
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 

 

碩 士 論 文 

 

 

 

 

調整解析度於剖析Android應用程式的耗時與耗

電 

Reconfiguring Resolutions in Profiling Time and Energy on 

Android Applications 

 

 

 

研 究 生：賴育聖 

指導教授：林盈達  教授 

 

 

中 華 民 國 一 百 年 六 月 



 

 

調整解析度於剖析 Android 應用程式的耗時與耗電 

Reconfiguring Resolutions in Profiling Time and Energy on Android 

Applications 

 

研 究 生：賴育聖          Student：Yu-Sheng Lai 

指導教授：林盈達          Advisor：Dr. Ying-Dar Lin 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

 

 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

June 2011 

 

Hsinchu, Taiwan 

中華民國一百年六月



 

I 
 

調整解析度於剖析 Android 應用程式的耗時與耗電 

 

學生: 賴育聖                            指導教授: 林盈達 

國立交通大學資訊科學與工程研究所 

 

摘要 

嵌入式裝置上的應用程式於運算時經常受到運算資源和能源上的嚴格限制。

然而因資源受限而導致運算時間過長及消耗大量能源是不被使用者接受的，因此

應用程式是否能有效利用嵌入式裝置上的資源是一個重要的研究議題。現有的執

行時間和耗能分析工具可幫助開發者找出應用程式其效能與耗能的瓶頸，但當這

些工具提供詳細資訊給使用者的同時需要大量的記憶體空間來儲存分析過程中

所產生的資訊，而記憶體空間在嵌入式裝置上也經常受到嚴格的限制。這篇論文

提出一個於移動式裝置產品上可變更設定以切換解析度來多層級剖析耗時與耗

電的工具。此工具先插入分析程式碼於所有目標應用程式的原始碼，然後再藉由

設定所插入的分析程式碼來切換分析的範圍並過濾掉大量不需分析的資訊以達

到減少分析資訊量的目的。分析出的資訊量在瀏覽網頁的情境下比 Android 的

debug class 少 25 倍，且我們工具分析的時間資訊在同樣的瀏覽網頁情境下其數

據誤差率比 debug class 低 24 倍，這是因為 debug class 的數據是藉由 java methods

的進入時間點來計算而造成數據並不精確。另外此工具對於 CPU 和 memory 所

造成的額外負擔在瀏覽網頁的情境下分別為 5%和 6.53%。最後，經由我們設計

的工具剖析後發現瀏覽網頁的效能瓶頸在於 2D 繪圖函式是使用 CPU 來繪畫網

頁內容，未使用任何硬體加速導致用繪畫速度很慢。 

 

關鍵字: 耗時分析，耗能分析，多層級分析，Android 



 

II 
 

Reconfiguring Resolutions in Profiling Time and Energy on Android 

Applications 

Student: Yu-Sheng Lai                   Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

The computing of applications in embedded devices suffers tight constraints on 

computation and energy resources. Thus, applications spending long execution time 

and large energy consumption of embedded applications are not acceptable by users. 

The existing execution time and energy profiling tools can help developers to identify 

the bottlenecks of applications. However, the profiling tools need large memory space 

to store detailed profiling results at run time, causing that they are infeasible on 

embedded devices. In this thesis, a reconfigurable multi-resolution profiling (RMP) 

approach is proposed to handle the issue on off-the-shelf product devices. It 

instruments all profiling points into source code of targeted applications and 

configures the profiling points to change the profiling scope for filtering out useless 

profiling results to reduce the amount of profiling results. In the experiments, the 

required memory of profiling results using RMP for a browser application is smaller 

than debug class of Android 25 times, and the estimation error rate of execution time 

is proven lower than debug class 24 times because the debug class uses the entry time 

of java methods to calculate imprecise time results. Besides, the CPU and memory 

overhead of RMP are only 5% and 6.53% for the browsing scenario, respectively. 

From this evaluation, we found that the bottleneck of a browser is the web page 

drawing because the 2D graphical library does not use any hardware acceleration. 

Keywords: time profiling, energy profiling, multi-resolution profiling, Android 



 

III 
 

Contents 

Chapter 1. Introduction .................................................................................................. 1 

Chapter 2. Background .................................................................................................. 4 

2.1 Profiling Tools.................................................................................................. 4 

2.2 Architecture of Android Applications .............................................................. 7 

Chapter 3. Reconfigurable Multi-Resolution Profiling Approach ............................... 11 

3.1 Concept .......................................................................................................... 11 

3.2 Architecture .................................................................................................... 11 

3.3 Flow Chart ..................................................................................................... 18 

Chapter 4. Implementation on Android ....................................................................... 20 

4.1 Instrumentation Component........................................................................... 20 

4.2 Time Profiling Component ............................................................................ 23 

4.3 Control & Display and Logs Correlation Components.................................. 25 

Chapter 5. Evaluation Studies ...................................................................................... 29 

5.1 Testbed ........................................................................................................... 29 

5.2 Evaluation Scenario ....................................................................................... 29 

5.3 Experimental Results ..................................................................................... 30 

5.4 Overall Observations for the Browser ........................................................... 39 

Chapter 6. Conclusions and Future Works ................................................................... 41 

 

  



 

IV 
 

List of Figures 

Figure 1. The profiling concept of RMP. ....................................................................... 2 

Figure 2. Lifecycles of application components. ........................................................... 9 

Figure 3. Architecture of RMP. .................................................................................... 12 

Figure 4. Example of source code analysis. ................................................................. 12 

Figure 5. Example of a caller filter. ............................................................................. 15 

Figure 6. Example of logs correlation.......................................................................... 18 

Figure 7. Flow chart of RMP........................................................................................ 18 

Figure 8. The method level and loop level instrumentation examples. ....................... 22 

Figure 9. The example of calling the time profiling component. ................................ 24 

Figure 10. The control and display component............................................................ 25 

Figure 11. The correlated profiling results. .................................................................. 27 

Figure 12. The detailed information of probes. ........................................................... 27 

Figure 12. Testbed. ....................................................................................................... 29 

Figure 13. The overhead of RMP. ................................................................................ 31 

Figure 14. The overhead experiment of instrumented methods................................... 32 

Figure 15. Measure the execution time of a probe....................................................... 33 

Figure 16. The overhead at different log space size. ................................................... 37 

Figure 17. The profiling results of browsing scenario. ................................................ 39 

 

  



 

V 
 

List of Tables 

Table 1. Comparison of time profiling tools. ................................................................. 7 

Table 2. Comparison of energy profiling tools. ............................................................. 7 

Table 3. The time error rate of the RMP and debug class. ........................................... 34 

Table 4. The functional comparisons of debug class + Traceview and RMP............... 36 

Table 5. The overhead comparisons of debug class and RMP. .................................... 36 

 

 



 

1 
 

Chapter 1. Introduction 

 For designing efficient embedded applications, two key design issues should be 

considered. First, the execution time of an embedded application should be optimized 

because they have to run on embedded devices with limited computing capability. 

Second, the energy consumption should be minimized because battery power is a 

bottleneck in embedded devices. Therefore, developers need to identify the hotspots 

in the program so that they can optimize their designs according to the analyzed 

results.  

There were many timing and energy profiling tools which can help developers to 

identify bottlenecks, such as PowerScope [1] and Gprof [2]. Some of them can only 

profile applications at a resolution. For example, the PowerScope can only provide a 

coarse-grained profiling resolution, i.e., process level, to analyze the energy 

consumption of a process. Thus, users using PowerScope have the difficulty to 

identify the precise bottlenecks in the process. On the other hand, Gprof provides a 

fine-grained profiling resolution, i.e., function level, so users can analyze the time 

information of a process in more detail. However, users need to spend a lot of time to 

analyze logs of the detailed time information to identify performance bottlenecks. 

