

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

一種轉換二點五維圖形物體成三維圖形物體的

方法

An Approach for Transferring 2.5D Graph Entities into 3D Ones

研 究 生：梁赫廷

指導教授：王豐堅 教授

中 華 民 國 一 百 零 一 年 三 月

一種轉換二點五維圖形物體成三維圖形物體的方法

An Approach for Transferring 2.5D Graph Entities into 3D Ones

研 究 生：梁赫廷 Student：Hoting Liang

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

資訊工程與科學研究所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

March 2011

Hsinchu, Taiwan, Republic of China

中華民國一百零一年三月

I

一種轉換二點五維圖形物體成三維

圖形物體的方法

研究生: 梁赫廷 指導教授: 王豐堅 博士

國立交通大學

資訊工程與科學研究所

新竹市大學路 1001 號

碩士論文

摘要

很多 Flash遊戲由二點五維的技術所開發。基於一個二點五維的遊戲，直接

發展一個三維的版本是需要重新架構遊戲的規則、物體和世界等等，且可能特別

會引起使用者對這個遊戲的混亂。因此，藉由並行且逐漸地(1)轉換現存的二點

五維物體成為三維物體(2)加入額外的三維物體將一個二點五維的遊戲升級成三

維的遊戲。在每一次的更新中，每個版本都保有原本二點五維遊戲的交互作用的

能力。

本文中，為了上述的工作，我們提出一種改變程序。這個改變程序能分為三

個子程序:(1)在一個二點五維的遊戲中替每個二點五維的物體準備三維的皮膚

層。(2)藉由逐漸加入三維物體在這個遊戲裡以提供一些三維的特色。(3)如果物

體的定義都跟三維特色有關，則藉由將一個三維的舞台置換掉一個二點五維的背

景使得此遊戲轉換成一個三維的遊戲。因此，這個改變程序能將一個現存的二點

五維遊戲升級成一個二點五維-三維混用的遊戲、或是一個全三維的遊戲且沒有

引入非必要的混亂。

關鍵字: Flash actionscript、二點五維-三維混用遊戲、二點五維和三維顯示、二點五維和三維交互作用

II

An Approach for Transferring 2.5D Graph

Entities into 3D Ones

Student: Hoting Liang Advisor: Feng-Jian Wang

Institute of Computer Science and Engineering

National Chiao Tung University

1001 University Road, Hsinchu, Taiwan 300, ROC

Abstract

Many Flash games were developed with 2.5D technique. These games are

restricted with single plain and limited views. Building a 3D version based on a

2.5D game directly is needed to reconstruct the game rules, entities and world, etc.,

and especially might cause users’ chaos for the game. Therefore, to upgrading a

2.5D game as a 3D one might be valuable by concurrently and gradually (1)

transferring existing 2.5D entities into 3D one and (2) adding extra new 3D entities.

Each new version owns the interactive activities of original 2.5D game in each

upgrade.

In this thesis, we propose a modification process for above work. The

modification process can be divided into three sub-processes: (1) Prepare a 3D skin

for each 2.5D entity in a 2.5D game. (2) Provide some 3D features by adding 3D

entities into the game. (3) If the entity definitions are associated with 3D features,

the game is transferred into a 3D game by replacing the 2.5D scene with a 3D stage.

III

Therefore, the modification process may upgrade an existing 2.5D game to a

2.5D-3D hybrid game or fully 3D game without introducing non-necessary chaos.

