WL
—

4
4
>t.
18

I

111
o
{8
\[m
/AL
it
=
o
el

H W X

DR AT B Y347 Android B * AN el pF e 4L

=h
W

Reconfiguring Resolutions in Profiling Time and Energy on

Android Applications

<}

(4t

SR

—_—

%}ﬂ %‘?ﬁl}: ’]‘& ?I%LEC

FTEREBE -8B F ANA

B E R R 3247 Android &t AN el pE e 4L

Reconfiguring Resolutions in Profiling Time and Energy on Android

Applications
Moy TR Student : Yu-Sheng Lai
R HREE Advisor : Dr. Ying-Dar Lin
Bl = < i < 7

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2011

Hsinchu, Taiwan

PEAR-fE

A K25 A 402045 Android B N e g T

£3: 7T F hEFe: had

CEET R SS P T VT

W2
G R PRt BN E RSN X FEE T Rea R R

AFFARL A EREEFFEL 2 JHELRALI AR FRL D TP

).

B AT e N EE P T AL BEE T RIEORT PR
FERFfcEL AL ET ﬁgérg»;f.%zﬁ Ul AR H oaan 4 g g F i
BI1EREFWTALRY Fhp g &« el B kSs s rEar
0 Rl b N A YL B~ VR L SR X PERROU R HmD
HN-BEBENREAS I VRLR AN TIEIETR LS R BITEFE
WL Koot 1 B AR A A ATARS ARG P AR AR DR e Ag 0 RIS R
WA AN B R AT RS BRAE £ 3 F AT
FIR S AFFREDP he AT TR AT T 08 ™0 Android &0
debug class > 25 &% » » AP L E g AR RAEITRT FET Ak
gL 5 vk debug class 4 24 % > iz 8 %] % debug class m&%%’jﬁd java methods
i~ PERFBE RN E A f S Bedp T A MR o F et 1 B #3 CPU v memory #
BAEgE A TR BT A 5 5 5% e 6.53% £ i85 0 gd At
1 BT E I T T e S At 2D RSN E R CPU kg e

ERE o ARt iz AR %—_—v{’* B iR o

MaEF: £Ead7 o #£ia~ 47 % & %447 > Android

Reconfiguring Resolutions in Profiling Time and Energy on Android
Applications
Student: Yu-Sheng Lai Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

The computing of applications in embedded devices suffers tight constraints on
computation and energy resources. Thus, applications spending long execution time
and large energy consumption of embedded applications are not acceptable by users.
The existing execution time and energy profiling tools can help developers to identify
the bottlenecks of applications. However, the profiling tools need large memory space
to store detailed profiling results at run time, causing that they are infeasible on
embedded devices. In this thesis, a reconfigurable multi-resolution profiling (RMP)
approach is proposed to handle the issue on off-the-shelf product devices. It
instruments all profiling points into source code of targeted applications and
configures the profiling points to change the profiling scope for filtering out useless
profiling results to reduce the amount of profiling results. In the experiments, the
required memory of profiling results using RMP for a browser application is smaller
than debug class of Android 25 times, and the estimation error rate of execution time
is proven lower than debug class 24 times because the debug class uses the entry time
of java methods to calculate imprecise time results. Besides, the CPU and memory
overhead of RMP are only 5% and 6.53% for the browsing scenario, respectively.
From this evaluation, we found that the bottleneck of a browser is the web page
drawing because the 2D graphical library does not use any hardware acceleration.

Keywords: time profiling, energy profiling, multi-resolution profiling, Android

Contents

Chapter 1. INtrOUCTIONc.eoiueiiiiriee et 1
Chapter 2. BaCKQIrOUNGccueoiieieicieeee sttt s a e e sne s 4
2.1 Profiling TOOIS.cveeieiieieeee ettt 4
2.2 Architecture of Android APPlCAtIONScccevererieiieieeereee e 7
Chapter 3. Reconfigurable Multi-Resolution Profiling Approach...........ccccecevveviennene 11
0 R O 01T o | PP 11
3.2 ATCIITECTUIE ...ttt sttt sttt ettt b e 11
BB FIOW CRAIT ettt sae s 18
Chapter 4. Implementation on ANAroidcoceevieieeiieie e 20
4.1 Instrumentation COMPONENL........cc.eviririririeieietere et 20
4.2 Time Profiling COMPONENTc..ooviiiiiiirieeeeeeee s 23
4.3 Control & Display and Logs Correlation Components...........cccceeceevveeeeeenne 25
Chapter 5. EVaAluation STUdIES..........coiieiiiiiiiiiiinie sttt 29
DL TESIDE ..ottt ettt ettt bbbttt ettt nbe e 29
5.2 EVAIUALION SCENAIIO ..vvueereenieieiiiiiesiieistiee et eteeesae e saesteseeeseeseeneesensensesseseens 29
5.3 EXperimental RESUISccveieeciicieee e 30
5.4 Overall Observations for the BrOWSENccccevuererereneneeeeceeeiesiesiesieneens 39
Chapter 6. Conclusions and FUtUre WOrKS...........ccooivieiieieeiecece e 41

List of Figures

Figure 1. The profiling concept of RMP.cooiiiiiiiee e 2
Figure 2. Lifecycles of application COMPONENTS.cocvevveiieiiereiie e see e ese e 9
Figure 3. Architecture 0f RIMP.coci it 12
Figure 4. Example of source code analysis..........ccccooviiiiiiieiis i 12
Figure 5. Example of a caller filter. ... 15
Figure 6. Example of 10gs COITelation............ccccoeiveiiiiiie e 18
Figure 7. FIOW chart 0f RMP........c.ooiiiiii s 18
Figure 8. The method level and loop level instrumentation examples. 22
Figure 9. The example of calling the time profiling component.c.coovvvinenne. 24
Figure 10. The control and display COMPONENt............cccoevveieiieiieie e 25
Figure 11. The correlated profiling reSUlts. ... 27
Figure 12. The detailed information of Probes.ccccevveiiiic i 27
FIQUIE 12, TESTDEA. ...t bbbt 29
Figure 13. The overhead of RMP.cooiiiiiiecci e 31
Figure 14. The overhead experiment of instrumented methods.............c.cccocvvirenne, 32
Figure 15. Measure the execution time of a probe..........ccccecvvveiieiiccce e 33
Figure 16. The overhead at different 10g SPACe SIZe.ccceevirreiiiini i 37
Figure 17. The profiling results of browsing scenario.cccocveveeieieeiecvie s 39

List of Tables

Table 1. Comparison of time profiling to0IS.ccoooeviieiie e, 7
Table 2. Comparison of energy profiling tools.cccooveiieviiicie e, 7
Table 3. The time error rate of the RMP and debug class.cccooeveiiiiiiiincienn, 34
Table 4. The functional comparisons of debug class + Traceview and RMP............... 36
Table 5. The overhead comparisons of debug class and RMP.ccccocviviniennne, 36

Chapter 1. Introduction

For designing efficient embedded applications, two key design issues should be
considered. First, the execution time of an embedded application should be optimized
because they have to run on embedded devices with limited computing capability.
Second, the energy consumption should be minimized because battery power is a
bottleneck in embedded devices. Therefore, developers need to identify the hotspots
in the program so that they can optimize their designs according to the analyzed
results.

There were many timing and energy profiling tools which can help developers to
identify bottlenecks, such as PowerScope [1] and Gprof [2]. Some of them can only
profile applications at a resolution. For example, the PowerScope can only provide a
coarse-grained profiling resolution, i.e., process level, to analyze the energy
consumption of a process. Thus, users using PowerScope have the difficulty to
identify the precise bottlenecks in the process. On the other hand, Gprof provides a
fine-grained profiling resolution, i.e., function level, so users can analyze the time
information of a process in more detail. However, users need to spend a lot of time to
analyze logs of the detailed time information to identify performance bottlenecks.

Therefore, some tools adapted the multi-resolution profiling method [3-7] to
provide more flexible analyses. These tools can analyze the fine-grained profiling
traces and show results from a coarse-grained resolution to a fine-grained resolution
of detail which can help users to easily analyze the bottlenecks. However, these tools
are not suitable to be applied to embedded systems since they cannot efficiently store
all logs of fine-grained profiling data due to the limited memory space in the
embedded systems. Therefore, a novel multi-resolution profiling solution is required

to help developers to profile their applications on the embedded system with limited

log space.

Process-level ,” Thread-level

’/'Method—]evel

‘
Proc‘ess a | /f /’, — /:' Loop-level
Y, | ¥ [
Process xl Thread i %3‘5’;1“; Method j |
60ms : \“ g?)?rl];: . ‘ ' ;()A i
100mAT s i \‘ Ricthod] .

A} \
Process z | R y %

Figure 1. The profiling concept of RMP.

