracted the speed data that was recorded by our target sensor

from a series of historical XML files, and transformed the speed data with time information

into a daily speed-time series , which is defined in Section 3. First, each data point we

transformed from one XML file contains fields of speed (km/hr), year, month, date, week-

day (Mon, Tue,..., Sun.), and time in the form of HH:MM. Second, all the data points are

separated into individual files according to their date values. That is, each file contains the

time series data with speed value during one day, 24hours, and each file is registered with

the year, month, date, and week number. Hence, the time series data in one date file obeys

Definition 2 in Section 3, the daily speed-time series definition, which is a data sequence

[(s1, t1), . . . , (sn, tn)], with time gap ∆t = ti+1 − ti < Γg, and here Γg is 10 minutes for our

data set while the average ∆t is 5 minutes. Hence, the average time series data size in one

file is 288 elements. The visualization sample can be referenced to Figure 5.1. In Figure 5.1,

although the files are grouped according to week, we can see that each colored line is one time

series of a file for one date.

Selected sensor: The target sensor for our evaluation is on the freeway segment from Chubei

to Hsinchu. Simultaneously, its opposite direction segment, that is, Hsinchu to Chubei, is also

selected as another target sensor. Chubei to Hsinchu is the most frequently passed segment by

the commuters in northern Taiwan, because Hsinchu Science Park in Hsinchu city is the capital

science industrial estate in Taiwan, and employs a huge number of employees in northern

31

Taiwan. Hence, the car flow from north cities to Hsinchu on working day mornings must

pass along the Chubei-to-Hsinchu freeway segment, and usually causes obvious jams. We

adopted this segment as the testing segment because we expected that it would have some

interesting regular traffic behaviors. On the other hand, the Hsinchu-to-Chubei segment is

known for traffic congestion in the evening when the commuters finish work. However, the

Hsinchu-to-Chubei traffic behavior is more complicated than that of the Chubei-to-Hsinchu

segment, as more kinds of drivers and not only the Science Park commuters frequently use

this segment. Hence, in our experiment section, we consider two classic traffic cases, (1) the

segment frequently passed by drivers to their workplace in the morning, and (2) the segment

frequently passed by drivers leaving their workplace in the evening; at the same time, traffic

in (2) is with less regular than (1) so we can evaluate the performance of our method under

different conditions of traffic complexity.

7.1.2 Evaluation Measure

Training and testing steps: In this experiment, we picked data for the days in March and

April, 2011, giving two months data as training data for our traffic prediction model. As for

the testing data, we picked the days from two weeks in May, 2011. In the training process,

as mentioned in last subsection, the input time series files were transformed from the training

data set in the form of Definition 2 daily speed-time series. Then, the files were analyzed

by the two-phase clustering method, and so the prediction functions were set. In the testing

process, the ground truth files were transformed from the testing data, and were also in the

form of a daily speed-time series. The queries were given the dates and weekday (Mon,

Tue, Wed, Thu, Fri, Sat, Sun) and for each queried date, we picked 15% of the normal-time

points randomly and 15% of the peak-time points randomly to test according to that date’s

ground truth.

Performance metrics: The performance of this work is evaluated by the average speed

error(km/hr), that is, the average speed difference between the predicted speed and the ground

truth speed. In our experiment, we measured the model performance in normal-time query

and peak-time query separately. Consequently, we have two kinds of averaged speed error,

normal-time error and peak-time error . Parameters of clustering methods: Since we

32

implemented three clustering algorithms: K-means, hierarchical clustering and DBSCAN, in

our model, when evaluating the performance of our approach with each clustering method, we

also needed to adjust the parameters for each clustering method and find the best value of their

parameters. These parameters are listed in Table I above and have been clarified in Section

5.2. For K-means, the K should be adjusted. For agglomerative hierarchical clustering, the

best plev and linkType should be found. For DBSCAN, we should find the best value of

MinPts and Eps.