Keywords: Flash actionscript, 2.5D-3D hybrid game, 2.5D and 3D rendition, 2.5D

and 3D interaction

IV

本論文 承蒙

財團法人中華扶輪教育基金會

台中中央社

於 2010-2011 年度提供『中華扶輪獎學金』

謹致謝忱

V

致謝

本篇論文得以完成，最主要感謝我的指導教授王豐堅教授。在交通大學就學

期間讓我在軟體工程、工作流程領域中能夠深入了解，並且獲得許多寶貴的知識

及經驗。另外，也十分感謝我的口試委員吳毅成博士、林志敏博士以及留忠賢博

士的寶貴意見，得以補足論文中的不足之處。

 其次要感謝實驗室的學長姐、同學及學弟妹兩年間的指導、照顧與砥礪。在

進入交大這個新環境的時候，得到實驗室王靜慧學姊、許懷中學長以及黃培書學

長許多課業及研究方面的指導。在研究過程中，許懷中學長對我論文架構、寫作

的指導，並在我氣餒的時候不斷地鼓勵我，讓我在研究生活中遇到瓶頸的時候能

順利克服，不管是專業的知識、研究技巧以及文章寫作都讓我受益良多，因為有

學長不厭其煩的指導，本篇論文才得以順利完成。

最後要感謝我的父母、親朋好友，能讓我在無後顧之憂的狀況下全力完成學

業，並適時的激勵與關心，更是我努力不懈的動力來源，謝謝你們。

VI

Table of Contents

一種轉換二點五維圖形物體成三維圖形物體的方法... I

一種轉換二點五維圖形物體成三維圖形物體的方法... I

一種轉換二點五維圖形物體成三維圖形物體的方法... I

摘要... I

An Approach for Transferring 2.5D Graph Entities into 3D Ones II

Abstract .. II

本論文 承蒙...IV

致謝..V

Table of Contents ..VI

Table of Figures ...VII

Chapter 1 Introduction .. 1

Chapter 2 Background .. 4

AgentCubes: Incremental 3D end-user development .. 4

AdvancED ActionScript 3.0 Animation ... 5

3D in Flash ... 6

Chapter 3 Consistency between 3D Entity and 2.5D Coordinates 7

Section 3-1 Transforming a 2.5D game into a 3D version 7

Section 3-2 Coordinate transformation – a fundamental Issue 9

Section 3-3 A unification Technique for transformation 13

Chapter 4 Interaction and Rendition between 2.5D and 3D Entities 16

Section 4-1 Interaction Problem in different dime dimensions 16

Section 4-2 A pattern for graph entities in different dimensions 19

Section 4-3 The virtual class inherits from an appropriate 2.5D class 24

Section 4-4 Rendering problem containing 2.5D and 3D graph entities 27

Section 4-5 A class structure for Rendition Integration 30

Chapter 5 Modification Process from a Pure 2.5D Game to a Hybrid or 3D Game 33

Section 5-1 Developing process from a 2.5D(2.5D) game to a hybrid game . 33

Section 5-2 Developing process from a hybrid game to a fully 3D game 36

Section 5-3 Modification Process constructed by three processes 43

Chapter 6 Conclusion and Future Work ... 45

Reference ... 46

VII

Table of Figures

FIGURE 2-1 THE FUNCTIONS OF TRANSFORMATION FOR 2D AND 2.5D COORDINATE SYSTEM IN

“COLLISIONTEST” ... 6

FIGURE 3-1 (1) ANTICIPANT POSITION OF THE 3D BALL (2) ACTUAL POSITION OF THE 3D BALL 10

FIGURE 3-2 PROJECTED PERSPECTIVE FROM VANISHING POINT [9] ... 11

FIGURE 3-3 (1)AWAY3D COORDINATE SYSTEM (2)FLASH COORDINATE SYSTEM 12

FIGURE 3-4 EXPLANATION FOR POSITION OF THE RED BALL .. 12

FIGURE 3-5 TRANSFORM 2.5D COORDINATE SYSTEM TO 3D COORDINATE SYSTEM. 14

FIGURE 3-6 THE FUNCTIONS FOR TRANSFORMING 2D COORDINATE SYSTEM TO 3D COORDINATE SYSTEM

 .. 15

FIGURE 4-1 (1) BEFORE THE COLLISION IN ORIGINAL 2.5D GAME (2) COLLISION (SUCCESS) 17

FIGURE 4-2 (1)BEFORE THE COLLISION IN THE HYBRID VERSION (2) COLLISION (FAILURE DETECTION)

