5 1742 7 N 22

SRR PR AR AR S A N LR < AR
4

A Multi-Screen Cyber-Physical Game Based on Body-Area Inertial Sensor

Networks and Its Gravity Estimation Problem

SR

R FR g R

FERKEB—8FNA

AR RSB ER PR FEF ST NS
4 RPIR AL
A Multi-Screen Cyber-Physical Game Based on Body-Area Inertial
Sensor Networks and Its Gravity Estimation Problem

Boro4 i RAE Student : Yuan-Tse Chang
dpfr s g Advisor : Prof. Yu-Chee Tseng
B o« F
A N
ML wm @

A Thesis

Submitted to Institute of:Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
June 2010

Hsinchu, Taiwan

PEAR-F &S

AR RS R R R P FE T S
BE 4 RPIFAL
B4 L SRITE AR SIS B
B 1A R EE A R ER B T AR 2R 2 (W P RE LT
i L2

HTAE AR 2SN B 20 rT 25 78 N\ A I8 1B MR ECH &8 AR BCHI A R AV ENTE - 6 7KF
HIERNETREYEEF T - Bt EYHE ISR f 1% - BT a0 o[i
A =T R E S AL (a0 - EMEREHIES) CE R R — (s o A
ERENEES B —(EE @ A RS 2 A RS lEIs 18 M BOHIARE S A B A By
LA S NaT A B E T 8K - Bk sl LU HERVRR R EEL - I IEGt—=
e e EEk s |5 o HrhaE ARG a RS & o ST R e s 2 K —
AHIHFIERS 12 o TSk o] DL R R e (T B 8 -

NFRBHE GBI o I P—EEANRE S - NE AR G{ES
5y > BRI JT A2 G o] DUEREH SR o Rt —{E A RSHIMIAS L5 22 (1 2k
[BRI ES » AT HARIIH ST 2 A R R 0 A SR TRORIRZ 3G Y B8 T 2R T3 [m] < 248010
AOe] RN B s 0 B i R L B ARk DT HIER A A e —(EF i R - (Ei8
Ram o TR B R LRI AL » R ERE 7 208 7 1 B WA 02 S

virtual-force-based (VF-based) method Kz Metropolis-based -

\

BRI STEAEE TS - (EVERCHIES © IEREET ~ R - I

A Multi-Screen Cyber-Physical Game Based on Body-Area
Inertial Sensor Networks and Its Gravity Estimation Problem

Student: Yuan-Tse Chang Advisor: Prof. Yu-Chee Tseng

Department of Computer Science
National Chiao Tung University, Taiwan

Abstract

Deploying body-area inertial sensor networks on human bodies to capture motions has
attracted a lot of interests recently, especially in cyber-physical video games and context aware
applications. While video games on the cyber world have been quite popular, enhancing them
with more physical inputs, such as those from inertial sensors, is becoming a new trend.
Following this trend, we develop a video game iintegrated with body-area inertial sensor networks
deployed on players as inputs and with” multiple game screens to broaden players’ views and
provide more realistic interaction experiences. Our design simulates a multi-screen game engine
by controlling a set of game engines simultaneously: A prototype with a body-area inertial sensor
network platform, a cyber-physical game controller, and a set of game engines is demonstrated.
The demonstrated game also addresses the interaction between virtual objects and players.

Tracking human posture system based on accelerometer. One fundamental issue in such
scenarios is how to calculate the gravity, no matter when human body parts are moving or not.
Assuming multiple accelerometers being deployed on a rigid part of a human body, a recent work
proposes a data fusion method to estimate the gravity on that rigid part. However, how to find the
optimal deployment of sensors that minimizes the estimation error of the gravity is still an open
problem. In this paper, we formulate the deployment optimization problem, present deployment
guidelines, and propose some heuristics, including a virtual-force-based (VF-based) method and a

Metropolis-based search method. Experimental results are presented to verify our results.

Keywords: cyber-physical video game, inertial sensor, accelerometer, multi-screen, gravity.

2 i

bR AR R BN - RS - S iRsE LER AL EAA A
DUTHE - A2 A8 SR ELE A ARAR o 7 B B B B N R 5 1 4
B RIS P RAT R RS SRS G TR E 2 EEER -
B HSCC Eha=ryE S ~ BRH ~ B2k GeEE Bmiay A - #f
s (R AT 22 T S AR B TR MR - A IR S BERR R R AAEHOR B AR o
ET IS ENEE - B S S LA R R AR AR -

BB MRCET)

FE AR — H R - (TSR - SR EsE RiE A
ERSE THVD - ATEMNFEERERT > Rl R G EHEIRRIEOR G
& ARSI SRR TS T RSN TR EAE SRR
- JjiH HSCC Eha=myEE » It - RIEEMGHIIHIEIBENA > 23
ST EREAR AR - FR R R AN AT HeE A T
R RAE > BEH E 7 E R I PR 12 7 AR -

aEMEEEE ST

Sik-st sing-gai tsit-bak-nih-a to kueé-a, t1 tse nng-ni 13i-té > bo-lGn-si
hak-giap-siong iah-si sing-uah-siong long oh-lidu bué-tsié. T1 tse nng-ni
hak-sip é kue-ting-tiong, tik-piat kdm-sia ™ /EFL kau-sih é ka-si kah tsi-to
kdm-sia L2955 tsidn-pué t1 tak 1é-pai é bian-hué tiong kah sid lGn-b(n si

’

hoo gua tsin tseé pd-kui é i-kian. Kdm-sia HSCC sit-giam-sik & tong-tshong,
sian-pue, hio-pué kah ka gud pang-tsoo kue é lang, to-sia lin ti tse nng-ni é
pang-bang kah tsiau-koo. Tsue-au kam-sia si-tua-lang kah tshin-lang ti gua
thak-tsheh kue-ting-tiong hoo gua kok hong-bin & hiap-tsoo. Kdm-sia a-pah
t1 khau-tshi tsing tsit am pué gua tso tsue-au é ian-lian.

BEERECET)

PHEAERNVE R - EERER - RS RE R B T &
% o ALIEMFEENEIER] - B S HEF MR B R ERT=
TR B E BTam S o B2 i - REHSCCE SR = 1NEE - Al
I RIEFEE A BN BE R SRR - R R AR R E
MNAE EEE B B TR - P S AR L s iR B

BEE KBTI

Sag sii sen fad go ge dong” giag ', caiia” liong ngien’'gien”, mo lun
hog ngiab song han” he sen fad song du hog liau™ an" do”. Caiia liong"
ngien” hog xib ge go cang gien’, gam" qia % {SfH gau su ge zii® gau,
gam qgia 2$9% qien bi cai mien tam” tung xia" lun vun’sii’ bun’ ngai’
an do” gien ngi. Gam "~ gia HSCGC siid ngiam siid " tung” hog, gien” bi, heu
bi tung bong” cu go ngai” ge ngin; ;gam" qia tai ga’ ia" liong ngien’
gien” ge zeu gu. Zui mi” gam . gia ia 0i” tung" qin” ngin" cai ngai” tug su”
ge go cang gien” bun’ ngai”gog’ fong” mien ge hiab cu, gam" giaa“ ba“
cai kieu" sii gien"am bu” pi ‘ngai*zo zui mi” ge lien xib.