Models to be evaluated: In this section, we discuss the performance of our proposed models

adopting three different prediction functions: (1) Prediction Function Based on WeekID

(2) Prediction Function Based on Max Probability, and (3) WeekID and Max Prob-

ability Feature Combined Prediction. Besides comparing the three different models, we

also tested the performance of the single-phase version of each model, that is, each model

only consisted of the 1st prediction model and did not use the 2nd prediction model to deal

with peak-time queries (Figure 4.1). However, the model(3) WeekID and Max Probability

Feature Combined Prediction means that it used the WeekID based prediction function

for the first phase and the Max Probability based prediction function for the second phase,

so it did not have a single-phase version since it is originally a two function mixed two-phase

model. To sum up, we have three main models to evaluate, and for model(1) and model(2),

there are two versions, the two-phase version and the single-phase version. In addition, for

each model, we have two kinds of speed error, normal-time error and peak-time error .

The two-phase version of models(1)(2)(3) have normal-time error and peak-time error, with

peak-time error output by their second phase prediction. The single-phase version of mod-

els(1)(2) have normal-time error as in the two-phase version, so we only put on their peak-time

error. On the other hand, model(3) has the same normal-time error as that of model(1) be-

cause they all use the WeekID based prediction function, so we also omit the normal-time

error. Consequently, there are seven error values in one chart here, listed as the following:

1. weekID based prediction model

• normal-time error

• single-phase peak-time error

• two-phase peak-time error

33

2. max probability based prediction model

• normal-time error

• single-phase peak-time error

• two-phase peak-time error

3. weekID and max probability mixed prediction model

• two-phase peak-time error

7.2 Clustering Method Performance

First of all, the accuracy is not only influenced by clustering algorithm but also by the time

series similarity measurement and the type of prediction function which we have defined in

Section 6. In this section we want to find the most suitable clustering algorithm for our

two-phase clustering approach. Afterwards, in the following sections, we discuss the effect of

adopting different time series similarity measurements and prediction functions. Hence, the

best performances achieved by the different clustering methods by adjusting other factors(time

series similarity measurement, prediction function) are selected for comparison. We evaluated

the performance of three clustering methods: K-means, hierarchical and DBSCAN in our two-

phase clustering framework. Furthermore, we implemented ARIMA(Autoregressive Integrated

Moving Average) [6], a popular statistical approach for time series forecasting, to compare

with our two-phase clustering approach.

Figure 7.1 and Figure 7.2 show the best performance achieved by the three clustering meth-

ods of the two-phase clustering model compared with ARIMA. First, for the speed error in

normal time, Figure 7.1 shows that either with the Chubei-to-Hsinchu data set(Figure 7.1(a))

or the Hsinchu-to-Chubei data set (Figure 7.1(b)), our prediction models using clustering

methods are better than ARIMA. K-means shows the lowest error in the Chubei-to-Hsinchu

data set; however it has the highest error rate in the Hsinchu-to-Chubei data set among the

three clustering methods. On the other hand, DBSCAN has a slightly higher error rate than

K-means in the Chubei-to-Hsinchu data set, but has the lowest error rate in the Hsinchu-

to-Chubei data set. The hierarchical method has the highest error rate among the three

34

(a) Chubei-to-Hsinchu data set (b) Hsinchu-to-Chubei data set

Figure 7.1: Clustering method and regression method comparison(1): speed error in normal
time

methods in both data sets. Second, Figure 7.2 shows the speed error in peak time when each

clustering method adopts the single-phase clustering approach and the two-phase clustering

approach. We can see that either with the Chubei-to-Hsinchu data set (Figure 7.2(a)) or the

Hsinchu-to-Chubei data set (Figure 7.2(b)), our two-phase prediction models using cluster-

ing methods are better than ARIMA, although the hierarchical method in the single-phase

prediction model has speed error greater than ARIMA. This shows that the two-phase clus-

tering model improves the prediction accuracy in reality, no matter what clustering method it

adopts. Looking into the results of the three clustering methods, DBSCAN in the two-phase

prediction model succeeds in both the Chubei-to-Hsinchu data set and the Hsinchu-to-Chubei

data set, while K-means has error very close to DBSCAN in the Hsinchu-to-Chubei data set.