In this thesis, we design a new multi-resolution profiling solution and implement
it, named reconfigurable multi-resolution profiling (RMP). It can efficiently profile
execution time and energy consumption by using limited log space. The profiling
concept of RMP is shown as Figure 1. The RMP profiles the execution time and
energy consumption by changing profiling resolutions, such as process level, thread
level, function level (method level) and loop level. For example, when the users start
to profile an application, they can start from a specific coarse-grained resolution (e.g.
process level). After users analyze the profiling results at this resolution, they may
find some bottlenecks, such as the process x in Figure 1. The users can zoom in to
profile the process at a more fine-grained resolution (e.g. thread level). When users
identify that the thread i is the bottleneck of this process, they can zoom in a more
detailed resolution again. Finally, the users can identify the bottlenecks of their
application at loop k through the same zoom-in profiling process. The users can
identify the actual bottlenecks in the application with small log space because the
profiling process only profiles the necessary parts at each resolution.

For measuring the execution time in RMP, we use the similar approach proposed
by LTTng [3] which instruments some probes in the source code to be activated at

runtime to record execution information about a program. The major difference

between the LTTng and the RMP is that the probes in RMP can be configured to
change the profiling scope. To profile the energy consumption, we used an enhanced
approach of Battery Use [8] to collect the energy information. It rebuilds the
estimation model and power table to estimate the process level energy consumption.
However, the resolution of time and energy consumption results may be not equal.
Therefore, we will provide an approach to correlate timing and energy consumption
results when the profiling resolution is finer than the process level.

The rest of this thesis is organized as follows. Chapter 2 discusses related work
of time and energy profiling and the architecture of Android application. We describe
the architecture of RMP and give an example run with a flow chart in Chapter 3.
Chapter 4 shows the system implementation of RMP on an Android device. Chapter 5
presents the experimental environment and discusses evaluation results. Finally,

Chapter 6 concludes the thesis and offers directions of future work.

Chapter 2. Background

The chapter first describes and compares various tools for time and energy

profiling, and then briefs the architecture of Android applications.
2.1 Profiling Tools

Finding correct performance and energy bottlenecks is important to raise
application’s effectiveness and more easily debug. Profiling tools are usually used to
identify the hotspots of an application to find the bottlenecks. A hotpot is a region of a
program where a significant amount of computation or energy consumption occurs.
Therefore, the first step to solve bottlenecks is use profiling tools to identify hotspots.
Commonly used time and energy profiling tools are introduced as follows.

Time Profiling

Existing time profiling techniques can be divided into two categories:
instrument-based and sampling-based. Instrument-based profiling tools instrument
some profiling points into a program, and log events will be recorded when these
instrumentation points are triggered. Gprof [2] and Kernel Function Tracer (KFT) [9]
use the compiler-assisted capabilities, such as —pg flag and —finstrument-functions
flag in GNU compiler collection (GCC), to automatically instrument profiling points
at entry and exit of every function. However, they can only provide the function level
profiling because they only instrument profiling points at the entry and exit of
functions.

Linux Trace Toolkit Next Generation (LTTng) [3] provides a programming
interface to instrument the source code. The instrumentation points are managed with
probes and every probe can be configured to be “on” or “off” state at runtime. The log
event will be recorded when the probe is turned on and will be ignored when the
probe is turned off. Therefore, the profiling resolutions depend on the location of

instrumentation points.

Debug class [4], an Android built-in java class, provides a way to create log and
trace the execution of an Android application. The source code of applications must
be instrumented with specific code. TraceView [10] can analyze the log and show the
execution information from process level to method level.

Sampling-based profiling tools utilize performance counters, presented in most
modern CPUs, to record program execution information, such as program counter
(PC), and CPU-related events, such as cache misses. Then the results can be
correlated with the structure of source code. Representative tools include Oprofile [5],
HPCToolkit [6] and Intel VTune [7]. Most of them can analyze the fine-grained
profiling traces and show results from a coarse-grained resolution to a fine-grained
resolution of details by a GUI tool or a formatted text.

Energy Profiling

Existing energy profiling can be divided into three categories: simulation
approach, measurement approach, and estimation approach. Simulation approach
creates virtual hardware platforms to simulate energy consumption behavior for
energy profiling [11-12]. However, the energy optimization is not suitable by using
simulators, because their accuracy is not high and the profiling has to work on virtual
platforms, not the real platforms.

Measurement approach measures energy consumption with digital power meters
directly. The power meter is connected to a platform which uses the time-driven
sampling approach to periodically trigger the power meter to record the energy
consumption information. The platform also collects some system information, such
as program counter (PC) and process identifier (PID), for the sampling period. The
energy consumption can be attributed to each function of a process according to
recorded the PCs and PIDs. PowerScope [1] is the most famous tool for discovering

the energy bottlenecks at the function level. ePro [13] integrates energy and

performance sampling-based profiling into a convenient tool with user interface (Ul)
at the function level.

Estimation approach counts the requests of hardware components for each
process. The amount of requests can be translated into energy consumption using the
energy estimation model which includes the estimation formula and the power table.
pTop [14] estimates component-wide energy consumption for each process and
provides programming interface for designing energy-aware applications.

Battery Use has been embedded in Android system from version 1.6. During
system booting, the “battery info” service takes responsibility for counting the
requests of hardware components. Battery Use utilizes the inter process
communication (IPC) to pull the data from the battery info service. An enhancement
of Battery Use [8] uses a two-phase calibrating approach to create new estimation
formulas and a more correct power table. It improves the accuracy of estimating
energy consumption with the error rate below 10%. This enhancement of Battery Use
also provides the information of energy consumption for each process.

PowerSpy [15] is a hybrid estimation approach. It not only counts the requests of
hardware components but also collects the thread IDs. In the analysis phase, the data
will be translated into energy consumption and attributed to threads of a process
according to the thread IDs.

Summary

Table 1 and Table 2 summarize the above discussed time and energy profiling
tools, respectively. Gprof, KFT and all energy profiling tools are based on
single-resolution profiling technique and others support multi-resolution profiling to
help users easily analyze the bottlenecks by GUI. However, all multi-resolution
profiling tools normally log the fine-grained profiling trace at run time and show

multi-resolution profiling results on GUI at the post-analysis phase. However, the

large amount

of logging

information cannot

be accommodated by

the

resource-constrained embedded systems, such as Android. In this thesis, we will

propose an approach to solve this limitation.

Table 1. Comparison of time profiling tools.

Name Profiling method Profiling resolution Features
Single-resolution Gprof[2] Instrumentation Function ® Instrument by compiler
profiling ® Interleaved logs
problem
KFT[9] Instrumentation Function ® Instrument by compiler
® Provide complete call
graph
Multi-resolution LTTng[3] Instrumentation Process-statement ® Low overhead
profiling ® Not support java
® Friendly GUI
Debug class[4] Instrumentation Process — method ® Android built-in
® Friendly GUI -
Traceview [10]
Oprofile[5] Sampling Process — statement ® Android support
® Not support java
HPCToolkit[6] Sampling Process — loop ® Hardware dependency
® Friendly GUI
Intel VTune[7] Sampling Thread- statement ® Hardware dependency
® Friendly GUI
Table 2. Comparison of energy profiling tools.
Name Profiling method Profiling resolution Features
Single-resolution PowerScope[1] Measurement Function Map energy consumption
profiling to program structure
Sampling period :
1.6ms — low accuracy
ePro[13] Measurement and Function Performance and energy
Sampling for time profiling
Friendly GUI
pTop[14] Estimation Process Base on power table and
estimation formula
BatteryUse[8] Estimation Process Similar pTop
Built-in Android
PowerSpy[15] Estimation Thread Similar pTop
On Windows o0s

2.2 Architecture of Android Applications

This section briefs Android applications, application components which are

essential building blocks of an Android application and components lifecycles.

Android appli

cations

All user-visible applications on Android are written in java programming
language. The source code, resource file, and other data of an application are
compiled into an archive file with an .apk suffix. A single .apk file is used to install
the application for Android devices. When the application is executed on Android, the
Zygote which is the applications manager makes a new Linux process for the
application. The process will be shutdown when the application is no longer needed or
when the system must recover memory for other applications. In addition, each
process has its own isolated Dalvik virtual machine (VM) which is derived from Java
VM.

Application Components

There are four types of application components. First, an activity is the most
common component in an Application. It provides a Ul to accept user’s operation. For
example, a browser application might have an activity that shows a web page, another
activity to add a new bookmark, and another activity for searching the bookmarks.
Second, a service component is a background program which performs long-running
operations or to perform work for remote processes. For example, there are some
users want to play music in a long time and operate other applications at the same
time. In this case, the music player must be a service component which can run at the
background and avoid bothering users. Third, a content provider is a manager of the
application data. You can store the data to the SQLite database or other storage
locations and set the data to be shared or private. If the data are shared, other
applications can query or modify the data by the content provider. Fourth, a broadcast
receiver is a component that responses the system’s broadcast messages. For example,
the system broadcast a message to announce the power of system at the low battery
state. The system’s applications can receive this message and response some actions.

Components lifecycles

As mentioned above, each types of application component have different
functions and have different lifecycles too. The lifecycle of a content provider
includes read/write and query the data. The lifecycle of a broadcast receiver is just to
receive messages when the system broadcast messages. The lifecycles of activity and

service are shown as Figure 2.

onStart()

[onPause)]

onCreate() onCreate()

onRestart()

onRebind()

onPause()

(@) Lifecycles of activity. (b) Lifecycles of service.

Figure 2. Lifecycles of application components.