 Therefore, some tools adapted the multi-resolution profiling method [3-7] to 

provide more flexible analyses. These tools can analyze the fine-grained profiling 

traces and show results from a coarse-grained resolution to a fine-grained resolution 

of detail which can help users to easily analyze the bottlenecks. However, these tools 

are not suitable to be applied to embedded systems since they cannot efficiently store 

all logs of fine-grained profiling data due to the limited memory space in the 

embedded systems. Therefore, a novel multi-resolution profiling solution is required 

to help developers to profile their applications on the embedded system with limited 



 

2 
 

log space.  

 

Figure 1. The profiling concept of RMP. 

In this thesis, we design a new multi-resolution profiling solution and implement 

it, named reconfigurable multi-resolution profiling (RMP). It can efficiently profile 

execution time and energy consumption by using limited log space. The profiling 

concept of RMP is shown as Figure 1. The RMP profiles the execution time and 

energy consumption by changing profiling resolutions, such as process level, thread 

level, function level (method level) and loop level. For example, when the users start 

to profile an application, they can start from a specific coarse-grained resolution (e.g. 

process level). After users analyze the profiling results at this resolution, they may 

find some bottlenecks, such as the process x in Figure 1. The users can zoom in to 

profile the process at a more fine-grained resolution (e.g. thread level). When users 

identify that the thread i is the bottleneck of this process, they can zoom in a more 

detailed resolution again. Finally, the users can identify the bottlenecks of their 

application at loop k through the same zoom-in profiling process. The users can 

identify the actual bottlenecks in the application with small log space because the 

profiling process only profiles the necessary parts at each resolution. 

For measuring the execution time in RMP, we use the similar approach proposed 

by LTTng [3] which instruments some probes in the source code to be activated at 

runtime to record execution information about a program. The major difference 



 

3 
 

between the LTTng and the RMP is that the probes in RMP can be configured to 

change the profiling scope. To profile the energy consumption, we used an enhanced 

approach of Battery Use [8] to collect the energy information. It rebuilds the 

estimation model and power table to estimate the process level energy consumption. 

However, the resolution of time and energy consumption results may be not equal. 

Therefore, we will provide an approach to correlate timing and energy consumption 

results when the profiling resolution is finer than the process level. 

 The rest of this thesis is organized as follows. Chapter 2 discusses related work 

of time and energy profiling and the architecture of Android application. We describe 

the architecture of RMP and give an example run with a flow chart in Chapter 3. 

Chapter 4 shows the system implementation of RMP on an Android device. Chapter 5 

presents the experimental environment and discusses evaluation results. Finally, 

Chapter 6 concludes the thesis and offers directions of future work. 

  



 

4 
 

Chapter 2. Background 

 The chapter first describes and compares various tools for time and energy 

profiling, and then briefs the architecture of Android applications. 

2.1 Profiling Tools 

Finding correct performance and energy bottlenecks is important to raise 

application‟s effectiveness and more easily debug. Profiling tools are usually used to 

identify the hotspots of an application to find the bottlenecks. A hotpot is a region of a 

program where a significant amount of computation or energy consumption occurs. 

Therefore, the first step to solve bottlenecks is use profiling tools to identify hotspots. 

Commonly used time and energy profiling tools are introduced as follows. 

Time Profiling 

 Existing time profiling techniques can be divided into two categories: 

instrument-based and sampling-based. Instrument-based profiling tools instrument 

some profiling points into a program, and log events will be recorded when these 

instrumentation points are triggered. Gprof [2] and Kernel Function Tracer (KFT) [9] 

use the compiler-assisted capabilities, such as –pg flag and –finstrument-functions 

flag in GNU compiler collection (GCC), to automatically instrument profiling points 

at entry and exit of every function. However, they can only provide the function level 

profiling because they only instrument profiling points at the entry and exit of 

functions.  

Linux Trace Toolkit Next Generation (LTTng) [3] provides a programming 

interface to instrument the source code. The instrumentation points are managed with 

probes and every probe can be configured to be “on” or “off” state at runtime. The log 

event will be recorded when the probe is turned on and will be ignored when the 

probe is turned off. Therefore, the profiling resolutions depend on the location of 

instrumentation points. 



 

5 
 

Debug class [4], an Android built-in java class, provides a way to create log and 

trace the execution of an Android application. The source code of applications must 

be instrumented with specific code. TraceView [10] can analyze the log and show the 

execution information from process level to method level. 

Sampling-based profiling tools utilize performance counters, presented in most 

modern CPUs, to record program execution information, such as program counter 

(PC), and CPU-related events, such as cache misses. Then the results can be 

correlated with the structure of source code. Representative tools include Oprofile [5], 

HPCToolkit [6] and Intel VTune [7]. Most of them can analyze the fine-grained 

profiling traces and show results from a coarse-grained resolution to a fine-grained 

resolution of details by a GUI tool or a formatted text. 

Energy Profiling 

 Existing energy profiling can be divided into three categories: simulation 

approach, measurement approach, and estimation approach. Simulation approach 

creates virtual hardware platforms to simulate energy consumption behavior for 

energy profiling [11-12]. However, the energy optimization is not suitable by using 

simulators, because their accuracy is not high and the profiling has to work on virtual 

platforms, not the real platforms. 

Measurement approach measures energy consumption with digital power meters 

directly. The power meter is connected to a platform which uses the time-driven 

sampling approach to periodically trigger the power meter to record the energy 

consumption information. The platform also collects some system information, such 

as program counter (PC) and process identifier (PID), for the sampling period. The 

energy consumption can be attributed to each function of a process according to 

recorded the PCs and PIDs. PowerScope [1] is the most famous tool for discovering 

the energy bottlenecks at the function level. ePro [13] integrates energy and 



 

6 
 

performance sampling-based profiling into a convenient tool with user interface (UI) 

at the function level. 

Estimation approach counts the requests of hardware components for each 

process. The amount of requests can be translated into energy consumption using the 

energy estimation model which includes the estimation formula and the power table. 

pTop [14] estimates component-wide energy consumption for each process and 

provides programming interface for designing energy-aware applications.  

Battery Use has been embedded in Android system from version 1.6. During 

system booting, the “battery info” service takes responsibility for counting the 

requests of hardware components. Battery Use utilizes the inter process 

communication (IPC) to pull the data from the battery info service. An enhancement 

of Battery Use [8] uses a two-phase calibrating approach to create new estimation 

formulas and a more correct power table. It improves the accuracy of estimating 

energy consumption with the error rate below 10%. This enhancement of Battery Use 

also provides the information of energy consumption for each process. 

PowerSpy [15] is a hybrid estimation approach. It not only counts the requests of 

hardware components but also collects the thread IDs. In the analysis phase, the data 

will be translated into energy consumption and attributed to threads of a process 

according to the thread IDs. 

Summary 

 Table 1 and Table 2 summarize the above discussed time and energy profiling 

tools, respectively. Gprof, KFT and all energy profiling tools are based on 

single-resolution profiling technique and others support multi-resolution profiling to 

help users easily analyze the bottlenecks by GUI. However, all multi-resolution 

profiling tools normally log the fine-grained profiling trace at run time and show 

multi-resolution profiling results on GUI at the post-analysis phase. However, the 



 

7 
 

large amount of logging information cannot be accommodated by the 

resource-constrained embedded systems, such as Android. In this thesis, we will 

propose an approach to solve this limitation. 

Table 1. Comparison of time profiling tools. 

