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摘要 

  業界在對固態硬碟做雛形設計時，除了離線的靜態效能模擬之外，亦對線上

的即時模擬有很強烈的需求。本研究基於建構一個即時的模擬環境，可在作業系

統內造出一個虛擬磁碟，而對該虛擬磁碟的讀寫動作會即時地導入固態硬碟模擬

器，並由模擬器算出所需的快閃記憶體動作，接著由此環境產生對應之時間延

遲。此一模擬環境可讓使用者即時修改其固態硬碟的軟硬體設計，並立即以該虛

擬固態硬碟進行線上存取，而提供設計者更直覺的效能觀感，並可立刻進行架構

上的微調。此年度相關技術議題包括該模擬環境與作業系統互動的作業系統核心

架構，以及如何利用少量真實記憶體來模擬大容量的固態硬碟的技術。 

 

 

關鍵字：固態硬碟，效能模擬，作業系統 
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Abstract 
  When prototyping the architecture and firmware of an SSD, we found that 

Industry also has strong demands for real-time (on-line) simulation in spite of off-line 

performance simulation. This project developed a real-time SSD simulation 

environment. Specifically, this simulation environment creates a virtual disk in the 

host operating system. Designers can read and write the virtual disk with ordinary 

applications, the virtual drive forwards the I/O requests to the SSD simulation tool, 

which computes how many flash operations and how much time these requests take, 

and then the virtual drive simulates the I/O latencies. This approach provides designs 

a more intuitive and responsive approach for prototyping the design of an SSD. The 

technical issues of this project year include the interaction between the host operating 

system and the virtual drive and a method to create a very large virtual disk with only 

a limited RAM overhead. 

 

 

Keywords：Solid-state disks, performance simulation, operating system 
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1. INTRODUCTION 

Recently, flash-based solid-state disks (SSDs) start replacing 

traditional hard drives in mobile computers. Designing high performance 

SSDs is a very challenging task because of complexity of SSDs hardware 

architectures, and firmware algorithms. One practical problem that 

industry faces is how to combine hardware/software design options for 

the best performance under a specific niche market. So far, there are some 

off-line simulation tools [2] [1] [4] [3] can be used to test firmware and 

hardware combinations. 

Because the existing off-line simulation tools are hard to use, it cause 

the long development and test cycle for SSDs designing. we found that 

industry has strong demands to reduce the modify-and-test cycle time. On 

the other hand, off-line simulation has a problem is that the trace files are 

collected from HDDs, the request interarrival time will subject to 

underlying storage device, if collect trace from a slower device, 

interarrival time will increase. so the trace files collected from HDDs can 

not express the real SSDs IO response. 

This paper will present a On-line SSD simulation environment, and 

includes a fast hardware-software prototyping tool for SSD design, it 
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features a set of highly simplified programming interfaces and a rich 

collection of hw/sw design options. Specifically, this simulation 

environment consists of two parts, sim- engine and virtual drive, the 

sim-engine calculates the IO delay of the SSD, and the virtual drive can 

creates a virtual disk in the host OS. Designers can read and write the 

virtual disk with ordinary applications, the virtual drive forwards the I/O 

requests to the sim-engine, which calculates how many flash operations 

and how much time these requests take, and then the virtual drive 

simulates the I/O latencies. This tools aims at reducing the cost of 

debugging and help to find out the best design without lengthy 

trial-and-error cycles. 

There was some technical challenges of virtual platform: a) the 

sim-engine how to provides a simple and uniform ssd HW / SW 

abstraction method, let designers can change the designing of SSDs easily. 

b) how the virtual platform to interacts with the OS, achieve the 

capability of virtual disk. c) how the sim-engine calculates the IO delay 

accurately, and simulate the IO delay by the virtual drive. d) how the 

virtual drive to creates a very large virtual disk with only a limited RAM 

overhead. 
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2. HARDWARE/SOFTWARE SIMULATION 

2.1  Hardware Abstraction 

The SSDs HW-architectures as shown in Figure 1, we can see that 

the ”gang” is the channels conected by same chip enable line(CE), each 

channel must does the same read or write operation. If the channels 

without conected by same chip enable line, like the Figure 1(b), the each 

channel can does the read or write operation Independently. 