The whole lifetime of activity is from onCreate() state to onDestroy() state. For
example, if you have an activity to watch a video, it might call onCreate() to create a
thread to play and then call onDestroy() to stop the thread. From onStart() state to
onStop() state is called visible phase. During this phase, the activity is ready shown on
screen to interact with users. And from onResume() state to onPause() state is called
foreground phase. During this phase, the activity is in front of all activities on screen
and interact with users. This phase of each activity may run serveral times, because
there are only one activity can display its Ul on screen and interact with users in the
same time on Android devices.

The lifecycle of a service is similar to activity which is from onCreate() state to

onDestroy() state, but the service doesn’t have the visible and foreground phases

because it doesn’t provide the user interface. A service can start from two forms with
different lifecycles. First, when an application component start it by calling
startService() to perform a single operation and doesn’t return a result to the caller.
Second, when an application binds to it by calling bindService() to send requests and

receive results.

10

Chapter 3. Reconfigurable Multi-Resolution Profiling Approach

This chapter describes the methodology of RMP. Section 3.1 briefs its concept
and Section 3.2 describes its architecture. Finally, we present the profiling flow of
RMP in Section 3.3.

3.1 Concept

In general, if users want to profile the execution time of an application by using
limited log space in the embedded system, they can instrument some profiling points
into application source code and framework source code (ex. Android framework)
several rounds to collect time information at different profiling scope for achieving
the same effect as RMP. However, they must spend a lot of time to recompile the
application and the framework when they reinstrument other profiling points for
changing the profiling scope. Therefore, RMP instruments all necessary profiling
points into the application and the framework source code in the beginning. All
profiling points are controlled according to the user configurations without
recompiling the application and the framework. The energy profiling approach is
based on an enhanced approach of Battery Use, which can estimate the energy
consumption of processes by estimation formulas and power tables with the error rate
below 10%.

3.2 Architecture

Figure 3 depicts the architecture of RMP which consists of five components,
including instrumentation component, control and display component, time profiling
component, energy profiling component, and logs correlation component. For
changing profiling scope without recompiling, we design the instrumentation
component which analyze the source code to instrument necessary profiling points
with the resolution definitions and give the profiling point information to users. The

control and display component display the profiling point information and the

11

profiling results for users. Then users can control profiling scope according the
resolution definitions and the previous profiling results. The time profiling component
can only record the time information of profiling scope based on the configuration
settings of the control and display component. The energy profiling component
collects the battery information from the target system and gets the process level
energy consumption results according to the battery information. Finally, the logs
correlation component correlates time and energy consumption results, because the
energy consumption results are profiled from process level and it cannot be analyzed
from fine-grained resolutions. Thus the logs correlation component correlates the
process level energy consumption with fine-grained time profiling results for

analyzing energy bottlenecks in fine-grained resolutions.

Control & display component Source code
Configuration module Give probes list
Display interface | | Resolution filter | | Filter Rules | | Caller Filter | .
Application Framework
The correlated results .
fii q Set profiling]
of time and encrgy resolutions and areal Instrumentation component
Logs correlation component
e \ 4
| Proportion of the time | | Instrumentation ranges analyzer |
Give log data - *
Target system Time profiling component '-(The probes inserter |
Energy profiling component | Logging time function ¢
Accepted e
Power table ¢ [
Resolutions and area profiling L
Estimation formula | Probes status checker | —
Source code with profiling resolutions
| Caller filter list manager |

4 \]

IPC ‘ Application

3 Trigger log events

Battery info by probes Compile & install
Framework éc all (|

Figure 3. Architecture of RMP.

File name: Date.java
Method name: setTime

void setTime(int){ Analyzed | ¥ _
check(int); results Line number: 20

transfer(time._push(int)); Called methods:
) 1. check

2. Transfer
3. push

Figure 4. Example of source code analysis.

12

Instrumentation component

In RMP, the proposed instrumentation method instruments profiling points to the
whole necessary locations of the application and the framework in the beginning.
However, only some framework methods will be called by an application. If we
instrument all profiling points to the whole framework, some profiling points will be
useless, and they may cause extra unnecessary overhead for other applications.
Therefore, the instrumentation range of the application should be identified before we
instrument profiling points in the framework. For example, in Figure 4, the
instrumentation ranges analyzer scans the application source code and the framework
source code to identify the method’s location and the used application and framework
methods. The methods of the application and the methods of the framework which
may be called in the application are defined as the instrumentation range.

When the instrumentation range is identified, we can start to instrument profiling
points into the application and framework source code. We instrument profiling points
at the entry and exit of every method and every method’s loop because the execution
time of each method and loop can be estimated by the entry time and the exit time.
The profiling points of a method or a loop map to a probe which is a control unit
when users control profiling scope in the control and display component. In
instrumentation component, each probe is recorded in a probe list with its probe name,
resolution definition and status. The resolution definition can be recognized by
specific methods functionality (ex. the run() method can be seem as thread level).
Then, the application source code and framework source code can be compiled and
installed on the target system to do multi-resolution profiling without recompiling

when users change the profiling scope.
Control and display component

The control and display component read and show the probes information of

13

probes list or the correlated profiling results to users on display interface. Then users
can turn on or turn off the probes to control profiling scope by the configuration
module. The profiling scope is according from the settings of profiling resolutions and
profiling area. The profiling resolutions are the language-based levels, such as process,
thread, function (method) and loop. Users can zoom a coarse-grained resolution into a
fine-grained resolution for analyzing bottlenecks and saving the log space by the
resolution filter, which turn the probes on or off according the users settings with the
resolution definition of probes. The profiling area is defined as the set of probes
which will be profiled. For example, when the profiling is working at the method
level of a thread i, the profiling area is all method level probes in thread i. Also when
the profiling zooms in the method k of thread i, the profiling area includes all loop
level probes in method k. However, a method may be executed by other threads which
are not required to do the profiling. Therefore, we design a caller filter for users to
solve the problem. Users can set some root points in the caller filter, and then only
some methods that are called from the root points can be profiled. To identify what
methods are called from the root points, the caller of methods will be dynamically

records into a caller filter list at runtime.

void M1(int){
Ma(int);
void T(int){ // do something
Mi(int); — }
¥

void M2(int){
// do something
by

(a) The pseudo code of a thread and called methods.

(1)

System stack

(2) (3)

System stack

System stack

Caller filter Caller filter Caller filter

ﬁj | M, Hwm, b,

T, T,

a a

|

|

|

|
|

|

|

14

(b) T, is the root point.

€y 1 (2) (3
System stack : System stack | System stack
Caller filter Caller filter | Caller filter
1y [M
I M, 1 M,
Ty : T, | Ty
|

(c) Ty is not the root point.
Figure 5. Example of a caller filter.

The example of the caller filter is shown as Figure 5. We suppose methods ‘M;’
and ‘M’ are called by thread ‘T,” and ‘Ty,’ in Figure 5(a). We set ‘T,” as our root point
in Figure 5(b1), and when ‘T,’ is executed, it will be recorded into the caller filter list,
which is maintained in the time profiling component. In Figure 5(b2), ‘M;’ will be
recorded into the caller filter list when it is called by ‘T,’ because the caller of ‘M;’ is
“Ta” which has been recorded in the list. Also ‘M;’ will be also recorded into the caller
filter list too in Figure 5(b3), because its caller is ‘M;” who has been recorded in the
list. After that, ‘M, will be removed from the caller filter list when it is finished. Then
‘M;” will resume until it is finished and removed from the caller filter list. Finally, ‘T,
will be removed from the caller filter list when it is finished. Therefore, when each of
them is recorded in the caller filter list, it will be profiled. There is a counterexample
in Figure 5(cl), Ty’ is not recorded into the caller filter list because it is not our root
point. Thus ‘M;’ and ‘M5’ are not recorded into the caller filter list in Figure 5(c2) and
Figure 5(c3), respectively, because their callers are not recorded in the list. Therefore,
these methods called by ‘Ty’ are not profiled.

In addition, the caller filter can not only solve the above problem, but also can be
used to control profiling area when zoom in other resolutions. For example, when
users zoom in the loop level of method k, the profiling area can be limited in the

method k by the caller filter. It can avoid recording loop level events of other methods.

15

Also some filter rules users specified, such as execution time over than one sec,
energy consumption over than 20 yAh, and executing times over than five, can also
help users to limit profiling area according to profiling results. These specific filtering
rules can help users exclude some log events which users do not want to profile for
reducing the log size.
Time and energy profiling components

The time profiling component checks the probes status (on or off) and manages
the caller filter list based on the configuration settings of configuration module before
it records the time data. When the application executing on the target system, the
probes will be triggered and send log events to the time profiling component. If the
status of a probe is off, the events related to the probe will be skipped. If the status is
on and the caller of probes have been recorded in the caller filter list, the log events
will be accepted and the system time will be recorded into log space in memory,
which amount can be set by users. The logs will be removed from memory to other
large-storage components when the log space of time profiling component is out of
bound or the profiling has ended. The energy profiling component based on the
enhanced approach of Battery Use which uses IPC to collect the battery information
and calibrate it to the process level energy consumption results by power tables and
estimation formulas.
Logs correlation component

The time and energy profiling component generates time and energy
consumption results to users. However, the results of energy consumption are
profiling from process level, and it cannot be analyzed from fine-grained resolutions.
Therefore, we need to get a fine-grained energy consumption result. Thus we try to
correlate the process level energy consumption with fine-grained time profiling results

before we correlate them, we should know that the energy consumption can be

16

divided into two parts. The first part is the energy consumption of asynchronous
components, such as Wi-Fi and Bluetooth. These components receive requests from
an application to do some tasks asynchronously and return results to the application
when the tasks have been finished. Therefore, their energy consumption results cannot
be correlated with time results of the application because the execution of these
components and execution of the application are independent. Another part is the
energy consumption of synchronous components, such as CPU and memory. These
components are the major contributors of the execution time of applications, so their
energy consumption can be correlated with time results of applications.