 Name Profiling method Profiling resolution Features 

Single-resolution 

profiling 

Gprof[2] Instrumentation Function  Instrument by compiler 

 Interleaved logs 

problem 

KFT[9] Instrumentation Function  Instrument by compiler 

 Provide complete call 

graph 

Multi-resolution 

profiling 

LTTng[3] Instrumentation Process-statement  Low overhead 

 Not support java 

 Friendly GUI 

Debug class[4] Instrumentation Process – method  Android built-in 

 Friendly GUI – 

Traceview [10] 

Oprofile[5] Sampling Process – statement  Android support 

 Not support java 

HPCToolkit[6] Sampling Process – loop  Hardware dependency 

 Friendly GUI 

Intel VTune[7] Sampling Thread- statement  Hardware dependency 

 Friendly GUI 

 

Table 2. Comparison of energy profiling tools. 

 Name Profiling method Profiling resolution Features 

Single-resolution 

profiling 

PowerScope[1] Measurement Function  Map energy consumption 

to program structure 

 Sampling period : 

1.6ms – low accuracy 

ePro[13] Measurement and 

Sampling for time 

Function  Performance and energy 

profiling 

 Friendly GUI 

pTop[14] Estimation Process  Base on power table and 

estimation formula 

BatteryUse[8] Estimation Process  Similar pTop 

 Built-in Android 

PowerSpy[15] Estimation Thread  Similar pTop 

 On Windows os 

2.2 Architecture of Android Applications 

 This section briefs Android applications, application components which are 

essential building blocks of an Android application and components lifecycles. 

Android applications 



 

8 
 

All user-visible applications on Android are written in java programming 

language. The source code, resource file, and other data of an application are 

compiled into an archive file with an .apk suffix. A single .apk file is used to install 

the application for Android devices. When the application is executed on Android, the 

Zygote which is the applications manager makes a new Linux process for the 

application. The process will be shutdown when the application is no longer needed or 

when the system must recover memory for other applications. In addition, each 

process has its own isolated Dalvik virtual machine (VM) which is derived from Java 

VM. 

Application Components 

 There are four types of application components. First, an activity is the most 

common component in an Application. It provides a UI to accept user‟s operation. For 

example, a browser application might have an activity that shows a web page, another 

activity to add a new bookmark, and another activity for searching the bookmarks. 

Second, a service component is a background program which performs long-running 

operations or to perform work for remote processes. For example, there are some 

users want to play music in a long time and operate other applications at the same 

time. In this case, the music player must be a service component which can run at the 

background and avoid bothering users. Third, a content provider is a manager of the 

application data. You can store the data to the SQLite database or other storage 

locations and set the data to be shared or private. If the data are shared, other 

applications can query or modify the data by the content provider. Fourth, a broadcast 

receiver is a component that responses the system‟s broadcast messages. For example, 

the system broadcast a message to announce the power of system at the low battery 

state. The system‟s applications can receive this message and response some actions. 

Components lifecycles 



 

9 
 

 As mentioned above, each types of application component have different 

functions and have different lifecycles too. The lifecycle of a content provider 

includes read/write and query the data. The lifecycle of a broadcast receiver is just to 

receive messages when the system broadcast messages. The lifecycles of activity and 

service are shown as Figure 2. 

        

(a) Lifecycles of activity.      (b) Lifecycles of service. 

Figure 2. Lifecycles of application components. 

 The whole lifetime of activity is from onCreate() state to onDestroy() state. For 

example, if you have an activity to watch a video, it might call onCreate() to create a 

thread to play and then call onDestroy() to stop the thread. From onStart() state to 

onStop() state is called visible phase. During this phase, the activity is ready shown on 

screen to interact with users. And from onResume() state to onPause() state is called 

foreground phase. During this phase, the activity is in front of all activities on screen 

and interact with users. This phase of each activity may run serveral times, because 

there are only one activity can display its UI on screen and interact with users in the 

same time on Android devices. 

 The lifecycle of a service is similar to activity which is from onCreate() state to 

onDestroy() state, but the service doesn‟t have the visible and foreground phases 



 

10 
 

because it doesn‟t provide the user interface. A service can start from two forms with 

different lifecycles. First, when an application component start it by calling 

startService() to perform a single operation and doesn‟t return a result to the caller. 

Second, when an application binds to it by calling bindService() to send requests and 

receive results. 

  



 

11 
 

Chapter 3. Reconfigurable Multi-Resolution Profiling Approach 

This chapter describes the methodology of RMP. Section 3.1 briefs its concept 

and Section 3.2 describes its architecture. Finally, we present the profiling flow of 

RMP in Section 3.3. 

3.1 Concept 

 In general, if users want to profile the execution time of an application by using 

limited log space in the embedded system, they can instrument some profiling points 

into application source code and framework source code (ex. Android framework) 

several rounds to collect time information at different profiling scope for achieving 

the same effect as RMP. However, they must spend a lot of time to recompile the 

application and the framework when they reinstrument other profiling points for 

changing the profiling scope. Therefore, RMP instruments all necessary profiling 

points into the application and the framework source code in the beginning. All 

profiling points are controlled according to the user configurations without 

recompiling the application and the framework. The energy profiling approach is 

based on an enhanced approach of Battery Use, which can estimate the energy 

consumption of processes by estimation formulas and power tables with the error rate 

below 10%. 

3.2 Architecture 

 Figure 3 depicts the architecture of RMP which consists of five components, 

including instrumentation component, control and display component, time profiling 

component, energy profiling component, and logs correlation component. For 

changing profiling scope without recompiling, we design the instrumentation 

component which analyze the source code to instrument necessary profiling points 

with the resolution definitions and give the profiling point information to users. The 

control and display component display the profiling point information and the 



 

12 
 

profiling results for users. Then users can control profiling scope according the 

resolution definitions and the previous profiling results. The time profiling component 

can only record the time information of profiling scope based on the configuration 

settings of the control and display component. The energy profiling component 

collects the battery information from the target system and gets the process level 

energy consumption results according to the battery information. Finally, the logs 

correlation component correlates time and energy consumption results, because the 

energy consumption results are profiled from process level and it cannot be analyzed 

from fine-grained resolutions. Thus the logs correlation component correlates the 

process level energy consumption with fine-grained time profiling results for 

analyzing energy bottlenecks in fine-grained resolutions. 

 

Figure 3. Architecture of RMP. 

 

Figure 4. Example of source code analysis. 



 

13 
 

Instrumentation component 

 In RMP, the proposed instrumentation method instruments profiling points to the 

whole necessary locations of the application and the framework in the beginning. 

However, only some framework methods will be called by an application. If we 

instrument all profiling points to the whole framework, some profiling points will be 

useless, and they may cause extra unnecessary overhead for other applications. 

Therefore, the instrumentation range of the application should be identified before we 

instrument profiling points in the framework. For example, in Figure 4, the 

instrumentation ranges analyzer scans the application source code and the framework 

source code to identify the method‟s location and the used application and framework 

methods. The methods of the application and the methods of the framework which 

may be called in the application are defined as the instrumentation range. 

 When the instrumentation range is identified, we can start to instrument profiling 

points into the application and framework source code. We instrument profiling points 

at the entry and exit of every method and every method‟s loop because the execution 

time of each method and loop can be estimated by the entry time and the exit time. 

The profiling points of a method or a loop map to a probe which is a control unit 

when users control profiling scope in the control and display component. In 

instrumentation component, each probe is recorded in a probe list with its probe name, 

resolution definition and status. The resolution definition can be recognized by 

specific methods functionality (ex. the run() method can be seem as thread level). 

Then, the application source code and framework source code can be compiled and 

installed on the target system to do multi-resolution profiling without recompiling 

when users change the profiling scope. 