The ”interleve” is like the conception of pipeline of computer architecture, 

each chip can be operate the read or write command independently when 

other chips is busy in the same channel. 

In our virtual platform, we used a timing engine to simulate parallel 

hardware operations, if a operations completed, it will notice other 

simulation modules. In the other words, the time of Repetition of parallel 

hardware operations are calculated only once. 

 

Figure 1 SSD Inter-chip architecture 

 



 

‐ 4 ‐ 
 

2.2  Firmware Abstraction 

The minimum write unit of Flash memory is a page, but a page 

cannot be rewritable unless it be erase. But the minimum erase unit of 

Flash memory is a block, for performance reasons, the SSDs use 

out-of-place data placement method, as shown in Figure 2, and this 

method have to use the mapping table to record information of data, and 

it needs Garbage-Collection(gc) to recover free space. The FTLs 

performs mapping and gc of SSDs. 

Block 0 Block 1

0 20 1 2 3

: Invalid Data : Valid Data : Free Page
 

Figure 2 OUT-OF-PLACE DATA PLACEMENT 

We designed a set of FW abstraction APIs in our virtual platform, 

and defined three abstract elements of FTLs shared, as shown in Figure 3. 

Here we show that how can we model the behaviors of FTLs using these 

primitives. There is a NK[6] FTL. As shown in Figure 3(a), the index 

service of FTLs is to deal address mapping, so we not only record the 

relationship bwtween logical block address(LBA) and phisical block 

address(PBA), but also have to record the relationship bwtween lofical 
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page address(LPA) and phisical page address(PPA). The association 

service represent the relationship between Data Sets of FTLs, for example, 

how many data blocks corresponds to a log block. As shown in Figure 

3(b), the prioritization service is used to selected a victim block in GC. 

association

proritizationindex

 

Figure 3 Abstract Firmware Layer 

2.3  Configuration Example 

We define HW environment: 4 Ind-Channels, 1 bank, 1 plane, 1 

interleave level. And Flash Chip characteristics, shown as below: 

NUMBER OF GANG = 1; 

CHANNEL PER GANG = 4; 

CHIP PER CHANNEL = 1; 

PLANE PER CHIP = 1; 

hwAPI->SetupFlashChip(Chip Character); 

About firmware, as shown in algorithm 1 the FW API can do: 1) if 

the write operation smaller then one page and this page was write before, 

we do read modify write. 2) write this page to log block, and use API 
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handle GC or get new log block. 3) modify index, tied logical page 

address and physical page address together. 4) group the logical page 

address and log block (association). 5) if have no free space, do GC.  

Algorithm 1 FW API: BAST FTL 

for	handle	a	page	do	

oldWritePPAQueryIndex(pageindex);	

if	operation	¡	one	page	size	then	

*handle	read	modify	write*/	

end	if	

	

while	Write(1	page)	<	0	do	

if	(have	no	Current	log	block	then	

DoGetOneF	reeLogBlock();	

ModifyIndex(pageindex,	blockindex);	

else	

DoGarbageCollection();	

ModifyIndex(pageindex,	blockindex);	

end	if	

AccessBlockQueryBlock(blockindex);	

end	while	

	

ModifyIndex(pageindex,	blockindex);	

AssignGroupUnit(pageindex,	blockindex);	

	

if	have	no	free	log	blocks	then	

DoGarbageCollection();	

end	if	

end	for 

Compare the BAST FTL code with a truly SSD development 

platform. Use our fw API can reduced more then 75 percent of lines of 

source code. 
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3. VIRTUAL DRIVE: ON-LINE SIMULATION 

We proposed a conception of on-line simulation, as shown in Figure 

4. There is a virtual drive in the kernel mode of OS, designer can create 

and control a virtual disk like use a real disk, unlike the user mode file 

system[8] only handle user data, virtual platform will produces I/O delay 

of the HW/FW combinations at virtual disk, designer can test and use 

virtual disk at any time, this method of design GW/FW combinations is 

more intuitive and more responsive, can reduce the modify-and-test 

cycles time. 

