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摘   要 

近年來，各國致力於智慧型運輸系統的開發，以期能透過即時的交通訊息傳

輸與整合來提升交通運輸品質。對於一般大眾，若能從中獲得即時的交通壅塞資

訊則是更加的實用。目前，由攝影機所構成的交通監控系統已成為交通訊息偵測

的主流，然而大部分的研究僅限於監控影片中交通事件的自動分析，例如交通事

故與違規事件，但這無法幫助我們得知當下車流的壅塞情形。所以，處理監控影

片以提供民眾最即時的交通壅塞資訊是迫切需要的。在本論文中，我們提出了一

個適用於白天與晚上交通監控影片的壅塞程度評估系統能將壅塞程度分為五個

等級。 

想要從影片中評估交通壅塞程度，視訊處理的技巧與相關的知識是不可或缺

的。對於白天的影片，我們利用背景相減法來找出道路上的車子，而在晚上的影

片中，則是透過車頭燈的偵測來找出車子的位置。當車子擷取出來之後，我們使

用虛擬的偵測器來蒐集交通訊息，藉此即時地評估所偵測到的車流壅塞程度。除

此之外，我們也針對道路偵測、車流方向判斷與車道偵測等問題提出解決方法，

以提升整個系統的即時性與完整性。最後，我們利用高速公路上的交通監控影片

來驗證我們所提出系統的性能，並獲得了令人滿意的結果。 
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Abstract 

 

In recent years, intelligent transportation system is developed to promote the 

quality of the traffic transportation. In general, concerns of the traffic control center are 

traffic management, vehicle control, and traffic safety. However, they are not the 

issues that people concern most. Instead, the situation of traffic congestion is much 

more useful for the public. In addition, traffic surveillance systems have been widely 

used for monitoring the roadways. There have been many researches on video analysis 

of traffic activities such as traffic accidents and violations, but these researches still 

cannot help people get to know the traffic congestion situation. Therefore, we intend to 

develop techniques to process traffic surveillance videos for providing people with 

instant traffic congestion information. In this thesis, a traffic congestion classification 

framework is proposed for identifying the traffic congestion levels in daytime and 

nighttime surveillance videos. The degrees of traffic congestion are classified into five 

levels: jam, heavy, medium, mild and low. 

In order to analyze the traffic congestion levels from videos, image processing 

techniques and the knowledge of classification are indispensable. In the proposed 
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framework, moving vehicles are extracted by background subtraction during the day 

and by headlight detection at night. Afterward, virtual detectors and virtual detection 

line are utilized to evaluate and classify the traffic congestion levels in daytime and 

nighttime surveillance videos, respectively. Moreover, methods of bidirectional 

roadway detection and lane detection are proposed to extract the consistent features of 

roadway for the requirements of real-time response and robustness of the frameworks. 

In the experiments, we use real freeway surveillance videos captured at day and 

night to demonstrate the performances on accuracy and computation. Satisfactory 

experimental results validate the effectiveness of the proposed framework. 

 

Keywords: traffic congestion, roadway detection, lane detection, nighttime, headlight 

detection, virtual detector, virtual detection line, intelligent transportation system 
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Chapter 1. Introduction 

 

Traffic surveillance systems have been widely used for monitoring roadways in 

recent years. Unfortunately, the repository of the captured videos is so large that it is 

almost impossible to manually understand the contents of the videos. In fact, it is 

useful to utilize these traffic video data which can be processed to extract abundant 

traffic information for real-time intelligent transportation applications. Therefore, 

plenty of researches have been focused on automatic traffic events analysis such as 

traffic accidents, violation, and congestion. In this thesis, we investigate the event that 

the public concern most: roadway traffic congestion. 

In the past, when traffic jams occurred, the police or drivers would inform the 

traffic control centers, and people detoured to avoid the traffic jams after radio station 

broadcasted that information. Nowadays, a variety of sensors such as loop detector, 

infrared detector, and Closed Circuit Television camera are used to gather the instant 

traffic information in traffic control system. However, the cameras are the particular 

devices that not only can observe the traffic situation but also record all events that 

happen on roadways all the time, which provides us with more plentiful traffic 

information. Moreover, due to the advantage of non-invasive installation, the cameras 

have distributed over all freeways and the main roadways in metropolises. Thus, it 

facilitates the possibility of the establishment of the complete traffic information. If a 

traffic surveillance system can automatically analyze the level of traffic congestion 

from traffic surveillance videos, the congestion message can be immediately provided 

for the public. Moreover, with the rapid development of intelligent mobile devices 

such as smart phone and personal digital assistant, drivers can earlier get traffic 

information and recommended alternate routes for avoiding traffic jam. 
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Aiming at the benefits arising from integration of video analysis technique and 

intelligent mobile devices, real-time classifying the traffic congestion in daytime and 

nighttime surveillance videos is the goal we are going to achieve in this thesis. The 

traffic congestion is classified into five levels: jam, heavy, medium, mild, and low. Jam 

is the situation that the vehicles fully occupy the roadways and almost all of the 

vehicles move slowly or completely stop. Heavy indicates that most of the vehicles on 

the roadway run slowly but seldom stop. In medium level, the difference from 

aforementioned levels is that all vehicles can move smoothly, and there still are many 

vehicles moving on the roadway. Mild means that the number of vehicles is much less 

than that in medium level and the vehicles move at normal speed. Low denotes that 

only few vehicles pass through roadway. Figure 1 shows the examples of video frames 

in five congestion levels from surveillance videos. 

 

   
(a) (b) (c) 

  

(d) (e) 
Figure 1. Captured frames in five congestion levels. (a) Low. (b) Mild. (c) Medium. (d) 
Heavy in the right side of roadway. (e) Jam in the left side of roadway. 
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In order to analyze the traffic information from video, image processing 

techniques and knowledge of classification are essential. In general, procedure of 

analyzing video comprises selection of the region of interest, vehicle detection, vehicle 

tracking, and activity analysis. Nevertheless, in most of the existing works, a 

fundamental problem is that the performance of video analysis may not be stable with 

the varied environments. For example, a large number of vehicles may lead vehicle 

occlusion and cause the failures of vehicle segmentation. Moreover, vehicles which 

have similar features such as color, shape, texture, and moving direction increase the 

difficulty in vehicle tracking. On the other hand, a critical issue is that image 

processing is always time-consuming. For the requirement of real-time response, 

developing efficient frameworks and algorithms of video analysis is an important and 

inevitable challenge. Consequently, how to quickly and accurately evaluate the traffic 

congestion from traffic surveillance videos is the core problem in our work. 

In this thesis, we propose a real-time traffic congestion classification framework 

which consists of daytime and nighttime modules to automatically process the daytime 

and nighttime surveillance videos for identifying the traffic congestion levels. For 

daytime surveillance videos, the moving vehicles on the roadway are extracted by 

background subtraction and shadow elimination technique. Afterward the extracted 

vehicles are used to calculate the important traffic parameters including traffic flow, 

traffic speed, and traffic density. Then the traffic parameters are utilized to evaluate 

and classify traffic congestion levels. For nighttime surveillance videos, the moving 

vehicles are detected by extracting and grouping the headlight candidates. 

Subsequently a virtual detection line is utilized for evaluating the traffic congestion 

levels. Finally, we examine the proposed framework on real freeway surveillance 

videos captured at day and night data to demonstrate the accuracy and real-time 

response of traffic congestion classification. 
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The rest of this paper is organized as follow. Some related works on daytime and 

nighttime video processing are reviewed in Chapter 2. In Chapter 3, we introduce the 

proposed framework of traffic congestion classification. After that, we present the 

daytime module that includes initialization procedure, vehicle detection and traffic 

congestion classification in Chapter 4. In Chapter 5, the module of nighttime traffic 

congestion classification which is composed of headlight extraction, vehicle detection 

and traffic congestion classification is described. The experimental results of daytime 

module and nighttime module are shown and discussed in Chapter 6. In Chapter 7, we 

conclude this thesis and discuss the future works. 
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Chapter 2. Related Work 

  

In this chapter, we review the previous research works on daytime surveillance 

and nighttime surveillance video processing. The details are described as follows. 

 

2.1 Related work on Daytime Surveillance 

 

In the past, plenty of works related to daytime traffic surveillance had been 

proposed [1]. In the following sections, some methods of roadway detection, object 

detection, shadow elimination, and traffic surveillance video analysis are introduced. 

 

2.1.1 Roadway Detection  

 

In traffic surveillance videos, roadway is the only region that we are interested in, 

and the rest regions in video frames are worthless. Therefore, finding out the region in 

advance reduces the computation of video processing and decreases errors caused by 

moving objects outside the roadway. In addition, discovering a center line of 

bidirectional roadway is helpful to monitor respective traffic flows in two directions. 

Li and Chen [2] propose an algorithm to detect the lane boundaries of roadway 

by using Multi-resolution Hough Transform [3] without a priori knowledge of road 

geometry or training data. Then the region between the lane boundaries is regarded as 

roadway region. Lai et al. [4] put forward a method to detect multiple lanes from a 

traffic scene by using lane marking information and orientation. However, there are 

many types of lane markings like solid line, double solid line, and dotted line on 

different kinds of roadway as shown in Figure 2. Therefore, finding the correct lane   
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Figure 2. Lane markings with different shapes and colors on the roadway. 

 

markings is not a simple task. Furthermore, the lane markings of the roadway are not 

always visible in some cases. Hence, there are other researches on roadway detection 

without lane marking information. 

Stewart et al. [5] present an automatic lane finding algorithm based on detecting 

a region with significant changes. The roadway region in a traffic scene is generated 

by accumulating the differences between two consecutive frames after removing 

noises and sudden changes in brightness. However, a limitation of their algorithm is 

that the roadway must be parallel to the direction of camera shooting. Afterwards, 

Pumrin and Dailey [6] improve the algorithm to detect the roadway region from a 

variety of camera angles. For generating a roadway region mask, a hundred frames of 

moving edge images are accumulated and then holes are filled with a convex hull 

algorithm. In addition, two successive activity region masks generated from two 

successive sets of hundred frames are compared to detect the camera’s motion. In [7], 

Lee and Ran put forward a method to detect bidirectional roadway by accumulating 

moving parts in a difference image between two consecutive frames and find a center 

line to separate the roadway into two parts with different directions. Nevertheless, 

their methods are affected by unbalanced traffic flow in different lanes and 

constrained by three roadway types. As shown in Figure 3, the roadway may extend to 

a) bottom-right, b) bottom-mid, c) bottom-left. Moreover, a clear gap must exist 

between the two respective parts in two directions for center line estimation. 
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(a) (b) (c) 

Figure 3. Three roadway types. (a) Bottom-right. (b) Bottom-mid. (c) Bottom-left. 

 

Therefore, in order to conquer the drawbacks in previous works, the roadway 

detection and bidirectional roadway analysis without any lane marking information 

and a limitation of specific roadway types are proposed in our framework. 

