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Design and Implementation of a virtual platform for solid-state disks

Student : Ying-Chieh Lee Advisor : Dr. Li-Pin Chang

Department of Computer and Information Science
National Chiao Tung University

Abstract

When prototyping the architecture and firmware of an SSD, we found that
Industry also has strong demands for real-time (on-line) simulation in spite of off-line
performance simulation. This " project - developed .a real-time SSD simulation
environment. Specifically; this simulation environment creates a virtual disk in the
host operating system..Designers can read and write the virtual disk with ordinary
applications, the virtual drive forwards the 1/0 requests to the SSD simulation tool,
which computes how many flash-operations and how much time these requests take,
and then the virtual.drive simulates the I/O latencies. This approach provides designs
a more intuitive and responsive approach for prototyping the design of an SSD. The
technical issues of this project year include the interaction between the host operating
system and the virtual-drive and a method to create a very large virtual disk with only
a limited RAM overhead.

Keywords : Solid-state disks, performance simulation, operating system
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1. INTRODUCTION

Recently, flash-based solid-state disks (SSDs) start replacing
traditional hard drives in mobile computers. Designing high performance
SSDs is a very challenging task because of complexity of SSDs hardware
architectures, and firmware algorithms. One practical problem that
industry faces is how to combine hardware/software design options for
the best performance under a specific niche market. So far, there are some
off-line simulation tools [2] [1] [4] [3] can be used to test firmware and
hardware combinations.

Because the existing off-line simulation tools are hard to use, it cause
the long development and test cycle for SSDs designing. we found that
industry has strong demands to reduce the modify-and-test cycle time. On
the other hand, off-line simulation has a problem is that the trace files are
collected from HDDs, the request interarrival time will subject to
underlying storage device, if collect trace from a slower device,
interarrival time will increase. so the trace files collected from HDDs can
not express the real SSDs 10 response.

This paper will present a On-line SSD simulation environment, and

includes a fast hardware-software prototyping tool for SSD design, it



features a set of highly simplified programming interfaces and a rich
collection of hw/sw design options. Specifically, this simulation
environment consists of two parts, sim- engine and virtual drive, the
sim-engine calculates the 10 delay of the SSD, and the virtual drive can
creates a virtual disk in the host OS. Designers can read and write the
virtual disk with ordinary applications, the virtual drive forwards the 1/0
requests to the sim-engine, which calculates how many flash operations
and how much time these requests take, and then the virtual drive
simulates the 1/O latencies.—This .tools aims at reducing the cost of
debugging and. help to find out the best design without lengthy
trial-and-error cycles.

There was some technical challenges of wvirtual platform: a) the
sim-engine how to provides a simple and uniform ssd HW / SW
abstraction method, let designers can change the designing of SSDs easily.
b) how the virtual platform to interacts with the OS, achieve the
capability of virtual disk. ¢) how the sim-engine calculates the 10 delay
accurately, and simulate the 10 delay by the virtual drive. d) how the
virtual drive to creates a very large virtual disk with only a limited RAM

overhead.



2. HARDWARE/SOFTWARE SIMULATION

2.1 Hardware Abstraction

The SSDs HW-architectures as shown in Figure 1, we can see that
the “gang” is the channels conected by same chip enable line(CE), each
channel must does the same read or write operation. If the channels
without conected by same chip enable line, like the Figure 1(b), the each
channel can does the read or write operation Independently.
The ”interleve” is like the conception ofpipeline of computer architecture,
each chip can be operate the-read or write command. independently when
other chips is busy in the same channel.

In our virtual platform, we used-a timing engine to simulate parallel
hardware operations, .if ‘a operations-completed; it will notice other
simulation modules. In'the other words, the-time of Repetition of parallel

hardware operations are calculated only once.

BusO
CEO 1
BusO  Busl BusO Busl —] Chip
CEO CEO CEl CEl
o i e L
Chip Chip Chip Chip =1 Chip
a ~ Synchronized-Channel b ~ Independent-Channel ¢ ~ Interleave

Figure 1 SSD Inter-chip architecture



2.2 Firmware Abstraction

The minimum write unit of Flash memory is a page, but a page
cannot be rewritable unless it be erase. But the minimum erase unit of
Flash memory is a block, for performance reasons, the SSDs use
out-of-place data placement method, as shown in Figure 2, and this
method have to use the mapping table to record information of data, and
it needs Garbage-Collection(gc) to recover free space. The FTLs

performs mapping and«gc of SSDs.