Contents

e
Abstract
Contents
List of Figures
1 Introduction
2 Related Work
3 Multi-Screen Cyber-Physical Game
3.1 How to play this game
3.2 System Architecture
3.2.1 Body-Area Inertial Sensor Network
3.2.2 Cyber-Physical Game Controller
3.2.3 Game Engine
3.3 Demonstration
4 Gravity Estimation Problem
4.1 Data fusion
4.2 Observation
4.3 Optimization Heuristics
4.3.1 A Virtual-Force-Based Method
4.3.2 A Metropolis-Based Method
5 Simulation and Experimental Results
5.1 Simulation Setup
5.2 Comparison of ¢2(P)
5.3 Effects of More Sensors and Execution Time
5.4 Actual Gravity Estimation

6 Conclusions

© N oA W W DN P

N RN NN NN RPB R R R R R
~N OON B P O O NN DM W R

List of Figures

© o0 N O Ot = W NN

W N NN DNDNN NN = e e e e e e
S © 00 N O Ot ks W NN = O O 00N O Ut W Ny = o

An overview of our Multi-Screen Cyber-Physical Game. 4
System architecture. 5
Software architecture. Lo 6
Inertial sensoro 8
Human body model 9
Sensor reading to orientation 10
Unity development screeno 11
Game screen with mouse moveo 11
360° panorama VIew oL L 12
Player 12
Snapshots of the game oL 12
Virtual character and camera settings in Fig. 11 13
Gravity vector is incorrect. when-move.. 13
The kinematical modelfor a-rigid body 15
The radius of a sphere effects error variances. 17
An example of iterative projection on three consecutive polygons. 18
An example of running the VF-based method by game engine Unity. 19
Adjacent grid points of a current location p;. 19
Different geometries 22
Comparison of different geometries, origin at geometry center 22
Comparison of different geometries, origin at geometry edge 22

Comparison of different geometries, origin is away from the geometry edge 22

Effects of m sensors. 23
Comparison of running times. 24
Three view of the box. 25
Rotating the box up and down. 25
Sensors’ locations on the box in Fig. 26. 26
Comparison of length waveforms of measured gravity vectors.. 26
Comparison of five deployments., 27
Comparison of standard errors of one sensor deployments. 28

vi

1 Introduction

Cyber-physical systems (CPS) have attracted a lot of attention recently. Cyber system
also grows very fast in the past recent years, due to the advance of mobile computing
technologies, various wireless communication and networking technologies (such as WiF1i,
ZigBee, Bluetooth, etc.). On the other hand, the development of Micro Electro Mechanical
Systems (MEMS) can enhance cyber systems with more physical inputs and actuators.
Traditionally, the human interface in cyber video game is keyboards and joystick. Now
more and more cyber video game use more kindly human inter face to attract players
attention, such as body motions captured by inertial sensors, camera, 3D depth sensor.
The Nintendo Wii [1] is one example with MEMS-based inertial sensors. XBOX360
Kinect [2] use camera, 3D depth sensor to capture player’s action. Playstation Move [3]
use a stick with 3-Axis Accelerometer, 3-Axis gyro , 3-Axis Magnetometer, and the stick
also have a light ball on it, so the camera can capture the stick’s position. Reference [4]
shows that by using MEMS-based inertial sensors and a wired network, body motions can
be reconstructed through computer animation with little distortion. On the other hand,
new display technologies, such as LCD, plasma, and back-projection displays, can further
enrich cyber-physical games with better visual effects [5, 6].

The above advances motivate us to.develop @ multi-screen cyber-physical video game
with physical inputs from players equipped with body-area inertial sensor network (BISN).
A BISN consists of multiple accelerometers, magnetometers, and gyroscopes connected by
wired /wireless links. An important usage in a BISN is to track human motions through
these inertial sensors. Its applications include cyber-physical video game [7], robotic
balancing [8], localization [9], sports training [10], medical care [11], and computer graph-
ics [4].

A lot of works have studied how to track human postures. Basically, human motions
can be tracked by estimating rotations of joints, via accelerometers, electric compasses,
and/or gyroscopes [12]. Accelerometers sense the directions of the gravity, compasses
sense the directions of the North, and gyroscopes estimate angular velocities. However,
since a human body may continuously move, this is not an easy task.

In this paper we consider cyber-physical video game with physical inputs from players
equipped with BISNs. We demonstrate our prototype of the BISN platform, the Cyber-

Physical Game Controller, and the Game Engines. We develop a video game integrated

with body-area inertial sensor networks deployed on players as inputs and with multiple
game screens to broaden players’ views and provide more realistic interaction experiences.

We also consider a fundamental issue in a BISN, the gravity measurement problem.
Regarding a human body as multiple rigid parts connected by joints, we study the de-
ployment of accelerometers on one rigid part and the estimation of the gravity on that
rigid part. The acceleration perceived by an accelerometer is the gravity (which is the
same for all accelerometers on the rigid part) plus its own acceleration seen by an outside
observer. Since the orientation of the rigid part is unknown, how to measure the gravity
is a challenging problem. Given a sensor deployment, [8] shows a data fusion scheme to
extract the gravity. Based on [8] we try to find the best locations of accelerometers that
minimize the estimation error of the gravity. We present guidelines that can be applied
to arbitrary geometries, which state that sensors should be evenly distributed over the
surface of the rigid part such that the distances between any pairs of them are maximized.
We show that this guideline leads to the optimal solutions for some special cases and near-
optimal soultions in general. Then we propose two heuristics, called wvirtual-force-based
(VF-based) and Metropolis-based method. Experimental results show that both methods
perform quite well, even for complicated geometries.

The rest of paper is organized as follows. Section 3 describes about the Multi-Screen
Cyber-Physical Game. Section 4 formulates the gravity estimation problem. Experimen-

tal results are given in Section 5, and conclusions are drawn in Section 6.

2 Related Work

In Cyber-physical systems, which are the integrations of computational and physical pro-
cesses. [13] discuss current trends in the development and use of high-confidence medical
cyber-physical systems (MCPS). These trends, including increased reliance on software
to deliver new functionality, wider use of network connectivity in MCPS, and demand for
continuous patient monitoring. [14] explore the temporal and spatial properties of events,
define a novel CPS architecture, and develop a layered spatiotemporal event model for
CPS. [15] present AnySense, a network architecture that supports video communication
between 3G phones and Internet hosts in cyber-physical systems. AnySense implements

transcoding of video streams between the Internet and circuit-switched 3G cellular net-

works, and is transparent to 3G service providers. [16] look at modern buildings entirely
as a cyber-physical energy system and examine the opportunities presented by the joint
optimization of energy use by its occupants and information processing equipment.The
security issue be mention in [17] [18].