As shown in figure 4, There are some issues: 1) OS interaction and 2) 

metadata identification, and 3) I/O delay computation. we will discuss 

these issues in rest of this section. 

 
Figure 4 SSD virtual platform on-Line simulation evironment 
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3.1  Interacting with the Host OS 

As previously mentioned, we had design a HW/FW abstraction API 

in our virtual platform. For purpose to design SSDs HW/FW easily, this 

HW/FW abstraction API have to keep in user mode of OS. 

 

Figure 5 kernel mode and user mode sync event flow 

So we must do synchronization between kernel mode and user mode 

of OS. As shown in Figure 5, there have two shared event, A and B, and a 

shared memory C, the sim-engine be set in ”wait” status and wait for A. 

The following we will use the item 5-1 to explain the first item of Figure 

5, and so on. Virtual drive will received the I/O request packets(IRPs) 

from application, and put them to a queue, as shown in item 5-1, then use 

thread to handle this queue. thread put info of simulation required to the 

C and set A to notice sim-engine in user mode, as shown in item 5-2, then 

it be set to ”wait” status. 

When sim-engine be notice by A, as shown in item 5-3, it will start 
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up and get info from C and start to simulation, and put the IO delay info 

in C. We wll calculate how may time to used to simulation and OS mode 

switch overhead, when simulation done, sim-engine will set B, as shown 

in item 5-4, and thread will start up and load the delay info from C and 

produces virtual I/O delay, and complete the IRP, as shown in item 5-5, 

then keep going to deal metadata. We will verified virtual I/O delay in 

experiments. About OS mode switch overhead, we will explain in section 

IV. 

On the other hand, the sim-engine may also implement scheduling 

policies for out-of-order request completion. 

3.2  Metadata Identification 

In order to simulating a very large SSDs with limited RAM space, 

we proposed the conception of Metadata Identification. 

The metadata is the data of data,on the other words, its index of data, 

and it is small portions among all the data, the file systems can works 

well with only store it’s metadata, and cause the disk Benchmark 

tools(IOmoter, ATTO, etc.) will not to verify the data write to disks when 

in benchmark, so those Benchmark tools can works in virtual disk with 

only store the file systems metadata. 
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For example, when we format a 250GB disk to a NTFS volume, the 

size of metadata of this disk is only occupy 74.46MB of storage space, so 

we can reduce RAM footprints of this SSD virtual platform by metadata 

identification method, Sivathanu[7] proposed a method to identify ”live 

data”, but this method is focus in data content identification, not 

metadata. 

 
Figure 6 driver metadata identification rule database conception 

To do Metadata Identification, a challenge is different file Systems 

has different structures, so we had implement a ”rules database” in our 

virtual drive, as shown in Figure 6, the rules database includes many 

metadata identification rules with file systems, through this database we 

can find and store the matadata of different File Systems. We will discuss 

tow samples rules of metadata identification methos with NTFS and ext2 
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in rest of this section. 

In NTFS(New Technology File System) environment, the main 

metadatas is all store in the MFT(Master File table). First, in the disk boot 

sector content, we can have know that where is the MFT store in, and 

fortunately, every MFT entries is a ”record header”, and we can identify 

these records through parse the data content in or virtual drive, then we 

can store these records to maintain the NTFS execution well, as shown in 

Figure 6. 

The previous work [9] just recognizes the metadata of fixed location 

of EXT2 file system, so it can’t identified ”directory i-node” in EXT2’s 

Block Group, because the directory of EXT2 is not stored in a fixed 

location. our ext2 metadata identification method can identify the 

directory of EXT2. As shown in Figure 6. First, we can parse the i-node 

data content, then compare i-node number with the i-node and block 

bitmap, if the i-node is a directory i-node, we store this metadata in the 

memory. 