Block O Block 1
B0 5>~ (BE00

Ny Invalid Data D: Valid Data I:I: Free Page

Figure 2 OUT-OF-PLACE DATAPLACEMENT

We designed a set of FW abstraction APIs in our virtual platform,
and defined three abstract elements of FTLs shared, as shown in Figure 3.
Here we show that how can we model the behaviors of FTLs using these
primitives. There is a NK[6] FTL. As shown in Figure 3(a), the index
service of FTLs is to deal address mapping, so we not only record the
relationship bwtween logical block address(LBA) and phisical block

address(PBA), but also have to record the relationship bwtween lofical

-4-



page address(LPA) and phisical page address(PPA). The association
service represent the relationship between Data Sets of FTLs, for example,
how many data blocks corresponds to a log block. As shown in Figure

3(b), the prioritization service is used to selected a victim block in GC.

Free
LBA 5 2}? (1) 201 8 block PBA| 'PBA| PBA
. X3 95110 e | 1 | 102
En=—————y 11 Allocate
L2P PBA O PBA 2 Recvele
A x4 L2
' Rl 13 Y £
i 5 16 14 VictimPBA| |PBA PBA
x |7 15 block |13
PBA 1 PBA 3
Data block Log block GC record
TimeStamp.-> PBA
Log PBA <= LPA GC overhead -> PBA
Data. PBA <-> Log PBA Endurance -> PBA
a) Index, Association b) Prioritization

Figure 3/Abstract Firmware Layer

2.3 Configuration Example
We define HW environment: 4 -Ind-Channels, 1 bank, 1 plane, 1

interleave level. And Flash Chip characteristics, shown as below:

NUMBER OF GANG =1,

CHANNEL PER GANG = 4;

CHIP PER CHANNEL = 1;

PLANE PER CHIP = 1;
hwAPI->SetupFlashChip(Chip Character);

About firmware, as shown in algorithm 1 the FW API can do: 1) if
the write operation smaller then one page and this page was write before,

we do read modify write. 2) write this page to log block, and use API
-5-



handle GC or get new log block. 3) modify index, tied logical page
address and physical page address together. 4) group the logical page

address and log block (association). 5) if have no free space, do GC.

Algorithm 1 FW API: BAST FTL

for handle a page do
oldWritePPA €QueryIndex(pageindex);
if operation j one page size then
*handle read modify write*/
end if

while Write(1 page) < 0 do
if (have no Current log block then
DoGetOneF reeLogBlock();
ModifyIndex(pageindex, blockindex);
else
DoGarbageCollection();
ModifyIndex(pageindex, blockindex);
end if
AccessBlock €QueryBlock(blockindex);
end while

ModifyIndex(pageindex, blockindex);
AssignGroupUnit(pageindex, blockindex);

if have no free log blocks then
DoGarbageCollection();
end if
end for

Compare the BAST FTL code with a truly SSD development
platform. Use our fw API can reduced more then 75 percent of lines of

source code.



3. VIRTUAL DRIVE: ON-LINE SIMULATION

We proposed a conception of on-line simulation, as shown in Figure
4. There is a virtual drive in the kernel mode of OS, designer can create
and control a virtual disk like use a real disk, unlike the user mode file
system[8] only handle user data, virtual platform will produces 1/0 delay
of the HW/FW combinations at virtual disk, designer can test and use
virtual disk at any time, this method of design GW/FW combinations is
more intuitive and more responsive, can.reduce the modify-and-test
cycles time.

As shown in figure 4, There are some-issues: 1) OS interaction and 2)
metadata identification, and-3) I/O _delay computation.. we will discuss

these issues in rest of this section.

(OEE
User mode Apps

Kernel mode

Virtual 10 delay

-

File system interface

FAT32| | NTFS || EXT2

=
Block device interface

<>
VirtualD
rive

Figure 4 SSD virtual platform on-Line simulation evironment

A very large logical disk
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3.1 Interacting with the Host OS

As previously mentioned, we had design a HW/FW abstraction API
in our virtual platform. For purpose to design SSDs HW/FW easily, this
HW/FW abstraction API have to keep in user mode of OS.

Sim ' -
engine Read/Write
Operations
User mode

Kernel mode

IRP complete
Read / write b -
w

meta data e I I/O Request Packets Queue

Virtual
drive

Figure 5 kernel mode and user mode sync event flow

So we must do synchronization between kernel mode and user mode
of OS. As shown in Figure 5, there have two shared event, A and B, and a
shared memory C, the sim-engine be set in ”wait” status and wait for A.
The following we will use the item 5-1 to explain the first item of Figure
5, and so on. Virtual drive will received the 1/O request packets(IRPs)
from application, and put them to a queue, as shown in item 5-1, then use
thread to handle this queue. thread put info of simulation required to the
C and set A to notice sim-engine in user mode, as shown in item 5-2, then
it be set to "walit” status.