 

2.1.2 Object Detection  

 

Detecting the moving objects is an important and useful technique for video 

understanding. Thus, many techniques are developed and can be classified into four 

categories: background subtraction, segmentation, pointer detectors and supervised 

learning [8]. Among the four categories, background subtraction is a widely used 

method for detecting moving objects in videos captured by static cameras. The 

rationale of the method is to detect the moving objects from the significant differences 

between the current frame and a reference frame, often called “background image” or 

“background model”. However, this method suffers from the background varying. 

Thus, the background image must be a representation of the scene without moving 

objects and keeps regularly updated so as to adapt to the changing geometry setting 

and luminance condition [9]. Since roadway surface is even and smooth in most cases 

and traffic surveillance is stable without camera motion, we employ background 

subtraction technique for the advantages of integrity of foreground and low 

computation complexity in extracting the moving vehicles on the roadway. 
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A variety of algorithms and techniques for performing background subtraction 

have been developed to detect vehicles. Averaging [10] and finding the median values 

[11] of a sequence of frames are the most basic ways to construct the background 

image in the past. Subsequently, Chen et al. [12] put forward a background image 

construction by calculating the frequency of pixel intensity value at training period. 

The frequency ratios of intensity values for each pixel at same position in frames are 

calculated and the intensity values with biggest ratio are incorporated to model a 

background image. Then, the background image is updated by repeating initialization 

operation. However, the aforementioned methods are fast but memory consuming and 

do not provide explicit methods to choose a threshold for segmenting out the 

foreground. Hence, Wren et al. [13] propose a running Gaussian average background 

model which fits a Gaussian probability density function on the latest n values of a 

pixel location for each pixel in a frame. In addition to the low memory requirement, 

that the threshold is determined automatically by standard deviation is the most 

significant improvement. 

In some conditions, different objects are likely to appear at a same location over 

time. Therefore, some researches are proposed to deal with multiple modal 

background distributions. Stauffer and Grimson [14] raise a case for a multi-valued 

background model that is capable of coping with multiple background objects. The 

recent history of each pixel, called pixel process, is modeled by a mixture of K 

Gaussian distributions, and each pixel is classified into foreground or background 

according to whether the pixel matches one distribution of its pixel process. In a 

highly volatile environment, Elgammal et al. [15] propose a method to model the 

background by a non-parametric model based on kernel density estimation on the last 

n values. The method rapidly forgets the past and concentrates on recent observation 

and is more accurate because of avoiding the inevitable errors in parameter estimation, 
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which requires great amount of data to be accurate and unbiased.  

On the other hand, traditional background subtraction approaches model only 

temporal variation of each pixel. However, there is also spatial variation in real world 

due to dynamic background such as waving trees and camera jitters, which causes a 

significant performance degradation of traditional methods. A novel spatial-temporal 

nonparametric background subtraction approach is proposed by Zhang et al. [16] to 

handle dynamic background by modeling the spatial and temporal variations at the 

same time. Moreover, other various background subtraction methods suitable for 

different environments have been reviewed and discussed in [1, 16, 17]. 

 

2.1.3 Shadow Elimination 

 

When we detect the moving objects in the outdoor images, shadows are often 

extracted with the objects. Also, separate objects may be connected through shadows. 

Both conditions always cause failure in object detection. However, separating the 

moving objects from shadows is not a trivial task. As shown in Figure 4, shadows can 

be generally categorized cast shadow and self shadow [18]. Referring to Figure 4, the 

self shadow is a portion of the object not illuminated by the light source. The cast 

shadow lying beside the object does not belong to the object. For object detection and 

many applications, cast shadow is undesired and should be eliminated, while self 

shadow is a part of the object and need to be preserved. However, cast shadow and 

self shadow are similar in intensity. Thus, how to distinguish between them becomes a 

serious challenge. Moreover, if an object has intensity close to its shadows, shadow 

elimination is extremely difficult. Sometimes even though object and shadows can be 

separated, object shape is often incomplete due to imprecise shadow removal. 
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Figure 4. Cast Shadow and self shadow.[18] 

 

Confronting these knotty problems, various methods for shadow elimination 

have been proposed for suppression of cast shadow in recent years. The intensity, 

color and texture are the most remarkable features of shadow. Because the distribution 

of intensity within a shadow is not uniform in real environments, Wang et al. [18] 

develop a method to estimate attributes of shadow by sampling points on edges of cast 

shadow and remove the shadow by the attributes. Afterwards, a process is executed to 

recover the object shape on the basis of information of object edges and attributes of 

shadow for avoiding over-elimination. Song et al. [19] remove the shadow in good 

use of the different properties between shadows and objects based on the RGB 

chroma model. Liu [20] introduces a method which uses gradient feature to eliminate 

shadow based on the observation that shadow region presents the same textual 

characteristics as in the corresponding background image.  

Based on the prior knowledge, Yoneyama et al. [21] simplify 3D solid cuboids 

model to a 2D joint vehicle-shadow model for eliminating cast shadow. Six types of 

vehicle-shadow models are employed to match the extracted vehicle by utilizing 

luminance of shadow for differentiating the vehicle and shadow. Besides, Chien et al. 

[22] remove the shadow by a mathematical analysis model. Different from the 

methods mentioned above, Hsieh et al. [23] use lane geometries as an important cue 

to help eliminate all undesirable shadows even though the intensity, color and texture 

of vehicles are similar to cast shadow. 
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A summary of general observations with respect to cast shadow and background 

in roadway scene is given by Xie et al. [24] : (1) Pixels of cast shadow fall on the 

same surface as the background; (2) Cast shadow pixels are darker than their 

background in all three color channels; (3) Background is mostly roadway surface 

which is often monochrome in traffic scene. As a result, the values of hue channel are 

small in the cast shadow region; (4) The edge pixels of the cast shadow are 

significantly less than that of the vehicle. 

 

2.1.4 Traffic Surveillance Video Analysis 

 

For analyzing the content of video, the trajectories of moving objects can provide 

much information, and object tracking is an important and unavoidable way to extract 

the trajectories. Take traffic surveillance videos for example, if we intend to realize 

the action of moving vehicles, we have to analyze how the vehicles move. That is, we 

must track vehicles during the traffic monitoring in order to obtain their trajectories. 

Generally, tracking methods can be classified into two categories. One category 

estimates motions of moving objects and minimizes the error function to track objects. 

Another category calculates the similarities between current objects and previous 

objects and maximizes the similarity measures to track the objects. A variety of object 

tracking methods developed in past decades are reviewed in [8]. 

In traffic surveillance videos, a traditional approach of moving vehicles tracking 

is to model the moving object properties such as position, velocity and acceleration. 

Measurements usually include the object positions in the frame, which is obtained by 

an object detection algorithm. In particular, Kalman filter [25] and particle filter [26] 

are popularly used in many research works. However, in practical applications, it is 

difficult to track all vehicles on the roadway. For examples, if the viewpoint of a 
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camera is low or there are plenty of vehicles on the roadway, the vehicle occlusion 

problem results in failing to extract and track correct individual vehicles. Moreover, 

that the effective resolution of perspective is reduced in a frame makes insufficient 

features of vehicles for object tracking. Even though many researches on occlusion 

problem have been proposed, the complexity of vehicle tracking is surged and 

accuracy of vehicle tracking is sagged while a great number of occluded vehicles need 

to be tracked at one time. 

Along with the trajectories of vehicles are extracted, numerous works deal with 

vehicle activity analysis. The features such as size, speed, and moving direction of 

vehicles are helpful to understand the situation of traffic flow in the surveillance 

videos [2]. Generally, more complicated events are mostly detected with machine 

learning algorithms. In [27], the issue of event detection in time series data is 

addressed using neural network. In [28], Hidden Markov Models are used to form the 

basis of activity recognition and anomaly detection. 

For the purpose of traffic flow analysis, the usage of virtual line detectors 

without tracking all vehicles on the roadway was developed in [29-33]. In [29], the 

authors present an approach to evaluate traffic-flow parameters under urban road 

environment. Virtual line based time-spatial image as shown in Figure 5 is used for 

vehicle counting. The vehicles are extracted from the time-spatial image after edge 

detection and morphological operation. In [30], the time-spatial image is processed to 

evaluate the traffic congestion level. However, these methods do not work well in the 

frames with low contrast, small vehicle blocks, and irregular driving behaviors. 

Afterwards, the virtual line group methods are proposed as an improvement in [32, 

33]. Actually, virtual line based algorithms are more suitable to analyze the traffic 

flow while there are a large number of vehicles for real-time performance.  



 

13 
 

 

Figure 5. Generation procedure of time-spatial image.[29] (a) A frame sequence. (b) 
Time-spatial image generated by virtual line iteration.  
 

2.2 Related Work on Nighttime Surveillance 
 

Due to low illumination, understanding the activities in nighttime videos 

becomes more difficult than in daytime for the frames captured from a camera have 

lower contrast and higher noise than their corresponding daytime frames. Thus, 

nighttime video analysis is still quite a challenging task up to the present. In this 

section, we will review some studies on nighttime surveillance video processing.  

 

2.2.1 Nighttime Image Enhancement 

 

In order to solve the low contrast problem, some researches focus on nighttime 

image enhancement. Histogram equalization is a commonly used method for image 

enhancement in luminance of image. Hence, Sayed et al. [34] propose an efficient 

algorithm that modifies traditional histogram equalization to maintain the color 

information of the original nighttime image. Each color channel is enhanced 

separately by multiplying the ratio of enhanced luminance to original luminance.  

Nevertheless, the performance of enhancement is limited due to the detailed 

information of nighttime frames has been lost. Therefore, Cai et al. [35] combine 
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daytime image and nighttime image together based on the object extraction technique. 

The low quality static parts of a nighttime image can be replaced by the high quality 

counterpoint in the daytime image. However, if errors occur in object extraction, 

unnatural mixture images may be generated. In [36], authors can produce 

natural-appearing enhanced images that do not appear to be fake. The image is 

decomposed into luminance and reflectance components, and only the luminance of 

the image is modified by referring to daytime background. 

 

2.2.2 Object Detection and Tracking 

 

As mentioned in previous section, due to the low contrast problem in nighttime 

video, detecting moving objects from the dark scenes becomes difficult. Even though 

the nighttime image enhancement technique improves appearance of nighttime 

images, object detection based on background subtraction is quite arduous. Hence, in 

[37], the authors put forward an algorithm that is based on contrast analysis to detect 

moving objects. They use the local contrast change over time to detect potential 

moving objects, which is called Salient Contrast Change (SCC). Then motion 

prediction and spatial nearest neighbor data association are used to suppress false 

alarm. Wang et al. [38] propose a model based on SCC feature which applies learning 

process to strength adaptability and analyze trajectories to improve the effectiveness 

of detection.  

For nighttime traffic surveillance, Kostia Robert [39] presents a framework to 

detect multiple vehicles at night by headlight detection. He adopts HSV color model 

and uses the ratio of value to saturation (V/S) with white top-hat transform operation 

to obtain the bright blobs as headlights. Then the blobs are analyzed to generate 

hypothesis of vehicles. In [40], in order to extract headlights, a bright object 
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segmentation process based on automatic multilevel histogram thresholding is applied 

on the nighttime scenes of roadway.  