The Battery Use provides these two types of energy consumption. The
consumption of asynchronous components is calibrated to each components and the
consumption of synchronous components is calibrated to each process. Therefore, we
can directly use the energy consumption of a process (an application) to correlate with

our time results of an application. The correlation between time and energy can be

written as
T = Ty,
Lj =

Tpi,l + + Tpi,ni
syn .

syn _)™ process X Tl"]" i=2

pPij syn -
l;pi—Lk X TQJ, i>2

where i is the profiling resolution, j is the probe, n is the number of probes in

resolution i, k represents the selected probe in upper resolution. The Ty, is the

execution time of probe j at resolution i and the E;f]”

is the energy consumption of
probe j at resolution i.
If process level is the first resolution (i = 1), the energy consumption of a probe

in next resolution (i=2) is proportion of the execution time of the probe in the current

syn

resolution, i.e., E When the profiling resolution is a fine-grained resolution (i

process’

17

> 2), the energy consumption of a probe can be calculated from the energy
consumption of the upper-resolution probe by proportion of the execution time. For
example as shown in Figure 6, we assume the energy consumption of a process is 10
mA. The energy consumption of the two threads in the process can be directly
calculated by proportion of the execution time of the process. And the energy
consumption of the two methods in thread k can be calculated from 7 mA by

proportion of the execution time of each method, too.

7
/

s Y
& Thread 1 /
i
," 3ms I
3mA I/ Method 1
;
Process ;g 4ms
4mA
10ms \ Thread k
10mA \ 7ms |
\\ TmA \\ Method 2
\ v 3ms
y \\ 3mA

Figure 6. Example of logs correlation.

3.3 Flow Chart

Give source code of the

Start application and the
framework
.
Instrumentation 2
| Analyze instrunllentation range |
Logging]
Log time and energy Configure profiling resolutions
consumption results | & area
Result files Correlat It
Update the configurations orre ate energy resuits
with time results
Bottlenecks \L
analysis
Find
’7 No bottlenecks? <
es
T . . . End
imit profiling area Want more detailed
by profiling results? Y, profiling results? @
Profiling
resolutions & Yes
area
adjustment Zoom in to a more Upper bound of fine>
detailed resolution No rained resolution? os

Figure 7. Flow chart of RMP.

18

Figure 7 depicts the main flow chart which contains four profiling phase,
including instrumentation, logging, bottlenecks analysis, and profiling resolutions &
area adjustment. In instrumentation phase, when users give source code of the
application and the framework for profiling, we analyze the instrumentation range to
identify what framework methods are called by the application. Then, we can
instrument all necessary profiling points into the application and the framework at
once. Next, users can configure the profiling resolution and area to start profiling by
the control and display component. In logging phase, the time and energy profiling
results will be stored in memory and written to result files at the end. The logs
correlation component can read result files and correlate them by the proportion of
execution time to analyze bottlenecks. In profiling resolutions & area adjustment
phase, users can adjust some filter rules and the caller filter to limit profiling area with
the previous run-time profiling results. They can zoom in a more detailed resolution
by the resolution filter and caller filters, if necessary. After doing the logging phase,
bottlenecks analysis phase and profiling resolutions & area adjustment phase several
rounds, users may find the bottlenecks of an application on a resource-constrained

embedded system without recompiling the application and the framework.

19

Chapter 4. Implementation on Android

This chapter details the implementation of the reconfigurable multi-resolution
profiling approach on the Android Dev Phone 1 (Dev 1) which is taken as the device
under test (DUT). The implementations of the instrumentation and time profiling
components are introduced in Section 4.1, 4.2. The control and display component

and logs correlation component are introduced in Section 4.3.
4.1 Instrumentation Component

The instrumentation range analyzer can analyze the methods location and what
framework methods are called by an application. Then, the probes inserter can
instrument profiling points into the application source code and the framework source
code based on the results of instrumentation range analyzer.

The instrumentation flow includes three phases. First, we use Jindent [16], which
is a source code formatter tool, to unify the source code format of the application and
the framework, because the unification format of source code can minimize the
complexity of our instrumentation algorithm. For example, if the declaration of a
method and its left curly brace are written at the same line, our entry profiling point
can be instrumented at the next line directly. If the left curly brace is written into the
next line of method declaration, the entry profiling point need to be instrumented at
right side of left curly brace or next line of left curly brace. In this implementation, we
can just consider the same line case when the source code has been formatted.

Second, we use ctags [17] to get the location of the application methods and the
framework methods. The results of ctags include methods name, file name of methods
and line number of methods in the file. And we implement an automatic script to scan
out what framework methods are called by the application according to the results of
ctags. Then, users can run the script in different operating systems directly. The

automatic script is written in the python language because the python language is easy

20

and it can work on most popular operating system, such as Windows and Linux.

Finally, we implement another automatic script to instrument entry and exit
profiling points into the application methods and the framework methods with the
resolution definition. We define four profiling resolutions for Android application in
this implementation. First, the process level is the total execution time of all
components in an application because the application components are essential
building blocks of an Android application. Therefore, the process level is used to
analyze the bottleneck of components in an application. The execution period of
Android activity is from onCreate() state to onDestroy() state, but the activity may be
switched to other activities in onCreate() state to onDestroy() state when users change
to other Uls of the application. Therefore, the actual execution time of an activity can
be estimated by the periods of onCreate(), onDestroy() and each part of visible phase.
The execution time of a service can be estimated by the period from onCreate() state
to onDestroy() state, and execution time of a broadcast receiver can be estimated by
the time of onReceive(). However, the content provider doesn’t have the independent
execution time, because it called by other components in general. Therefore, the
content provider’s execution time has been included in other components.

Second, the thread level is the execution time of run() method which needs to be
implemented in a thread class. This resolution is used to analyze the bottleneck of
threads in a process (If the process has threads). Third, the method level is the
execution time of each normal method. This resolution is used to analyze the
bottleneck of methods in a thread. Finally, the loop level is the execution time of each

loop. This resolution is used to analyze the bottleneck of loops in a method.

21

package com.android.browser;
class TabControl {
boolean restoreState(Bundle inState) {

String caller_name = Thread.currentThread().getCaller();
probe("com.android.browser.TabControl.restoreState", caller_name, true);

Entry point <

for (inti=0;i < numTabs; i++) {
probe("com.android.browser.TabControl.restoreState_611", caller name, true);

i ()
{

probe("com.android.browser.TabControl.restoreState 611", caller _name, false);
break;
b

probe("com.android.browser.TabControl.restoreState_611", caller _name, false);

¥

if (..)

{

Exit point [¢<—— probe("com.android.browser.TabControl.restoreState", caller_name, false);
return true;

}

Exit point <1+—— probe("com.android.browser.TabControl.restoreState", caller_name, false);

i

Figure 8. The method level and loop level instrumentation examples.

There is an instrumentation example shown as Figure 8. The entry points of
thread level and method level are instrumented at the next line of method declaration
and the exit points are instrumented before the finish points, such as right curly brace
of method declaration, return syntax and throw syntax. The entry and exit profiling
points of a method map to the same probe with the profiling resolution definition and
the probe name for users to configure the profiling resolutions and area in control and
display component. The probe name is composed of the package name, class hame
and method name.

The entry points of loop level are instrumented to the next line of loop
declaration, such as for and while, and the exit points are instrumented before the
right curly brace of loop syntax and break syntax. And the loop level profiling points
map to its loop level probes in a method. However, the probe name is same with other
resolution because the method name, package name and class name are the same in a

method. Therefore, the line number of the loop will be concatenated to the original

22

method level probe name.
4.2 Time Profiling Component

When the profiling points are triggered, the time profiling component receives
log events, checks probes status and manages caller filter list based on the
configuration settings of configuration module before it record the time data into the
memory. These actions need to be implemented efficiently because they may
influence the accuracy of time data if they spend too much time.

Therefore, the proposed implementation of the time profiling component is
written in C language, which has higher performance than java language.
Unfortunately, the Android application and framework are written in java language,
profiling points (written in java language) cannot call the time profiling component
directly. So we use java native interface (JNI), a most effective method to call C
program from Java side on Android [18], for profiling points to call the time profiling
component. The time profiling component is implemented in a JNI native library and
it will be loaded when the application and the framework start to execute. However,
the application and the framework cannot load the same time profiling component
when it implemented in a JNI native library because the application and the
framework classes are executed by different class loader, and the same JNI native
library cannot be loaded into more than one class loader. According to the official
statement [19], the benefit of this limit is the name space separation which preserved
in native library based on class loaders. The native library cannot easily mix classes
from different class loaders. Therefore, we separate the time profiling component
implementation into two parts (application part and framework part) to solve above

problem.

