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HYPONORMAL OPERATORS QUASISIMILAR

TO AN ISOMETRY1

BY

PEI YUAN WU

Abstract. An expression for the multiplicity of an arbitrary contraction is pre-

sented. It is in terms of the isometries which can be densely intertwined to the given

contraction. This is then used to obtain a generalization of a result of Sz.-Nagy and

Foias concerning the existence of a C.0 contraction which is a quasiaffine transform

of a contraction. We then consider the problem when a hyponormal operator is

quasisimilar to an isometry or, more generally, when two hyponormal contractions

are quasisimilar to each other. Our main results in this respect generalize previous

ones obtained by Hastings and the author. For quasinormal and certain subnormal

operators, quasisimilarity or similarity to an isometry may even imply unitary

equivalence.

1. Introduction. Let F, and F2 be bounded linear operators on the complex,

separable Hilbert  spaces 77,   and H2,  respectively.  We say that  F,   is densely
d

intertwined to T2(TX<T2) if there is a bounded linear transformation A': 77, -* H2

with dense range such that XTX = T2X; F, is a quasiaffine transform of T2(TX < T2)

if the intertwining operator X is a quasiaffinity, that is, it has trivial kernel and dense
d d d

range. We say that Tx is densely similar to T2(TX~T2) if Tx < T2 and T2< Tx; Tx is

quasisimilar to F2 (Tx~ T2) if Tx < T2 and T2< Tx. The multiplicity jur of an

operator F on 77 is the minimum cardinality of a set K c H for which 77 = V™=0T"K.

In §2, we first show that the multiplicity of an arbitrary contraction F is equal to the

minimum multiplicity of an isometry which can be densely intertwined to F

(Theorem 2.6). This result is inspired by the recent work of Alexander [1] on the

quasisimilarity of a contraction to a unilateral shift.

Recall that the defect indices of a contraction F are dT = rank(l - T*T)1/2 and

dT. = rank(l - TT*)1/2. T is of class C.0 (resp. C0.) if T*"x -> 0 (resp. T"x -* 0)

for all x; T is of class C, (resp. Cx.) if T*"x -» 0 (resp. T"x -» 0) for all x * 0.

Caj3 = Ca. n C.p for a, B = 0,1. A contraction F can be decomposed as Us ffi Ua ffi

T', where Us and Ua axe singular and absolutely continuous unitary operators and T'

is completely nonunitary (c.n.u.); Us © Ua and T are called the unitary part and

c.Ai.w. part of F, respectively. Following Alexander [1], we say that the contraction F

is of analytic type if it has no singular unitary direct summand. For such a
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230 P. y. WU

contraction T, the functional calculus <p(T) for cp e 77°° is well defined. For the

details and other properties of contractions, readers are referred to Sz.-Nagy and

Foia§' book [17]. As a corollary to our preceding result, we show that if F is an

analytic type contraction, then there exists a C.0 contraction Kwith dv, = pv= fxr

such that V < T (Theorem 2.5). This generalizes the main result in [16], where F is

only assumed to be of class C.0.

In §3, we turn to the question when a hyponormal operator is quasisimilar to an

isometry or, more generally, when two hyponormal contractions are quasisimilar to

each other. These questions have been considered before by Hastings [10, 11] and

Conway [3] for certain subnormal operators and the author [20] for hyponormal

contractions with finite defect indices. We generalize some of these previous results

by showing that if T and S axe hyponormal contractions one of whose c.n.u. parts is

of finite multiplicity, then F is quasisimilar to S if and only if their unitary parts are

unitarily equivalent and their c.n.u. parts are quasisimilar to each other (Corollary

3.10). Our strategy for the proof is similar to the one employed in [20]. The

assumption on hyponormality is needed only through the fact that a hyponormal

contraction can be decomposed as the direct sum of a C,, contraction (its unitary

part) and a C.0 contraction (its c.n.u. part) (cf. [15]). Hence we can consider the

quasisimilarity of such more general contractions. By exploiting the maximality of

the "canonical isometry" of a Cx. contraction, we prove that if 7 is a C,.

contraction with finite multiplicity and Ie {F}', the commutant of F, has dense

range, then X must be one-to-one (Theorem 3.7). This is then used to prove our main

result as in [20].