Considering the performances in both normal time speed prediction and peak time speed

prediction, DBSCAN in the two-phase prediction model has the stability of performing with

higher accuracy among all the methods; hence we will focus on the two-phase clustering ap-

proach adopting the DBSCAN method and discuss the effects of the other two factors: time

series similarity measurement and prediction function with the DBSCAN clustering model in

the following sections.

35

Table II: The setting of clustering parameters of the best performances
Clustering method 1st-phase setting 2nd-phase setting

K-means K = 4 K = 2
hierarchical plev = 2 plev = 3
hierarchical linkType =group average linkType =group average
DBSCAN MinPts = 2 MinPts = 2

DBSCAN
Eps = 0.73 ∗ data.length

for LCSS
Eps = 96(accumulated

speed difference) for DTW

7.3 Evaluation of Prediction Models

We have the results of the clustering algorithm performance evaluation in Section 7.2: DB-

SCAN can lead our two-phase clustering approach method with to the best performance. In

this section, with the DBSCAN clustering method, the best performance that can be achieved

by different prediction models was found. For example, Figure 9(a) and Figure 10(a) show

the normal-time error. According to the model list shown in Section 7.1.2, although model(1)

and model(2) have single-phase and two-phase versions, the normal-time errors are directly

output in the first phase; hence model(1) and model(2) have just one kind of normal-time

error. Additionally, according to Section 7.1.2, model(3) uses the same prediction function in

the first phase as model(1) does, so we also ignore the normal-time error of model(3) in all

the following charts in this section. Figure 9(a) shows that model(1) (as well as model(3))

generally performs better than model(2) when dealing with normal-time queries. When the

data set is changed to Hsinchu-to-Chubei, as shown in Figure 10(a), model(1) is better than

model(2) for most of the time series distance functions.

Next, Figure 9(b)(c), Figure 10(b)(c) represent the peak-time error. The color bar labels

the model type and the phase version. For example, M(1) 2ph means that the error bar shows

the best performance of Model(1) using the two-phase version to deal with peak-time queries,

while M(1) 1ph uses only the first phase of model(1) to deal with the peak-time queries.

Clearly, in Figure 9 and Figure 10, it can be found that models in two-phase version, that is,

M(1) 2ph, M(2) 2ph, and M(3), perform better than their single version. This result proves

that the second phase a the prediction model really improves the accuracy of the peak-time

queries.

36

7.4 Evaluation of Time Series Distance Functions

We have proved in Section 7.3 that the two-phase clustering structure outperforms the single-

phase clustering method. The usage of time series distance function in the first-phase influ-

ences both the accuracy of normal-time error returned in the first-phase and peak-time error

returned in the second-phase. The usage of the time series distance function in the second-

phase directly influences the peak-time error returned in the second-phase. We explain and

conclude the results in the following subsections.

7.4.1 The Accuracy in Normal Time Prediction

With the Chubei-to-Hsinchu data set, Figure 9(a) shows that LCSS outperforms the other

three time series distance functions for normal-time error. With the Hsinchu-to-Chubei data

set, the result is similar in that LCSS adopted to model(1), the weekID based prediction model,

outputs the smallest speed error. The second most accurate results are provided by DTW.

Now we know that if we adopt LCSS for the first-phase clustering we will have the smallest

normal-time error ; however, it is more important that adopting LCSS for the first-phase will

lead to the smallest peak-time error.

7.4.2 Accuracy in Peak Time Prediction

With the trying of all the time series distance functions for the first-phase clustering, we found

that no matter what kind of distance function we used, adopting DTW for the second-phase

clustering results in the smallest peak-time error when compared with using other distance

functions in the second-phase clustering. Hence, we just need to compare four kinds of two-

phase time series distance function combinations: DTW-DTW, ERP-DTW, EDR-DTW, and

LCSS-DTW. Figure 9(c) shows the result for the Chubei-to-Hsinchu data set. In Figure 9(c),

DTW-DTW and LCSS-DTW have very close results with the smallest error for model(3) (

theweekID and max probability mixed prediction model). On the other hand, Figure 10(c)

shows the result for the Hsinchu-to-Chubei data set. Still, DTW-DTW and LCSS-DTW

outperform ERP-DTW and LCSS-DTW according to the average performance of the three

models. However, we can see that the smallest peak-time error achieved by the LCSS-DTW

37

set with model(3), the weekID and max probability mixed prediction model (noted as Wk-

max in figure). Moreover, the result of normal-time error in Figure 9(a) and Figure 10(a)

also shows that using LCSS in the first-phase clustering produces the smallest error, which

we previously have mentioned. Conclusively, with the comprehensive results from the two

different data sets, we can say that using LCSS as the first-phase time series distance function

and DTW for the second-phase suggests the best performance for our two-phase clustering

approaches, while adopting DBSCAN as our clustering algorithm.