 17

FIGURE 4-3 THE CLASS PATTERN FOR INTERACTION .. 19

FIGURE 4-4 THE MODEL OF INTERACTION FOR 2.5D ENTITIES ... 20

FIGURE 4-5 THE MODEL OF INTERACTION FOR 2.5D ENTITY AND 3D ENTITY .. 21

FIGURE 4-6 THE MODEL OF INTERACTION FOR 3D ENTITIES .. 22

FIGURE 4-7 COLLISION FOR THE 3D ENTITY AND 2.5D ENTITY .. 23

FIGURE 4-8 INTERACTION EXCEPTION OF A ENTITY3D .. 23

FIGURE 4-9 (1) LAYER OF FRONT CUBE IS FRONT. (2) LAYER OF BEHIND CUBE IS FRONT. 27

FIGURE 4-10 (1) THE GREY CUBE IN TOP-RIGHT CORNER OF THE BLUE CUBE (2) THE GREY CUBE IN BACK

OF THE BLUE CUBE (3) THE GREY CUBE IN TOP-LEFT CORNER OF THE BLUE CUBE 29

FIGURE 4-11 THE CLASS STRUCTURE FOR RENDITION OF DEPTH .. 30

FIGURE 4-12 (1) THE GREY CUBE IN TOP-RIGHT CORNER OF THE BLUE CUBE (2) THE GREY CUBE IN BACK

OF THE BLUE CUBE (3) THE GREY CUBE IN TOP-LEFT CORNER OF THE BLUE CUBE 32

FIGURE 5-1 (1) THE HYBRID GAM (2) THE 3D PLANE REPLACES THE 2.5D SCENE 37

FIGURE 5-2 (1) ADJUST THE PROPERTIES OF (2) CHANGE THE ANGLE AND COOR- THE 3D

ENTITIES DINATE OF THE CAMERA 39

FIGURE 5-3 (1)2.5D MOTION OF THE 3D ENTITIES (2) 3D MOTION OF THE 3D ENTITIES 39

FIGURE 5-4 THE FUNCTION OF COLLISION DETECTION IN FULLY 3D GAME ... 40

FIGURE 5-5 THE GAME WORLD FROM DIFFERENT VIEWPOINTS .. 41

FIGURE 5-6 THE FUNCTION FOR SWITCHING THE ANGLE OF VIEW .. 42

1

Chapter 1 Introduction

Today, Flash is more than half of use as the standard plug-in for displaying

interactive multimedia and graphic content over World-Wide Web. Many browser

games [1] and casual games [2] are developed through Flash Actionscript. These

games are light-weighted because they need only browsers and the plug-ins like Flash

Player for operation without installation of specific software. With Flash, the games

also have problems of using hardware resources of personal computers like

hardware-accelerated graphics, which are necessary for more computing power.

Because of few limits, they can be played when user has a device and Internet.

These games are traditionally developed as 2D games or its isometric variants,

2.5D game [3], and are more or less restricted with a single plain and limited views.

Animation, motion and rotation of 2.5D entities in these games are presented through

changing of pictures. For example, the aspects of a 2.5D entity are usually presented

by various hand-drawing pictures. When user turns the entity from one aspect to

another, the representation of the entity is changed from one picture to the

corresponding one. However, 2.5D representation is limited in expressing depth of a

scene, such as the information hidden for overlapping entity. Besides, Flash may not

provide the rich 3D applications in its own library. Thus, the programmer focuses on

developing the 2.5D game.

2.5D (2D)-3D hybrid applications are widely adopted in various domains. 3D

Geographic Information System [4] , eyegaze analysis [5], etc. are the representative

2.5D (2D)-3D hybrid applications which mix 2.5D (2D) views/ entities with 3D ones

2

for displaying more plentiful visual information to the users. Nowadays, Flash is

associated with many 3D libraries, e.g. Papervision3D, Sandy 3D, Away3D [8], etc.

However, 2.5D (2D)-3D hybrid applications are rarely discussed in development of

Flash games. On the other hand, to upgrade a 2.5D game as a 3D game is by building

another 3D version directly. When users play the 3D version, they will feel the chaos

between 2.5D and 3D versions. It might be valuable by applying one way adopting

the 2.5D-3D hybrid applications to avoid the chaos. Therefore, we may present the

modification process generates 2.5D-3D hybrid versions which are added 3D entities

gradually without rewriting the logic related to game rules and strategies, and provide

some 3D features for better “look & feel” with animation, motion and rotation of 3D

entities. Besides, users which play the 2.5D-3D hybrid versions are easy to feel these

3D features in the 2.5D-3D hybrid versions.