Finally, in §4 we restrict ourselves to quasinormal and subnormal operators. We

show that, in certain circumstances, quasisimilarity or similarity to an isometry may

imply unitary equivalence. For example, we show that a quasinormal operator

quasisimilar to an isometry is unitarily equivalent to it (Proposition 4.2) and that if

V is an isometry and F e Alg V, the weakly closed algebra generated by V and 7,

then T ~ V implies T = V (Proposition 4.6). The case when V is a simple unilateral

shift and T ~ V has been considered by Conway [5].

In this paper, we use F, = F2 to denote that Tx is similar to F2 and F, s T2 to

denote Tx is unitarily equivalent to F2.

2. Multiplicity of contractions. We start with the following lemma whose proof is

left to the readers.

Lemma 2.1. Let F, and T2 be operators on 77, and H2, respectively.

(a) If Tx < T2, then pTi > fiTi.

(b) If Tx ± T2, then pTi = /»-,.

For a = 1,2,..., co, let Sa denote the unilateral shift of multiplicity a on 77^. A

simple unilateral shift is one with multiplicity one.
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d

Lemma 2.2. Let T be a contraction of analytic type. Then Sx < T.

d

Proof. If V is the minimal isometric dilation of F, then V <T (cf. [17, Theorem

1.4.1]). Since F is of analytic type, V is the direct sum of an absolutely continuous

unitary operator and a unilateral shift by Wold decomposition. By Lemma 2 of [24],
d d

we have Sx < V. It follows that Sx < T as asserted.

d

Lemma 2.3. Let T be a contraction of analytic type. Then p.T = min{ a: Sa<T}.

Proof. In light of Lemma 2.2, we need only show that jur < aj if and only if
d d

Sn< T, where aj = 1,2,_ The proof that pT < aj implies Sn < T is essentially

contained in the proof of (a) => (b) in [1, Proposition 2.2]. That Sn<T implies

jiT < aj follows easily from Lemma 2.1(a) and the fact that \is = n.

Recall that an operator F is cyclic if pT = 1. The next corollary has been noted

before by Takahashi [18, Lemma 3] for c.n.u. contractions.

Corollary 2.4. Let T be a contraction of analytic type and S be the simple

unilateral shift.
d

(a) S < T if and only if T is cyclic.

(h) S < T if and only if T is cyclic and not of class C0.

Theorem 2.5. Let T on H be a contraction of analytic type. Then there exist a C.0

contraction V with dv* — pv = p.T and a C0. contraction W with dw = pw* — \x.T»

such that V <T <W.

Proof. Let a = nT and X: H2a -* 77 be such that XSa = TX and A77a2 = 77. Let

K = (ker X)x and V = PKSa\K, where PK denotes the orthogonal projection onto K.

Then V is a C.0 contraction and V < T. We have p.v < dv» = a = p.T (cf. [16]). On

the other hand, V < T implies that p.v > pT. Therefore, V satisfies dv, = pv = \iT.

Apply the above arguments to F * to obtain W.

The preceding theorem generalizes the main result in [16] from C.0 contractions to

contractions of analytic type. Finally, we turn to an arbitrary contraction.

Theorem 2.6. Let T be a contraction. Then ixr = minf/i.,/ V is an isometry and

V<T}.

Proof. Let F= Us ffi T', where Us is a singular unitary operator and T' is of

analytic type. From Alg F = Alg Us ffi Alg T, we infer that pT= max{ii,y, jur} (cf.