When sim-engine be notice by A, as shown in item 5-3, it will start

-8-



up and get info from C and start to simulation, and put the 10 delay info
in C. We will calculate how may time to used to simulation and OS mode
switch overhead, when simulation done, sim-engine will set B, as shown
in item 5-4, and thread will start up and load the delay info from C and
produces virtual 1/0 delay, and complete the IRP, as shown in item 5-5,
then keep going to deal metadata. We will verified virtual 1/0 delay in
experiments. About OS mode switch overhead, we will explain in section
V.

On the other hand, the-sim-engine may also implement scheduling
policies for out-of-order request completion.
3.2 Metadata Identification

In order to simulating a very large SSDs with limited RAM space,
we proposed the conception/of Metadata Identification.

The metadata is the data of data,on the other words, its index of data,
and it is small portions among all the data, the file systems can works
well with only store it’s metadata, and cause the disk Benchmark
tools(IOmoter, ATTO, etc.) will not to verify the data write to disks when
in benchmark, so those Benchmark tools can works in virtual disk with

only store the file systems metadata.



For example, when we format a 250GB disk to a NTFS volume, the
size of metadata of this disk is only occupy 74.46MB of storage space, so
we can reduce RAM footprints of this SSD virtual platform by metadata
identification method, Sivathanu[7] proposed a method to identify “live

data”, but this method is focus in data content identification, not

metadata.
) NTFS:
Read / write I/O Request Packets
/ / g Parse the record header
l p rcd
Rules
database |~ "TeetT e | T
EXT2:
| Lookup - table/] Parse direntry
compare with bitmap
Blk num, inode num
aoc—] l l
10000 Block Inode
000 bitmap bitmap
Access metadata

Figure 6 driver metadata identification rule database conception

To do Metadata ldentification, a challenge is different file Systems
has different structures, so we had implement a "rules database” in our
virtual drive, as shown in Figure 6, the rules database includes many
metadata identification rules with file systems, through this database we
can find and store the matadata of different File Systems. We will discuss

tow samples rules of metadata identification methos with NTFS and ext2

-10 -



in rest of this section.

In NTFS(New Technology File System) environment, the main
metadatas is all store in the MFT(Master File table). First, in the disk boot
sector content, we can have know that where is the MFT store in, and
fortunately, every MFT entries is a ”record header”, and we can identify
these records through parse the data content in or virtual drive, then we
can store these records to maintain the NTES execution well, as shown in
Figure 6.

The previous work [9]-just recognizes the metadata of fixed location
of EXT?2 file system, so it can’t identified “directory I-node” in EXT2’s
Block Group, because the directory of EXT2 is not: stored in a fixed
location. our ext2” metadata identification method can identify the
directory of EXT2. As shown in Figure 6. First, we can parse the i-node
data content, then compare i-node number with the i-node and block
bitmap, if the i-node is a directory i-node, we store this metadata in the
memory.

3.3 10 delay simulation
There are two problems about 10 delay simulation: the HW time

spending, and the OS timing overhead.

-11 -
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:0S event signaling —
Device I/0 delay (simulation)
Start to simulatio . .
€XeC Simulation and
User mode time delay over
(a) OS event signaling averhe B ------------
Kernel mode ===y | TTThP———— N e
Handle
T r"';_ Thread }— »| Virtual disk I/O delay
B metadata
IRPs Queue IRP start IRP complete
|
time
—
) ) Device 1/0 delay (simulation)
Start to simulation E——
R_/W Simulation and
time |
User mode N ———— delay over
(b) 0Osevent signaling overhead ﬁ ﬁ{;
Kernelmode  peeecbeeem | G A \
/"'L_T_*_‘E'EE‘?_.’\ »| Handle [ Virtual disk
w|| rl..... r||w data f I/Odelay |
IRPs Queue IRP start IRP complete

Figure 7 10-delay-simulation - store metadata only

The 10 delay simulation have two modes: store metadata only, and

store real data. If.we do not consider the OS timing overhead, when the

sim-engine generate a device 10 delay, then subtract the sim-execution

time, and delay in kernel made, as shown in Figure 7(a)

can store real data, as shown in Figure 7(b), the device

subtract sim-execution time and data handle time. The seek time of HDDs

. Virtual platform

1O delay have to

will break the virtual 10 delay accuracy, can use ram-disk device to solve

it. Cause the virtual platform used events signaling to synchronize

sim-engine and virtual drive, it has some overhead of signaling of kernel

mode and user mode. On the other head, the processes in user mode will

-12 -



be schedule, the scheduler will trigger context switch between user
processes, it may affects the virtual platform simulation accuracy.