Basically, human motions can be tracked by estimating rotations of joints, via ac-
celerometers, electric compasses, and/or gyroscopes [12]. When structures of articulated
objects are unavailable, rotations of a single node may be tracked by fusing sensing data
of different modalities [9] [12] [19]. With knowledge of human body structures, [20] [21]
detect incorrect estimations of rotations that are outside of reachable regions of joints,
and [22] compensates linear accelerations under body movements. For human location
estimation in areas of static magnetic disturbances, [23]| uses four magnetometers forming

an orthogonal trihedron to gain more perception of magnetic fields.

3 Multi-Screen Cyber-Physical Game

In multi-screen cyber-physical game, we put BISN on human bodies to capture motions.
With BISN on human bodies; the player will have more kindly human interface than
the traditional one, such as keyboard or mouse. ~In the game, player can use its own
human posture to be the game input information. Besides, we also develop a Multi-
screen video game with a 360° panorama view.The rest of this section is organized as
follows. Subsection 3.1 describe about how to play our game. Subsection 3.2.3 briefly
introduce our system from bottom to up. Subsection 3.3 demonstrate a prototype of our

game system.

3.1 How to play this game

The overview of our system architecture is shown in Fig. 1. The player is surrounded by
four screens. Each screen is set individually at North, East, West and South. Besides, in
the game scene, each screen always captures a constant direction view. For example, the
North screen always captures the North view of the game scene; the South screen always
captures the South view of the game scene, and so on. In the middle of these four screen,
we consider a single-player game; the player act as same as the virtual character which is

in the game scene. For example, when the player raises his hand, the virtual character in

North Screen

West Screen
Uud2I0G 158

U22I0§ YINog

Figure 1: An overview of our Multi-Screen Cyber-Physical Game.

the game also raises his hand.

We adopt the Quidditch [24]-sports in "Harry Potter” as our game scenario. In the
game scene, the player flies around the practice field and try to hit the ball inside the
game. In our game scenario, the virtual character in the game scene flies in a constant
speed. The player use flying broom to control the flying direction and use bat to hit
the ball. For example, when the player’s flying broom is directed to the North screen,
the virtual character in the game scene fly to the North. For capture human body and
game equipment (flying broom and the bat), we put four wireless sensors on forearm,
upper arm, flying broom and bat. Each sensor consist accelerometer and magnetometer.
Accelerometer senses the direction of the gravity; magnetometer senses the direction of

the North.

3.2 System Architecture

Our system architecture is shown in Fig. 2. In the middle of the room, we consider
a single-player game; the BISN is deployed on the player to capture its motions. The

sensing data are reported to the sink by wireless transmission. The sink is connected to

North Screen

| G,,G,,G;,G, : Game Engines |
| c¢: Cyber-Physical Game Controller |
IV, V,,V5,V,: Inertial Sensors |
L

West Screen
UQ2I0S ISty

U22I10§ YINOS

Figure 2:1System architecture.

the cyber-physical game controller by USB, and the collected sensing data are processed
by cyber-physical game controller and feed it four game engines G1, G2, G3, and G4 via
wired LAN interfaces. We place four game engines together with their screens near the
walls of the room. Each game engine are et to four camera angles (east, west, north, and
south) and they together provide a 360° panorama view of the game scene. The software

architecture is shown in Fig. 3. Below, we briefly describe each component.

3.2.1 Body-Area Inertial Sensor Network

In the wireless sensing platform, the sink and the nodes worn on the player form a BISN.
The platform consists of one sink node and four inertial sensor nodes v1, v2, v3, and v4.
Each node consists of some inertial sensors, a microcontroller, and a wireless transmission
module. In our work, each node is equipped with a tri-axial accelerometer and a tri-
axial electronic compass. The tri-axial accelerometer senses the gravity in x, y, z-axes,
while the tri-axial compass senses the earth magnetic force in x, y, z-axes. Note that
gravity acceleration dominates the accelerations sensed by an accelerometer. The data
are reported to the sink through the ”Wireless Module”, where we runs a polling MAC

to avoid collisions and to improve throughput.For the BISN platform, we adopt Jennic

G, G,
I =
% g _ €— Event Handler i) |z
g -~ Q é;a E i
= 5 LR
5| |5 8 g «— Common N
) % £ lg- M Scene Data
S & Q
21 |ES E <€— Local Profile
< &)
< = i
OGN RS <€— Network Input
‘ = :
— 5 = >
S = Input Dispatcher
.5 e
2 £ A
o 8 Human Body and Equipment Model
2z A
5“ 8 Orientation Matrix
A
]
|- Polling Wireless
| é MAC Communication
n
=7 X
= Polling Wireless
@ MAC Communication
Q
2 2 X
= Z. Calibration Calibration
S
-3 A A
S Triaxial Triaxial
X Accelerometer Electronic Compass
Figure 3: Software architecture.

JN5139 [25] and OS5000 IMU sensor [26].

Nodes Each node collects the sensing data from OS5000 through the Jennic UART port.
After receive the data from the UART port, the data will store at the RAM temporary
and wait for the sink to pull it. When the sink start to pull, Jennic will read the data
from RAM and send it to the sink.

0S5000 sensor We use OS5000 to be our body sensor. The OS5000 family is a law cost
compasses within a tiny 1 inch square footprint. OS5000 combines 3-axis magnetic with
3-axis accelerometers providing OEM users a precise tilt compensated heading, pitch
and roll information suitable for a wide range of applications. Compass units offer an
ASCII interface that includes both hard-iron and soft iron compensation and simple,
user-configurable data formatting. In our prototype the sampling rate is set to 20Hz, a
common value for motion capturing and we use 3-axis magnetic and 3-axis accelerometers
to be the sensing reading, we don’t.use pitch and roll information because the pitch may

not correct when pitch angle is over:70°.

Sink Sink is one of the most important devices in-the BISN. It collects all packets from
other nodes and sends them to the cyber-physical game controller from RS-232. When

user wants to send commands to any device, it needs to transmit through sink.

Jennic We use Jennic JN5139 to develop BISN (Fig. 4). It’s a experimental tools using
in sensor network researching. Fach Jennic JN5139 consists of a micro-controller and an
IEEE 802.15.4 wireless transmission module and we also use Jennic JN5139 as the sink.
Our body inertial sensor is based on the Jennic JN5139 with 16MHz 32-bit RISC CPU,
96kB RAM and 192kB ROM. The Jennic JN5139 includes 4-input 12-bit ADC, 2 11-bit
DAC, 2 comparators, two application timer/counters, three system timers, two UARTS,

21 GPIO, 5 SPI port to select and 2-wire serial interface.

3.2.2 Cyber-Physical Game Controller

The first part of this module converts collected sensing data into inputs of single-screen
game engines. In our demonstration, the inputs include the direction of the broomstick

and the player’s gestures. Given the sensing data, the ”Orientation Matrix” block cal-

Inertial Sensor (OS5000)
Jennic JN5139

Figure 4: Inertial sensor

culates the absolute orientations of nodes with respect to the earth coordinate. The
direction of broomstick can be obtained directly from its orientation matrices, and the
player’s gestures are calculated from orientation matrices and a human model. The second
part of this module dispatches the inputs to each single-screen game engine via a wired
LAN. Note that traditional game engines and developing tools do not support multiple
screens. By using this module to control the single-screen game engines, we can simulate
a multi-screen game engine.