[22, Lemma 1.3 and 23, Lemma 3]). Letting a = nT, we have /i^ < a and /ir < a.
d ' d

Lemma 2.3 implies that Sa<T'. Let V = Us ffl Sa. Then V is an isometry, V < T

and fiv = max^Uy, psj) = a. This shows that /xr > min{ixy: V is an isometry and
d

V<T}.
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d

For the reverse inequality, assume that V is an isometry such that V <T. Let

V = Uf © V, where U,' is a singular unitary operator and V is of analytic type.
d d d

Then Uf ffi V < Us ffi 7" implies that £// < Us and F' -< 7". Hence jti^ > ju^ and

pv> > Mr' by Lemma 2.1(a). Therefore, pT = maxf/i^, jur} < maxl/i^,-, juK.} = juK.

This completes the proof.

3. Hyponormal operators. In this section, we consider the problem when a

hyponormal operator is quasisimilar to an isometry and, more generally, when two

hyponormal contractions are quasisimilar. Our main results reduce these problems

to the corresponding ones for their c.n.u. parts if these parts are of finite multiplicity.

We start by considering C,. contractions. Let Fbe such a contraction on 77. It has

been proved by Sz.-Nagy and Foia§ [17, Proposition II.3.5] that there exists an

isometry V such that T < V and, furthermore, the intertwining quasiaffinity X can

be chosen such that ||A7i|| = nu\>0 ||F*ai|| for all h in 77. Following Alexander [1], we

shall call this isometry V the canonical isometry and X the canonical intertwining

quasiaffinity of T. Our first result says that the canonical isometry V of a C,.
d

contraction F is " maximal" with respect to the property T <V. It was essentially

proved in [1, Theorem 2.8]. We include the proof here for easy reference.

Proposition 3.1. Let T be a C,. contraction with the canonical isometry V.IfT< Vx

d

for some isometry Vx, then V <VX.

Proof. Assume that F, V and Vx are acting on the spaces 77, K and L, respec-

tively. Let Y: H -* L have dense range and satisfy YT = VXY and let X: 77 -> K be

the canonical intertwining quasiaffinity of T. Define Z: K —> L by ZXh = Yh for

h e 77. Then Z is densely defined and has dense range. We have

\\ZXh\\ =||7ft|| = |lK*y/lll =\\YTkh\\ ̂ \\Y\\ \\Tkh\\

for any k > 1. It follows that

\\ZXh\\ <|]y||inf||F*Ai|| =||7|| ||A7i||

by the remark above. Thus Z can be extended to a bounded operator on K. Since

ZVXh = ZXTh = YFaj = VxYh = VxZXh for any h e 77 and (Xh: h e 77} is dense
d

in K, we infer that ZV = FjZ. Thus V < Vx as asserted.

Corollary 3.2. Ler T be a Cx. contraction with the canonical isometry V. Then
d

p.v = sup(ju.v : Vx is an isometry and T < Vx}.

In the following, we shall show that under certain circumstances the canonical
d

isometry V of a C,. contraction F is unique in the sense that T ~VX for some

isometry Vx implies Vx = V. For this purpose, we need the following lemmas.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HYPONORMAL OPERATORS QUASISIMILAR TO AN ISOMETRY 233

Lemma 3.3. Let A, B and N be normal operators with jttA,< cc.IfA ffi N = B ffi N,

then A = B.

Proof. By the spectral theorem, TV is unitarily equivalent to a direct sum of

finitely many cyclic normal operators, say, TV = Nx ffi  • • • ffi Nk. Hence A ffi Nx ffi

• • ■ ffi Nk = B ffi Nx®  ■ ■ ■ ffi Nk. A repeated use of [4, Proposition II.9.5] yields

A = B.

Lemma 3.4. Fory = 1,2, let Vj = Uj® Sj be an isometry, where Uj is a unitary

operator and Sj is a unilateral shift.

(a) If Vx ~ V2, then Sx = S2.

(b) If Vx - V2 andpSi < oo, then Vx = V2.