In this thesis, we develop a modification process expected to be applied on the

development of 2.5D-3D hybrid Flash games from its initial 2.5D versions. It

describes the details for upgrading a 2.5D Flash game by gradually replacing 2.5D

entities with 3D ones and adding extra 3D entities. The modification process is a

gradual procedure. Therefore, the upgraded version reserves the interactivities of

original 2.5D version and gives players additional entertainment with 3D features.

The rest of this paper is organized as following: In chapter 3, we illustrate our

motivation and a fundamental issue: Coordinate transformation. In chapter 4, we

discover two main problems for developing 2.5D-3D hybrid versions: 1. Interaction

between 2.5D and 3D entities, 2. Rendition for depth of 2.5D scene. We explain the

problems and solutions in this chapter. In chapter 5, the modification process is

presented in our thesis. With the development process, 2.5D game can be upgraded to

2.5D-3D hybrid game or fully 3D one. Finally chapter 6 concludes this thesis and

3

presents our future work.

 To simplify the discussion, hybrid game is used to represent 2.5D-3D hybrid

game.

4

Chapter 2 Background

In this chapter, we survey related works which upgrade 2.5D games to 3D games,

and introduce the 2.5D game model and 3D library. AgentCubes: Incremental 3D

end-user development surveys related process which is used to upgrade 2D games to

3D games. 3D in Flash and AdvancED ActionScript 3.0 Animation introduce the 2.5D

game model and 3D library.

AgentCubes: Incremental 3D end-user development

AgentCubes [6] is an Incremental 3D end-user development tool for

creating 2.5D and 3D games. In AgentCubes, the programmer is asked to

develop a 2.5D game, and design rules and strategies of games first, according

to the tools/libraries provided. In this step, he/she does not worry about 3D

model, orientation and location of entities for the 3D version. Second, when

he/she wants to construct a corresponding 3D game, he/she is asked to construct

the corresponding code and data for all the classes and entities at a time.

Obviously, upgrading a 2.5D game to a 3D game at a time might introduce

a lot chaos. For example, because lots of 3D classes and entities of classes are

introduced, programmers can not build the 3D game easily according to their

experience. [6] leaks of additional tools or methodology to help programmers to

upgrade the existing 2.5D games to 3D games for coding.

5

AdvancED ActionScript 3.0 Animation

When a programmer develops a game by using Flash Actionscript, he/she

has many problems in all respects of the game, such as animations and

interactions of entities. In [7], Keith provides advanced algorithms and libraries

for Flash game, such as collision detection, steering behaviors and Isometric

Projection, etc. The programmer may quickly develop a Flash 2D and 2.5D

game, and solve these problems with the goal of efficiency and precision.

The program of “GridCollision” is a 2D game, and the ones of “MapTest”

and “CollisionTest” are a 2.5D game in this book. These programs display the

basic properties like size and angle of the game world, motion and interaction of

entities, etc. For example, Figure 2-1 illustrates how to transform a coordinate

between the 2D and 2.5 coordinate systems, where “isoToScreen” works for 2D

to 2.5D coordinate systems and “screenToIso” works for reverse direction. In

this thesis, our methodology is based on the examples in these games.

6

Figure 2-1 The functions of transformation for 2D and 2.5D coordinate system in

“CollisionTest”

3D in Flash

Away3D [8] is a real-time 3D engine for Actionscript 3.0 in Flash. The

engine is an Open Source that is continuously maintained and added support by

new features for new Flash Players. On the other hand, it is free to use for any

purpose such as commercial applications. Away3D is easy to learn and show 3D

features for beginners.

The book, “3D in Flash”, is a reference book for Away3D, and illustrates

how to write a 3D application in detail. It explains the capability of each class of

Away3D library based on examples of programs, such as applications of the

Camera class. In this thesis, we use Away3D as example of 3D library to

upgrade 2.5D games to 3D games.

7

Chapter 3 Consistency between 3D Entity

and 2.5D Coordinates

Section 3-1 Transforming a 2.5D game into a 3D version

2.5D game provides lots of fun through rich playing ways like

“side-scrolling games” and displays of sophisticated graphs. However, the 2.5D

games are restricted to a single plane and limited views. For example, the

rotation of the 2.5D entity is difficultly displayed in the 2.5D scene based on

changing of pictures. The limited views are hard to clearly represent the whole

game world like the back of a barrier.