We run these game engines with the same game data, except that their cameras may
have different settings. For example, the cameras may look at different directions to form
a 360° panorama view of the game scene. Note that by feeding game engines with the
same inputs, their behavior will be the same. This architectural design makes it simple

to implement, and it has the potential to reuse existing games without modification.

Input Dispatcher Typical game engines do not support multiple screens. Our game
controller tries to simulate a multi-screen game engine by sending proper data, via the
"Input Dispatcher” to four game engines. In our prototype, input dispatcher sends the
proper parameters such as articulation angles, game objection position to the game engines

via wired LAN interfaces.

Human Body Model We regard a human body as multiple movable parts (Fig. 5),
each being a rigid body connected to another part by a rotational joint [27,28]. Each
rigid body has its own coordinate. For capture the rigid body’s tilt, the sensor is set
at the rigid body. The sensor rendering the rigid bodies tilt information and we can
use the tilt information to know the rigid bodies tilt in the earth coordinate through

orientation matrix. In our prototype the player wears four inertial sensor nodes, one on

Figure 5: Human body model

the broomstick, one on forearm, one on upper arm, and one on the club.

Orientation Matrix As Fig. 6 sensors are putted on forearm and upper arm. Each
sensor receives the 3-axis magnetic and 3-axis accelerometer from the OS5000. When the
sensor is at rest, the 3-axis accelerometer reading should consist of only gravity, and the
3-axis magnetic reading consist-of magnetic which direct to the North Magnetic Pole.
Due to the magnetic reading 4is not horizontal to-the horizon; we use Gram-Schmidt
process [29] to let the magnetic reading project to the horizon, so that we can know
the North direction. With the North direction and gravity direction is known, we can
easily find the East direction, and the ”Orientation Matrix” [27] represents the absolute
orientations of all sensor nodes with respect to the earth coordinate can be found. For
example, the gravity always directs to the ground. So if we know the gravity, the up
direction is defined. But the accelerometer’s readings not only sense the gravity but also
sense other acceleration. With the wrong acceleration reading, the Orientation Matrix
may represent the wrong orientation. We define this problem as a Gravity Estimation

problem. And more detail about gravity estimation problem will discuss at 4.

3.2.3 Game Engine

We adopt Unity [30] as our game engine. Unity is a game development tool which features
a fully integrated editor and physics engine for rapid 3D game prototyping. Coding is an
easy job in Unity. In Unity we can do many works with only use script language. Besides,
any object in Unity is fully objective.

In Unity, each game level is saved to a scene (Fig. 7) and each game level switches

accelerometer
reading

& Sensor Coordinate Earth Coordinate

Figure 6: Sensor reading to orientation

through script. The ”scene” is the "Fix part” in the game, it won’t be changed during
the executing, such as lighting, game scene, decorate game object, background sound
will be set to scene. In the multi-screen video game ”Camera” is an important part.
Traditionally, the camera is mount to.a mouse view, the screen view is moved when the
player move the mouse (Fig. 8)..In multi-screen video game, the camera mounts to the
player and the camera always capture to a static direction. For example, if we have four
screens in the room, each cameras capture view is 90°(Fig. 9); if we have six screens, each
cameras capture view is 60°. In our.prototype we use four screens.

Each game engine represents a view port to the game scene and each game engine
has a ”Game Kernel”, which takes inputs from four modules. All game engines use the
same game data except for the settings of cameras. Upon receiving inputs from the cyber-
physical game controller, they update game status and settings of the cameras in the same
way. For example, when the multi-screen controller broadcasts "moving east” to all game
engines, each game engine moves its camera one unit to the east.

The ”Common Scene Data” module describes the virtual world. The ”Common Scene
Data” module describes the virtual world. It is the same for all game engines. The ”Net-
work Input” module receives game inputs from the ”Cyber-Physical Game Controller”
and updates the virtual world in the game. The ”Event Handler” module processes the
interactions, especially collisions, between virtual objects and the player. For example,
when the player hits a ball, it bounces away, and the "Event Handler” increases the
player’s score. Each game engine contains a camera, whose direction is specified by the

"Local Profile” that takes pictures for its virtual world and feeds the captured data to

10

Figure 8:.Game screen-with mouse move

the ”Game Kernel”, which calls the ”Graphics Library” to display the results. Since we
have four game engines with four cameras facing to east, west, north, and south, a 360°
panorama view of the virtual world is provided to support better visual effect to the

player.

3.3 Demonstration

We adopt the Quidditch sports in Harry Potter [24] as the game scenario to demonstrate
the multi-screen cyber-physical game engine. The player Fig. 11 rides a flying broom in
a practice field, and she practices to fly to the ball by her club. She flies at a constant
speed and controls the broomstick to change her flying direction.

Fig. 11 shows some snapshots of the game. The player flies a short distance to the
north in Fig. 11 (a), and then she turns to the west in Fig. 11 (b). We adopt Unity as

our game engine, which features a fully integrated editor and a physics engine for rapid

11

Figure 9: 360° panorama view

Figure 10: Player

3D game prototyping. Fig. 12-(a) and Fig: 12 (b) show the corresponding settings of
the west and the north game engines in-Fig. 11 (a); respectively. The virtual character,
which is controlled by the player; looks to the north in both game engines. The camera
of Fig. 12 (a), whose viewing volume is illustrated by white lines, looks to the west, while
the camera of Fig. 12 (b) looks to the north. Fig. 12 (¢) and Fig. 12 (d) correspond to the
west and the north screens in Fig. 11 (b), respectively, where both of the player and the

virtual character look to the west, but the directions of the cameras remain unchanged.

(b)

Figure 11: Snapshots of the game

12

Camera position and rotation Border of viewing volume

.\\ / >

\/

Camera attached
on the character, . ¢

sensor
«

X

rigid by

Figure 13: Gravity vector is incorrect when move.
4 Gravity Estimation Problem

In cyber-physical systems based on IMU sensor networks (where sensors typically include
accelerometers, magnetometers, and gyro), human motions are captured by sensor nodes
deployed at movable parts (such as limbs) and used as physical inputs and feedbacks to
the systems. Tracking human postures is done by estimating rotations of joints, which are
typically derived from sensing data of accelerometers, electric compasses, and gyroscopes
[12]. Accelerometers sense the directions of the gravity, compasses sense the directions
of the North, and gyroscopes help to stabilize the estimation. Traditionally, each rigid
body put an accelerometer to sense the gravity. As Fig. 13, assume we put an internal
sensor on forearm, Fig. 13 (a) is static, Fig. 13 (b) is in move, let § be the measurement
which is measure from the accelerometers and let g be the gravity, when the rigid body is

rotating, the reading of accelerometer may consists gravity plus it’s on acceleration seen

13

by an outside observer. But in accelerometer-based tilt estimation, we only interesting in
gravity.