23

String caller_name = Thread.currentThread().getCaller();
probe("com.android.browser.TabControl.restoreState", caller name, true);

void nativeProbe(JNIEnv *env, jobject obj, jstring jname, jstring jeallername, jboolean point) {
const char *nname = (¥*env)->GetStringUTFChars(env, jname, 0);
const char *ncallername = (*env)->GetStringUTFChars(env, jcallername, 0);

if(point == JNI_TRUE) {
if(isActiveProbe(nname) == 1)
if(isCaller(ncallername, nname) == 1)
activeLog(nname);
b3
else {
if(isActiveProbe(nname) == 1)
if(removeCaller(nname) == 1)
activeLog(nname);

¥

(*env)->ReleaseStringUTFChars(env, jname, nname);
(*env)->ReleaseStringUTFChars(env, jename, nename);

¥

Figure 9. The example of calling the time profiling component.

Figure 9 shows an example of calling the time profiling component using JNI.
The profiling points call the time profiling component through the JNI application
programming interface and send its probe name, caller name and point attribute (‘true’
is entry point and ‘false’ is exit point) for checking. We can use the API,
Thread.currentThread.getStackTrace(), to collect the stack information and select out
the caller name from stack information. However, it spends too much execution time
and we do not need to get whole stack information. We only need the caller name in
stack. Therefore, we implement a new API, Thead.currentThread.getCaller(), to only
return the caller name.

The time profiling component, either application part or framework part
compares the probe name with the probes configuration settings which record the
probes status from configuration module. When the time profiling component found
the status of a probe is off, the log event is ignored. And when the status of a probe is
on, the checking is passed and starts to check caller name. The caller name is used to
compare with the head of caller list. But the time profiling component of framework

part check the caller name is come from the target application before check the caller

24

list, it needs to avoid accepting the log event which called by other applications. If the
profiling point is entry point and the caller name is different with the head of caller
list, this log event will be ignored. On the other hand, if the caller name is same with
the head of caller list, then the name of profiling point will be added into the head of
caller list and the log event will be accepted to record the entry time into log space in
memory. If the profiling point is exit point and the caller name is different with the
head of caller list, the time profiling component will ignore this log event. On the
other hand, if the caller name is same with the head of caller list, then the head of list
will be removed and the log event will be accepted to record the exit time.

When the log event accepted to record the time, time profiling component call
the activeLog() API to get the nanosecond time by calling clock_gettime() API and
store it into log space in memory. And the time data will be written into ram disk

when the log space is out of bound or the profiling has ended.

4.3 Control & Display and Logs Correlation Components
o A el ..

Filter rules text field

L robes manager - R
Log-space * [filter “ App caller name
Save config | "brope name - Level | Stdfus [Time (ns)[Energy (u.] Times zgz ::g:g:g Eimg'gmﬁ :
wserAddBookmarkPage.onCr... |process] 0| | al- = -
rowser.AddBookmarkPage.save |method lv]
com.android.browser AddBookmarkPage.save_...|loop Tl
...|method v]
com.android.browser. AddNewBookmark.copyTo |method
roid.browser AddNewBookmark.setUrl |method
com.android.browser.Bookmarkitem.Bookmarkl..|method
com.android.browser.Bookmarkitem.copyTo method
com.android.browser.Bookmarkitem.setFavicon [method
com.android.browser.Bookmarkitem.setName [method
com.android.browser.Bookmarkitem.setUrl method
com.android.browser.BookmarkSearch.onCreate [process
com.android.browser.Browser.onCreate method
com.android.browser.Browser.createBrowserVi... [method
com.android.browser.BrowserActivity.setupHom..|method |
com.android.browser.BrowserActivity Plugi...|method
com.android.browser.BrowserActivity. pluginsFil... |method
com.android_browser.BrowserActivity_pluginsFil... [loop
com.android.browser.BrowserActivity.copyStrea... |method
com.android.browser.BrowserActivity.copyStrea... |loop
com.android.browser.BrowserActivity.contentsO... method
com.android.browser.BrowserActivity.contentsO... [loop
com.android.browser.BrowserActivity.initPlugins...|method
com.android_browser BrowserActivity.deleteFile |method
com.android.browser.BrowserActivity.deleteFile... loop
com.android.browser.BrowserActivity.cleanPlugi..|method
com.android.browser.BrowserActivity.copyBuildl...method

e T T W ST e — ST T T RO R e T

Caller filter manager

ONEEEEE

Framg galler name
andﬁro:rd app.PﬁrggresgDmlqggeL,

=X

N

HOE

O

INEOE

IXIC

RE
polojolojolojololololojolo/ololololololololololololo
blolololololololololo|o|jo|lolo|lo|lo|lololololoololooolo
blololojololololololojololololololololooloolooooo

X

Log-space: 2000 | Number of probes: 1120 e Status bar

Figure 10. The control and display component.

The Figure 10 shows an example of control and display component. The probes

25

manager block read the probes list to show the probes name, resolution definition of
each probe. It also gives an optional interface, checkbox component, to each probe for
setting the probe status to control profiling resolutions and area. The profiling
resolutions and area can be controlled quickly by writing some filtering rules into the
filter rules text field, such as level = method, time >= 2000 and times > 2.

The probe will be added into caller filter manager block when users double click
a probe in the probes manager. The caller filter manager block is separated into two
parts because the time profiling component is implemented into the application part
and the framework part. Therefore, the application probes are added into the
application part and the framework probes are added into the framework part. The
content of caller filter manager block will be the settings for managing caller filter list
in the time profiling component. The final block is status bar. When users profile an
application, it provides some information to users, such as log space and number of
probes. In addition, the menu of the control and display component provides some
functions for users to edit the log space size, save the configuration settings to devices
and run the process of the logs correlation component.

The Figure 11 shows an example of correlated profiling results. The probes
manager block read the time and energy consumption results when users run the
analysis results function in the menu. The logs correlation component can
automatically calculate the execution time of each probe by the entry time and exit
time, and use proportion of the time method to correlate energy consumption results

with time results for analyzing.

26

v

Settings
Filter: [Analysis result]l filter I App caller name
Ca UR0Y Level | Status | |Time (ns) v |Energy (uA.Iﬁmes 2::':23:2:: z:gxi::g:m:z:x

com.android.browser.TabControl We. thod v 805274262 4381 1|~ = = -
com.android.browser.BrowserActivity.onCreate |process v 339570655, 2031 1=
com.android.browser.BrowserProvider.update |method v/ 197986902 1.18: 2
com.android.browser.BrowserSeltings.update |method v 177093507 1.053 2|
android.app.Activity.setTitle method 2 115532288 0.691 3
android.webkit. CookieSyncManager.cr ta... [/method) 113060233 0,674 1
android.webkit WebView.savePicture method 2 106536864, 0.637) 1
com.android.browser.BrowserProvider.updateS... method v 76082523 0.45 1
com.android.browser.BrowserProvider.onCreate [process 2 56101482 0.333 1
com.android.browser.BrowserActivity.onResume |process 2 37539471 0.22 1
com.android.browser.BrowserProvider.query method 2 22023239 0.13; 4
com.android.browser.BrowserActivity.checkisDif... method 2 21148684 0.127] 1
com.android.browser.BrowserActivity.setFavicon |method 2 18579997 0.111) 3
com.android.browser.BrowserActivity.altachTab... |method) 15940345 0.095 1 - ,Fa':::;;,:::;:ia;:e
android.content ContentResolver.close method v/ 15580486 0.093 1 — -
android.content. ContentResolver.registerConte... |method) 13085237 0.07q 5
com.android.browser.BrowserSeltings.getFacto...,method 72 12858075 0,077[1
android.graphics.drawable.PaintDrawable.setC... /method 2 11250357 0.06 3
android.webkit WebViewCore.destroy method) 10060304 0.0 1
android.app.Activity.finish method 2 9579020 0.057] 1
com.android.browser.BrowserActivity.retainicon... /method 2 9565604 0.057] 1
android.view.ViewGroup.removeView method v 8502608 0.051 1
android.webkit WebView.disablePlatformNotific... |method 2 5882895 0.035 1
android.content UriMatcher. match method 2 5689550 0.034) 6
android.database.CursorWrapper.deactivate method 2 4841799 0.02 1
com.android.browser.TabControl. TabControl method v/ 4699706 0.02 1
com.android.browser.BrowserActivity.checkMe... [method v 4555994 0.027| 115

2 . i o | rrery e | -

Log-space: 2000 | Number of probes: 1120 | Log size: 48211 (byte)

Figure 11. The correlated profiling results.