To overcome the limitation of the single plane, it might allow to let the

programmer add 3D entities into the 2.5D game, because the 3D entity is a

complete individual rather than a set of pictures and can provide better visual

effects, such as motion, rotation and animation. Correspondingly, it is interesting

to transfer a 2.5D game to a 3D version with this technology. Thus, we construct

such a 3D game with two steps: (1) Let the programmer develops a hybrid game

from a 2.5D game through gradually adding or replacing 2.5D entities with 3D

ones, where the logic related to game rules and strategies is maintained for

reducing the upgrading cost. (2) Once each entity is the 3D entity in the 2.5D

scene, the programmer can transform such a hybrid game into a 3D game with a

given facility.

When programmers put a 3D entity into a hybrid game like insertion and

8

replacement, there are at least three factors to be solved, including:

(1) Some properties of the 3D entity need be modified for compatibility in

the 2.5D game. For example, a 3D entity has to be taken off its third

dimension of location when put in a 2.5D scene.

(2) The interaction behavior between existing entities and 3D entities need be

built based on the current behavior in the game.

(3) The relative depth between 2.5D and 3D entities need be shown in the

hybrid game.

When programmers replace the 2.5D scene with a 3D one, there are at least

two factors to be solved, including:

(1) The properties of the 3D scene are set up based on those of the 2.5D

scene.

(2) The properties of 3D entities are upgraded if necessary.

9

Section 3-2 Coordinate transformation – a fundamental Issue

We present a technique between 2.5D and 3D entities for interaction and

rendition of depth in the following chapters. The technique makes each 3D entity

which is put into the 2.5D scene to have a corresponding 2.5D entity for helping

interaction and rendition of depth. To finish this technique, we should overcome

the problem of coordinate transformation.

Before entering the study, a fundamental issue occurs: to present an entity

of 3D coordinate in a 2.5D(2D) system.

When a 3D entity, supported by 3D library such as Away3D [8], is put into a

2D scene, the coordination system corresponding to the entity might cause it to

be shown at an unexpected place in the scene. For example, in Figure 3-1, the red

ball is a 3D entity and the yellow ball is a 2D one. When the red ball is put at the

left column of the yellow ball, the expected scene is shown as in Figure 3-1 (1).

However, the real scene might show that the red ball is at one column right and

3/2 row up of the yellow ball as in Figure 3-1 (2). Therefore, the coordinates of a

3D entity have to be reorganized for display consistency in a scene. Similarly, the

coordinates of a 2D entity have to be re-organized when it is put into a 3D scene.

10

Figure 3-1 (1) anticipant position of the 3D ball (2) actual position of the 3D ball

Intuitively, there are two reasons causing above defects. First, the origin of

the coordinate system in Away3D is different from that in Flash (for 2D display),

the top-left corner of a scene. In Away3D, the origin is at the vanishing point

representing the position where entities converge the further away they are. The

vanishing point is usually at the center of a scene, and is the foundation for

building a 3D scene. Figure 3-2 explains how a 3D world is established through

a 3D library. A 3D entity can be displayed in a 2D scene with projection from the

vanishing point. The projection indicates illusion of depth and distance among

3D entities when displaying 3D entities closer to the screen with larger size, and

vice versa.

11

Figure 3-2 projected perspective from vanishing point [9]

Secondly, Away3D [8] uses the “Cartesian” coordinate system adopted in

mathematics and geometry. Let x-axis be the abscissa, and y-axis be the ordinate,

and z-axis be the applicate. The x-axis value of a point is positive if it is at the

right of origin, and negative if left. The y-axis value of a point is positive if it is

higher than the origin, and negative if lower. However, the value of y-axis is

reverse in Flash; i.e. the y-axis value of a point in Flash is negative if it is higher

than the origin, and positive if lower.

Figure 3-3 illustrates the differences between the coordinate systems

adopted in the 2D and 3D libraries. Figure 3-4 helps to explain the problem of

position for the red ball. We draw the 2D and 3D coordinate systems in this

figure. Therefore, the position of the red ball is calculated form origin in 3D. The

x value of the red ball is smaller than the x value of the yellow ball but the red

ball is at the right side of the yellow one. The y-axis in the 2D library is inverted

for 3D, so the red ball is at top of the yellow one.