Given a sensor deployment, [8] shows a data fusion scheme to extract the gravity
based on multi-accelerometer. However, improper deployments may significantly increase
estimation errors, so there is room to further optimize the deployments. At the rest of
this section, we consider how to find an optimal deployment to improving the estimation

accuracy of accelerometers, and thus limit our discussions to only accelerometers.

4.1 Data fusion

We are interested in tracking human postures by deploying accelerometers on a human
body. One fundamental issue in such scenarios is how to calculate the gravity, no matter
when the body parts are moving or not. Clearly, the gravity as being measured by each
sensor is relative to its placement and angle. We regard a human body as multiple movable
parts, each being a rigid body connected to another part by a rotational joint [27,28].
Accelerometers are placed on a human body: for posture tracking. The concept is shown
in Fig. 5.

To formulate the gravity measurement problem, we consider one rigid body and the
sensors on it, as illustrated in Fig: 14. We assume that there is an Earth-fixed coordinate
system, representing views of a fixed observer, with § = (0,0,0) as its origin and x4, v,
and zy as its axes. The gravity g with respect to this #-coordinate is thus —1 Guass along
the 2y axis. Let the joint of the rigid body be at location r(t) at time ¢. For the rigid body,
we assume a part-fixed coordinate with respect to the joint with r(¢) as its origin and z,,
yr, and z, as its axes. Therefore, for any point on the part, its coordinate with respect
to the r-coordinate remains unchanged no matter how the body moves. For any point at
location p with respect to the r-coordinate, its location with respect to the #-coordinate
changes over time ¢ and can be written as p/(t) = r(t) + R(t)p, where R(t) is the 3 x 3
rotation matrix translating from (z,, y,, z,) to (xg, ye, z9) [27].

Let sq, s9, ..., S be m accelerometers deployed on the rigid body and pq, p2, ..., Pm
be their locations with respect to the r-coordinate, respectively. Without loss of generality,
we assume that these accelerometers are properly placed in the sense that their x-, y-,
and z-axes are perfectly aligned to the z,, y,, and z, axes of the r-coordinate, respectively

(Otherwise, a rotation matrix from the r-coordinate to each sensor’s coordinate would do

14

Sensor

X
6 -coordinate 7r-coordinate

system system

Figure 14: The kinematical model for a rigid body

the translation). This implies that the gravity being observed in the r-coordinate is the
same as that being observed by any sensor.

Now, consider any sensor s;, ¢ = 1,2;5::5,m. Its location in the #-coordinate at time
tis pi(t) =r(t) + R(t)p; (note that p; isitime=invariant). Taking the second derivative of

pi(t), we have its acceleration in the f-coordinate:

i) =)+ R(t)p:. (1)
Since s; is aligned to the r-coordinate and-neise should be included, the actual reading
a;(t) of s; should be a;(t) = RT(t) (—pi(t) + g) + n;(t). Note that both a;(t) and n,(t) are
3x 1 vectors, and each element of n;(¢) has a zero mean with a standard deviation o,,. (For
example, when the rigid body is at rest, the reading of s; should consist of only gravity,
giving a;(t) = RT(t)g + n;(t); when it falls freely, the reading should be a;(t) = n;(t).)
Below, assuming a fixed ¢, we will omit time information in our formulation. Plugging
Eq. (1) into a;, we have
a; = RT (—f—Rpi—l—g) +

1

Fn).

= [RT(—f—Fg), —RTR} N

Putting these m equations together, we have the equality:
A=QP+ N, (2)

where

A= [al am] € R,

15

Q= |R" (- +g), —RTR|eR™,

IR N R
P = e RV

1o P
N=l|n, ... n,|€R>™™

Here, A and P are known and () is to be determined. P is called the deployment matrix
of sensors s1, Sa, ..., Sm.

Since ¥ < ¢ in @, which is common for human motion, @’s first column vector
RT(—i + g) ~ RTg. By estimating @, we can determine R”g. Let Q be an estimation of
Q). Following [8], a @ that makes Q — Q as small as possible can be found by Q = AP,
where PT is the Moore-Penrose pseudoinverse of P when m > 4 and PT = P~! (the
inverse of P) when m = 4 [31]. This implies that to find) we need at least four sensors.
Since Q — () is a zero-mean vector, one needs to measure how Q is close to Q. In [8], an

error variance, which solely depends on the deployment matrix P, is defined:

ARSI Q

where py,(P) is the kth largest-singular value-of /P. It is claimed that a smaller o%(P)
implies a more accurate Q Therefore; we formulate the deployment optimization problem
as follows: given a rigid body and m accelerometers to be deployed on the surface of the
part, the goal is to find the deployment matrix P such that the error variance o(P) is

minimized. Note that since the 302 in Eq. (3) is a constant, we only need to focus on the

summation part.

4.2 Observation

It is natural to ask how the size of a rigid part affects the estimation errors. To observe it,
we vary the radius of a sphere from 1 to 10 and measure the error variance of some fixed
deployment. That is, if the location of sensor s; is p; on a unit sphere, it becomes 10p;
on a sphere whose radius is 10. The results are shown in Fig. 15 for two deployments. We
can see that the error variances decrease as the radius grows. The slope is quite steep at

the beginning, implying that small objects are more vulnerable to sensor deployments.

16

Deployment 1 ====- Deployment 2

Sphere radius

Figure 15: The radius of a sphere effects error variances.
4.3 Optimization Heuristics

As Fig. 15, intuitive deployments may result in poor performance. The above formulation
has related the sensor deployment problem to one of finding a P that minimizes o2(P).
The problem is difficult even for simple geometries. Below, we present some observations
and guidelines. Then we realize them by a virtual-force-based (VF-based) method and a

Metropolis-based search method.

4.3.1 A Virtual-Force-Based Method

We present a virtual-force-based (VF-based) deployment method that can be applied
to rigid bodies of arbitrary shapes.© It approaches the gravity measurement problem
by following the LD guideline and distributing sensor nodes according to the electronic
particles distribution principle: the nearer the particles, the stronger the repelling forces

between them. This algorithm works as follows.

1. First, randomly place sensors si, Ss, ..., S, on the surface of the rigid body. Let p;,

P2, ..., Pm be their locations, respectively.

2. For each pair of sensors s; and s;, the repelling force contributed by s; on s; is

defined by a 3 x 1 vector

1 bi — Py
o () o
i — o5l i — sl

where (3 is a constant speed to expedite the iterative process. In the exceptional case
of p; = p;, we set fj; to a unit vector of any direction. The total force contributed

by all other sensors on s; is f; = Z#i ii-

3. For each sensor s;, we let it move a displacement for a period of T" pushed by force

fi. Assuming that each sensor has a unit mass, we model the displacement by f;T.