Probe name:
com.android browser BrowserActivity. setFavicon
Called times: 3

#0

Exclusive time result: 14587402 ns

Inclusive time result: 41107179 ns

Energy result: 0.054720981058921835 uAh

Caller: com.android.browser. Brows erActivity. updatelcon
Child:

android.graphics.drawable PaintDrawable PaintDrawable

android.graphics.drawable PaintDrawable setCornerRadius

(a) Information of each times.

rowser.BrowserProvider.onCreate (56101482 ns 0.33558649418568515 uAh)

com.android.browser. BrowserProvider. ShowWebSuggestionsSettingChangeObs| =

android.content ContentRes olver.registerContentObs erver (19436199 ns 0.11626
com.android.browser. BrowserProvider updateShow\WebSuggestions (76082523
android.content.IntentIntent (122071 ns 7.302013685052469E-4
android.content Intent addCategory (244141 ns 0.0014603967552
android.content. Componenthame.Componenttame (122070 ns
android.app.SearchManager.getSearchablelnfo (122070 ns 7.301
3 ns 0.05403459619903827 uAh)
rowser.Browser.onCreate (1491862 ns 0.00892398418973753 uAh)
|| android.webkit CookieSyncManager.createlnstance (113080233 ns 0.6763009794
android.webkit. CockieManager.getinstance (610351 ns 0.0036509829154375483
android webkit CookieManager. removeExpiredCookie (2868652 ns 0.0171596334
79 ns 0.223075252933662 uAh)
rowser.BrowserActivity. UriData (122071 ns 7.202013685082469E-4 uAh)
120 ns 0.08433777652974082 uAh)
rowser.KeyTracker.KeyTracker (91553 ns 547649530937 2047E-4 uAh)
78 ns 0.14932533343864357 uAh)
rowser BrowserActivity. onCreate (339570655 ns 2.0312355677125753 uAh)
com.android. browser TabControl. TabControl (4699706 ns 0.0281125881887296
com.android.browser.Brows erActivity.retainlconsOnStartup (9565604 ns 0.057219
android.webkit WeblconDatabase.getinstance (915527 ns 0.0054
android.webkit WeblconDatabase.open (274658 ns 0.001642942|
com.android.browser.BrowserProvider.query (16454023 ns 0.098
}android.database.sqIite.SQL\terenHeIper.getRe
i I [v]

(b) Call graph example.

Figure 12. The detailed information of probes.

However, the time and energy consumption results of probes are the average
exclusive time results and the average energy consumption in probes manager block.

Users may want to know the inclusive time results or the results (time and energy

27

consumption) of each round. Therefore, users can click right mouse button on each
probe to show the detailed information window, as shown in Figure 12(a). Users can
know the exclusive time, inclusive time, energy consumption, caller and child
methods (called methods) information of each round in this window because we
instrument entry and exit profiling points to collect the execution time of each method
and analyze it by the time relation of each method. And based on the caller and child
methods information, we can provide a call graph easily too, as shown in Figure

12(b).

28

Chapter 5. Evaluation Studies

In this chapter, a testbed and some experiments are designed to evaluate the
overhead and the accuracy of the RMP profiling for real scenarios. Moreover, we
present the profiling results obtained from an off-the-shelf Android device for a
user-perceptible scenario, browsing.

5.1 Testbed

Host DUT

|
3 I ap
Connection throug hll SB interface Q | W (())
é Ou

Scenario
Profiling Targeted application
results N

Time and energy
profiling component

Hardware

Control & display P

| Configuration settings l

adb

Software

Figure 12. Testbed.

Figure 12 depicts the testbed. The experiments in this work were conducted on
an Android-based DUT, Android Dev Phonel. The DUT is an Android-based
smartphone which provides root permission for users to reinstall programs or whole
system on the platform. The hardware of the phone is same with the HTC dream, and
the phone can be regarded as a commercial product. The version of Android platform
is Android open source project (ASOP) 1.6. Beside the DUT, a host machine provides
users an operating interface to the DUT. The operating interface on the host is a client
program, named Android debug bridge (adb), and the corresponding server on the
DUT is adbd. The host connects with DUT through the USB interface to send the
configurations or receive the profiling results by the operating interface. Finally, the
IEEE 802.11g (Wi-Fi) network is accessible in the testbed environment.

5.2 Evaluation Scenario
In this work, most evaluation experiments are based on the browsing scenario

because the Android default browser spend a lot of time when it starts to load and

29

shows the web page. Therefore, we profile the bottlenecks of the browser by RMP.
The browsing scenario starts from the users touch the screen to start the browser and
stops at the default page (‘Yahoo! mobile version, tw.m.yahoo.com) have been loaded
and shown on the screen. One of the evaluation experiments is about the effects of log
size. This experiment needs a lot of logs to do the experiment. However, the size of
generated logs of the browsing scenario is not enough for the experiment. Therefore,
we use another scenario, music playing, for this experiment because it will generate a
lot of logs for updating the time information of music.

5.3 Experimental Results

Experiment of overhead

50%
45%
40%
35%
30%
25%
20%
15%
10%
5%
0%

43.76%

Extra time

)] @ 3 @

u DMP-turn off all probes (1) ® DMP-turn on process level probes (2)
DMP-turn on method level probes (3) ® DMP-turn on all probes (4)

(a) The overhead of execution time for RMP.

100%
90%
80%
70%
60%
50%
40%

CPU loading

30%
20%
10%

0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sample number (per second)

—#— Origin browser —i—DMP-turn off all probes
—4— DMP-turn on process level probes —=— DMP-turn on method level probes
—#=DMP-turn on all probes

(b) CPU Loading.

30

12000

Memory size (KB)
5]
S
o
S

1 2 3 4 5 6 7 8
Sample number (per 2 second)

—#—Origin browser —i—DMP-turn off all probes
== DMP-turn on process level probes ===DMP-turn on method level probes
—=DMP-turn on all probes

(c) The overhead of memory.
Figure 13. The overhead of RMP.

In this experiment, the overhead of execution time, CPU and memory are
measured for the browsing scenario. Figure 13(a) shows that the execution time of the
browser is extended 19.08% when we turn off all probes (not record any log events)
and extended 43.76% when we turn on all probes (record all log events). The
extended time is composed of three parts. First, each log event of probes needs to
spend time to check probes status, caller filter list and store time results. Second, the
VM needs to spend time to initial the time profiling component (JNI shared library)
when it loads and initiates classes which are instrumented with probes. Third, the time
profiling component stores time results in the memory and removes it from memory
to other large-storage components when the log space is out of bound. Therefore, time
profiling component will allocate memory and free memory several times. These
actions will trigger the VM spends time to do garbage collection.

Fig 13(b) depicts the CPU loading of the browsing scenario. From the figure, the
ups and downs of CPU loading are similar because the computation of the time
profiling component does not need too much CPU resource. Therefore, the average of
extra overhead on CPU is 5% when we turn on all probes. The CPU operating time of

the instrumented browser is more than the origin browser because the instrumented

31

browser has 19.08 ~ 43.76% overhead of execution time. However, it does not cause
more CPU loading because the tasks of extended time (the three parts which are
introduced in previous paragraph) needn’t too much computation resource to do. Fig
13(c) depicts the used memory status. From the figure, the used memory of the
instrumented browser is more than the origin browser in the final, because the time
profiling component stores the time results in the memory. But it avoids storing large
time results by changing profiling resolutions and area. Therefore, the extra overhead
of used memory can be controlled below 6.53%. The 6.53% is the memory overhead
when we turn on all probes. And the used memory of the instrumented browser is less
than the origin browser during the execution period because the actions of allocation
and free memory will trigger the VM to do garbage collection. Hence, the used
memory will down when the garbage collection recycle the memory in the execution
period.
Experiment of time accuracy

In Chapter 4, we showed that methods getCaller() and Probe() are instrumented in
each method to get the caller name and trigger the time profiling component to record
time data, respectively. Both of them take extra execution time at runtime that will be
included in the time results of RMP; therefore, we need to deduct the extra time for

accuracy of time results.

The test case The test case
System.getTimeMillis(...) System.getTimeMillis(...)
for (i=0;1<10000;i++) for (i=0;1<10000;i1++)
caller = getCaller() Probe(..., caller, ...)
System.getTimeMillis(...) System.getTimeMillis(...)
(a) The test case of getCaller(). (b) The test case of Probe().

Figure 14. The overhead experiment of instrumented methods.

Figure 14 shows the experiments which measure the execution time of getCaller()

32

and Probe(). The getCaller() and Probe() are executed 10000 times in a loop, and the
time information is recorded by instrument System.getTimeMillis() at the head and tail
of the loop to get the average execution time of them. The getCaller() spends 0.382
(ms) for one round, which is eight times faster than 3 (ms) for getStack(), and the
Probe() spends 0.077 (ms) for one round. Therefore, we can suppose a probe takes

extra 0.54 (ms) execution time because a probe includes one getCaller() and two

Probe().
The test case The test case
Method { Method |
caller = getCaller() childMethod { caller = getCaller() childMethod {
Probe(..., caller, ...) caller = getCaller() Probe(..., caller, ...) —catter—petCattert—
i Probe(..., caller, ... i ~Probetcatter—r
Time |} ildMethod() ——| o, =) Time | ildMethod() ——|
result result
Probe(..., caller, ...) —Probet——eatter—
Probe(..., caller, ...) : Probe(..., caller, ...) !