To minimize the impacts of OS mode switch overhead and context
switch between user processes, we use some methods to deal this problem.
First, We get the processor’s time stamp counter(TSC) to calculate the
cpu cycle time used to events signaling, in other words, we use a
calibration phase to compute the ‘event signaling overhead. Second, we
put the delay of virtual platform in the OS kernel mode, to avoid the
competition with user process. Third, we run the sim-engine with high
priority, to avoid the virtual platform affected by context switch.

There are symbols denotation and methods for calculating virtual 10

delay, as shown in Table 1.

Symbol Denotation
tovent OS event signaling overhead.
tex sim-engine execution time.
thusdly bus delay time.
tehipbsy flash chip busy time.
taviodelay device 10 delay time (simulation).
Table 1: Symbols table

The tevent and tey are calculated by TSC, and the tqqy is the cost time

of handle a request at multi-channel environment.

-13 -



OS event signaling overhead = switch count Xtecyent

sim execution time = t.,

tbusd!yﬁ +‘tchipbsy
tdviodela.y = max

tbusdlyN + tchipbsy

Virtual disk 1/O delay = tguiodetay - (tex + tevent)

-14 -



4, EXPERIMENT

In this section, we have two partial of experiments, First is verify
accuracy of the virtual platform, in this partial, we will compare the
virtual platform with a real SSD. second is test the SSD HW and FW
designing in the real disk workload. We do simulation validation by
comparing the benchmark results (IOmeter and ATTO) of using our
virtual platform and the real platform (i.e., GP5086) and performance
results of installing Office using two different SSD.designs.

We configure the virtual-platform with the same HW/FW architecture
of real platform in section ”Configuration Example” already. As shown in
the following table, we can see the virtual platform virtual 1/0 delay error
less then 5 percent, the reason of error is that the Program/Erase time of

Flash memory chip will varies ‘with the changes of temperature and

voltage.

Benchmark GP5080 Metadata Realdata
|OMeter IOPS 6.47 6.37 6.12
|OMeter 1O RespTime(ms) 154.3 155.9 162.6
ATTO 512K SeqWrt(byte) 15070 14519 15209
ATTO 512K SeqRd(byte) 33372 33522 31602
ATTO 8M SeqWrt(byte) 15007 15803 15796

ATTO 8M SeqRd(byte) 33316 33904 32646
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Benchmark Normal High stress
IOMeter IOPS 6.37 6.24
IOMeter 1O RespTime(ms) 155.92  160.20
ATTO 512K SeqWrt(byte) 14519 14869
ATTO 512K SeqRd(byte) 33522 32483
ATTO 8M SeqWrt(byte) 15803 15779
ATTO 8M SeqRd(byte) 33004 33313

To test the our methods to deal events signaling overhead and context
switch between user processes; we use .FFT-z tool to Increase CPU
utilization and test wvirtual platform, as shown in the following table.
Cause the switch overhead-is-little effect, and. virtual delay in kernel can
reduce the impact of process schedule; the virtual platform in high stress
environment can.maintain virtual delay accuracy.

To comparing® the «performance of installing Office using two
different SSD designs, we set the common environment of them: 32GB
size, 256MB overprovision.

First, See the HW-arch of two different design, as shown in Figure 8.
We define the chip number in 8, and change the channel number with 2 to
4. We can observed that if there has more channels, the data process more
parallel, so it has lower response time in GC, but more channels will split

the overprovision,
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it will cause frequent GC.

microsecond
4000

3500

3000

2500

—2ch 4chip
4ch 2chip

2000

1500

1000

Figure 8 installing Office using two different channel architectures of SSDs

Then we will compare two different. FW-design, NK 16:32 and
FAST[5], as shown in Figure-9. We_can see the the FAST cant limited log
block associativity, so in GC, the FAST response time is.higher than NK,
means that in this.workload FAST will makes SSD freeze.

microsecond
2000 ‘

180q -

160q -

140q 1

1209 +

—FAST
NK 16:32

1009

80Q

600 1 ——

400 u —

200 1 —

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 9 installing Office using two different sector-translating algorithms
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5. CONCLUSION

We present a virtual platform for solid-state disks, and design a
abstracted HW/FW interfaces in user mode for easy to design SSDs,
virtual platform can do on-line simulation for fast test-and-modify cycles.
The virtual platform can store metadata only, and creates huge SSDs
using limited RAM space, in experiment, we do Simulation accuracy is
validated using real products; the timing.accuracy error is less than 5
percent, ,and we comparing the performance results of installing Office

using two different SSD designs.
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