In the case of object tracking, in general, conventional tracking methods such as 

model-based, appearance-based, and feature-based cannot work well at night due to 

insufficient detailed information. Thus, an appropriate solution is to track vehicles by 

using position and velocity. In [39], the vehicles are tracked over frames by using a 

Kalman filter associated with a reasoning module. Also the tracking processing in [37, 

40] are based on these features. 
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Chapter 3. Proposed Framework Overview 

 

 In this chapter, we make an introduction of the proposed traffic congestion 

classification framework. The framework, which consists of daytime module and 

nighttime module, is able to classify the traffic congestion in traffic surveillance 

videos captured during day and night into five levels. 

 As shown in Figure 6, in the framework, a video clip is firstly determined 

whether it is captured at day or at night, and the corresponding modules are applied on 

the video according to the capturing time. The brief descriptions of the two modules 

are described in the following sections. As for the details of each component in the 

modules, we are going to expound them in Chapter 4 and Chapter 5. 

 

 
Figure 6. Overview of the proposed framework. 
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3.1 Daytime Traffic Congestion Classification 

 

The goal of the daytime module is to automatically analyze the level of traffic 

congestion in daytime surveillance videos. In general, vehicle detection and tracking 

are inevitable ways to realize the content of traffic surveillance videos. However, some 

troublesome factors such as a great number of moving vehicles with serious vehicle 

occlusion not only increase the difficulty in detecting and tracking the moving vehicles, 

but also lower the efficiency of video processing. Therefore, in order to understand the 

traffic condition, we adopt a novel strategy that uses virtual detectors to simplify the 

processes of vehicle detection and tracking. Based on this strategy, it is unnecessary to 

extract and track all moving vehicles on the roadway for analyzing the surveillance 

videos. Furthermore, we also put forward two methods to detect the roadway region 

and distinguish the moving direction of roadway to enhance efficiency and robustness 

of the module. As shown in Figure 6, the module contains three major parts: 

initialization procedure, vehicle detection, and traffic congestion classification.  

Initialization procedure is performed at the beginning of traffic monitoring in 

order to obtain the consistent characteristics of roadway including the region and 

moving direction of roadway, positions of virtual detectors and background model. As 

Figure 6 illustrates, we first extract the roadway region because only monitoring the 

area that we are interested in is helpful for the efficiency and accuracy enhancement. 

Second, bidirectional roadway analysis is applied on the roadway region in order to 

monitor both directions of roadway at the same time. Moreover, the background model 

is also constructed along with the above processes, and the model is updated with 

incoming frames over time. Finally, virtual detectors are automatically installed on 

each lane of roadway for gathering traffic flow information. In addition, since 
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initialization procedure executes only once in advance, there is no requirement of strict 

real-time response. 

Vehicle detection is to extract the moving vehicles from videos. We use 

background model to segment the foreground image and eliminate the shadow by 

using two characteristics of shadow: edge and color reflectance. Next, connected 

component analysis clusters all adjacent pixels in foreground image as isolated moving 

vehicles. Because the virtual detectors are adopted to gather traffic information in the 

module, only the moving vehicles that pass through the virtual detectors are need to be 

detected and tracked. In this way, the efficiency of video processing is promoted a lot. 

In traffic congestion classification, the virtual detectors estimate three traffic 

parameters: traffic flow, traffic speed and traffic density by tracking the moving 

vehicles that pass through the detectors. For a sequence of moving vehicles over a 

period of time, the parameters are calculated and utilized to evaluate traffic congestion 

degree. Finally, we use classifier to make an accurate classification of traffic 

congestion levels. With bidirectional analysis, the proposed module is capable of 

analyzing both directions of roadway at the same time. 

 

3.2 Nighttime Traffic Congestion Classification 

 

The proposed night module is able to classify the congestion level of traffic flow 

in nighttime surveillance videos. In order to understand the content of traffic 

surveillance videos, in general, vehicle detection is usually the first step. However, 

some tough factors such as poor visibility and higher noise increase difficulty in 

detecting the moving vehicles under nighttime condition. Especially, typical daytime 

surveillance framework based on background subtraction cannot work at night due to 

the low contrast foreground objects against the background, which is an obstacle to 
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vehicle detection at night. On the other hand, less color and texture information may 

lower the ability of vehicle tracking to distinguish between different moving vehicles.  

To overcome these limitations, an appropriate solution for vehicle detection is to 

find headlight that is a salient feature to all vehicles at night. Hence, in the nighttime 

module, headlight detection and grouping technique are developed to extract the 

moving vehicles on the roadway. In addition, we abandon vehicle tracking appoaches 

for analyzing traffic congestion due to the reasons below. Headlights of all vehicles 

are similar to each other. The large number of vehicles in crowded situation causes 

high complexity in vehicle tracking. Therefore, a virtual detection line is utilized to 

evaluate traffic congestion degree for avoiding errors caused by vehicle tracking and 

enhancing the execution efficiency.  

The module includes three stages: headlight extraction, vehicle detection, and 

traffic congestion classification. Headlight extraction is performed at the beginning of 

each frame processing to recognize the circle-shaped bright blobs that is most similar 

to headlight. At vehicle detection stage, correlation of two headlights is calculated by 

using three features: width, height and edge relationships between them. After that, 

the values of correlation are used in our headlights grouping mechanism to detect the 

moving vehicles. For a sequence of video frames, traffic congestion is evaluated when 

the moving vehicles pass through a virtual detection line. A virtual detection line is a 

virtual horizontal line that crosses a roadway and is employed to gather the traffic 

information. In other words, only the headlights that touch the virtual detection line 

need to be extracted and grouped. Then, the possible mistakes from headlights 

grouping are decreased and the efficiency for video processing is raised. 

 

 

 



 

20 
 

Chapter 4. Daytime Traffic Congestion Classification 

 

 In this chapter, we describe the daytime traffic congestion classification module. 

The module contains initialization procedure, vehicle detection and traffic congestion 

classification as presented in the following sections. 

 

4.1 Initialization Procedure 

 

Initialization procedure is executed at the beginning of traffic monitoring and 

utilizes training video data to obtain the consistent characteristics of roadway 

including the region and moving direction of roadway, positions of virtual detectors 

and background model. In this section, we present our approaches of roadway 

detection, bidirectional roadway analysis and virtual detector installation in details. To 

make it easier to understand the proposed approaches, a traffic scene is used to be an 

example for demonstration as shown in Figure 7.  

 

 

Figure 7. A traffic scene of a bidirectional roadway consisting of six lanes. 

 

 



 

21 
 

4.1.1 Roadway Detection 

 

Some peculiar phenomena exist in the traffic surveillance videos. For example, 

shaking trees outside the roadway causes frequent motions over time. We realize two 

important facts by observation. First, all moving pixels outside the roadway must not 

belong to any vehicles. Second, surface of roadway is much stable than other regions 

outside the roadway. In other words, most moving pixels on roadway are a part of 

vehicles and actually need to process. Hence, an efficient way to remove most of 

useless pixels is to detect a region of roadway in advance, and then we can focus the 

further video processing only on the roadway region. This approach not only avoids 

unnecessary mistakes, but also reduces the time-consuming video processing. 

In our framework, we develop a process to accomplish the roadway detection 

based on the concept that roadway is a region where most movements occur because 

of vehicle motion. Therefore, we calculate the differences between two consecutive 

frames to detect the movements and accumulate the movements to obtain the position 

and shape of roadway. The difference image D is defined as follows: 
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where Ft(x,y) denotes the current frame t and thM is the pre-defined threshold for 

identifying the pixels with movements. After accumulation of movements for a 

sequence of frames, the pixels that have a value in difference image D larger than 0 are 

regarded as a roadway candidate Rc for the roadway region. The result of the example 

is shown as Figure 8(a) and the white pixels are the pixels of Rc. 
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Then, we discover that some fragmentary movements outside the roadway are 

also detected because of the shaking trees. In order to eliminate the fragmentary 

movements, the pixels which satisfy the following noise filtering equation are removed 

from Rc:  

 ∑ ∑
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where p control the size of filter and thR is a threshold determined by the characteristic 

of roadway. Afterward, we employ connected component analysis on Rc as shown 

Figure 8(b) to extract all isolated connected areas and sort the isolated connected areas 

in descending order according to their size from S1 to Sn, where n is the number of 

isolated connected areas. Then choose the first L largest areas as the roadway region. 

 R

r

i

i
r T

S
SL >= ∑

=1
minarg  (4) 

where r is a value ranging from 1 to n, S is the summation of S1 to Sn and TR is a 

measure to maximize the number of areas that should be accounted for the roadway. 

This operation reserves the main areas of roadway as shown in Figure 8(c). Some 

small but not fragmentary noises are eliminated successfully. Finally, using Closing 

morphological operation to fill out the holes and a hole-filling algorithm to obtain the 

complete roadway mask R as shown in Figure 8(d). 
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(a) (b) 

  
(c) (d) 

Figure 8. An example of roadway detection. (a) The candidate of roadway region Rc. (b) 
The roadway candidate Rc after noise filtering. (c) The first L largest areas. (d) 
Complete roadway mask R. 

 

4.1.2 Bidirectional Roadway Analysis 

 

Most surveillance cameras capture a video at a specified angle and range that 

contains multiple lanes of traffic in both directions. The bidirectional roadway analysis 

can be applied to monitor traffic flow for both directions individually. During the 

period of movement accumulation in roadway detection, the occurrence of movements 

means some motions appear at the same time. Accumulation of those motions is able 

to approximately reveal the moving direction of roadway. Hence, we estimate and 

accumulate the motion vectors for those pixels that have movements in roadway 

detection. A Motion Vector image MV is defined as follows: 
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where ),( yxmt
y  denotes the motion vector [41] in y-axis between frame t and t-1. 

The method to estimate motion vector is described in Algorithm 4.1. Since 

bidirectional roadway contains two kinds of directions, DOWN and UP, in most cases, 

the motion vectors in y-axis are only considered. After accumulation of the motion 

vectors, the Motion Vector image is simplified into a Motion image M: 
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As shown in Figure 9(a), the white pixels denote the DOWN and the gray pixels 

denote UP. In order to separate the roadway into two respective parts in different 

directions, a center line of the roadway for separating the motions should be calculated. 

A motion classification method is used to obtain this center line. First, the positions of 

both directions need to be decided by the average x-position of two kinds of motions. 
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where NDOWN and NUP are the number of pixels of motion DOWN and UP in motion 

image, respectively. If XDOWN is smaller than XUP, the moving direction of the left side 

of roadway is DOWN and the right side is UP. Otherwise, the left side is UP and the 

right side is DOWN. 

Then, a center line CL for separating bidirectional roadway is evaluated by 

rotating a separator line SL. As illustrated in Figure 9(b), each pixel at the top 
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boundary of roadway region is regarded as a core for SL rotation, and the SL rotates 

from left boundary to right boundary of roadway mask for each core. For each rotation, 

we evaluate the separation degree SD of motion classification that bases on the SL. The 

smaller the SD is, the better the motion classification is. The SL with minimum SD is 

the actual center line CL of the roadway. 