Control and display component 

 The control and display component read and show the probes information of 



 

14 
 

probes list or the correlated profiling results to users on display interface. Then users 

can turn on or turn off the probes to control profiling scope by the configuration 

module. The profiling scope is according from the settings of profiling resolutions and 

profiling area. The profiling resolutions are the language-based levels, such as process, 

thread, function (method) and loop. Users can zoom a coarse-grained resolution into a 

fine-grained resolution for analyzing bottlenecks and saving the log space by the 

resolution filter, which turn the probes on or off according the users settings with the 

resolution definition of probes. The profiling area is defined as the set of probes 

which will be profiled. For example, when the profiling is working at the method 

level of a thread i, the profiling area is all method level probes in thread i. Also when 

the profiling zooms in the method k of thread i, the profiling area includes all loop 

level probes in method k. However, a method may be executed by other threads which 

are not required to do the profiling. Therefore, we design a caller filter for users to 

solve the problem. Users can set some root points in the caller filter, and then only 

some methods that are called from the root points can be profiled. To identify what 

methods are called from the root points, the caller of methods will be dynamically 

records into a caller filter list at runtime. 

 

(a) The pseudo code of a thread and called methods. 

 



 

15 
 

(b) Ta is the root point. 

 

(c) Tb is not the root point. 

Figure 5. Example of a caller filter. 

The example of the caller filter is shown as Figure 5. We suppose methods „M1‟ 

and „M2‟ are called by thread „Ta‟ and „Tb‟ in Figure 5(a). We set „Ta‟ as our root point 

in Figure 5(b1), and when „Ta‟ is executed, it will be recorded into the caller filter list, 

which is maintained in the time profiling component. In Figure 5(b2), „M1‟ will be 

recorded into the caller filter list when it is called by „Ta‟ because the caller of „M1‟ is 

„Ta‟ which has been recorded in the list. Also „M2‟ will be also recorded into the caller 

filter list too in Figure 5(b3), because its caller is „M1‟ who has been recorded in the 

list. After that, „M2‟ will be removed from the caller filter list when it is finished. Then 

„M1‟ will resume until it is finished and removed from the caller filter list. Finally, „Ta‟ 

will be removed from the caller filter list when it is finished. Therefore, when each of 

them is recorded in the caller filter list, it will be profiled. There is a counterexample 

in Figure 5(c1), „Tb‟ is not recorded into the caller filter list because it is not our root 

point. Thus „M1‟ and „M2‟ are not recorded into the caller filter list in Figure 5(c2) and 

Figure 5(c3), respectively, because their callers are not recorded in the list. Therefore, 

these methods called by „Tb‟ are not profiled. 

In addition, the caller filter can not only solve the above problem, but also can be 

used to control profiling area when zoom in other resolutions. For example, when 

users zoom in the loop level of method k, the profiling area can be limited in the 

method k by the caller filter. It can avoid recording loop level events of other methods. 



 

16 
 

Also some filter rules users specified, such as execution time over than one sec, 

energy consumption over than 20 µAh, and executing times over than five, can also 

help users to limit profiling area according to profiling results. These specific filtering 

rules can help users exclude some log events which users do not want to profile for 

reducing the log size. 

Time and energy profiling components 

The time profiling component checks the probes status (on or off) and manages 

the caller filter list based on the configuration settings of configuration module before 

it records the time data. When the application executing on the target system, the 

probes will be triggered and send log events to the time profiling component. If the 

status of a probe is off, the events related to the probe will be skipped. If the status is 

on and the caller of probes have been recorded in the caller filter list, the log events 

will be accepted and the system time will be recorded into log space in memory, 

which amount can be set by users. The logs will be removed from memory to other 

large-storage components when the log space of time profiling component is out of 

bound or the profiling has ended. The energy profiling component based on the 

enhanced approach of Battery Use which uses IPC to collect the battery information 

and calibrate it to the process level energy consumption results by power tables and 

estimation formulas. 

Logs correlation component 

The time and energy profiling component generates time and energy 

consumption results to users. However, the results of energy consumption are 

profiling from process level, and it cannot be analyzed from fine-grained resolutions. 

Therefore, we need to get a fine-grained energy consumption result. Thus we try to 

correlate the process level energy consumption with fine-grained time profiling results 

before we correlate them, we should know that the energy consumption can be 



 

17 
 

divided into two parts. The first part is the energy consumption of asynchronous 

components, such as Wi-Fi and Bluetooth. These components receive requests from 

an application to do some tasks asynchronously and return results to the application 

when the tasks have been finished. Therefore, their energy consumption results cannot 

be correlated with time results of the application because the execution of these 

components and execution of the application are independent. Another part is the 

energy consumption of synchronous components, such as CPU and memory. These 

components are the major contributors of the execution time of applications, so their 

energy consumption can be correlated with time results of applications.  

The Battery Use provides these two types of energy consumption. The 

consumption of asynchronous components is calibrated to each components and the 

consumption of synchronous components is calibrated to each process. Therefore, we 

can directly use the energy consumption of a process (an application) to correlate with 

our time results of an application. The correlation between time and energy can be 

written as 

𝑇𝑖,𝑗 =
𝑇𝑝𝑖,𝑗

𝑇𝑝𝑖,1
+ ⋯ + 𝑇𝑝𝑖,𝑛𝑖

 

𝐸𝑝𝑖,𝑗

𝑠𝑦𝑛= {
𝐸 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑠𝑦𝑛
× 𝑇𝑖,𝑗,  𝑖 = 2

𝐸𝑝𝑖−1,𝑘

𝑠𝑦𝑛
× 𝑇𝑖,𝑗,  𝑖 > 2

 

where i is the profiling resolution, j is the probe, n is the number of probes in 

resolution i, k represents the selected probe in upper resolution. The 𝑇𝑝𝑖,𝑗
 is the 

execution time of probe j at resolution i and the 𝐸𝑝𝑖,𝑗

𝑠𝑦𝑛
 is the energy consumption of 

probe j at resolution i. 

If process level is the first resolution (i = 1), the energy consumption of a probe 

in next resolution (i=2) is proportion of the execution time of the probe in the current 

resolution, i.e., 𝐸 
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑠𝑦𝑛
. When the profiling resolution is a fine-grained resolution (i 



 

18 
 

> 2), the energy consumption of a probe can be calculated from the energy 

consumption of the upper-resolution probe by proportion of the execution time. For 

example as shown in Figure 6, we assume the energy consumption of a process is 10 

mA. The energy consumption of the two threads in the process can be directly 

calculated by proportion of the execution time of the process. And the energy 

consumption of the two methods in thread k can be calculated from 7 mA by 

proportion of the execution time of each method, too. 

 

Figure 6. Example of logs correlation. 

3.3 Flow Chart 

 

Figure 7. Flow chart of RMP. 



 

19 
 

 Figure 7 depicts the main flow chart which contains four profiling phase, 

including instrumentation, logging, bottlenecks analysis, and profiling resolutions & 

area adjustment. In instrumentation phase, when users give source code of the 

application and the framework for profiling, we analyze the instrumentation range to 

identify what framework methods are called by the application. Then, we can 

instrument all necessary profiling points into the application and the framework at 

once. Next, users can configure the profiling resolution and area to start profiling by 

the control and display component. In logging phase, the time and energy profiling 

results will be stored in memory and written to result files at the end. The logs 

correlation component can read result files and correlate them by the proportion of 

execution time to analyze bottlenecks. In profiling resolutions & area adjustment 

phase, users can adjust some filter rules and the caller filter to limit profiling area with 

the previous run-time profiling results. They can zoom in a more detailed resolution 

by the resolution filter and caller filters, if necessary. After doing the logging phase, 

bottlenecks analysis phase and profiling resolutions & area adjustment phase several 

rounds, users may find the bottlenecks of an application on a resource-constrained 

embedded system without recompiling the application and the framework. 

  



 

20 
 

Chapter 4. Implementation on Android 

 This chapter details the implementation of the reconfigurable multi-resolution 

profiling approach on the Android Dev Phone 1 (Dev 1) which is taken as the device 

under test (DUT). The implementations of the instrumentation and time profiling 

components are introduced in Section 4.1, 4.2. The control and display component 

and logs correlation component are introduced in Section 4.3. 