})

(a) Child method is instrumented. (b) Child method without instrumented.
Figure 15. Measure the execution time of a probe.

To evaluate the extra execution time of a probe, we do another experiment as
shown in Figure 15. We select a method which has been instrumented and it includes
a child method which has been instrumented too as shown in Fig 15(a). Figure 15(b)
shows another case, we remove the instrumentation lines (a probe) of the child
method. Then we get the time results from each of them and minus the time results to
know the extra execution time of a probe is 0.488 (ms). It is close to our supposition.
Therefore, we deduct this time value in the time results of RMP by the number of
probes in child methods. However, 0.488 (ms) is the time of an application probe, but
the extra execution time of a framework probe is different. The framework probes
have one more stage in the time profiling component to check whether the caller is the
target application for avoiding recording time results which called by other

applications. Therefore, we deduct 0.631 (ms), which is got from the same

experiment.

33

Unfortunately, some framework probes are called by some missed instrumented
framework methods because the ctags cannot scan out the inner class of Java
language (ex. call back function of listener) and our automatic scripts cannot scan out
a case of called framework methods. For example,
CookieSyncManager.getInstance().stopSync(), we can know the code of getInstance() is
written in CookieSyncManager.java directly, but the stopSync() is written in the class
which is returned by getlnstance(). We cannot instrument the probe into stopSync()
because we cannot know what class will be returned by getinstance() in
instrumentation ranges analyzer. The information of return value needs other
resources to help (ex. Software development kit (SDK)). The log events of framework
probes which called by missed instrumented framework methods will be ignored in
the time profiling component because the name of the missed instrumented
framework methods are not recorded in the caller filter list. However, the time
profiling component will spend time to check these log events, and the check time is
included in the time results of RMP. Therefore, we select a framework method based
on the same scenario in Figure 15 to do the same experiment, but the log event of the
child method will be ignored in the time profiling component by configuration
settings, not remove the probe. Then we know the extra execution time of the ignored

framework methods is 0.583 (ms) and we deduct it in the time results of RMP by the

information of ignored times got from the time profiling component.

Table 3. The time error rate of the RMP and debug class.

onPause addObserver |resetLockcon |buildTitleUrl
System.nanotime() 14.518 (ms) | 1.221 (ms) | 1.312 (ms) 1.068 (ms)
RMP 15.562 (ms) | 1.167 (ms) | 1.282 (ms) 1.177 (ms)
Error rate of RMP 7.19% 0.04 % 2.29% 10.21%
Debug class 8.25 (ms) 2.417 (ms) | 2.099 (ms) 4.061 (ms)

34

Error rate of debug class | 43.17 % 97.95 % 59.98 % 280.24%

In table 3, we select some methods whose execution time is stable to evaluate the
error rate of time results. The reference time is got from the API, System.nanotime().
We instrument this API into the entry point and exit point of methods to get the
execution time of methods in nanosecond. And according with the above mentioned,
the time results of RMP are deducted by some time values to be the final results. The
table shows that the error rate of the RMP is below 10.21%.

Compare overhead and time accuracy with debug class + Traceview

The debug class with Traceview is a default time profiling tool of Android
official and work on most Android product devices. Therefore, we select this tool to
be compared with the RMP on our DUT. Traceview is a GUI tool which can analyze
logs recorded from the debug class and show the execution time from process level to
method level. The debug class provides the API of start point and end point for users
who can instrument them into the application source code to profile all methods of an
application, including application methods, framework methods and core library of
VM. The debug class collects all time results of methods and stores the results in the
memory at run time. It will remove time results from memory to the SD card when
the profiling is finished (the API of end point is executed). Therefore, the debug class
uses large memory space to store the time results. Traceview can only provide the
round times and total execution time of a method and the execution time of each
round for a method is the average result in Traceview. However, a method may spend
different execution time in different task by different parameters. Therefore, the
Traceview cannot help us to analyze the execution time of each round for a method.

Table 4 shows the comparisons between debug class + Traceview and RMP.

35

Table 4. The functional comparisons of debug class + Traceview and RMP.

Profiling Profiling Profiling target Log Integral logs
approach resolution size problem
Debug Instrumentation- | Process to (1) Application Large | Yes
class + based approach | method (2) Framework
Traceview (3) Core library of VM
RMP Instrumentation- | Process to (1) Application Small | No
based approach | loop (2) Framework

Table 5. The overhead comparisons of debug class and RMP.

Extra execution time CPU loading Used memory
RMP 19.08~43.76% 5% 6.53%
Debug class 39.72% 4% 76.3%

Table 5 shows the overhead comparisons of debug class and RMP; the debug
class extends 39.72% overhead of execution time, 4% CPU overhead and 76.3%
memory overhead. The overhead of execution time is caused by the VM which does
the initial work and collects the time results of each method in classes. And the
overhead of memory is very large because debug class collects time results of all
methods and stores them in the memory. The execution time overhead and CPU
overhead of debug class and RMP are close. However, the memory overhead of RMP
is smaller than that of debug class because the RMP is a reconfigurable
multi-resolution profiling solution which can save the log size. Table 3 shows the time
error rates of debug class, the error rate of debug class is over than 43.17 %. Because
the execution time of a method is estimated by the period between the entry of the
method and the entry of next executed method in debug class. When the time results
include the execution time of calling next executed method, the results are not very
accurate. Therefore, the results of debug class cannot exactly help users to find out the
bottlenecks.

Experiment of different log space size

In RMP, the log space size is the number of time results can be storage. If the log

36

space size is small, then the time profiling component needs to spend time to remove

log results from memory to the ram disk during profiling. The time of the data

movement will be included in the time results, which will increase the time result

error rate. On the contrary, if the log space size is large, then the time profiling

component no need to spend the writing time during profiling. However, the log space

size cannot set too large because it will increase the memory overhead. In addition,

the memory space of the embedded devices cannot support large log space. Therefore,

we need to consider trade-off between memory overhead and time results error rate.

680000
580000
k=)
g 480000
3
Z 380000
5
=z 280000
180000

80000

700

microsecond

628

1 5 10 25 50 100 250 500 1000 2000
Log space size

(a) The time results of a method at different log space size.

il

TN HIKY BT Y S YA N NN

O 2O

PRI SR TLBEREE

il i

|" ik ”'»".a A i ||I ‘

lmimlumiaialui||lﬂmium mmmt '; Illnlll

L B N AN 4]

0 O H\D"‘\D"‘\D:\D"‘\D"‘\Q"‘\O"‘\D"‘\D = O ™0

R?ww°°90~:ﬂ399$39999~§%9 2%
Times of data

Logspace size =¢=1 =f&—5 =@—100 ===2000
(b) The time results of a method in each round.

Figure 16. The overhead at different log space size.

In this experiment, we take a music playing scenario with different log space

sizes to find the reasonable log space size. In Figure 16, we select a method

(MediaPlaybackService.position()), which is executed over 200 rounds in the scenario,

37

to be the experiment target and the range of log space size is 1 ~ 2000 results. When
the log space size is one, the time results will be written to the ram disk every time. If
the log space size is 2000, the time results will be written to the ram disk when the
number of time results is over than 2000. Figure 16(a) depicts the average time results
of the method at different log space size. From the figure, the average result for log
space size 2000 is more accurate because the number of recorded time results in
playing music scenario is less than 2000. In other word, there are no any data
movements during profiling. When the log space size is one, the average result is not
quite right because it includes large results writing time. Therefore, we increase the
log space size from one to five and ten can enhance the result accuracy. However,
when we set the log space size to 100, the average result of this size is bad than that of
small log space size because the results writing time of 100 log space size is longer. In
Figure 16(b), the results writing times of 100 log space size is less than one or five log
space size, but the results writing time is longer than that of one or five log space size
(The writing time of 100 log space size is out of y-axis in figure). This is because
there are 100 results in memory need to be written to ram disk, not only one or five
results. Therefore, the time results error rate is minimal if the DUT can provide
enough log space to store all profiling results. On the other hand, the log space size
needs to consider the available memory space and the number of time results in
scenario when the memory space is not enough to store all profiling results, then
choice one which can get balance between the writing time and the number of data
movement for profiling.
Energy profiling

In RMP, the energy profiling method is the enhanced approach of Battery Use.
Its overhead is 3% and the results error rate of process level is 10% which was

introduced in [8]. The RMP can provide results of energy consumption at fine-grained

38

resolution by the time proportion method, but we cannot do the evaluation of the
results error rate at fine-grained resolution. Because most energy profiling tools (ex.
ePro) need the hardware support to do fine-grained profiling, it cannot work on our
Android-based product DUT.