In the SD evaluation, the ratios of error and recall for motion classification are 

considered at the same time. From the result in the first step, we can know what the 

well-classified pixels are and what the mis-classified pixels are. For instance, if the left 

side of roadway is DOWN (XDOWN < XUP), the pixels of motion DOWN in the left side 

of SL are well-classified and the pixels of motion UP in the left side of SL are 

mis-classified. Therefore, the error ratio of left side eleft is defined as the ratio between 

the number of motion UP pixels and the number of total pixels in the left side of SL. 

The recall ratio of left side rleft is defined as the ratio between the number of motion 

DOWN pixels and the number of total DOWN pixels in whole roadway mask. 

Analogously, the rationale is the same for the right side. Separation degree SD is 

defined as follow: 
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where eleft is the error ratio for classification in the left side of SL, eright is the error ratio 

for classification in the right side of SL, rleft is the recall ratio for classification in the 

left side of SL, and rright is the recall ratio for classification in the left side of SL. 

According to the center line CL, the roadway mask is divided into two parts as a 

bidirectional roadway mask. An example of the center line evaluation and bidirectional 

roadway mask are shown in Figure 9(c) and Figure 9(d). 
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Algorithm 4.1: Motion Vector Estimation [41] 
Input: The position (x, y) of a pixel, current frame Ft, and previous frame Ft-1 
Output: The motion vector in y-axis v for the pixel (x, y) 
 
1 for i := - p to p do 
2  for j := -q to q do 
3   diff = |Ft(x, y) – Ft-1(x+i, y+j)| 
4   if diff < mini_diff  then 
5    mini_diff = diff ; 
6    v = j ; 
7  end for 
8 end for 

 

  
(a) (b) 

  
(c) (d) 

Figure 9. An example of bidirectional roadway analysis. (a) Motion image M, the 
motion of white pixels is DOWN, the motion of gray pixels is UP. (b) The separator line 
SL which is represented by a red dotted line rotates between two boundaries to 
calculate the separation degree SD for motion classification. (c) The center line CL 
which has the minimum SD. (d) Bidirectional roadway mask. 
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4.1.3 Virtual Detector Installation 

 

As discussed in section 2.1.4, we realize that vehicle tracking technique is not an 

appropriate way to analyze actions of all vehicles on roadway due to the vehicle 

occlusion and reduction of effective resolution. Hence, the virtual line based 

algorithms are the better approaches to analyze the traffic situation for its real-time 

response and low difficulty in vehicle tracking. 

In order to overcome the disadvantages of previous works, a method adopting 

virtual detectors as shown in Figure 11 is proposed in our framework. The virtual 

detectors are set up on each lane for traffic information collection. The appropriate 

positions for the detectors are the central point between two lane markings. However, 

if the type of lane marking is a dashed-like line or the lane marking is not visible, the 

lane markings always fail to be detected. Based on our observations, we know the lane 

center usually is the central point of a moving vehicle. So the central points of the 

vehicles are retrieved from a clip of video to detect the lane centers.  

To obtain the central points of the moving vehicles, vehicle detection based on 

background subtraction technique, as described in section 4.2, is applied in this step. 

Every extracted vehicle is identified by a bounding box after detection. The central 

points of vehicles and the average width of vehicles are gathered from the bottom line 

of bounding box. Figure 10(a) shows an example of the central points of moving 

vehicles over a period of time. After collecting all central points of vehicles, Modified 

Basic Sequential Algorithm Scheme (MBSAS) [42] clustering algorithm, as described 

in Algorithm 4.2, is used to cluster the x-coordinate of central points in at every row of 

a video frame, and the average width of vehicles is chosen as the threshold θ for 

MBSAS. The result of the example is shown in Figure 10(b). Afterward, each center of 
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clusters is considered as the center of each lane. In other words, the actual positions of 

virtual detectors are determined by the cluster centers. 

A detection row d in a frame is regarded as an expected row for virtual detector 

placement. To avoid a problem that the vehicles in training data is not dense enough, 

the 2×m neighboring cluster results of row d are simultaneously considered for 

determining the correct positions of virtual detectors. Let num_clusterd be the number 

of clusters of row d. From num_clusterd-m to num_clusterd+m, the value with maximum 

count is the actual number of virtual detectors. That a row contains num_vt clusters and 

is closest to the row d is chosen as the actual detection row d’. Finally, we set the 

virtual detectors on each cluster centers at row d’ and identify their monitoring 

direction of traffic flow according to the center line CL. The result of example is 

illustrated in Figure 11. The red and blue rectangles are the virtual detectors. The 

different color means different monitoring directions. 

Moreover, choosing an appropriate detection row d is dependent on roadway 

location and curvature with respect to the camera capturing perspective. In our 

framework, the detection row can be selected automatically or manually. The principle 

of choosing the detection row is to find an area where there is much less vehicle 

occlusion and the important features of vehicle are visible as much as possible. Hence, 

the position of detection row should be always at the bottom area of a frame. 

Nevertheless, it would incur the problem of incomplete vehicles if the position is too 

close to the bottom. Therefore, two-thirds frame height from the top of a frame is a 

suitable position empirically. 
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(a) (b) 

Figure 10. MBSAS processing on the history of the central points of vehicles. (a) All 
central points of moving vehicles in a period of time. (b) Cluster centers calculated by 
central points of moving vehicles at each row of a frame. 

 

Algorithm 4.2: Modified Basic Sequential Algorithm Scheme (MBSAS) 
Input: N patterns from x1 to xN and a maximum number of clusters: q  
Output: clusters of patterns x1 to xN 
 
Cluster Determination 
1 m = 1  // m is the number of clusters 
2 Cm = {x1}  // Cm is the mth cluster 
3 for i = 2 to N do 
4  Find Ck: d(xi, Ck) = min1<j<m d(xi,Cj) // d(xi, Cj) is the distance between 
5   if d(xi, Ck) >θ AND m < q then // pattern xi and cluster Cj 
6    m = m +1; 
7    Cm = {xi}; 
8  end if 
9 end for 
 
Pattern Classification 
1 for i = 1 to N 
2  if xi has not been assigned to a cluster, then 
3   Find Ck: d(xi, Ck) = min1<j<m d(xi,Cj) 
4   Ck = Ck ∪{xi} 
5   Update the cluster center of Ck 
6  end if 
7 end for 
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Figure 11. Results of virtual detectors installation on a bidirectional roadway. 

 

4.2 Vehicle Detection 

 

Vehicle detection is usually an important step to analyze traffic surveillance video. 

Since a characteristic of the roadway surface is stable, the background subtraction 

method is an appropriate way to segment the foreground image for the advantages of 

integrity of information and low computation. However, the shadow of vehicles is 

always detected with vehicles in outdoor scene. To solve this problem, the popular 

background subtraction model: Mixture of Gaussians and shadow elimination method 

based on gradient feature and color reflectance are adopted in our framework. The 

details of the methods are described in this section. 

 

4.2.1 Mixture of Gaussians 

 

Different background objects may appear at a same location in a frame over time. 

A representative example is that a traffic surveillance scene with trees and vehicles 

partially covering a roadway, then a same pixel location shows the values from tree 

leaves, vehicles, and the roadway itself. Thus, the background is not single modal in 

this case. So Stauffer and Grimson [14] propose a multi-valued background model to 

cope with multiple background objects. 
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They consider the values of a particular pixel location over time as a “pixel 

process”, {X1, …, Xt}, which is modeled by a mixture of K Gaussians. The probability 

of the current pixel Xt value is 

 ∑
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where K is the number of Gaussian distributions and is determined by the various 

scenes in the different applications, ωi,t is the weight of ith Gaussian at time t, μi,t is 

the mean value of the ith Gaussian at time t, Σi,t is the covariance matrix of the ith 

Gaussian at time t, and η is a Gaussian probability density function: 
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In addition, for the reason of computation efficiency, the covariance matrix is 

assumed to be of the form: 

 IΣ ktk
2

, σ=  (12) 

where k is an integer ranging from 1 to K. This means that the red, green, and blue 

pixel values are independent and have the same variances. Although this is not 

certainly the case, the assumption allows us to avoid the costly matrix inversion. 

At each t frame time, a criterion is needed to provide discrimination between the 

foreground and background distributions. Therefore, each current pixel, Xt, in the 

frame is checked against the existing K Gaussian distributions until a match is found. 

Once the pixel matches one distribution of the existing K Gaussian distributions, 

which means the pixel belongs to the background. Otherwise, the pixel belongs to the 

foreground. A match is defined as follows: 
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 5.2/)( ,, <− tititX σµ  (13) 

To solve the changes of geometry setting and luminance condition in most video 

sequences, it is necessary to track those changes of the K Gaussian distributions. In 

other words, the mixture of Gaussians background model has to be updated with new 

coming frames. 

The authors implement an on-line K-means approximation instead of a costly 

expectation-maximization (EM) algorithm on a window of the recent data to estimate 

the updated model parameters. The weights of the kth Gaussian at time t, wk,t , are 

adjusted as follows: 

 )()1( ,1,, tktktk Matαϖαϖ +−= −  (14) 
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where α is the learning rate which determines the speed for the distribution’s 

parameters updating. After this approximation, the weights should be normalized. In 

addition, the μt and σt parameters for unmatched distributions remain the same. The 

two parameters of a distribution which matches the current pixel Xt are updated as 

follows: 
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where another learning rate, ρ, is 
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 ),|( kktX σµαηρ =  (18) 

If none of the K distributions match current pixel Xt, the least probable 

distribution is replaced by a distribution which has the current pixel as its mean value 

μ, an initially high variance σ2 and an initially low weight w. 

While the parameters of the mixture model of each pixel change, we would like 

to determine which Gaussian distributions are most likely produced for the 

multi-modal background. To model this, a manner is required for deciding what parts 

of the mixture model best represents background. First, all the distributions are ranked 

based on the ratio between their weight, wk,t, and standard deviation, σk,t. This assumes 

that the higher and more compact the distributions are likely to belong to the 

background. Then, the first B distributions in ranking order which satisfy 
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where b is a value ranging from 1 to K, TB is a measure of the minimum portion of the 

distributions that should be accounted for the background, are accepted as 

background. 

 

4.2.2 Shadow Elimination 

 

Shadow elimination is a critical issue to distinguish between the moving objects 

and the moving shadows for the robust vision-based systems. The shadow can cause 

various undesirable behaviors such as object shape distortion and object merging. To 

solve these problems, we combine the previous shadow removal works based on color 

reflectance [22] and gradient feature [20] to eliminate the cast shadow in our 
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framework. 

First, we introduce a shadow elimination technique based on color reflectance. 

The principle of color reflectance can be modeled as the multiplication of light energy 

and reflectance of object and expressed by the following equation. 