17

Polygon 1 Polygon 3

Figure 16: An example of iterative projection on three consecutive polygons.

So the new location of s; is p; + f;'T. Since this location may not be on the surface, a
projection onto the surface is needed (we will discuss how to conduct the projection

below).

4. Let pEOld) and pgnew) be the previous and next locations, respectively, of s;. We test
whether 327 [|p") — p@Pj-< gy, orthe allowed number of iterations is reached.

If so, we terminate this algorithm; otherwise, go back to step 2.

The above algorithm follows the yirtual-force discipline [32] to maximize the inter-
distances among sensors and thus our LD guideline. Note that since the final locations
depend on the initial locations, to avoid finding only a local minimum, we may repeat the
algorithm several times with randomized initial locations.

In the above step 3, how to conduct projection needs further explanation. To be com-
putationally feasible, we approximate a surface by polygons as usually done in computer
graphics. Fig. 16 shows how this works. Sensor s; is at location p; and is pushed by a
displacement f;T. The projection is conducted in a polygon-by-polygon fashion. First,
p; + fi T is projected to polygon 1. Since the projected point is beyond the range of poly-
gon 1, we regard that a partial displacement d; out of f;7" has been consumed and s; has
been moved a projected displacement d; to the edge of polygon 1, i.e., pi. A remaining
displacement of f;T" — d; need to be applied to s;, which is now at p,. Similarly, p} + f;T
is project to polygon 2, we regard that a partial displacement dy out of f;T"— d; has been

consumed and s; has been moved a projected displacement d, to the edge of polygon 2.

18

(b) final deployment

Figure 17: An example of running the VF-based method by game engine Unity.

Py—t
S

Figure 18: Adjacent grid points of a current location p;.

It is worth pointing out that the above iterative process is indeed supported by many
3D game engines, such as Unity [30]. Fig. 17 shows how we configure a 3D object (an
arm) by polygons in Unity. Fig. 17(a) shows the initial locations of four sensors on an

arm, while Fig. 17(b) shows the final locations found by Unity.

4.3.2 A Metropolis-Based Method

The Metropolis-based method follows a probabilistic search to get rid of local optimal
solutions. Its cost, however, is larger search time. This is acceptable for our sensor
deployment problem since once a good solution is found, it can be used repeatedly.

In this method, we partition the surface of the rigid body into mesh-like grid points.
We say that two deployment matrices P; and P; are neighbors if they differ by exactly one

sensor’s location and this sensor’s locations in F; and P; are neighboring grids. Without

19

loss of generality, we assume that each grid point has eight adjacent grid points (refer to
Fig. 18), which may locate on adjacent faces of the surface area. Therefore, each P; has
up to 8m neighbors. We denote by B(P;) the set of P;’s neighbors. The algorithm works

as follows:
1. Begin with an arbitrary deployment matrix P;.

2. From P;, we choose one of its neighbors, say P;, as the next deployment with

probability ¢;; (discussed below). Note that Zw gi; = 1.

3. Repeat step 2) for a predefined number of times, and output the best deployment

(with the smallest o?(P)) seen so far.

We design the transition probability ¢;; according to the Metropolis’ theorem [33].
The resulting ¢;;s should ensure: if we run the above search process long enough, each
deployment P should be visited by a mathematically stationary distribution 7(P) such
that

8| D) (@)

where C' = Y, 1/02(P). Notethat C' normalizes the distribution. By Metropolis’ theo-

rem, this transition probability should be defined as

(

. T Pj .
o= min{1, WEPZ'))} if P; € B(P,),

%ij =40 if P; & B(P,), (5)

Note that the actual value of C' is immaterial in Eq. (5). Compared to the VF-based
method, this algorithm requires much longer time to reach its stationary distribution, but

it may output a better solution.

5 Simulation and Experimental Results

We have conducted simulations and real experiments to verify performance of the proposed

algorithms in terms of o2(P) and the actual observed gravity.

20

5.1 Simulation Setup

We conduct simulations on five rigid body geometries as shown in Fig. 19. Geometry (a)
is a cube with dimensions 4, 4 and 4. Geometry (b) is a rectangular box with dimensions
15 (length), 15 (width), and 30 (height). Geometry (c) is a Triangular Prism, of which
the height is 30 and the bases are regular triangles with the length of each edge being
15. Geometry (d) is a cylinder, of which the height is 30 and the circle has a radius of
7.5. Geometry (e) is the graphical model of a human arm in Fig. 7. Since the locations
of joints matter, for each geometry, we simulate the possible location of its joint. One is
at the geometric center of the rigid body, shown by a circle ° in Fig. 19. Another is at
one surface of the rigid body, shown by a x in Fig. 19. This case is more common in
practice. The other is located outside the rigid body, which is not shown in Fig. 19. Since
no previous method exists, we compare our VF-based method and our Metropolis-based

method, by 02?(P) and execution time.

5.2 Comparison of o2(P)

First, we consider the deployment of m =4 sensors. For the VF-based method, sensors
are initially placed inside the geometries at random and then moved according to the LD
guideline. The algorithm terminates when-the total moving distance of sensors is smaller
than oy,, which is set close to zero in the simulation. The final locations of sensors are
used as the output if the method. For the Metropolis-based method, the surface of each
geometry is properly partitioned into grid points. Initially, sensors are placed at the grid
points at random. The algorithm moves sensors according to transitional probabilities and
terminates in 200, 000 iterations. The best locations seen so far are used as the output of
the method. To avoid finding only a local minimum, we repeat both method ten times
with randomized initial locations.

We shows the error variance o2(P) achieved by each method. Since the location of
the joints of rigid bodies matter, we simulate three possible situations. Fig. 20 shows
the results when joints are at the geometric centers of the rigid bodies (indicated by ° in
Fig. 19), and Fig. 21 shows the results when joints are on the surface of the rigid bodies
(indicated by * in Fig. 19), and Fig. 22 shows the results when joints are outside the rigid
bodies. Each column of the figures shows the distribution of the ¢2(P)s output by ten

different executions of each method for one rigid body geometry in Fig. 19. It happens

21

1.6 ! ! ! ®Metropolis
14l ® ! ! ! AVF-Based
I I I I
l I

1.2

— i-e I
@ DL -4 SRR
= E ! - | I R
@ ®) © @ © 04b 4 i A i § » <: i :' : A
| | | A
02 (a) (b) (d) (e)

(c)
geometry

Figure 19: Different geometries
Figure 20: Comparison of different ge-

ometries, origin at geometry center

5 ' ' ! ®Metropolis
25 ‘ ‘ : ° | | I AVF-Based
! ! ' ®Metropolis 4 . 1 , A]
| | | |AVF-Based s | | | |
I I I
2 ' o i | | | | |
AP sb e
e T A | |

_ 15 s o e | | |

= s . > : i !