5.4 Overall Observations for the Browser

~ . 56.1 (ms)
| BrowserProvider.onCreate 0.34 (uA) 18.92(9)
113.15(uA)
_l BrowserProvider.updateShowWebSuggestions |

%I Receive network data, and draw the web view (skia)
76.08 (ns)
76.08 (ms) 0.46
E?urowser.onCreate 0.46 (uA) (CEY] BrowserProvider.update 335.25 (ms)
- 2.01 (uA)
: 113.06 (ms)
—‘ CookieSyncManager.createlnstance 0.68 (nA) android.app.Activity.setTitle | 328.21 (ms)
1

-96 (nA)
| Set heap, clean expired cookies and load class | (6)%126((I:)S) BrowserProvider.update | 60.72 (ms)
.45 (. - N

\1/ 036 (nA)
| BrowserActivity.onCreate 23;]935('712;15) Press back key
—l TabControl.createNewWebView | 805.27 (ms) ‘L 106.54 (ms)
4.82 (nA) | Andriod.webkit. WebView.savePicture 0.6 4 (nA)
BrowserSettings.update 353.86 (ms) \|/ 328
212 (A) P (mli)
| BrowserActivity.onResume | 37.54 (ms) | ErowserActivity.onPause | = ” @

| 022 (uA)

(a) The time results of the browsing scenario.

BI'OWSing Other functions

(More than 220)
7-55%

Update browser
settings and data
to the database

Initial Android

system resource

and framework
of view

.02% .
5 i Receive network

data & vil;iwweb
82.97%
(b) The bottlenecks of browsing scenario.
Figure 17. The profiling results of browsing scenario.

The Figure 17 shows the profiling results of the browsing scenario by the RMP.
The whole profiling time only needs 1 ~ 2 hour, and it is quicker than staged
interactive instrumentation approach (SIIP) [20] which need more than one day for
the same profiling in our experiment. This is because the RMP instruments all

profiling points into source code at first and changes profiling resolutions and area by

configuration settings. Users only need to instrument and recompile the profiling

39

application and framework in 40 ~ 45 minutes at first and change the profiling
resolutions and area in 5 minutes for each round. On the contrary, the SIIP need to
spend time to instrument and remove the profiling points when users change the
profiling area and wait the recompile time (35 ~ 40 minutes of each round in AOSP
environment) for each round. The average log size of the RMP is 15 KB,; it is smaller
than the log size of debug class (2.99 MB) 25 times because the RMP can only record
the useful logs by setting profiling resolutions and area for each round.

The Figure 17(a) shows the detailed information about execution time and
energy consumption for the browsing scenario. It can be modeled to pie chart
according to their function. Figure 17(b) shows the pie chart for the browsing scenario.
The “A” part takes 5.02% of the browsing time for initialing the Android resource (Ex.
Skia graphics library (SGL) [21]) and the framework of view. The “B” part takes 4.46
% of the browsing time for updating browser settings (Ex. plugins status) and data to
the database. The “C” part takes 82.97% of the browsing time for receiving network
data and drawing web view. The actions of receiving network data and draw web view
are implemented in C/C++ library, so we cannot know the detailed time distributions
for these actions. But we know the bottleneck is the actions of draw web view by
analyzing the library source code. The view of 3D is drawn by OpenGL ES [22]
which uses the graphic processing unit (GPU) to do hardware acceleration, but the
view of 2D is drawn by SGL which does not use any hardware acceleration to draw
the web page. It is slow when the web page is drawn by the embedded CPU.
Therefore, we hope the SGL can support hardware acceleration to optimize the

bottleneck of browsing in the future version.

40

Chapter 6. Conclusions and Future Works

This work designs the reconfigurable multi-resolution profiling approach to
profile execution time and energy consumption of applications by using limited log
space for finding the bottlenecks on the resource-constrained embedded system. The
approach was practiced on the off-the-shelf product to examine the bottlenecks of the
browsing scenario.

In all evaluation studies, the overhead of our implementation is proven with
minor CPU overhead (5%) and memory overhead (below 6.53%). Although the
overhead of execution time is 19.08 ~ 43.76%, we can correctly deduct them to get
the correct execution time result of methods. The accuracy of execution time results is
evaluated with the average error ratios below 10.21% and we further show that RMP
results are more accurate than results of debug class 24 times. In addition, the RMP
may be faced with a trade-off between memory overhead and accuracy of the time
profiling when the memory space of DUT is not enough to store all profiling results,
so it’s important to choice a reasonable log space size according to the memory space
and the amount of profiling results. Then the choose log space size can get balance
between the writing time and the number of data movement for profiling.

From the case studies, we observed that the bottleneck of the browsing is the
web page drawing which takes a lot portion of total execution time and energy
consumption. This is because the graphics library, SGL, uses non-powerful embedded
CPU to draw the web page and does not use any hardware acceleration.

Finally, because of the lack of profiling on C/C++ source code for graphics and
network library, the profiling of the browsing can only know the entry and exit
execution time of the library. We still have to spend extra time to analyze the source
code of the library for finding the bottlenecks. Therefore, the future extension of this

work includes the profiling of C/C++ source code. It can help us to profile

41

applications which are written in C/C++ language, e.g., the video application on
Android. And we want this work can be extended to profile the core library of VM for
users who can know more detailed information too. Besides, we want to fix the
missed framework instrumentation problem introduced in Chapter 5, such as use the
compiler to do instrumentation, and reduce the overhead of extra execution time by
enhancing the instrumentation method and the decision approaches of the time

profiling component in the future.

42

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. Flinn and M. Satyanarayanan, "PowerScope: A Tool for Profiling the Energy
Usage of Mobile Applications,” in Mobile Computing Systems and
Applications, 1999. Proceedings. WMCSA '99. Second IEEE Workshop on,
1999, pp. 2-10.

S. L. Graham, P. B. Kessler, and M. K. Mckusick, "Gprof: A Call Graph
Execution Profiler,” SIGPLAN Not., vol. 17, pp. 120-126, 1982.

M. Desnoyers and M. Dagenais, "LTTng: Tracing Across Execution Layers,
From the Hypervisor to User-Space,” in Proceedings of the Ottawa Linux
Symposium, 2008, pp. 101-105.

"Android Debug." [Online]. Available:
http://developer.android.com/reference/android/os/Debug.html.

"Oprofile: A System Profiler for Linux." [Online]. Available:
http://oprofile.sourceforge.net/.

L. Adhianto, et al.,, "HPCTOOLKIT: Tools for Performance Analysis of
Optimized Parallel Programs," Concurrency and Computation: Practice and
Experience, 2009, vol. 22, pp. 685-701.

"Intel VTune Performance Analyzer." [Online]. Available:
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.

Y. Yun-Chien and L. Ying-Dar, "Calibrating Parameters and Formula for
Process-Level Energy Consumption Profiling,” Mater thesis, NCTU, 2010.

"Kernel Function Trace." [Online]. Available:
http://elinux.org/Kernel_Function_Trace.
"TraceView." [Online]. Available:

http://developer.android.com/quide/developing/tools/traceview.html.

T. L. Cignetti, K. Komarov, and C. S. Ellis, "Energy Estimation Tools for the
Palm," in Proceedings of the 3 ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, Boston,
Massachusetts, United States, 2000, pp. 96-103.

S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and M.
Kandemir, "Using Complete Machine Simulatiion for Software Power
Estimation: The SoftWatt Approach,” in High-Performance Computer
Architecture, 2002. Proceedings. Eighth International Symposium on, 2002,
pp. 141-150.

W. K. Baek, Y. J. Kim, and J. H. Kim, "ePRO: A Tool for Energy and
Performance Profiling for Embedded Applications,” Proc. of International
SoC Design Conference (ISOCC), Seoul, Korea, Oct. 2004, pp. 372-375.

T. Do, S. Rawshdeh, and W. Shi, "pTop: A Process-Level Power Profiling

43

http://developer.android.com/reference/android/os/Debug.html
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://elinux.org/Kernel_Function_Trace
http://developer.android.com/guide/developing/tools/traceview.html

[15]

[16]
[17]
[18]

[29]

[20]

[21]
[22]

Tool," presented at the Workshop on Power Aware Computing and Systems,
2009.

K. S. Banerjee and E. Agu, "PowerSpy: Fine-grained Software Energy
Profiling for Mobile Devices,” in Proc. of IEEE WirelessCom, 2005, pp.
1136-1141.

"Jindent.” [Online]. Available: http://www.jindent.com/.

"Exuberant Ctags." [Online]. Available: http://ctags.sourceforge.net/.

L. Batyuk, et al., "Developing and Benchmarking Native Linux Applications
on Android,” in MobileWireless Middleware, Operating Systems, and
Applications. vol. 7, J.-M. Bonnin, C. Giannelli, and T. Magedanz, Eds., ed:
Springer Berlin Heidelberg, 2009, pp. 381-392.

"JNI Enhancements Introduced in Version 1.2 of the Java 2™ SDK." [Online].
Available: http://download.oracle.com/javase/1.4.2/docs/quide/jni/jni-12.html.
D. Tzu-Hsiung and L. Ying-Dar, "Booting, Browsing and Streaming Time
Profiling and Bottleneck Analysis on Android-Based Systems,” Mater thesis,
NCTU, 2010.

"Skia graphics library." [Online]. Available: http://code.google.com/p/skia/.
"OpenGL ES." [Online]. Available: http://www.khronos.org/opengles/.

44

http://www.jindent.com/
http://ctags.sourceforge.net/
http://download.oracle.com/javase/1.4.2/docs/guide/jni/jni-12.html
http://code.google.com/p/skia/
http://www.khronos.org/opengles/