 CCC reflenerval *=  (20) 

where C stands for color channels: red, green, and blue, valC is the value of color C, 

enerC is the light energy of color C, and reflC is the reflectance of color C. From a 

relationship between shadow, and background, the following relationship would be 

obtained [43]. 
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where C
Sval is the value of color C in foreground shadow, bg_valC is the value of 

color C in background, bg_enerC is the light energy of color C in background. Thus, 

we realize that if a pixel belongs to shadow, the values must satisfy the following 

equation: 

 ,1
_

≤≤ C

C

S valbg
valth  (22) 

where thS is the threshold for identifying the shadow. Afterward, most of shadows 

would be removed from extracted object by the method. However, it is possible that 

some parts of vehicles are considered as shadow at the same time, which causes the 

broken vehicles. In general, morphological operation is a common approach to 

recover the broken vehicles, but it cannot recover those vehicles with serious damage. 

Thus, we use an approach to recover the broken vehicles based on gradient feature of 

the moving vehicles before morphological operation. 



 

35 
 

The approach to get the gradient feature of the moving vehicles is proposed in 

[20]. First, calculate gradient images of the moving vehicle and its relevant 

background. Gradient of the moving vehicle contains gradient of moving vehicles and 

its shadows. Moreover, gradient of relevant background contains gradient of only 

background. The example gradient images of moving foreground and relevant 

background are shown in Figure 12. Based on observation, we can discover the 

gradient of the moving vehicles is different from that of relevant background, while 

the gradient of the moving shadow is similar to that of relevant background. Thus, the 

difference of the two gradient images can reserve most gradient information at the 

moving vehicles area which presents skeleton of the vehicles, and the shadow 

gradient at shadow region is removed as shown in Figure 13. 

 

  
(a) (b) 

  
(c) (d) 

Figure 12. Gradient images of foreground and its relevant background. (a) The moving 
foreground. (b) The gradient image of the moving foreground. (c) The relevant 
background. (d) The gradient image of the relevant background.[20] 
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Figure 13. Result of shadow elimination by using gradient feature.[20] 

 

Finally, we integrate the detected gradient of the moving vehicles with the 

moving vehicles which are executed shadow removal by color reflectance to construct 

more complete moving vehicles. In this way, since the vehicle’s body is seriously 

damaged, the skeleton of the moving vehicles is able to make up for information loss. 

Thus, the morphological operation still can be applied for recovering the vehicle 

according to its gradient data. 

In addition, in order to obtain the gradient information of the moving foreground 

and the relevant background, Sobel filter is used to detect the gradient information 

with horizontal and vertical operators as shown in Figure 14. 

 

  

(a) (b) 
Figure 14. Operators of Sobel filter. (a) Operator for horizontal changes. (b) Operator 
for vertical changes. 
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4.3 Traffic Congestion Classification 

 

Traffic congestion is the most useful information for the drivers among all traffic 

information. To reveal the degree of traffic congestion, traffic flow, traffic density, and 

traffic speed are the important and useful traffic parameters. Thus, we process a traffic 

surveillance video to estimate the traffic parameters and classify the traffic congestion 

into five levels: jam, heavy, medium, mild, and low. In the following sections, 

methods of traffic parameters estimation and traffic congestion evaluation are 

proposed and described. 

 

4.3.1 Traffic Parameter Estimation 

 

In the proposed framework, three traffic parameters: traffic flow, traffic speed and 

traffic density are needed simultaneously to analyze the traffic congestion. Thus, we 

use the virtual detectors installed at initialization procedure to estimate the traffic 

parameters. On the basis of the bidirectional roadway analysis, the traffic parameters 

can be calculated for both directions of the roadway individually. 

 

(1) Traffic Flow 

Traffic flow Fl is defined as the number of moving vehicles passing through the 

scene in a time interval. In traditional methods, tracking all the moving vehicles on 

the roadway is a conventional way to calculate the flow. However, tracking all the 

vehicles on the roadway is extremely complicated and time-consuming for vehicle 

occlusion problem and lane changing behavior. Therefore, in our proposed framework, 

the virtual detectors on each lane of roadway are utilized for counting the traffic flow. 

So traffic flow is defined as how many vehicles trigger the virtual detectors in a time 
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interval. The vehicle triggers the virtual detector when it passes through the detector. 

To ensure that the vehicle truly triggers the detector, the foreground pixels of the 

vehicles have to occupy at least a portion (say a quarter) of the triggered virtual 

detector. This limitation can reduce the erroneous judgment caused by noises. The 

ratio can be changed with the quality of surveillance videos.  

For the usage of virtual detectors, the vehicles are tracked when they trigger the 

virtual detectors, so the vehicle tracking on the whole roadway is unnecessary. A 

useful property is that only one virtual detector is installed on each lane, which 

simplifies the vehicles matching in vehicle tracking procedure. Because only one 

vehicle can occupy one virtual detector at the same time in normal situation, we just 

match the vehicle that is occupying the same virtual detector in two consecutive video 

frames for determining whether the two vehicles are the same. If they are the same 

vehicles, traffic flow Fl remains the same. Otherwise, it increases one. The color 

histograms of vehicles are used to match the vehicles here. 

 

(2) Traffic Speed 

Traffic speed Sp is the average speed of the moving vehicles in a time interval. 

Generally speaking, speed is a ratio between moving distance and the time spent. To 

achieve this goal, it is necessary to track the vehicle for the length of its trajectories 

and to record the time to generate the trajectories. As discussed in previous sections, 

vehicle tracking on the whole roadway is not feasible in the complicated traffic 

situation. Hence, to obtain the speed of the moving vehicles, we estimate the speed of a 

vehicle when it triggers a virtual detector. In principle, a slower moving vehicle will 

trigger a virtual detector for more consecutive frames, but the situation for a fast 

moving vehicle is opposite. Hence, the speed approximation can be done by counting 

the number of frames that a moving vehicle triggers a virtual detector. Therefore, 
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traffic speed is refined as the average of frames for vehicles triggering the virtual 

detector in a time interval. The following equation is the definition of traffic speed S: 

 ∑
=

= vehnum

i
ifv

Fl

fpsSp _

1

1

 

(23) 

where Fl is traffic flow, fvi denotes the number of frames for that ith vehicle triggers 

the virtual detector, num_veh is the number of vehicles triggering the virtual detector 

in a time interval, and fps (frames per second) stands for sample rate of the 

surveillance video. 

 

(3) Traffic Density 

In general, traffic density is a ratio between the number of vehicles and the area of 

roadway. However, it is a difficult task to correctly segment all vehicles on roadway 

due to vehicle occlusion problem which is common at the far side of camera capturing. 

Consequently, we choose another way to calculate the density of traffic.  

After segmenting out all pixels of foreground image in current frame, the traffic 

density is the ratio between the number of pixels in foreground and the number of 

pixels of roadway. Thus, the more the foreground pixels are, the higher the traffic 

density is. Nevertheless, there is still a problem that the moving vehicle which is near 

the camera is much larger than it is far from the camera. This situation makes the 

defined density out of reality. Because a vehicle occupy the same ratio of width of 

roadway regardless of distance from camera, the ratio between foreground pixels and 

roadway are calculated row by row to reduce the influence of camera’s vision depth. 

The average of the ratios for frames over a period of time is the traffic density Dens is 

defined below: 
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where num_fr is the number of frames in a time interval, g is the height of roadway 

mask, PFfi is the number of foreground pixels of row i in frame f, PRfi is the width of 

roadway mask of row i in frame f. 

 

4.3.2 Traffic Congestion Evaluation and Classification 

 

To evaluate the traffic congestion for traffic flow over a period of time, how to 

use the traffic parameters estimated during traffic monitoring is an important issue. In 

general, the higher the traffic density is, the more crowded the traffic is; the slower the 

traffic speed is, the more crowded the traffic flow is. Thus, the congestion evaluation 

can be designed on the basis of relation between the two traffic parameters. Therefore, 

the traffic congestion value Cong is defined as a ratio between traffic density and 

traffic speed. Thus, the higher the value is, the more crowded the traffic flow is. The 

congestion value becomes large while traffic density is larger and traffic speed is 

smaller. The equation of traffic congestion value is 

 Sp
DensCongday =  (25) 

where Dens is traffic density and Sp is traffic speed, and the value will be used to make 

traffic congestion classification. As for traffic flow, it increases as the traffic 

congestion becomes crowded. However, it decreases when traffic is too crowded to 

move. Hence, the value is not directly employed to evaluate traffic congestion but used 

in traffic speed Sp evaluation. 
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For a clip of traffic surveillance video, congestion value is the only feature used 

for classification. Based on this feature, the traffic congestion levels are classified into 

five levels: jam, heavy, medium, mild, and low. In our framework, we adopt two 

methods for classification: Neighboring Class Distinguishing (NCD) and SVM 

classifier.  

For NCD, the congestion values are divided into five intervals which stand for 

five levels of congestion respectively, and the congestion level of a congestion value is 

the corresponding interval where the congestion value locates. Moreover, thresholds, 

τd1, τd2, τd3, τd4, between five congestion levels are determined by training in advance. 

As shown in Figure 15, for two neighboring congestion levels, the mean value of the 

average congestion values Congday in two level training data is the threshold between 

the two levels. For SVM classifier, the training data in five congestion levels are used 

to train a classifier model which is the base to classify the traffic congestion in testing 

video. 

 

 
Figure 15. Determination of traffic congestion thresholds for NCD. 
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Chapter 5. Nighttime Traffic Congestion Classification 

 

In this chapter, a nighttime traffic congestion classification framework is 

presented. The details of the module consisting of headlights detection, vehicle 

detection, and traffic congestion classification are described in the following sections. 

 

5.1 Headlight Detection 

 

For the purpose of recognizing moving vehicles at night, the headlights must be 

detected in advance. The most important features of headlight at night are luminance 

and shape. Therefore, we propose an approach for headlight detection including bright 

region detection and shape validation in the module. The details of the approach are 

described as follows. 

 

5.1.1 Bright Region Detection 

 

During night, the most consistent and powerful feature of headlights is the 

luminance. The bright region that has high luminance is the most possible area of 

headlights. Unfortunately, headlights are usually not the only bright region in a frame, 

which influences the headlight detection seriously. Hence, how to segment the 

headlight pixel from other bright pixels is the difficulty in bright region detection. 

In Figure 16, we discover that the center of a headlight is always the area with 

highest luminance regardless of different color lights. Moreover, the central area looks 

white and non-colored in human vision. Based on this observation, as shown in Table 

1, we examine the headlights in Figure 16 considering the changes of luminance and  
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(a) (b) (c) 

Figure 16. Headlights with different color lights. (a) Orange. (b) Blue. (c) Yellow. 
 

Table 1. Luminance and color variation from the center to boundary of headlights. 

 Figure 16(a) Figure 16(b) Figure 16(c) 

SEA 
left right left right left right 

L CV L CV L CV L CV L CV L CV 

9 253 1 254 1 255 0 254 0 252 2 252 2 

121 252 2 253 1 254 0 254 0 252 2 251 4 

225 237 9 246 6 254 0 253 1 245 16 242 19 

*SEA: the size of examination area; L: luminance; CV: color variation 

 

color variation of red, green, blue channels from its center to the boundary. Through 

the results, the color variation is low at the center and increases from center to 

boundary, which means that the boundary is much colorful than center. Therefore, the 

region which has high luminance and low color variation is most likely the headlights. 