12

Figure 3-3 (1)Away3D coordinate system (2)Flash coordinate system

Figure 3-4 Explanation for position of the red ball

13

Section 3-3 A unification Technique for transformation

In this section, to unify the 2.5D and 3D coordinate systems, we

construct the formula to transform coordinate values from 2D to 3D as

followings.

position.3Dx = position.2Dx-vpoint.x +c_of.x;…………..(1)

position.3Dy = - (position.2Dy-vpoint.y) +c_of.y;……….(2)

The parameters used in the formula are listed and defined below:

position.2Dx: the x-axis value of a point in 2D coordinate system.

position.2Dy: the y-axis value of a point in 2D coordinate system.

position.3Dx: the x-axis value of a point in 3D coordinate system.

position.3Dy: the y-axis value of a point in 3D coordinate system.

vpoint: the point used in 2D coordinate system represents the vanishing

point in 3D coordinate system.

c_of : the visual difference has two attributes, c_of.x and c_of.y, used

for unifying 2D and 3D coordinates.

When a 3D entity is put into 2D coordinate system, the management of

corresponding 2D and 3D coordinates of the entity can be handled with c_of

and vpoint as in formula (1) and (2). The vpoint is at the center of the scene

of 2D system. The values of vpoint can thus be defined as the difference of

first two coordinates between 2D origin and 3D origin in 2D coordinate

system. Therefore, to get position.3Dx and position.3Dy, the position.2Dx

and position.2Dy are subtracted with the first two coordinates of vpoint

individually. Since, the 2D entity exists in a plain surface only, and the 3D

entity in a 3D scene is displayed with convex camera lens, corresponding to

14

a curved surface, a pair “c_of” is adopted to reduce a visual difference when

putting a 3D entity at a position in a 2D scene. The value of c_of is defined

based on the curve ratio of the 3D system and distance between the entity

and 3D origin, i.e, c_of.x = dx * curve_ratio.x and c_of.y = dy *

curve_ratio.y.

Each 2.5D game has its own coordinate system for diagonal 2.5D

scene also. Because 2.5D game simulates depth in 2D coordinate system

with diagonally displayed scenes, it needs extra transformation when

displaying a 2.5D entity on a 2D system. Usually, game systems transform

2.5D coordinate system into 2D one based on the documents of original

game. Then, our formula can be worked for 2D coordinate to 3D one for

coordinate consistency.

Let us use an example based on the codes of 2.5D game in [7] to show

add an 3D entity in a 2.5 game. According to “isoToScreen” in Figure 2-1,

we transform a 2.5D coordinate to a 2D coordinate, and use the 2D one

adopting the functions, “screento3Dx” and “screento3Dy”, as Figure 3-5

illustrates. The functions are our formulas for transforming 2D coordinates

into 3D coordinates as Figure 3-6 illustrates. With the functions for putting

the values which are transformed from 2.5D to 2D coordinates, the 2.5D

and 3D coordinate systems are unified.

Figure 3-5 Transform 2.5D coordinate system to 3D coordinate system.

15

Figure 3-6 The functions for transforming 2D coordinate system to 3D coordinate

system

16

Chapter 4 Interaction and Rendition

between 2.5D and 3D Entities

Section 4-1 Interaction Problem in different dime dimensions

In a 2.5D game, a movable entity may interact with another entity when

its boundary like the fringes of its image reaches that of the latter, if both are

in the same layer of depth. For example, a collision occurs once the images

of above two entities are overlapped their fringes in the same layer of depth.

In Flash library [9], the method, “hitTest”, used for collision detection

between two of “BitmapData”, “MovieClip” or “Sprite” entities in Flash

does not support Away3D [8] entities. Similarly, the method supporting

collision detection in Away3D cannot be adopted for general Flash entities

either.