4.1 Instrumentation Component 

 The instrumentation range analyzer can analyze the methods location and what 

framework methods are called by an application. Then, the probes inserter can 

instrument profiling points into the application source code and the framework source 

code based on the results of instrumentation range analyzer. 

The instrumentation flow includes three phases. First, we use Jindent [16], which 

is a source code formatter tool, to unify the source code format of the application and 

the framework, because the unification format of source code can minimize the 

complexity of our instrumentation algorithm. For example, if the declaration of a 

method and its left curly brace are written at the same line, our entry profiling point 

can be instrumented at the next line directly. If the left curly brace is written into the 

next line of method declaration, the entry profiling point need to be instrumented at 

right side of left curly brace or next line of left curly brace. In this implementation, we 

can just consider the same line case when the source code has been formatted. 

 Second, we use ctags [17] to get the location of the application methods and the 

framework methods. The results of ctags include methods name, file name of methods 

and line number of methods in the file. And we implement an automatic script to scan 

out what framework methods are called by the application according to the results of 

ctags. Then, users can run the script in different operating systems directly. The 

automatic script is written in the python language because the python language is easy 



 

21 
 

and it can work on most popular operating system, such as Windows and Linux.  

Finally, we implement another automatic script to instrument entry and exit 

profiling points into the application methods and the framework methods with the 

resolution definition. We define four profiling resolutions for Android application in 

this implementation. First, the process level is the total execution time of all 

components in an application because the application components are essential 

building blocks of an Android application. Therefore, the process level is used to 

analyze the bottleneck of components in an application. The execution period of 

Android activity is from onCreate() state to onDestroy() state, but the activity may be 

switched to other activities in onCreate() state to onDestroy() state when users change 

to other UIs of the application. Therefore, the actual execution time of an activity can 

be estimated by the periods of onCreate(), onDestroy() and each part of visible phase. 

The execution time of a service can be estimated by the period from onCreate() state 

to onDestroy() state, and execution time of a broadcast receiver can be estimated by 

the time of onReceive(). However, the content provider doesn‟t have the independent 

execution time, because it called by other components in general. Therefore, the 

content provider‟s execution time has been included in other components. 

 Second, the thread level is the execution time of run( ) method which needs to be 

implemented in a thread class. This resolution is used to analyze the bottleneck of 

threads in a process (If the process has threads). Third, the method level is the 

execution time of each normal method. This resolution is used to analyze the 

bottleneck of methods in a thread. Finally, the loop level is the execution time of each 

loop. This resolution is used to analyze the bottleneck of loops in a method. 



 

22 
 

 

Figure 8. The method level and loop level instrumentation examples. 

There is an instrumentation example shown as Figure 8. The entry points of 

thread level and method level are instrumented at the next line of method declaration 

and the exit points are instrumented before the finish points, such as right curly brace 

of method declaration, return syntax and throw syntax. The entry and exit profiling 

points of a method map to the same probe with the profiling resolution definition and 

the probe name for users to configure the profiling resolutions and area in control and 

display component. The probe name is composed of the package name, class name 

and method name.  

The entry points of loop level are instrumented to the next line of loop 

declaration, such as for and while, and the exit points are instrumented before the 

right curly brace of loop syntax and break syntax. And the loop level profiling points 

map to its loop level probes in a method. However, the probe name is same with other 

resolution because the method name, package name and class name are the same in a 

method. Therefore, the line number of the loop will be concatenated to the original 



 

23 
 

method level probe name. 

4.2 Time Profiling Component 

 When the profiling points are triggered, the time profiling component receives 

log events, checks probes status and manages caller filter list based on the 

configuration settings of configuration module before it record the time data into the 

memory. These actions need to be implemented efficiently because they may 

influence the accuracy of time data if they spend too much time.  

Therefore, the proposed implementation of the time profiling component is 

written in C language, which has higher performance than java language. 

Unfortunately, the Android application and framework are written in java language, 

profiling points (written in java language) cannot call the time profiling component 

directly. So we use java native interface (JNI), a most effective method to call C 

program from Java side on Android [18], for profiling points to call the time profiling 

component. The time profiling component is implemented in a JNI native library and 

it will be loaded when the application and the framework start to execute. However, 

the application and the framework cannot load the same time profiling component 

when it implemented in a JNI native library because the application and the 

framework classes are executed by different class loader, and the same JNI native 

library cannot be loaded into more than one class loader. According to the official 

statement [19], the benefit of this limit is the name space separation which preserved 

in native library based on class loaders. The native library cannot easily mix classes 

from different class loaders. Therefore, we separate the time profiling component 

implementation into two parts (application part and framework part) to solve above 

problem. 



 

24 
 

 

Figure 9. The example of calling the time profiling component. 

 Figure 9 shows an example of calling the time profiling component using JNI. 

The profiling points call the time profiling component through the JNI application 

programming interface and send its probe name, caller name and point attribute („true‟ 

is entry point and „false‟ is exit point) for checking. We can use the API, 

Thread.currentThread.getStackTrace(), to collect the stack information and select out 

the caller name from stack information. However, it spends too much execution time 

and we do not need to get whole stack information. We only need the caller name in 

stack. Therefore, we implement a new API, Thead.currentThread.getCaller(), to only 

return the caller name. 

The time profiling component, either application part or framework part 

compares the probe name with the probes configuration settings which record the 

probes status from configuration module. When the time profiling component found 

the status of a probe is off, the log event is ignored. And when the status of a probe is 

on, the checking is passed and starts to check caller name. The caller name is used to 

compare with the head of caller list. But the time profiling component of framework 

part check the caller name is come from the target application before check the caller 



 

25 
 

list, it needs to avoid accepting the log event which called by other applications. If the 

profiling point is entry point and the caller name is different with the head of caller 

list, this log event will be ignored. On the other hand, if the caller name is same with 

the head of caller list, then the name of profiling point will be added into the head of 

caller list and the log event will be accepted to record the entry time into log space in 

memory. If the profiling point is exit point and the caller name is different with the 

head of caller list, the time profiling component will ignore this log event. On the 

other hand, if the caller name is same with the head of caller list, then the head of list 

will be removed and the log event will be accepted to record the exit time. 

When the log event accepted to record the time, time profiling component call 

the activeLog() API to get the nanosecond time by calling clock_gettime() API and 

store it into log space in memory. And the time data will be written into ram disk 

when the log space is out of bound or the profiling has ended. 

4.3 Control & Display and Logs Correlation Components 

 

Figure 10. The control and display component. 

The Figure 10 shows an example of control and display component. The probes 



 

26 
 

manager block read the probes list to show the probes name, resolution definition of 

each probe. It also gives an optional interface, checkbox component, to each probe for 

setting the probe status to control profiling resolutions and area. The profiling 

resolutions and area can be controlled quickly by writing some filtering rules into the 

filter rules text field, such as level = method, time >= 2000 and times > 2. 

The probe will be added into caller filter manager block when users double click 

a probe in the probes manager. The caller filter manager block is separated into two 

parts because the time profiling component is implemented into the application part 

and the framework part. Therefore, the application probes are added into the 

application part and the framework probes are added into the framework part. The 

content of caller filter manager block will be the settings for managing caller filter list 

in the time profiling component. The final block is status bar. When users profile an 

application, it provides some information to users, such as log space and number of 

probes. In addition, the menu of the control and display component provides some 

functions for users to edit the log space size, save the configuration settings to devices 

and run the process of the logs correlation component. 