Instead, the area with low luminance or high color variance does not belong to 

headlights. This property is useful to identify the non-headlights area with high 

luminance such as light reflection on the roadway and the roadside objects. 

 Therefore, luminance and color variance are utilized simultaneously to detect the 

bright region in our framework. For a nighttime video frame, the luminance Y and the 

color variation σ in pixel (x, y) are calculated by the following equations: 

 blue
yx
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red
yxyx IIIY ),(),(),(),( 114.0587.0229.0 ×+×+×=  (26) 
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where Ired, Igreen, and Iblue stand for the pixel value in three color channels red, green, 

blue respectively and I denotes intensity. Then the pixels with high luminance and low 

color variation are the bright pixels. 

 { }CVyxYyxpixel thANDthYyxB <>= ),(),(|),( σ  (28) 

where thY is the threshold for luminance and thCV is the threshold for color variation. 

Consequently, only the pixels with high luminance and low color variation are 

regarded as bright pixels. The values of the two thresholds are changed according to 

the scene in nighttime video. Then, the fragmentary bright pixels are eliminated by 

filtering noises and manipulating morphological operation. Finally, we employ 

connected component analysis to extract all bright blobs Bblob: 

 { }zhBB hblobBlob ,...2,1| ==  (29) 

where z is the number of bright blobs. Figure 17 demonstrates an example process of 

bright region detection. Figure 17(a) shows a frame captured on freeway at night. 

Figure 17(b) shows the bright blobs detected from Figure 17(a). The headlights and 

some reflections of light on the roadside fence are extracted. Besides, we discover a 

phenomenon that all headlights far from the camera are connected together so that 

they cannot be separated. 

 

  
(a) (b) 

Figure 17. Results of bright region detection. 



 

45 
 

5.1.2 Headlight Shape Validation 

 

After bright region detection, all bright blobs are possible to be a headlight. 

However, some bright blobs are results from reflection of light on the roadside objects, 

and not all bright blobs are headlights. Hence, it is necessary to apply another 

constraint to the bright blobs. Shape is also a strong feature for headlight which 

usually looks round in the nighttime video. Therefore, all bright blobs are verified by 

its roundness. To evaluate the roundness of the blob, first we define rimh as the pixels 

at the rim of bright blob Bblobh and (BXh, BYh) as the center of Bblobh. 

 ∑
∈
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where Nh is the number of pixels in bright blob Bblobh. Then, all the distances dhi 

between the center (BXh, BYh) and the pixels in rimh are calculated in Euclidean 

distance. Dh is the set of all distances for Bblobh. 

 ( ){ }hiihihihih rimyxBYyBXxdD ∈−+−== ),(|)()( 2/122  (32) 

If all distances dhi in Dh are the same, the bright blob Bblobh is a circle. Hence, we 

use variance of Dh to reveal roundness of the blob. The lower the variance is, the 

rounder the blob is. Thus, the roundness of Bblobh is defined as follow: 
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where NRh is the number of pixels at rim of Bblobh and hD  is the mean value of Dh. 
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Finally, the bright blobs that satisfy the following conditions are regarded as the 

headlight candidates Bblob’. 

 { }zhthRoundnesswhoseBB Shblobhblob ,...,2,1|' =<=  (34) 

 2/1)(1.0
blobhblobh BBS HWth ××=  (35) 

where thS is the adaptive threshold for roundness which adjusts with different blobs, 

blobhBH  is the height of blob Bblobh, and 
blobhBW  is the width of blob Bblobh. 

 

5.2 Vehicle Detection 

 

Due to low contrast in nighttime surveillance video, typical vehicle detection 

technique used in daytime cannot work well during night. In order to overcome these 

restrictions, we realize that the salient feature of vehicles, headlights, can reveal the 

presence of a vehicle at night. As discussed in Section 5.1, the candidates of headlight 

are extracted using luminance and shape. Next, how to group the headlights into 

individual vehicles is discussed in this section. 

 

5.2.1 Headlight Correlation 

 

The relationships between a pair of headlight candidates can be estimated with 

three criteria: the width, height, and the number of edge pixels between two 

headlights. In general, the width should be similar to the width of vehicle; the height 

is close to zero if the roadway surface is even; the edge between two headlights of a 

vehicle is much complicated than that between two different vehicles due to textured 
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front of the vehicles and smoothness of the roadway surface. Thus, all these three 

conditions are evaluated for the relationship of two headlights. 

The relationship of the width is defined in the following equation. The value is 

from 0 to 1. If the value is much higher, the width of two headlights is more suitable 

for the headlights belonging to a same vehicle. Otherwise, they may be on different 

vehicles. 

 
,||

1

1

allowable

expectedij
ij

E
WWRW

−
+

=  
(36) 

where Wij is the width between headlights i and j in x-axis, Wexpected is the pre-decided 

value for expected width of vehicle, and Eallowable is the allowable inaccuracy for 

width Wij headlights. Wexpected is varied depending on the scene of surveillance and 

Eallowable is determined according to the quality of the surveillance video.  

The relationship of the height between two headlights is defined in Eq.(37). The 

value is also from 0 to 1. If the value is much lower, the detected height of two 

headlights is more possible for the headlights on a same vehicle. Otherwise, they may 

belong to different vehicles. 
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(37) 

where Hij is height between headlights i and j. As shown in Figure 18(a), if right 

headlight is lower than left headlight in y-axis. Hleft is the height between headlight 

center to its bottom, and Hright is the height between the headlight center to its top. 

Otherwise, as shown in Figure 18(b), Hleft is the height between headlight center to its 

top, and Hright is the height between the headlight center to its bottom.  
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(a) (b) 

Figure 18. The parameters of height relationship for two headlights. (a) Right 
headlights is low than left headlight in y-axis. (b) Left headlights is low than right 
headlight in y-axis. 

 

Furthermore, the relationship of the edge is evaluated by calculating the number 

of edge pixels between two headlights. The estimated value is between 0 and 1. The 

higher the value is, the more possible the headlights belong to a vehicle. 

 
ijij

ij
ij HW
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E

′×′
=  (38) 

where NEij is the number of edge pixels between headlights i and j, W’ij is the width of 

two headlights and H’ij is the height of two headlights. The Figure 19 illustrates the 

related parameters for relationship of the edge. Moreover, in a bright scene, this value 

is remarkable because of clear textures on front of vehicle. In much darker scene, the 

value is always small regardless of the pair of headlight candidates. Thus, the value is 

more useful in bright scene rather than darker scene. 

 

 
Figure 19. The parameters of edge relationship of two headlights. 
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After evaluating three relationships, we combine all three values for estimating 

correlation between two headlights by Eq.(39). The estimated value is ranging from 0 

to 3. The higher the value is, the more possible the headlights belong to a vehicle. 

 ijijijij ERHRWnCorrelatio ++=  (39) 

where ij stands for the headlight i and j, RWij is the relationship of width, RHij is the 

relationship of height, and Eij is the relationship of edge. The higher the value is, the 

closer the relationship is. This means the possibility of these two headlights belonging 

to a same vehicle is higher than other pairs with lower values. As discussed in 

previous paragraph, the Eij is much notable in bright scene. However, it can work well 

in bright scene and does not affect the performance of correlation evaluation under 

darker scene because of the summation operation in the equation. So, all vehicles in 

the same surveillance video are treated fairly. 

 

5.2.2 Headlight Grouping 

 

 Due to all pairs of headlights are the candidates of vehicles, once correlations of 

headlights are calculated, the headlights are going to be grouped into individual 

vehicles. Based on the headlight correlations, our proposed headlights grouping 

algorithm checks all pairs of headlights and determines the pair whether it is a single 

vehicle. All pairs of headlight candidates are defined as the vehicle candidate set, 

called VC. As described in Algorithm 5.1, first the headlight pair which has the 

highest correlation in VC is regarded as a single vehicle if both its width relationship 

and height relationship are higher than 0.5. This constraint can avoid unreasonable 

pair being considered as a vehicle. Then, the pair of the detected vehicle is removed 
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from VC. Second, because no headlight can be on two different vehicles at one time, 

if two headlights are detected as a vehicle, the other headlight pairs that contain the 

two headlights must be discarded from VC. Afterward, repeat the two steps until the 

VC is empty. 

 As a result of adopting virtual detection line in the proposed module, only the 

headlights that pass through the virtual detection line need to be detected and grouped. 

It is unnecessary to process all headlights on the roadway so that the complexity of 

headlight grouping algorithm is reduced and accuracy is increased. 

 

Algorithm 5.1: Headlights Grouping Mechanism 
Input: All pairs of headlights with correlation, width and height relationships  
Output: The pairs of headlights stand for a single vehicle. 
 
1 while (VC is not empty) 
2  do from VC, select the pair (i, j) with maximum Correlationij  
3      if RWij > 0.5 AND RHij > 0.5 
4    then 

Bblobi’ and Bblobj’ are a pair of headlights AND 
5            VC = VC-{pair (a,b) | (a,b) ϵ { (i, j), (i-1, i), (j, j+1)} } 
6   else VC = VC -{ pair (i, j)} 

 

5.3 Traffic Congestion Classification 

 

 In order to evaluate the traffic congestion degree, traffic flow, traffic density, and 

traffic speed are useful traffic parameters for achieving this goal. However, it is 

difficult to estimate the parameters in nighttime traffic surveillance. Because the 

vehicle detection based on headlight detection also does not work on the moving 

vehicles which are far from the camera. These headlights scatter the lights so that all 

headlights are connected together. Hence, the headlights cannot reveal accurate size 
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and position of moving vehicles on roadway. Moreover, tracking is difficult 

particularly while a large number of vehicles existing on the roadway and insufficient 

information to distinguish vehicles. 

Therefore, we use the virtual detection line which is placed in the near side of 

camera in the frames to evaluate the traffic congestion. The virtual line counts the 

number of times that vehicles touch the line during traffic monitoring. The more times 

the line is touched by vehicles, either the more the vehicles run on the roadway or the 

slower the vehicles move on the roadway. Hence, the value of traffic congestion 

Congnight for nighttime video is defined as follow: 

 
lane

night Nfps
touchnumCong

×
=

_  (40) 

where num_touch stands for the number of that vehicles touch the virtual detection line 

over a period of time, Nlane is the number of lanes on roadway, and fps denotes the 

sample rate of video. For a clip of video, traffic congestion levels are classified into 

five levels: jam, heavy, medium, mild, and low by congestion value. For classification, 

the range of congestion values is divided into five intervals standing for five levels of 

congestion, respectively. The threshold between two congestion levels is determined 

by the training data in two corresponding levels. The rationale is same as daytime 

traffic congestion classification as described in Section 4.3.2.  
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Chapter 6. Experimental Results and Discussions 

 

 In this chapter, we are going to demonstrate the performance of the proposed 

framework. In section 6.1, the experimental results of daytime traffic congestion 

classification are shown and discussed, and those of nighttime traffic congestion 

classification are presented in section 6.2. 