Proof. Assume that Vj = Uj ffi Sj is acting on 77,- = Kj ffi L., j = 1,2. Let X:

Hx -* H2 be an intertwining operator with dense range.

(a) Since Ux is of class Cxx and S2 is of class C10, it is easily seen that XKX c K2.

Let Y = PL X\LX, where PL-i denotes the orthogonal projection from H2 onto L2.
d

Then Y has dense range and YSX = S2Y. This shows that Sx ■< S2 whence ps > jtis .

By symmetry, we have fis > (is. Thus fis = p.s . For unilateral shifts, this implies

Sx = S2.
(b) Let Wj on Af ■ be the minimal unitary extension of Sj,j =1,2. Then Uj ffi Wj is

the minimal unitary extension of V-. We can extend X to an operator Z: AT, ffi Afj -*

AT2 ffi Af2 which intertwines L^ ffi Wx and C/2 ffi W2 and has dense range (cf. [7,

Corollary 5.1]). Thus Ux® WX<U2® W2. By [7, Lemma 4.1], U2 ffi IF, is unitarily

equivalent to a direct summand of  Ux ffi IF,.  Symmetrically,  [/, ffi If,  is also

unitarily equivalent to a direct summand of U2 ffi iV2. We infer that Ux® Wx = U2

ffi JF2 (cf. [13]). From (a), Sx = S2 and therefore Wx= W2. Since p:w = /is < oo,

we conclude from Lemma 3.3 that Ux = U2. This, together with 5, = S2, yields

F, a F2.

We remark that in Lemma 3.4(b), the assumption on jus   is essential. As an
1 d

example, let Vx= U ® Sx and F2 = Sx, where 7/ is the bilateral shift. Then Vx ~ V2

by Lemma 2.2, but Vx is not unitarily equivalent to V2.

The next two propositions give the uniqueness property for the canonical isometry

of a C,. contraction under certain conditions. In particular, the first one partially

generalizes Theorem 2.8 of [1].

Proposition 3.5. Let T be a Cx. contraction with the canonical isometry V. Assume
d

that V = U ffi S, where U is unitary and S is a unilateral shift with jus < oo. If T ~ Vx

for some isometry Vx, then V = Vx.

d

Proof. We infer from Proposition 3.1 that V < Vx. On the other hand, we also

d d
have Vx~ T < V. Thus V ~ Vx. Since \is < oo, the assertion follows from Lemma

3.4(b).
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Proposition 3.6. Let T be a contraction. If T ~ Vx for some isometry Vx, then T is

of class Cx. and Vx is unitarily equivalent to the canonical isometry of T.

Proof. That F is of class Cx. is trivial. Let V be the canonical isometry and X the

canonical intertwining quasiaffinity of F. Let Y be an invertible operator such that

YT = VXY. As proved in Proposition 3.1, there is an operator Z with dense range

such that ZV = VXZ and ZX = Y. This implies that X is left invertible with left

inverse Y~lZ. Hence X has a closed range and so is invertible. We have V ~ T = Vx.

Since Fand Vx axe isometries, this implies V = F, by [12, Theorem 3.1].

We now come back to our original problem concerning the quasisimilarity of

hyponormal contractions. The next result is the major tool to prove our main

theorem in this section. It greatly generalizes Theorem 5 of [20], where only C10

contractions with finite defect indices are considered.

Theorem 3.7. Let T be a Cx. contraction with nT < oo. If X e {T}' has dense

range, then X is one-to-one.

Proof. Let F be the canonical isometry and Y the canonical intertwining

quasiaffinity of F. Since YX has dense range and satisfies YXT = VYX, by Proposi-

tion 3.1 there exists an operator Z with dense range such that ZV = VZ and

ZY = YX. Extend Z to an operator IF commuting with the minimal unitary

extension U of V (cf. [7, Corollary 5.1]). Since Z has dense range, so does W. Note

that pw = pv ^ iiT < oo (cf. [23, Lemma 4]). Hence If is one-to-one and so is Z (cf.