The Figure 11 shows an example of correlated profiling results. The probes 

manager block read the time and energy consumption results when users run the 

analysis results function in the menu. The logs correlation component can 

automatically calculate the execution time of each probe by the entry time and exit 

time, and use proportion of the time method to correlate energy consumption results 

with time results for analyzing. 



 

27 
 

 

Figure 11. The correlated profiling results. 

   

(a) Information of each times.      (b) Call graph example. 

Figure 12. The detailed information of probes. 

However, the time and energy consumption results of probes are the average 

exclusive time results and the average energy consumption in probes manager block. 

Users may want to know the inclusive time results or the results (time and energy 



 

28 
 

consumption) of each round. Therefore, users can click right mouse button on each 

probe to show the detailed information window, as shown in Figure 12(a). Users can 

know the exclusive time, inclusive time, energy consumption, caller and child 

methods (called methods) information of each round in this window because we 

instrument entry and exit profiling points to collect the execution time of each method 

and analyze it by the time relation of each method. And based on the caller and child 

methods information, we can provide a call graph easily too, as shown in Figure 

12(b).  



 

29 
 

Chapter 5. Evaluation Studies 

 In this chapter, a testbed and some experiments are designed to evaluate the 

overhead and the accuracy of the RMP profiling for real scenarios. Moreover, we 

present the profiling results obtained from an off-the-shelf Android device for a 

user-perceptible scenario, browsing. 

5.1 Testbed 

 

Figure 12. Testbed. 

Figure 12 depicts the testbed. The experiments in this work were conducted on 

an Android-based DUT, Android Dev Phone1. The DUT is an Android-based 

smartphone which provides root permission for users to reinstall programs or whole 

system on the platform. The hardware of the phone is same with the HTC dream, and 

the phone can be regarded as a commercial product. The version of Android platform 

is Android open source project (ASOP) 1.6. Beside the DUT, a host machine provides 

users an operating interface to the DUT. The operating interface on the host is a client 

program, named Android debug bridge (adb), and the corresponding server on the 

DUT is adbd. The host connects with DUT through the USB interface to send the 

configurations or receive the profiling results by the operating interface. Finally, the 

IEEE 802.11g (Wi-Fi) network is accessible in the testbed environment.  

5.2 Evaluation Scenario 

 In this work, most evaluation experiments are based on the browsing scenario 

because the Android default browser spend a lot of time when it starts to load and 



 

30 
 

shows the web page. Therefore, we profile the bottlenecks of the browser by RMP. 

The browsing scenario starts from the users touch the screen to start the browser and 

stops at the default page (Yahoo! mobile version, tw.m.yahoo.com) have been loaded 

and shown on the screen. One of the evaluation experiments is about the effects of log 

size. This experiment needs a lot of logs to do the experiment. However, the size of 

generated logs of the browsing scenario is not enough for the experiment. Therefore, 

we use another scenario, music playing, for this experiment because it will generate a 

lot of logs for updating the time information of music. 

5.3 Experimental Results 

Experiment of overhead 

 

(a) The overhead of execution time for RMP.

 

(b) CPU Loading. 



 

31 
 

 

(c) The overhead of memory. 

Figure 13. The overhead of RMP. 

In this experiment, the overhead of execution time, CPU and memory are 

measured for the browsing scenario. Figure 13(a) shows that the execution time of the 

browser is extended 19.08% when we turn off all probes (not record any log events) 

and extended 43.76% when we turn on all probes (record all log events). The 

extended time is composed of three parts. First, each log event of probes needs to 

spend time to check probes status, caller filter list and store time results. Second, the 

VM needs to spend time to initial the time profiling component (JNI shared library) 

when it loads and initiates classes which are instrumented with probes. Third, the time 

profiling component stores time results in the memory and removes it from memory 

to other large-storage components when the log space is out of bound. Therefore, time 

profiling component will allocate memory and free memory several times. These 

actions will trigger the VM spends time to do garbage collection. 

 Fig 13(b) depicts the CPU loading of the browsing scenario. From the figure, the 

ups and downs of CPU loading are similar because the computation of the time 

profiling component does not need too much CPU resource. Therefore, the average of 

extra overhead on CPU is 5% when we turn on all probes. The CPU operating time of 

the instrumented browser is more than the origin browser because the instrumented 



 

32 
 

browser has 19.08 ~ 43.76% overhead of execution time. However, it does not cause 

more CPU loading because the tasks of extended time (the three parts which are 

introduced in previous paragraph) needn‟t too much computation resource to do. Fig 

13(c) depicts the used memory status. From the figure, the used memory of the 

instrumented browser is more than the origin browser in the final, because the time 

profiling component stores the time results in the memory. But it avoids storing large 

time results by changing profiling resolutions and area. Therefore, the extra overhead 

of used memory can be controlled below 6.53%. The 6.53% is the memory overhead 

when we turn on all probes. And the used memory of the instrumented browser is less 

than the origin browser during the execution period because the actions of allocation 

and free memory will trigger the VM to do garbage collection. Hence, the used 

memory will down when the garbage collection recycle the memory in the execution 

period. 

Experiment of time accuracy 

 In Chapter 4, we showed that methods getCaller() and Probe() are instrumented in 

each method to get the caller name and trigger the time profiling component to record 

time data, respectively. Both of them take extra execution time at runtime that will be 

included in the time results of RMP; therefore, we need to deduct the extra time for 

accuracy of time results. 

      

(a) The test case of getCaller().  (b) The test case of Probe(). 

Figure 14. The overhead experiment of instrumented methods. 

 Figure 14 shows the experiments which measure the execution time of getCaller() 



 

33 
 

and Probe(). The getCaller() and Probe() are executed 10000 times in a loop, and the 

time information is recorded by instrument System.getTimeMillis() at the head and tail 

of the loop to get the average execution time of them. The getCaller() spends 0.382 

(ms) for one round, which is eight times faster than 3 (ms) for getStack(), and the 

Probe() spends 0.077 (ms) for one round. Therefore, we can suppose a probe takes 

extra 0.54 (ms) execution time because a probe includes one getCaller() and two 

Probe(). 

   

(a) Child method is instrumented.     (b) Child method without instrumented. 

Figure 15. Measure the execution time of a probe. 

 To evaluate the extra execution time of a probe, we do another experiment as 

shown in Figure 15. We select a method which has been instrumented and it includes 

a child method which has been instrumented too as shown in Fig 15(a). Figure 15(b) 

shows another case, we remove the instrumentation lines (a probe) of the child 

method. Then we get the time results from each of them and minus the time results to 

know the extra execution time of a probe is 0.488 (ms). It is close to our supposition. 

Therefore, we deduct this time value in the time results of RMP by the number of 

probes in child methods. However, 0.488 (ms) is the time of an application probe, but 

the extra execution time of a framework probe is different. The framework probes 

have one more stage in the time profiling component to check whether the caller is the 

target application for avoiding recording time results which called by other 

applications. Therefore, we deduct 0.631 (ms), which is got from the same 

experiment. 



 

34 
 

 Unfortunately, some framework probes are called by some missed instrumented 

framework methods because the ctags cannot scan out the inner class of Java 

language (ex. call back function of listener) and our automatic scripts cannot scan out 

a case of called framework methods. For example, 

CookieSyncManager.getInstance().stopSync(), we can know the code of getInstance() is 

written in CookieSyncManager.java directly, but the stopSync() is written in the class 

which is returned by getInstance(). We cannot instrument the probe into stopSync() 

because we cannot know what class will be returned by getInstance() in 

instrumentation ranges analyzer. The information of return value needs other 

resources to help (ex. Software development kit (SDK)). The log events of framework 

probes which called by missed instrumented framework methods will be ignored in 

the time profiling component because the name of the missed instrumented 

framework methods are not recorded in the caller filter list. However, the time 

profiling component will spend time to check these log events, and the check time is 

included in the time results of RMP. Therefore, we select a framework method based 

on the same scenario in Figure 15 to do the same experiment, but the log event of the 

child method will be ignored in the time profiling component by configuration 

settings, not remove the probe. Then we know the extra execution time of the ignored 

framework methods is 0.583 (ms) and we deduct it in the time results of RMP by the 

information of ignored times got from the time profiling component. 