38

(a) Chubei-to-Hsinchu data set

(b) Hsinchu-to-Chubei data set

Figure 7.2: Clustering method and regression method comparison(2): speed error in peak
time

39

(a) Chubei-to-Hsinchu

(b) Hsinchu-to-Chubei

Figure 7.3: Conditions of best performance

40

Figure 7.4: Best case of four time series similarities, Chubei-to-Hsinchu data set

41

42

Figure 7.5: Best case of four time series similarities, Hsinchu-to-Chubei data set

43

Chapter 8

Conclusion

We aim to explore the speed patterns from historical traffic data of one road segment. Once the

speed patterns are figured out, given a query time point or query time interval of the road, we

can predict the speed values by referencing the speed patterns. In this paper, we have proposed

a two-phase clustering method to mine the speed patterns given a set of time series data with

speed value. In each phase of clustering, the similarity of each pair of input time series data

is measured. Afterwards, the clustering algorithm clusters the time series data according to

the measured similarities that are transformed as distances between these sequences of time

series data. However, we found that the peak time of one speed pattern tends to have more

complicated sub-patterns within one general all-day speed pattern. Hence, the proposed two-

phase clustering method is designed to estimate the speed patterns on a macroscopic scale in

the first phase, and furthermore determines the peak-time patterns for each general pattern

on a microscopic scale. Moreover, we evaluate four commonly-used time series similarity

measuring methods: DTW, EDR, LCSS, and ERP, with three typical clustering methods: K-

means, hierarchical clustering and DBSCAN, to find the most effective selection for exploring

speed patterns. In the experiment section, our speed prediction method is evaluated by our

three proposed prediction functions and with real data from sensors on freeway segments.

The experiment results show that adopting LCSS as the first phase similarity measurement

and DTW as the second phase with the DBSCAN clustering method is the best suggested

selection. Our prediction method has accuracy of less than 3km/hr speed error during normal

44

time, and has an error rate of between 5km/hr and 13km/hr according to different complexities

of traffic behavior on the target road.

45

Bibliography

[1] Taiwan area national freeway bureau. http://www.freeway.gov.tw/English/Default.aspx.

[2] Andrew and Harvey. Chapter 7 forecasting with unobserved components time series

models. volume 1 of Handbook of Economic Forecasting, pages 327 – 412. Elsevier, 2006.

[3] A. Bejan, R. Gibbens, D. Evans, A. Beresford, J. Bacon, and A. Friday. Statistical mod-

elling and analysis of sparse bus probe data in urban areas. In Intelligent Transportation

Systems (ITSC), 2010 13th International IEEE Conference on, pages 1256 –1263, sept.

2010.

[4] D. J. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns in Time Se-

ries. In Proceedings of KDD-94: AAAI Workshop on Knowledge Discovery in Databases,

pages 359–370, Seattle, Washington, July 1994.

[5] P. J. Bickel, C. Chen, J. Kwon, J. Rice, E. V. Zwet, and P. Varaiya. Measuring traffic.

Statistical Science, 22(4):581–597, November 2007.

[6] G. Box, G. Jenkins, and G. Reinsel. Time series analysis: forecasting and control. Fore-

casting and Control Series. Prentice Hall, 1994.

[7] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han. Online-svr for short-term

traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl.,

36:6164–6173, April 2009.

[8] L. Chen and R. Ng. On the marriage of lp-norms and edit distance. In Proceedings of

the Thirtieth international conference on Very large data bases - Volume 30, VLDB ’04,

pages 792–803. VLDB Endowment, 2004.