 

6.1 Daytime Traffic Congestion Classification 

 

 In this section, we present our experiments of the proposed daytime traffic 

surveillance congestion classification module. The experimental results of roadway 

detection, bidirectional roadway analysis, virtual detectors installation, and traffic 

congestion classification are shown in the following sections. Moreover, the traffic 

surveillance videos captured on different freeways by Taiwan Area National Freeway 

Bureau [44] are used as the experimental data. The resolution of video frames is 

352×240, and sample rates vary from video to video. For the experiments, we use a 

computer with AMD 2.8 GHz dual-core CPU and 2.0 GB memory.  

 

6.1.1 Roadway Detection 

 

In this section, we present and discuss the results of roadway detection. The 

setting of threshold values: thM for identifying movements is 40, thR for noise filter is 

0.6, and TR for reserving main roadway areas is 0.95. These parameters are mentioned 

in Section 4.1.1. Figure 20 shows some results of roadway detection which use seven 

traffic surveillance videos captured in different scenes as the training data. Figure 20(a) 
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demonstrates original scene of traffic surveillance, Figure 20(b) shows roadway 

candidate Rc accumulated from a sequence of frames, Figure 20(c) illustrates the mask 

of detected roadway region.  

Through the results, the shape and position of roadway have roughly revealed 

after accumulating the vehicle movements. After noise filtering, it is obvious that the 

noises mostly coming from the swaying trees outside the roadway region would be 

eliminated from the roadway candidate Rc. In addition, the holes in the roadway and 

the small gaps between two roadways in the different directions are filled to extract 

complete roadway region. Compared to the previous work proposed in [7], our 

algorithm solves the problems that the slight changes between consecutive two frames 

are also regarded as portions of roadway mask and unbalance traffic flow in different 

lanes results in disappearances of partial roadway region. 

The traffic volume in the training data is a key factor to accumulate the vehicle 

movements. If we use a traffic surveillance video which has low traffic volume to 

detect the roadway, the length of the video should be much longer for avoiding 

insufficient information. Furthermore, the videos that has unstable environment outside 

the roadway may cause some large noises that is unable to be filtered. Therefore, our 

approach is relatively suitable in the suburbs and countryside. 
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(a) (b) (c) 

Figure 20. Experimental results of roadway detection. (a) Original scene. (b) 
Roadway candidate Rc. (c) Complete roadway mask R. 
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6.1.2 Bidirectional Roadway Analysis 

 

In this section, we show some results of bidirectional roadway analysis. The 

demonstrations including original scene of traffic surveillance, motion image 

accumulated from a sequence of frames, and the mask of detected bidirectional 

roadway region in seven different traffic scenes are shown in Figure 21.  

In Figure 21(b) and Figure 21(c), the pixels on roadway region are illustrated by 

two different colors for two kinds of motions. The white pixels stand for the motion 

DOWN and gray pixels denotes motion UP. From Figure 21(b), we clearly realize that 

the motions have roughly revealed the different directions of the roadway. As shown 

in Figure 21(c), a red center line CL is calculated to successfully divide the motions 

into two parts for identifying the two directions of roadways. In previous work [7], 

their mechanism to separate bidirectional roadway is limited in the three roadway 

types only and requires a clear gap between two parts of the roadway. Instead, in our 

approach, the bidirectional roadway can work well even if the roadway contains 

interchanges as shown in Figure 21(4) and Figure 21(5) or even there is no clear gap 

between two roadways in the different directions as shown in Figure 21(3) and Figure 

21(6).  

In some cases, unsuccessful bidirectional analysis may result from insufficient 

motions in the construction of motion image. In addition, a shortcoming of our 

algorithm is that the center line for separating bidirectional roadway must be a straight 

line, which causes some mistakes if the roadway is a curved shape. 
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 (a) (b) (c) 

Figure 21. Experimental results of bidirectional roadway analysis. (a) Original scene. 
(b) Motion image M. (c) Bidirectional roadway mask. 
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6.1.3 Virtual Detector Installation 

 

The experimental results of virtual detectors installation are displayed and 

discussed in this section. Figure 22 shows some results of virtual detector installation 

which use seven traffic surveillance videos captured in different scenes as the training 

data. Figure 22(b) is the record of the detected central points of moving vehicles. 

Those points display the broadly trajectories of vehicle moving. As shown in Figure 

22(c), the virtual detectors are placed on each lane as a color rectangle. According to 

the bidirectional analysis, the virtual detectors in different directions are illustrated 

with different colors. The red rectangles are the virtual detectors for monitoring 

direction DOWN, and the blue rectangles are for direction UP.  

The experimental results show that our approach has the ability to detect the 

lanes even though the roadway has lane markings in different shapes or not clear lane 

markings. Besides, in Figure 22(4), we discover that the positions of virtual detectors 

are not actually in the center of lane due to some inaccuracy caused by driving 

behaviors.  

In this experiment, the detection row d is chosen at two-third height of a frame 

from top automatically or selected manually according to the effective resolution of 

perspective. 
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(a) (b) (c) 

Figure 22. Experimental results of virtual detector installation. (a) Original scene. (b) 
Central points of moving vehicles. (c) Result of virtual detector installation. 
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6.1.4 Traffic Congestion Classification 

 

In this section, we demonstrate the experimental results of classification for traffic 

congestion. In our experiment, a unidirectional traffic flow is the unit of our 

experimental data. Thus, for a bidirectional roadway monitoring surveillance video, 

two traffic flows in different directions are analyzed individually. In other words, we 

can get two experimental video clips in a bidirectional traffic surveillance video. In the 

experiment, 226 video clips captured on different freeways from traffic surveillance 

cameras are used as the experimental data. 159 video clips are used for testing data, 

and others are for training data. The length of a video clip is 60 seconds. After 

evaluating the traffic congestion Congday, we use two approaches, Neighboring Class 

Distinguishing (NCD) and Support Vector Machine (SVM) [45], to classify traffic 

congestion into five levels.  

The distribution of training data and testing data is shown in Table 2. The ground 

truths of the experimental data are determined manually according to the principles 

described in Chapter 1. In order to determine the thresholds between the different 

congestion levels, the values of Congday of each training video clip in five congestion 

levels are estimated by our proposed framework in advance. The approach of threshold 

determination is mentioned in Section 4.3.2. 

 

Table 2. Distribution of experimental daytime surveillance video data. 

Congestion Levels Jam Heavy Medium Mild Low 
No. of Testing data 12 30 26 35 56 

No. of Training data 6 12 10 15 24 
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For evaluating the performance of traffic congestion classification, the 

classification accuracy of the video data in one congestion level is defined as follow: 

 
all

classified
level num

num
accuracy =  (41) 

where numclassidied is the number of well-classified testing video clips in one congestion 

level and numall is the number of all testing video clips in the level. The well-classified 

video clips denote the videos that are successfully classified into the congestion level 

as same as the ground truth.  

 

(1) Neighboring Class Distinguishing (NCD) 

By using the traffic parameter Congday to classify the traffic congestion level, 

accuracy of congestion classification is 89.2%, which is the average of accuracylevel of 

five levels.  

In order to present the robustness of the Congday, we compare the results of 

classification by three different traffic parameters: traffic congestion Congday, traffic 

density Dens, and traffic speed Sp. Table 3 shows the average accuracylevel in five 

congestion levels by using different parameters. This validates that Congday is the best 

among the three parameters for congestion classification. Moreover, for getting to 

know the impact of three traffic parameters on different congestion levels, Figure 23 

shows the classification accuracies by using different parameters in five different 

congestion levels. We can discover that Congday is also the best choice for 

classification in all congestion levels except jam condition. The reason is that the 

precision of traffic speed estimation is relatively lower than other levels because of 

vehicle occlusion. Instead, in jam level, traffic density is able to present the condition 

of traffic congestion correctly. On the other hand, traffic speed is the worst parameters 



 

61 
 

to reveal the correct traffic congestion situation. Because the vehicle speed must be 

much slower in the congestive condition but be uncertain in the unobstructed situation 

due to driving behaviors, the traffic speed Sp is not reliable enough to distinguish 

traffic congestion levels. 

 

Table 3. Comparison of classification performance with different features (NCD). 

Traffic 
parameter 

Traffic congestion 
(Congday) 

Traffic density 
(Dens) 

Traffic speed 
(Sp) 

Accuracy 89.2% 87.6% 59.4% 

 

 

Figure 23. Classification accuracy in five levels by different parameters (NCD). 

 

The detailed results of classification by using different features with respect to 

different levels of traffic congestion are shown in Table 4, Table 5, and Table 6, 

respectively. From the results, we discover that traffic congestion Congday may be 

mis-classified into only the neighboring traffic congestion levels. This means that 

Congday is a reliable value to express the congestion situation because of no absurd 

mistakes. In the case of traffic speed Sp, it is relatively unreliable to show the correct 

congestion situation. 
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Table 4. Daytime traffic congestion classification results by using Congday (NCD). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(159) 

Low(56) 52 4 0 0 0 0.93 
Mild(35) 4 30 1 0 0 0.86 

Medium(26) 0 2 24 0 0 0.92 
Heavy(30) 0 0 0 30 0 1.00 
Jam(12) 0 0 0 3 9 0.75 

 

Table 5. Daytime traffic congestion classification results by using Dens (NCD). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(159) 

Low(56) 52 4 0 0 0 0.93 
Mild(35) 5 27 3 0 0 0.77 

Medium(26) 0 1 23 2 0 0.88 
Heavy(30) 0 0 2 24 4 0.80 
Jam(12) 0 0 0 0 12 1.00 

 

Table 6. Daytime traffic congestion classification results by using Sp (NCD). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(159) 

Low(56) 32 12 12 0 0 0.57 
Mild(35) 7 9 19 0 0 0.26 

Medium(26) 3 1 16 6 0 0.62 
Heavy(30) 0 0 0 23 7 0.77 
Jam(12) 0 0 0 3 9 0.75 

 

(2) Support Vector Machine (SVM) 

 The classification accuracy of congestion classification is 86.4% by using feature 

Congday, which is the average of accuracylevel of five levels.  

The performance of traffic congestion classification by using SVM is similar to 

that by using NCD. Table 7 shows that traffic parameter Congday is the best traffic 

parameters to stand for the traffic congestion situation. The classification accuracies 
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by using different features in fives levels are shown in Figure 24. Compared to NCD, 

the accuracy of classification is a little lower due to the different methods for 

threshold determination. For NCD, the threshold between two congestion levels is 

determined by the training data only in the two levels. However, for SVM, the 

threshold between two congestion levels is calculated based on the training data in all 

levels. For the characteristics of that the traffic congestion degree is linear (i.e. from 

low to jam), each threshold between two levels is decided by only the two level 

training data is better than by the training data in all the five levels.  

 

Table 7. Comparison of classification performance with different features (SVM). 

Traffic 
Parameter 

Traffic congestion 
(Congday) 

Traffic density 
(Dens) 

Traffic speed 
(Sp) 

Accuracy 86.4% 84.8% 49.6% 

 

 
Figure 24. Classification accuracy in five levels by different parameters (SVM). 