Table 3. The time error rate of the RMP and debug class. 

 onPause addObserver resetLockcon buildTitleUrl 

System.nanotime() 14.518 (ms) 1.221 (ms) 1.312 (ms) 1.068 (ms) 

RMP 15.562 (ms) 1.167 (ms) 1.282 (ms) 1.177 (ms) 

Error rate of RMP 7.19% 0.04 % 2.29 % 10.21% 

Debug class 8.25 (ms) 2.417 (ms) 2.099 (ms) 4.061 (ms) 



 

35 
 

Error rate of debug class 43.17 % 97.95 % 59.98 % 280.24% 

In table 3, we select some methods whose execution time is stable to evaluate the 

error rate of time results. The reference time is got from the API, System.nanotime(). 

We instrument this API into the entry point and exit point of methods to get the 

execution time of methods in nanosecond. And according with the above mentioned, 

the time results of RMP are deducted by some time values to be the final results. The 

table shows that the error rate of the RMP is below 10.21%. 

Compare overhead and time accuracy with debug class + Traceview 

 The debug class with Traceview is a default time profiling tool of Android 

official and work on most Android product devices. Therefore, we select this tool to 

be compared with the RMP on our DUT. Traceview is a GUI tool which can analyze 

logs recorded from the debug class and show the execution time from process level to 

method level. The debug class provides the API of start point and end point for users 

who can instrument them into the application source code to profile all methods of an 

application, including application methods, framework methods and core library of 

VM. The debug class collects all time results of methods and stores the results in the 

memory at run time. It will remove time results from memory to the SD card when 

the profiling is finished (the API of end point is executed). Therefore, the debug class 

uses large memory space to store the time results. Traceview can only provide the 

round times and total execution time of a method and the execution time of each 

round for a method is the average result in Traceview. However, a method may spend 

different execution time in different task by different parameters. Therefore, the 

Traceview cannot help us to analyze the execution time of each round for a method. 

Table 4 shows the comparisons between debug class + Traceview and RMP. 

  



 

36 
 

Table 4. The functional comparisons of debug class + Traceview and RMP. 

 Profiling 

approach 

Profiling 

resolution 

Profiling target Log 

size 

Integral logs 

problem 

Debug 

class + 

Traceview 

Instrumentation-

based approach 

Process to 

method 

(1) Application 

(2) Framework 

(3) Core library of VM 

Large Yes 

RMP Instrumentation-

based approach 

Process to 

loop 

(1) Application 

(2) Framework 

Small No 

Table 5. The overhead comparisons of debug class and RMP. 

 Extra execution time CPU loading Used memory 

RMP 19.08~43.76% 5% 6.53% 

Debug class 39.72% 4% 76.3% 

Table 5 shows the overhead comparisons of debug class and RMP; the debug 

class extends 39.72% overhead of execution time, 4% CPU overhead and 76.3% 

memory overhead. The overhead of execution time is caused by the VM which does 

the initial work and collects the time results of each method in classes. And the 

overhead of memory is very large because debug class collects time results of all 

methods and stores them in the memory. The execution time overhead and CPU 

overhead of debug class and RMP are close. However, the memory overhead of RMP 

is smaller than that of debug class because the RMP is a reconfigurable 

multi-resolution profiling solution which can save the log size. Table 3 shows the time 

error rates of debug class, the error rate of debug class is over than 43.17 %. Because 

the execution time of a method is estimated by the period between the entry of the 

method and the entry of next executed method in debug class. When the time results 

include the execution time of calling next executed method, the results are not very 

accurate. Therefore, the results of debug class cannot exactly help users to find out the 

bottlenecks. 

Experiment of different log space size 

 In RMP, the log space size is the number of time results can be storage. If the log 



 

37 
 

space size is small, then the time profiling component needs to spend time to remove 

log results from memory to the ram disk during profiling. The time of the data 

movement will be included in the time results, which will increase the time result 

error rate. On the contrary, if the log space size is large, then the time profiling 

component no need to spend the writing time during profiling. However, the log space 

size cannot set too large because it will increase the memory overhead. In addition, 

the memory space of the embedded devices cannot support large log space. Therefore, 

we need to consider trade-off between memory overhead and time results error rate. 

 

(a) The time results of a method at different log space size. 

 

(b) The time results of a method in each round. 

Figure 16. The overhead at different log space size. 

In this experiment, we take a music playing scenario with different log space 

sizes to find the reasonable log space size. In Figure 16, we select a method 

(MediaPlaybackService.position()), which is executed over 200 rounds in the scenario, 



 

38 
 

to be the experiment target and the range of log space size is 1 ~ 2000 results. When 

the log space size is one, the time results will be written to the ram disk every time. If 

the log space size is 2000, the time results will be written to the ram disk when the 

number of time results is over than 2000. Figure 16(a) depicts the average time results 

of the method at different log space size. From the figure, the average result for log 

space size 2000 is more accurate because the number of recorded time results in 

playing music scenario is less than 2000. In other word, there are no any data 

movements during profiling. When the log space size is one, the average result is not 

quite right because it includes large results writing time. Therefore, we increase the 

log space size from one to five and ten can enhance the result accuracy. However, 

when we set the log space size to 100, the average result of this size is bad than that of 

small log space size because the results writing time of 100 log space size is longer. In 

Figure 16(b), the results writing times of 100 log space size is less than one or five log 

space size, but the results writing time is longer than that of one or five log space size 

(The writing time of 100 log space size is out of y-axis in figure). This is because 

there are 100 results in memory need to be written to ram disk, not only one or five 

results. Therefore, the time results error rate is minimal if the DUT can provide 

enough log space to store all profiling results. On the other hand, the log space size 

needs to consider the available memory space and the number of time results in 

scenario when the memory space is not enough to store all profiling results, then 

choice one which can get balance between the writing time and the number of data 

movement for profiling. 

Energy profiling 

 In RMP, the energy profiling method is the enhanced approach of Battery Use. 

Its overhead is 3% and the results error rate of process level is 10% which was 

introduced in [8]. The RMP can provide results of energy consumption at fine-grained 



 

39 
 

resolution by the time proportion method, but we cannot do the evaluation of the 

results error rate at fine-grained resolution. Because most energy profiling tools (ex. 

ePro) need the hardware support to do fine-grained profiling, it cannot work on our 

Android-based product DUT. 

5.4 Overall Observations for the Browser 

 

(a) The time results of the browsing scenario. 

 

(b) The bottlenecks of browsing scenario. 

Figure 17. The profiling results of browsing scenario. 

 The Figure 17 shows the profiling results of the browsing scenario by the RMP. 

The whole profiling time only needs 1 ~ 2 hour, and it is quicker than staged 

interactive instrumentation approach (SIIP) [20] which need more than one day for 

the same profiling in our experiment. This is because the RMP instruments all 

profiling points into source code at first and changes profiling resolutions and area by 

configuration settings. Users only need to instrument and recompile the profiling 



 

40 
 

application and framework in 40 ~ 45 minutes at first and change the profiling 

resolutions and area in 5 minutes for each round. On the contrary, the SIIP need to 

spend time to instrument and remove the profiling points when users change the 

profiling area and wait the recompile time (35 ~ 40 minutes of each round in AOSP 

environment) for each round. The average log size of the RMP is 15 KB; it is smaller 

than the log size of debug class (2.99 MB) 25 times because the RMP can only record 

the useful logs by setting profiling resolutions and area for each round. 