[13]). From the injectivity of ZY = YX, we conclude that X is one-to-one.

Note that in the preceding theorem, the assumption pT < oo is essential. Example:

F = S ffi S ffi  •••  on/7=772ffi772ffi •■•, where S denotes the simple unilateral

shift on 772, and A" in (F}' defined by X(xx ffi x2 ffi x2 © • • • ) = x2 ffl x3 ffi

on 77.

d
Corollary 3.8. Fory = 1,2, let Tj be a Cx. contraction with /xr < oo. If Tx — T2,

then Tx~ T2.

Now we are ready for the main theorem of this section. It generalizes Theorem 6

of [20].

Theorem 3.9. Let T = Tx ffi F2 and S = Sx ffi S2 be contractions, where Tx and Sx

are of class Cu, F2 and S2 are of class C.0 and p.T < oo. Then T - S if and only if

Tx ~ Sx and T2 - S2.

Proof. Assume that T ~ S. Let

F3      * S3     *
T2=yQ     rJ    and    52=^Q     ^

be the triangulations of type

MX) *

0    c10
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(cf. [17, Theorem II.4.1]) and let Xbe a quasiaffinity such that XT = SX. We have

~7i     0      0] lSx     0      0"

T =     0      F3     *       and    S =     0     S3     *    .

0      0      7*4 J [o      0      54

Let A = [.Xj •]?■_! be the corresponding matrix representation. Since Fx is of class

Cn and 52 is of class C.0, we can easily deduce that X2l = 0 and X3X = 0. Similarly,

that F3 is of class C^ and Sx and S4 are of class C,. yields Xx2 = 0 and X32 = 0.

Therefore,

'Xu     0     xu

x =     0      X22    X23   .

0       0      X33

d

Since X"33 satisfies A"33F4 = S4X33 and has dense range, we have F4 -< S4. By symme-

d d

try, S4 < F4 and so F4 ~ S4. Since nT < pT < oo, we may apply Corollary 3.8 to

conclude that X33 is one-to-one. On the other hand, X is a quasiaffinity implies that

X22 is one-to-one and

X22    X23

0      X33

has dense range. It follows that

X22    X23

0     x33

is a quasiaffinity and thus F2 -< S2. By symmetry, S2 < T2 whence T2~ S2.

As for Tx and Sx, we note that Xxx is one-to-one and satisfies XlxTx = SXXXX. Since

the Cxx contractions Tx and Sx are quasisimilar to unitary operators, say, T{ and Sx
d

(cf. [17, Proposition II.3.5]), by [7, Lemma 4.1] T{ ~ S'x implies that Tx is unitarily

equivalent to a direct summand of S[. By symmetry, S[ is unitarily equivalent to a

direct summand of T{. Therefore Tx = Sx (cf. [13]) and thus Tx ~ Sx.

Corollary 3.10. Let T and S be hyponormal contractions. Assume that the c.n.u.

part of T has finite multiplicity. Then T — S if and only if their unitary parts are

unitarily equivalent and c.n.u. parts are quasisimilar to each other.

Proof. The assertion follows immediately from Theorem 3.9 and the fact that

c.n.u. hyponormal contractions are of class C.0 (cf. [15]).

Recall that any operator can be decomposed as the direct sum of a normal

operator (its normal part) and a completely nonnormal operator (its c.aj.aj. part) (cf.

[14, Corollary 1.3]).