46

[9] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving ob-

ject trajectories. In Proceedings of the 2005 ACM SIGMOD international conference on

Management of data, SIGMOD ’05, pages 491–502, New York, NY, USA, 2005. ACM.

[10] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent shortest paths over large graphs.

In Proceedings of the 11th international conference on Extending database technology:

Advances in database technology, EDBT ’08, pages 205–216, New York, NY, USA, 2008.

ACM.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining

of time series data: experimental comparison of representations and distance measures.

Proc. VLDB Endow., 1:1542–1552, August 2008.

[12] J. Durbin and S. Koopman. Time series analysis by state space methods. Oxford statistical

science series. Oxford University Press, 2001.

[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-

series databases. In Proceedings of the 1994 ACM SIGMOD international conference on

Management of data, SIGMOD ’94, pages 419–429, New York, NY, USA, 1994. ACM.

[14] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag. Adaptive fastest path

computation on a road network: a traffic mining approach. In Proceedings of the 33rd

international conference on Very large data bases, VLDB ’07, pages 794–805. VLDB

Endowment, 2007.

[15] R. Herring, A. Hofleitner, P. Abbeel, and A. Bayen. Estimating arterial traffic condi-

tions using sparse probe data. In Intelligent Transportation Systems (ITSC), 2010 13th

International IEEE Conference on, pages 929 –936, sept. 2010.

[16] T. Idé and S. Kato. Travel-time prediction using gaussian process regression: A

trajectory-based approach. In SDM, pages 1183–1194, 2009.

[17] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a road network with

speed patterns. In Proceedings of the 22nd International Conference on Data Engineering,

ICDE ’06, pages 10–, Washington, DC, USA, 2006. IEEE Computer Society.

47

[18] H.-P. Kriegel, M. Renz, M. Schubert, and A. Züfle. Statistical density prediction in traffic

networks. In SDM, pages 692–703, 2008.

[19] C.-C. Lee, Y.-H. Wu, and A. L. P. Chen. Continuous evaluation of fastest path queries on

road networks. In Proceedings of the 10th international conference on Advances in spatial

and temporal databases, SSTD’07, pages 20–37, Berlin, Heidelberg, 2007. Springer-Verlag.

[20] C.-H. Lo, W.-C. Peng, C.-W. Chen, T.-Y. Lin, and C.-S. Lin. Carweb: A traffic data

collection platform. In Proceedings of the The Ninth International Conference on Mobile

Data Management, pages 221–222, Washington, DC, USA, 2008. IEEE Computer Society.

[21] T. Nakata and J.-i. Takeuchi. Mining traffic data from probe-car system for travel time

prediction. In Proceedings of the tenth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, KDD ’04, pages 817–822, New York, NY, USA, 2004.

ACM.

[22] Y. Tian, K. C. K. Lee, and W.-C. Lee. Monitoring minimum cost paths on road networks.

In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, GIS ’09, pages 217–226, New York, NY, USA, 2009.

ACM.

[23] M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering similar multidimensional trajec-

tories. In Proceedings of the 18th International Conference on Data Engineering, ICDE

’02, pages 673–, Washington, DC, USA, 2002. IEEE Computer Society.

[24] L.-Y. Wei, W.-C. Peng, C.-S. Lin, and C.-H. Jung. Exploring spatio-temporal features

for traffic estimation on road networks. In Proceedings of the 11th International Sympo-

sium on Advances in Spatial and Temporal Databases, SSTD ’09, pages 399–404, Berlin,

Heidelberg, 2009. Springer-Verlag.

[25] J. Yoon, B. Noble, and M. Liu. Surface street traffic estimation. In Proceedings of the

5th international conference on Mobile systems, applications and services, MobiSys ’07,

pages 220–232, New York, NY, USA, 2007. ACM.

48

[26] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical

world. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’11, pages 316–324, New York, NY, USA, 2011. ACM.

[27] C. Zhang, S. Sun, and G. Yu. A bayesian network approach to time series forecasting

of short-term traffic flows. In Intelligent Transportation Systems, 2004. Proceedings. The

7th International IEEE Conference on, pages 216 – 221, oct. 2004.

49