 

The detailed results of classification by using different features with respect to 

different levels of traffic congestion are shown in Table 8, Table 9, and Table10, 

respectively. 
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Table 8. Daytime traffic congestion classification results by Congday (SVM). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(159) 

Low(56) 52 4 0 0 0 0.93 
Mild(35) 6 24 5 0 0 0.69 

Medium(26) 0 1 23 2 0 0.88 
Heavy(30) 0 0 0 27 3 0.90 
Jam(12) 0 0 0 1 11 0.92 

 

Table 9. Daytime traffic congestion classification results by Dens (SVM). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(159) 

Low(56) 52 4 0 0 0 0.93 
Mild(35) 7 22 6 0 0 0.63 

Medium(26) 0 1 23 2 0 0.88 
Heavy(30) 0 0 2 24 4 0.80 
Jam(12) 0 0 0 0 12 1.00 

 

Table 10. Daytime traffic congestion classification results by Sp (SVM). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(159) 

Low(56) 30 17 9 0 0 0.54 
Mild(35) 15 10 10 0 0 0.29 

Medium(26) 17 2 6 1 0 0.23 
Heavy(30) 0 0 0 20 10 0.67 
Jam(12) 0 0 0 3 9 0.75 

 

6.1.5 Performance of Execution Time 

 

As shown in Table 11, the time for estimating traffic parameters is around 0.1 

second per frame regardless of different congestion levels. In particular, the time for 

processing a frame is increased just a little as the traffic flow becomes crowded. That 

means the usage of virtual detectors is successful in reducing the computation cost as 
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the number of moving vehicles on roadway increases. As a whole, the proposed 

framework works well for the traffic surveillance video that processes at least 4 

frames per second. So, using the key frames of videos is enough to accomplish the 

traffic congestion classification. 

 

Table 11. Time for processing one frame in five congestion levels in daytime video. 

Traffic 
congestion 

Low Mild Medium Heavy Jam 

Time (s) 0.08 0.09 0.10 0.10 0.11 

 

6.2 Nighttime Traffic Congestion Classification 

 

In this section, we are going to show the experimental results of the proposed 

nighttime traffic surveillance congestion classification module. The experimental 

results of headlight detection, vehicle detection, and traffic congestion classification 

are shown in the following sections. Moreover, the nighttime traffic surveillance 

videos that are captured on freeway by Taiwan Area National Freeway Bureau [44] 

are used as the experimental data. The resolution of video frames is 352×240, and the 

sample varies from video to video. For the experiment, we use a computer with AMD 

2.8 GHz dual-core CPU and 2.0 GB memory. 

 

6.2.1 Headlight Detection 

 

In this section, we present and discuss the results of headlight detection. The 

setting of the threshold: thY for luminance is 220 and thCV for color variation is 20. 

These parameters are mentioned in Section 5.1. Figure 25(a) shows the original scene 
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of nighttime traffic surveillance and a horizontal green line denotes the virtual 

detection line, Figure 25(b) presents the detected bright region. Figure 25(c) illustrates 

the mask of detected bright blobs that touch the virtual detection line. The cyan bright 

blobs are the blobs which are filtered after headlight shape validation, but the red blobs 

are not. 

Due to the use of virtual detection line, the headlight detection needs not to be 

applied to the whole bright pixels in the frame. Thus, only the bright pixels near the 

detection line are processed. Through the results, it is obvious that all headlights are 

are extracted after bright region detection. Some bright blobs not belonging to 

headlights, such as reflection of light on the roadside fence in Figure 25(5) and neon 

lamps of a bus in Figure 25(7), are also extracted. Then, shape validation is executed to 

discard these bright blobs and reserve other blobs as the headlight candidates for 

further vehicle detection. 
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 (a) (b) (c) 

Figure 25. Experimental results of headlight detection. (a) Original frame captured at 
night. (b) Detected bright regions. (c) Bright regions after shape validation. 
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6.2.2 Vehicle Detection 

 

In this section, we demonstrate some results of vehicle detection at night. The 

setting of the threshold: Wexpected for expected vehicle width is 20 and Eallowable for error 

tolerance is 10 as mentioned in Section 5.2. Figure 26(a) shows the original scene of 

nighttime traffic surveillance and a horizontal green line as the virtual detection line. In 

Figure 26(b), the headlight candidates surrounded by a yellow rectangle are the actual 

headlights of vehicles and some solitary headlight candidates are removed. The 

horizontal line between two headlights indicates that the pair of headlights is a single 

vehicle. Through the results in Figure 26, we can find out that some headlight 

candidates that do not belong to the vehicle are removed by the vehicle detection as 

shown in Figure 26(2), Figure 26(3) and Figure 26(6). 
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 (a) (b) 
Figure 26. Experimental results of vehicle detection by headlight grouping. (a) 
Original frame captured at night. (b) Detected vehicles at virtual detection line. 



 

70 
 

6.2.3 Traffic Congestion Classification 

 

We are going to present and discuss the experimental results of classification for 

nighttime traffic congestion levels in this section. Our approach is used to process the 

moving vehicles captured from vehicle front for headlight detection. Thus, only the 

incoming traffic flows can be analyzed in the nighttime surveillance videos. For the 

outgoing traffic flows, we can adopt another camera with opposite shooting direction 

to capture the traffic flows from vehicle front. In the experiment, there are 165 video 

clips, which monitor the unidirectional incoming traffic flows, are captured on the 

freeways from surveillance cameras during night. We use 49 video clips to train the 

thresholds for different congestion levels, and others are used as the testing video. The 

length of each video clip is 60 seconds.  

The distributions of training data and testing data are shown in Table 12. The 

ground truths of the experimental data are determined manually according to the 

principles in Chapter 1. The traffic congestion Congnight of each training video clip in 

five congestion levels is estimated by our proposed framework, and all the results are 

used to determine the thresholds between the different levels by using the approaches 

mentioned in Section 5.3. 

 

Table 12. Distribution of experimental nighttime surveillance video data. 

Congestion Levels Low Mild Medium Heavy Jam 
No. of Testing data 21 21 47 21 6 

No. of Training data 9 9 20 9 2 
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(1) Neighboring Class Distinguishing (NCD) 

Based on the traffic congestion Congnight estimated by using virtual detecting line, 

accuracy of traffic congestion classification is 95.4%. The accuracy is calculated by 

the Eq.(41). The confusion matrix of the classification is shown in Table 13. From the 

results, we discover that traffic congestion Congnight may be mis-classified into the 

neighboring traffic congestion levels. This means that Congnight is a reliable value to 

express the congestion situation because of no absurd mistakes. For instance, the low 

traffic flow is mis-classified into jam level. 

 

Table 13. Nighttime traffic congestion classification results by Congnight (NCD). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(134) 

Low(21) 21 0 0 0 0 1.00 
Mild(21) 0 18 3 0 0 0.86 

Medium(47) 0 3 43 1 0 0.91 
Heavy(21) 0 0 0 21 0 1.00 

Jam(6) 0 0 0 0 6 1.00 

 

(2) Support Vector Machine (SVM) 

The accuracy of congestion classification by using SVM classifier is 88.2%. The 

result is lower than that by using NCD due to the different thresholds determination 

methods. For the properties of that the traffic congestion degree is linear (i.e. from 

low to jam), each threshold between two levels is decided by only the two level 

training data is better than by the training data in all the five levels. 
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Table 14. Nighttime traffic congestion classification results by Congnight (SVM). 

 Results of classification 
Low Mild Medium Heavy Jam Accuracy 

Ground 
Truth 
(134) 

Low(21) 20 1 0 0 0 0.95 
Mild(21) 0 11 10 0 0 0.52 

Medium(47) 0 1 44 2 0 0.94 
Heavy(21) 0 0 0 21 0 1.00 

Jam(6) 0 0 0 0 6 1.00 

 

6.2.4 Performance of Execution Time 

 

The use of virtual detection line is successful in decreasing the time for 

processing frames in all congestion levels. In the experiments, the time for estimating 

traffic parameters is around 0.1 second per frame regardless of congestion levels. As a 

whole, the proposed framework works well for the traffic surveillance video that 

processes at least 4 frames per second. The result obviously shows the real-time 

response of our proposed framework. In addition, the size of headlight becomes a key 

factor to influences the execution time. It takes more time to process the larger 

headlights. As shown in Table 15, the jam level spends less time than that in the 

medium level due to the headlight size. That is the size of headlights has larger effect 

than congestion degree for the nighttime performance. 

 

Table 15. Time for processing one frame in five congestion levels in nighttime video. 

Traffic 
congestion 

Low Mild Medium Heavy Jam 

Time (s) 0.096 0.104 0.105 0.095 0.102 
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Chapter 7. Conclusions 

 

The traffic congestion classification framework which contains daytime and 

nighttime modules is proposed in this thesis. Through analyzing the traffic surveillance 

videos, our frameworks are able to recognize the traffic congestion level. The 

information of traffic congestion is useful for drivers to avoid traffic jam and for 

intelligent mobile devices to plan other alternate routes immediately.  

In daytime module, an initialization procedure is used to obtain the consistent 

information of roadway, and the traffic congestion classification based on three traffic 

parameters are estimated from traffic surveillance video. During initialization 

procedure, automatic roadway detection, bidirectional roadway analysis and virtual 

detector installation methods are proposed to overcome the unbalanced traffic flow and 

roadway-type limitations in previous works. In addition, due to the use of virtual 

detectors, simplified procedure of vehicle tracking for traffic parameters estimation not 

only significantly reduces the cost caused by other complex algorithm, but also solves 

the difficulty of vehicle tracking in the complicated environment.  

In nighttime module, we propose a vehicle detection method based on headlights 

detection and grouping, and the virtual detection line is employed to evaluate the 

traffic congestion. Headlights are extracted by using three strong features including 

luminance, color variation, and shape rather than just using luminance in earlier 

researches. Then not only the distance but also the edge feature between two headlight 

candidates are utilized to reveal the correlation of a pair of headlights. Consequently, 

vehicles are detected from the headlights according to the correlations. By calculating 

the frequency that vehicles touch the virtual detection line, the traffic congestion can 

be classified in real time. 
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As the approaches described above, we can enhance the ability of the traffic 

congestion evaluation in more complicated environment, such as a large number of 

vehicles and vehicle occlusions resulting from too low installation of a camera. 

Besides, the computational complexity is reduced to achieve the requirement of 

real-time response. The performance of the proposed framework is examined in videos 

with different surveillance scene and traffic congestion levels. We obtain the 89.2% 

and 95.4% accuracies of traffic congestion classification in daytime and nighttime 

surveillance videos, respectively. 

In the future, once the traffic congestion level is classified instantly from 

surveillance camera, our frameworks can provide a sequence of patterns that represents 

the congestion condition for further traffic jam prediction with advanced data mining 

knowledge. Moreover, there are no strong features at the back of vehicle, so the traffic 

congestion evaluation for outgoing direction needs further investigations. 
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