Corollary 3.11. Let T be a hyponormal operator whose c.n.n. part has finite

multiplicity. Then T is quasisimilar to an isometry if and only if its normal part is

unitary and its c.n.n. part is quasisimilar to a unilateral shift.
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Proof. Assume that F = Tx ffi F2 is quasisimilar to the isometry F = U ffi S,

where Tx is normal, F2 is c.n.n., U is unitary and S is a unilateral shift. By

Proposition 3.5 of [11], Tx is unitarily equivalent to U whence unitary. On the other

hand, by Clary's result [2], Fand Fhave equal spectra. Thus ||F|| = r(T) = r(V) = 1,

where r(T) and r(V) axe the spectral radii of Fand F(cf. [9, Problem 205]). T2 ~ S

follows from Corollary 3.10.

Corollary 3.10 generalizes a previous result of the author's for hyponormal

contractions with finite defect indices [20, Corollary 7] and Hastings' for subnormal

contractions and isometries [10]; Corollary 3.11 generalizes Hastings' for subnormal

operators [11, Corollary to Theorem 4.5]. Also note that the preceding three results

may not hold if there is no finiteness assumption on the multiplicity; an example

was given in [11].

We close this section by mentioning the following conjecture. It has been verified

for cyclic subnormal operators by Conway [3, Proposition 2.5] and quasinormal

operators by Williams [19, Theorem 4].

Conjecture 3.12. Let T and S be hyponormal operators. Assume that the c.n.n.

part of T has finite multiplicity. Then T ~ S if and only if their normal parts are

unitarily equivalent and their c.n.n. parts are quasisimilar to each other.

4. Quasinormal and subnormal operators. In this section, we consider the more

restrictive classes of quasinormal and subnormal operators. In certain circumstances,

such an operator quasisimilar or similar to an isometry may even be unitarily

equivalent to it, thus strengthening the results in §3. More precisely, we show that a

quasinormal operator quasisimilar to an isometry is unitarily equivalent to it

(Proposition 4.2) and a subnormal operator F similar to an isometry F and

belonging to Alg F is unitarily equivalent to F (Proposition 4.6). It is interesting to

contrast these positive results with the known negative ones: (1) there are quasisimi-

lar c.n.n. quasinormal operators which are not similar to each other [19, Example 2];

(2) there are c.n.n. subnormal operators similar to a simple unilateral shift without

being unitarily equivalent to it [9, Solution 199]. We first consider quasinormal

operators and start with the following lemma whose proof is left to the readers.

Lemma 4.1. Let T be a quasinormal operator. Then T = Tx ffi T2 ffi F3, where Tx is

normal, T2 is c.n.u. and satisfies ker(l - T2*T2) = {0} and F3 is a unilateral shift.

In particular, if F is a quasinormal contraction decomposed as above, then F2 is of

class Cqo [6, Corollaries 2.5, 2.6] whence [J2°J is the triangulation of type [o°°c10]-

Using this decomposition, we can prove the following result which generalizes the

fact that quasisimilar isometries are unitarily equivalent [12, Theorem 3.1].

Proposition 4.2. Let T be a quasinormal operator and V be an isometry. If T - V,

then T= V.

Proof. Let F = Tx ffi F2 ffi F3 be as in Lemma 4.1 and V = U ffi S, where U is

unitary and S is a unilateral shift. Let X be a quasiaffinity such that XT = VX. By

[11, Proposition 3.5], Tx = U is unitary and, as proved in Corollary 3.11, F is a
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contraction. We infer, as in the proof of Theorem 3.9, that X has the matrix

representation

_   xxx   0   xx3
~[0      0    X23 j

It follows from the injectivity of X that F2 is acting on the zero space (0}. Hence

F = Tx ffi F3 is an isometry quasisimilar to V. We conclude that T = V, completing

the proof.

The forerunner of our last proposition is a result of Conway's [5]: If F is an

operator in Alg S, the weakly closed algebra generated by the simple unilateral shift

S and 7, and T ~ S, then F = S. We would like to generalize this with S replaced by

an arbitrary isometry F of which we are successful only under the stronger condition

that F be similar to V. We start with the following lemma which disposes of the

trivial case when F is unitary.

d
Lemma 4.3. Let N be a normal operator and T e Alg N.IfT- N, then T = N.