3.3  IO delay simulation 

There are two problems about IO delay simulation: the HW time 

spending, and the OS timing overhead. 
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Figure 7 IO delay simulation - store metadata only 

The IO delay simulation have two modes: store metadata only, and 

store real data. If we do not consider the OS timing overhead, when the 

sim-engine generate a device IO delay, then subtract the sim-execution 

time, and delay in kernel mode, as shown in Figure 7(a). Virtual platform 

can store real data, as shown in Figure 7(b), the device IO delay have to 

subtract sim-execution time and data handle time. The seek time of HDDs 

will break the virtual IO delay accuracy, can use ram-disk device to solve 

it. Cause the virtual platform used events signaling to synchronize 

sim-engine and virtual drive, it has some overhead of signaling of kernel 

mode and user mode. On the other head, the processes in user mode will 
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be schedule, the scheduler will trigger context switch between user 

processes, it may affects the virtual platform simulation accuracy. 

To minimize the impacts of OS mode switch overhead and context 

switch between user processes, we use some methods to deal this problem. 

First, We get the processor’s time stamp counter(TSC) to calculate the 

cpu cycle time used to events signaling, in other words, we use a 

calibration phase to compute the event signaling overhead. Second, we 

put the delay of virtual platform in the OS kernel mode, to avoid the 

competition with user process. Third, we run the sim-engine with high 

priority, to avoid the virtual platform affected by context switch. 

There are symbols denotation and methods for calculating virtual IO 

delay, as shown in Table 1. 

Symbol Denotation 

tevent 
tex 
tbusdly 
tchipbsy 
tdviodelay 

OS event signaling overhead. 
sim-engine execution time. 
bus delay time. 
flash chip busy time. 
device IO delay time (simulation). 

 

The tevent and tex are calculated by TSC, and the treqdly is the cost time 

of handle a request at multi-channel environment. 
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4. EXPERIMENT 

In this section, we have two partial of experiments, First is verify 

accuracy of the virtual platform, in this partial, we will compare the 

virtual platform with a real SSD. second is test the SSD HW and FW 

designing in the real disk workload. We do simulation validation by 

comparing the benchmark results (IOmeter and ATTO) of using our 

virtual platform and the real platform (i.e., GP5086) and performance 

results of installing Office using two different SSD designs. 

We configure the virtual platform with the same HW/FW architecture 

of real platform in section ”Configuration Example” already. As shown in 

the following table, we can see the virtual platform virtual I/O delay error 

less then 5 percent, the reason of error is that the Program/Erase time of 

Flash memory chip will varies with the changes of temperature and 

voltage. 
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To test the our methods to deal events signaling overhead and context 

switch between user processes, we use FFT-z tool to Increase CPU 

utilization and test virtual platform, as shown in the following table. 

Cause the switch overhead is little effect, and virtual delay in kernel can 

reduce the impact of process schedule, the virtual platform in high stress 

environment can maintain virtual delay accuracy. 

To comparing the performance of installing Office using two 

different SSD designs, we set the common environment of them: 32GB 

size, 256MB overprovision. 

First, See the HW-arch of two different design, as shown in Figure 8. 

We define the chip number in 8, and change the channel number with 2 to 

4. We can observed that if there has more channels, the data process more 

parallel, so it has lower response time in GC, but more channels will split 

the overprovision, 
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it will cause frequent GC. 
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Figure 8 installing Office using two different channel architectures of SSDs 

Then we will compare two different FW-design, NK 16:32 and 

FAST[5], as shown in Figure 9. We can see the the FAST cant limited log 

block associativity, so in GC, the FAST response time is higher than NK, 

means that in this workload FAST will makes SSD freeze. 
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Figure 9 installing Office using two different sector-translating algorithms 
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5. CONCLUSION  

We present a virtual platform for solid-state disks, and design a 

abstracted HW/FW interfaces in user mode for easy to design SSDs, 

virtual platform can do on-line simulation for fast test-and-modify cycles. 

The virtual platform can store metadata only, and creates huge SSDs 

using limited RAM space, in experiment, we do Simulation accuracy is 

validated using real products, the timing accuracy error is less than 5 

percent, ,and we comparing the performance results of installing Office 

using two different SSD designs. 
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