S TR B UL
e I BRI I I
Y BN I BRI

I I I I
05 oA e A o | | |
| | | | (@) (b) () . (d) (e)
0 geometry
(a) (b) () (d) (e)

geometry

Figure 22: Comparison of different ge-
Figure 21: Comparison of different; ge-

ometries, origin is away from the geom-
ometries, origin at geometry edge

etry edge
that ten executions of the VF-based method give almost the same ¢2(P) although the
actual location of sensors may not be the same. As can be seen from Fig. 19, the VF-
based method significantly outperforms the Metropolis-based method. For most cases,
the VF-based method is able to give lower o2(P)s than the Metropolis-based method,
and for the rest cases, the output of the VF-based method is comparable to that of the
Metropolis-based method. While Metropolis-based method requires more trials to obtain

better solutions, the VF-based method is able to find good solutions in several executions

and less dependent on luck.

5.3 Effects of More Sensors and Execution Time

The number m of accelerometers to be deployed on a rigid part is a trade-off between
accuracy and cost. In addition to the m = 4 case, we consider different number of sensors
to be deployed on the geometries in Fig. 19. The joints are at the surfaces of rigid
bodies (indicated by * in Fig. 19). For each value of m, we repeat the VF-based and the

22

09|
oo,
07 “o~._~_

& 06
=

by

0 N
0.5] N
04
O---Xe--.
03] 0.4 Rl > SR
'y
nsors

Figure 23: Effects of m- sensors.

Metropolis-based method ten times and compare them by their optimal ¢2(P)s. Note
that comparing the o2(P)s is more practical. For each geometry in Fig. 19, we show the
comparison of both methods by ¢2(P)s in Fig. 23 and by the execution time in Fig. 24.
The results of m = 4 in Fig. 23 is also shown in Fig. 21. For both methods, deploying more
sensors significantly reduces the error variance o(P). The relative accuracies between
the two methods are roughly the same se m is increased. The execution time of the
VF-based method increases quite slowly as more sensors are used, whereas the execution
time of Metropolis-based method is quite sensitive to m. The Metropolis-based method
take at least 200 seconds to reach mathematical stationary distribution 7(P), whereas the
VF-based method reduces the execution time by more than 1/8. The results demonstrate
that the proposed LD guideline is both effective and efficient for deploying accelerometers

on arbitrary geometries.

23

time(sec)

N o8 & g
8 8 5 8
85.8._8 8

5
8

6
number of sensors

(a)

etropolis
7001 —A virtual Force

time(sec)
N
8
8

time(sec)

6
number of sensors

()

time(sec)

time(sec)

6
number of sensors

(d)

6
number of sensors

()

Figure 24: Comparison of running times.

24

30 cm

30 cm 15cm

joint

15 cm
|
15cm

Figure 25: Three view of the box.

5.4 Actual Gravity Estimation

In addition to simulations, we conduct real experiments to test the accuracy of the mea-
sured gravity. We make a rectangular box, deploy accelerometers on its surface, and then
rotate the box physically to test the measuted gravity. As shown in Fig. 26, we consider
a rigid body of a rectangular box fixed by a joint on a table. The three views of the box
and the joint are shown in Fig. 25, where the joint has one rotation degree of freedom. We
deploy eight accelerometers at the degree of freedom. We deploy eight accelerometers at
the vertices of the box. Their coordinates are shown in Fig. 26. Note that the coordinate
of the joint is defined to be (0,0,0). We consider two motions, one consisting of fast rota-
tions repetively from Fig. 26(a) to Fig. 26(b), and the other consisting of slow rotations.
The sensing data is stored at each sensor node and reported to a sink in a reliable way.

We compute the measured gravity offline by a PC.

25

Pi(-6,2,8.5)

(~6,28,8.5) D4

|
D,(6.2.8.5)

(6,28,8.5) P

|
X — -
000) 456289 (6B IHP
v
/176(652;8-5) (6,28,-8.5) D5

Figure 27: Sensors’ locations on the box in Fig. 26.

’__37 {31,53, Sg Ss}‘ ‘---57 {s1 Sy Sgr Ss}‘
_ 3000 _ 1600 ‘ —
g | > \ R n
< h Mo N £ 1400} o AR
> > \
£ 2000 r. 7 A | 7\ A _ 1 2 P '
@ n s\ ¢ l’\n/H\I\"l\ 3 1200 PR AN LIS Y
S I 1 I I\ = ' 1 1 \
> /g \ [JA] | l‘l I\ > I} 1
B 1 M \ 5 10000 s = /
S 1000 ° v v ~ \
‘é} v ‘é’ 800+ ’ |' -4 v~
K% Q
0 s ‘ 600 s s s . . .
10 20 30 40 50 60 10 20 30 40 50 60
time time

(a) under fast rotation of the box

(b) under slow rotation of the box

Figure 28: Comparison of length waveforms of measured gravity vectors.

We first compare the accuracy of using four sensors (m = 4) with only one sensor
(m = 1). The four sensors are-at pi, ps; pg; and ps, the optimal locations obtained by
the VF-based method. The estimated gravity ¢(¢) at time ¢ is the first column of its
Q(t) We compare it with the raw sensing data of s7. Since the actual gravity RT(t)g is
unknown, we compare by the lengths of measured gravities, taking advantage of the fact
that || RT(t)g|| is always 1000 mg (milliguass), no matter how we rotate the box. Fig. 28
shows the length waveforms of measured gravity vectors under fast rotation (Fig. 28 (a))
and slow rotation (Fig. 28 (b)) of the box. Clearly, the gravity measured measurement
by a single accelerometer is significantly disturbed by motion and noise, whereas the
gravity measured by four sensors are much more accurate. This verifies the need of our
multi-sensor approach.

Now, we compare different deployment by their measurement accuracy to verify the
need of proper deployments. The accuracy of the measured gravity is computed as the
standard deviation of measurement errors ||g(t)|| — ||[R*(¢)g||, which intuitively is the
average distance between a length waveform similar to Fig. 28 and a flat line of 1000
mg. We call such a metric the standard error of a deployment. Below, we compare five

deployments.

26

600 ‘ ‘ : : ‘ 200
S 5001 5
IS € 1501
T 400} =
5 5
3 300} 1 9 100f
© o
B 200} 12
S & 50f
-l I 11 111
0 0
1 2 3 4 5 1 2 3 4 5
deployment number deployment number
(a) under fast rotation of the box (b) under slow rotation of the box

Figure 29: Comparison of five deployments.

1. Using one sensor at the position pg.

2. Using four sensors at the positions ps, p4, ps, and pr.
3. Using four sensors at the positions pi, ps, ps, and ps.
4. Using four sensors at the positions py, p3, pe, and psg.
5. Using all eight sensors.

The result are shown in Fig. 29. Deployment -1 (where m = 1) is a reference for
comparing multi-sensor deployments. we show the standard errors of all one-sensor de-
ployments in Fig. 30. Clearly, when m = 1, placing the sensor at p6 would be a good
choice. Deployment 2 shows a situation where an improper four-sensor deployment can
be worse than a proper one-sensor deployment. Deployment 3 shows the results obtained
by time-consuming trials and errors for m = 4. Deployment 4 and 5 are the results ob-
tained by the VF-based method for m = 4 and m = 8, respectively. The results verify
the effectiveness of our VF-based method and show that it is able to find near-optimal

solutions systematically, which is important for scalability.