Proof. Since Fis normal, the conclusion follows from [7, Lemma 4.1 and 13].

For <p in L°° of the unit circle, let Tv denote the Toeplitz operator defined by

F / = P(cpf) for/e H2, where P denotes the orthogonal projection from L2 onto

772. Since Alg 5 = (<p(S): (p e 7/°°} consists of analytic Toeplitz operators [9,

Problem 148], where S is the simple unilateral shift, we next show that such an

operator is c.n.n. if <p is not a constant function. Goor [8] has shown before that any

Toeplitz contraction F^ with a nonconstant cp is c.n.u. Our proof is based on his. It

also follows from [4, Corollary VIII. 2.14].

Lemma 4.4. Let Tv be an analytic Toeplitz operator, where cp e 7700. Then the

following statements are equivalent:

(a) <jp is not constant;

(b) Tv is not normal;

(c) T^ is c.n.n.

Proof. The equivalence of (a) and (b) is well known. We only prove (a) =» (c).

Assume that T is a contraction. Let K c H2 be such that FJ K is the normal part of

F„. By [14, Corollary 1.3], K = {/e 772: F„"'F?"/ = T£T™f Vaaj, aj > 1). On the

other hand, if L cz H2 is such that FJF is the unitary part of F , then, as proved by

Goor [8], L = [f^H2: <p"f, rf/e H2 Vaj > 1}. Obviously, we have LczK. For

the converse, let/ e K. We have

11*711 = ii*7ii = \\Tjf\\ = \\T-jf\\=\\p(rn\\ < ii*7ii

for any aj > 1. Hence \\P(q>"f)\\ = \\y"f || and it follows that y"f e H2 for all ai. This

shows that K c L, and thus L = K. Since <p is not a constant function, we have

L = {0} by [8]. Therefore K = {0} and Tv is c.n.n.

Lemma 4.5. A direct sum of operators is c.n.n. if and only if all its summands are

c.n.n.
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Proof. It follows from [14, Corollary 1.3] that the normal part of the direct sum is

the direct sum of the normal parts of the summands. Our assertion follows

immediately.

Now we are ready for our last result.

Proposition 4.6. Let V be an isometry. IfT<zz Alg V and T ~ V, then T = V.

Proof. Let F = Us ffi Ua ffi S, where Us and Ua axe singular and absolutely

continuous unitary operators and £ is a unilateral shift. In view of Lemma 4.3,

we may assume that V is not unitary. Hence F e Alg V implies that F = W ffi

<p(Ua ffi 5), where W e Alg IT and <p e H°° (cf. [22, Lemma 1.3 and 21, Lemma

3.11]). Note that <p is not constant. Indeed, if it is, then F is normal whence F = F

implies that T = l/ ffi Ua by [11, Proposition 3.5]. It follows from Us ffi Ua ~ Fthat

F is unitary, contradicting our assumption. Hence <p(5) is c.n.n. by Lemmas 4.4 and

4.5. Therefore F= F implies that W ffi <p(Ua) = Us ffi Ua and «p(S) » 5 (cf. [3,

Proposition 2.6]). To complete the proof, we need only show that tp(S) = S.

For any operator A, let a(A) and aap(A) denote its spectrum and approximate

point spectrum, respectively. Moreover, let S0 denote the simple unilateral shift and

Af^ the operator of multiplication by <p on L2 of the unit circle. We have a(M^) =

ov(Mv) = °*Pi<PiS0)) = aap(<p(S)) = aap(5) = {z: |z| = 1} (cf. [9, Problem 245]).

Hence Af^, is unitary and therefore tp is an inner function. Thus cp(S) is an isometry

which is similar to S. We conclude that <p(S) = S, completing the proof.

To conclude this paper, we propose the following conjecture.

Conjecture 4.7. Let V be an isometry. If T <zz Alg F and T ~ V, then T = V.
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