The Figure 17(a) shows the detailed information about execution time and 

energy consumption for the browsing scenario. It can be modeled to pie chart 

according to their function. Figure 17(b) shows the pie chart for the browsing scenario. 

The “A” part takes 5.02% of the browsing time for initialing the Android resource (Ex. 

Skia graphics library (SGL) [21]) and the framework of view. The “B” part takes 4.46 

% of the browsing time for updating browser settings (Ex. plugins status) and data to 

the database. The “C” part takes 82.97% of the browsing time for receiving network 

data and drawing web view. The actions of receiving network data and draw web view 

are implemented in C/C++ library, so we cannot know the detailed time distributions 

for these actions. But we know the bottleneck is the actions of draw web view by 

analyzing the library source code. The view of 3D is drawn by OpenGL ES [22] 

which uses the graphic processing unit (GPU) to do hardware acceleration, but the 

view of 2D is drawn by SGL which does not use any hardware acceleration to draw 

the web page. It is slow when the web page is drawn by the embedded CPU. 

Therefore, we hope the SGL can support hardware acceleration to optimize the 

bottleneck of browsing in the future version. 

  



 

41 
 

Chapter 6. Conclusions and Future Works 

 This work designs the reconfigurable multi-resolution profiling approach to 

profile execution time and energy consumption of applications by using limited log 

space for finding the bottlenecks on the resource-constrained embedded system. The 

approach was practiced on the off-the-shelf product to examine the bottlenecks of the 

browsing scenario. 

 In all evaluation studies, the overhead of our implementation is proven with 

minor CPU overhead (5%) and memory overhead (below 6.53%). Although the 

overhead of execution time is 19.08 ~ 43.76%, we can correctly deduct them to get 

the correct execution time result of methods. The accuracy of execution time results is 

evaluated with the average error ratios below 10.21% and we further show that RMP 

results are more accurate than results of debug class 24 times. In addition, the RMP 

may be faced with a trade-off between memory overhead and accuracy of the time 

profiling when the memory space of DUT is not enough to store all profiling results, 

so it‟s important to choice a reasonable log space size according to the memory space 

and the amount of profiling results. Then the choose log space size can get balance 

between the writing time and the number of data movement for profiling. 

 From the case studies, we observed that the bottleneck of the browsing is the 

web page drawing which takes a lot portion of total execution time and energy 

consumption. This is because the graphics library, SGL, uses non-powerful embedded 

CPU to draw the web page and does not use any hardware acceleration. 

 Finally, because of the lack of profiling on C/C++ source code for graphics and 

network library, the profiling of the browsing can only know the entry and exit 

execution time of the library. We still have to spend extra time to analyze the source 

code of the library for finding the bottlenecks. Therefore, the future extension of this 

work includes the profiling of C/C++ source code. It can help us to profile 



 

42 
 

applications which are written in C/C++ language, e.g., the video application on 

Android. And we want this work can be extended to profile the core library of VM for 

users who can know more detailed information too. Besides, we want to fix the 

missed framework instrumentation problem introduced in Chapter 5, such as use the 

compiler to do instrumentation, and reduce the overhead of extra execution time by 

enhancing the instrumentation method and the decision approaches of the time 

profiling component in the future.  



 

43 
 

Reference 

[1] J. Flinn and M. Satyanarayanan, "PowerScope: A Tool for Profiling the Energy 

Usage of Mobile Applications," in Mobile Computing Systems and 

Applications, 1999. Proceedings. WMCSA '99. Second IEEE Workshop on, 

1999, pp. 2-10. 

[2] S. L. Graham, P. B. Kessler, and M. K. Mckusick, "Gprof: A Call Graph 

Execution Profiler," SIGPLAN Not., vol. 17, pp. 120-126, 1982. 

[3] M. Desnoyers and M. Dagenais, "LTTng: Tracing Across Execution Layers, 

From the Hypervisor to User-Space," in Proceedings of the Ottawa Linux 

Symposium, 2008, pp. 101-105. 

[4] "Android Debug." [Online]. Available: 

http://developer.android.com/reference/android/os/Debug.html. 

[5]  "Oprofile: A System Profiler for Linux." [Online]. Available: 

http://oprofile.sourceforge.net/. 

[6] L. Adhianto, et al., "HPCTOOLKIT: Tools for Performance Analysis of 

Optimized Parallel Programs," Concurrency and Computation: Practice and 

Experience, 2009, vol. 22, pp. 685-701. 

[7] "Intel VTune Performance Analyzer." [Online]. Available: 

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/. 

[8] Y. Yun-Chien and L. Ying-Dar, "Calibrating Parameters and Formula for 

Process-Level Energy Consumption Profiling," Mater thesis, NCTU, 2010. 

[9]  "Kernel Function Trace." [Online]. Available: 

http://elinux.org/Kernel_Function_Trace. 

[10] "TraceView." [Online]. Available: 

http://developer.android.com/guide/developing/tools/traceview.html. 

[11] T. L. Cignetti, K. Komarov, and C. S. Ellis, "Energy Estimation Tools for the 

Palm," in Proceedings of the 3
rd

 ACM International Workshop on Modeling, 

Analysis and Simulation of Wireless and Mobile Systems, Boston, 

Massachusetts, United States, 2000, pp. 96-103. 

[12] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and M. 

Kandemir, "Using Complete Machine Simulatiion for Software Power 

Estimation: The SoftWatt Approach," in High-Performance Computer 

Architecture, 2002. Proceedings. Eighth International Symposium on, 2002, 

pp. 141-150. 

[13] W. K. Baek, Y. J. Kim, and J. H. Kim, "ePRO: A Tool for Energy and 

Performance Profiling for Embedded Applications," Proc. of International 

SoC Design Conference  (ISOCC), Seoul, Korea, Oct. 2004, pp. 372-375. 

[14] T. Do, S. Rawshdeh, and W. Shi, "pTop: A Process-Level Power Profiling 

http://developer.android.com/reference/android/os/Debug.html
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://elinux.org/Kernel_Function_Trace
http://developer.android.com/guide/developing/tools/traceview.html


 

44 
 

Tool," presented at the Workshop on Power Aware Computing and Systems, 

2009. 

[15] K. S. Banerjee and E. Agu, "PowerSpy: Fine-grained Software Energy 

Profiling for Mobile Devices," in Proc. of IEEE WirelessCom, 2005, pp. 

1136-1141. 

[16] "Jindent." [Online]. Available: http://www.jindent.com/. 

[17] "Exuberant Ctags." [Online]. Available: http://ctags.sourceforge.net/. 

[18] L. Batyuk, et al., "Developing and Benchmarking Native Linux Applications 

on Android," in MobileWireless Middleware, Operating Systems, and 

Applications. vol. 7, J.-M. Bonnin, C. Giannelli, and T. Magedanz, Eds., ed: 

Springer Berlin Heidelberg, 2009, pp. 381-392. 

[29] "JNI Enhancements Introduced in Version 1.2 of the Java 2
TM

 SDK." [Online]. 

Available: http://download.oracle.com/javase/1.4.2/docs/guide/jni/jni-12.html. 

[20] D. Tzu-Hsiung and L. Ying-Dar, "Booting, Browsing and Streaming Time 

Profiling and Bottleneck Analysis on Android-Based Systems," Mater thesis, 

NCTU, 2010. 

[21] "Skia graphics library." [Online]. Available: http://code.google.com/p/skia/. 

[22] "OpenGL ES." [Online]. Available: http://www.khronos.org/opengles/. 

 

http://www.jindent.com/
http://ctags.sourceforge.net/
http://download.oracle.com/javase/1.4.2/docs/guide/jni/jni-12.html
http://code.google.com/p/skia/
http://www.khronos.org/opengles/