6 Conclusions

In this paper, we develop a video game integrated with body-area inertial sensor networks,
the player can interact with the video game simpler and play the video game with a 360°
panorama view of the game scene. In the prototype of our Multi-Screen Cyber-Physical
Video Game, we found a basic BISN problem, gravity estimation problem. We have

investigated how to perceive gravity by deploying multiple accelerometers on a rigid part.

27

N
(42
o

800

600 |
2 3
S

(a) under fast rotation of the box (b) under slow rotation of the box

4 6 7 8

8 1 2 3
S

N

o

o
T

standard error (mg)
) N
o o
) =)

o

o I
o I 4
~ 1
standard error (mg)
[=
(4] o [
o o o o

5
ensor 1D

Figure 30: Comparison of standard errors of one sensor deployments.

We have modeled the readings of an accelerometer in terms of the gravity and the sensor’s
own acceleration seen by an outside observer. Using the pseudoinverse scheme to extract
the gravity from these readings, we have formulated the deployment optimization problem
as one to find a deployment that minimizes the measurement errors. We have proposed
deployment guidelines and two heuristics. Experiment results also verify the effectiveness

of our methods.

References
[1] Nintendo, “Wii,” http://wii.com, 2008.
[2] Microsoft, “XBOX360 Kinect,” http://www.xbox.com/zh-T'W /kinect, 2011.
[3] SONY, “Playstation Move,” http://asia.playstation.com/move/tw/, 2010.

[4] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and
J. Popovi¢, “Practical motion capture in everyday surroundings,” ACM Trans. on

Graphics, vol. 26, no. 3, p. 35, 2007.

[5] Panasonic, “KXP84 SERIES — Triaxial Accelerometer,” http://www.kionix.com,
2006.

6] H. Kim and D. W. Fellner, “Interaction with hand gesture for a back-projection

wall,” in Computer Graphics International Conference, 2004.

[7] C.-H. Wu, Y.-T. Chang, and Y.-C. Tseng, “Multi-screen cyber-physical video game:
An integration with body-area inertial sensor networks,” in Proc. of Int’l Conf. on

Pervasive Comput. and Commun. (PerCom), 2010.

28

8]

[10]

[11]

[12]

[15]

[16]

[17]

[18]

S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation of a rigid body
with only rotational degrees of freedom,” in Proc. of IEEE Int’l Conf. on Robotics
and Automation (ICRA), 2010.

M. Sippel, A. Abduhl-Majeed, W. Kuntz, and L. Reindl, “Enhancing accuracy of an
indoor radar by the implementation of a quaternion- and unscented kalman filter-

based lightweight, planar, strapdown IMU,” in Proc. of the FEuropean Nauvigation
Conf. (ENC-GNSS), 2008.

D. T. W. Fong, J. C. Y. Wong, A. H. F. Lam, R. H. W. Lam, and W. J. Li, “A
wireless motion sensing system using ADXL MEMS accelerometers for sports science

applications,” in Proc. of World Congress on Intelligent Control and Automation,

2004.

C. M. Sadler and M. Martonosi, “Data compression algorithms for energy-constrained
devices in delay tolerant networks,” in'Proc. of ACM Int’l Conference on Embedded
Networked Sensor Systems (SenSys), 2006.

J. K. Lee and E. J. Park, A minimum-order kalman filter for ambulatory real-time
human body orientation tracking,” in Proc. of IEEE Int’l Conf. on Robotics and
Automation (ICRA), 2009.

I. Lee and O. Sokolsky, “Medical cyber physical systems.”

S. G. Ying Tan, Mehmet C. Vuran, “Spatio-temporal event model for cyber-physical

systems,” in 29.

G.X..W. J..Y.D..P. T.. M. S. . X. Liu, “Toward ubiquitous video-based
cyber-physical systems.”

Y. Kleissl, J. ; Agarwal, “Cyber-physical energy systems: Focus on smart buildings.”

R. Akella and B. M. McMillin, “Model-checking bndc properties in cyber-physical

systems,” in 33.

S..H. L.. C. K. Wang, E.K. ; Yunming Ye ; Xiaofei Xu ; Yiu, “Security issues and

challenges for cyber physical system.”

29

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

28]

B. Huyghe, J. Doutreloigne, and J. Vanfleteren, “3D orientation tracking based on
unscented kalman filtering of accelerometer and magnetometer data,” in IEEFE Sen-

sors Applications Symposium (SAS), 2009.

7. Zhang, L. W. Wong, and J.-K. Wu, “3D upper limb motion modeling and es-
timation using wearable micro-sensors,” in Proc. of Int’l Conf. on Wearable and

Implantable Body Sensor Networks (BSN), 2010.

Z. Zhang, “Ubiquitous human motion capture using wearable micro-sensors,” in Proc.

of Int’l Conf. on Pervasive Comput. and Commun. (PerCom), 2009.

A. D. Young, “Use of body model constraints to improve accuracy of inertial motion

)

capture,” in Proc. of Int’l Conf. on Wearable and Implantable Body Sensor Networks

(BSN), 2010.

D. Vissiére, A. Martin, , and N. Petit, “Using distributed magnetometers to increase
IMU-based velocity estimation in perturbed areas,” in Proc. of IEEE Int’l Conf. on
Decision and Control, 2007,

J. K. Rowling, “Quidditch;” http://en.wikipedia.org/wiki/Quidditch.
Jennic, “JN5139,” http://www.jennie.com.

OceanServer, “OS5000 Family — Triaxial Accelerometer,” http://www.ocean-

server.com, 2008.
J. Carig, Introduction to Robotics. Prentice Hall, New Jersey, 2005.

A. D. Young, “Comparison of orientation filter algorithms for realtime wireless in-
ertial posture tracking,” in Proc. of Int’l Conf. on Wearable and Implantable Body
Sensor Networks (BSN), 2009.

Gramvschmidt process. Wikipedia. [Online]. Available: http://en.wikipedia.org/

wiki/Gram-Schmidt_process
Unity — 3D Game Engine. Unity. [Online|. Available: http://unity3d.com

D. R. Basu and A. Lazaridi, “Stochastic optimal control by pseudo-inverse,” The

Review of Economics and Statistics, vol. 65, no. 2, pp. 347-350, 1983.

30

[32] G. Wang, G. Cao, and T. F. La Porta, “Movement-assisted sensor deployment,”
vol. 5, no. 6, pp. 640-652, 2006.

[33] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,”
American Statistician, vol. 49, no. 4, pp. 327-335, 1995.

31

	封面.pdf
	論文內頁.pdf
	中英文摘要致謝.pdf
	Contents.pdf
	multi_screen_gravity_estimation.pdf