In a 2.5D coordinate system, the 2.5D game simulates depth with a

diagonally displayed scene which is composed of finite grids. Each entity is

put into 2.5D scene based on a set of specific grids namely v-grids, and its

boundary is defined as the boundary of its v-grids in the 2.5D scene. When

an entity is moved up, down, left or right, its v-grids is moved

correspondingly, but its size and shape do not change. Figure 4-1 shows how

2.5D entities collide with each other through invocation of the function,

“canMove”. When the grey cube moves to the blue cube as Figure 4-1 (1)

shows, “canMove” detects the collision and feeds back to entities if there is

an overlap between the boundaries of their v-grids. Then, the movement is

17

stopped by the application as Figure 4-1 (1) shows. As Figure 4-2 (1) shows,

the grey cube as a 3D entity reaches to the blue one similarly. However, as

the Figure 4-2 (2) and (3) shows, when the grey cube moves to the other, the

grey cube passes through the blue one. Such a case indicates there is no

collision detection because the function “canMove” does not support

collision detection between 2.5D and 3D entities. Furthermore, currently

there is even no method handling interactions between 2.5D and 3D entities

in either Flash or 3D libraries. In next subsection, we will present a detection

technique between 2.5D and 3D entities through the example of collision

detection.

Figure 4-1 (1) Before the collision in original 2.5D game (2) Collision (success)

Figure 4-2 (1)Before the collision in the hybrid version (2) Collision (failure

detection)

18

 (3) After the collision

In this subsection, a technique enacting interactions between 2.5D and

3D entities is presented based on a way how the 3D entity is put into the

2.5D scene. For replacing a 2.5D entity with a 3D one, this way does not

delete the replaced 2.5D entity. It uses the functions of Section 3-2 for

covering the 2.5D entity with the 3D one. Under the premise of the way, we

present the interaction between 2.5D and 3D entities. Therefore, the solution

of this subsection is presented in next section.

19

Section 4-2 A pattern for graph entities in different dimensions

Figure 4-3 The class pattern for interaction

In this subsection, a class pattern enacting interactions between 2.5D

entities and 3D entities is presented as in Figure 4-3. Each 3D class is

associated with a virtual class which contains an entity3D, an instance of the

3D class. Besides, the virtual class is defined to inherit from the 2.5D class

which is selected as in Section 4-3 . The virtual class instance, namely

v-entity, may invoke the methods to pass the control message of exception

handling to its entity3D.

On the other hand, the v-entity’s methods for 2.5D operations such as

“method2.5D” can be classified into three categories. The first category

contains the methods inherited from the 2.5D class, and they works among

its inherited attributes and other 2.5D entities/v-entities. The methods of the

20

second category are derived by overriding those in the 2.5D class. The

control of the entity3D is put into those methods. The third category contains

the methods added for handling the interaction or synchronization of the

entity3D and v-entity’s other attributes. For example, the v-entity needs to

synchronize coordinates of itself and its entity3D due to the difference of

2.5D and 3D coordinate systems described in Chapter 3 . Besides 2.5D

operations, the activity for the v-entity to control the entity3D appears

repeatedly in different exception handlings. The “method_control3D()” is

added to describe this activity and may be reused in the fully 3D version.

Therefore, the 2.5D classed need not be modified, neither the 3D classes.

Figure 4-4 The model of interaction for 2.5D entities

Figure 4-4 illustrates how a 2.5D entity interacts with another in Flash.

The entity checks the interaction(s) between them by using the function of

interaction detection such as the function, “hitTestObject”, which is a

21

function of collision detection. When an interaction is detected, the function

returns a message to both 2.5D entities to handle corresponding interaction

exceptions individually.

Figure 4-5 The model of interaction for 2.5D entity and 3D entity

As Figure 4-5 shows, the model adopts our class pattern for interaction

between the v-entity and other 2.5D entity. The v-entity uses the component

entity3D for rendition of the 3D entity. Therefore, the v-entity may use its

2.5D properties to interact with other 2.5D entities by the original methods

which are inherited from the corresponding 2.5D class, and control the

entity3D to do the exception handling of the interaction. For example, when

an entity3D collides with a 2.5D entity, its v-entity uses the function of

collision detection to work with other 2.5D entities. Once the function feeds

back to the v-entity, the v-entity controls its entity3D for necessary 3D

manipulation.

22

Figure 4-6 The model of interaction for 3D entities

Figure 4-6 shows the model adopted in our class pattern for the

interaction between two 3D entities, and it is similar to Figure 4-5. Each

v-entity interacts with the other for their entity3D. Once an interaction occurs,

both v-entities control their entity3D for corresponding exception handling of

interaction.

We adopt our class pattern into the example as Figure 4-2 shows in

Figure 4-7. Blue cube is a 2.5D entity, and grey cube is an entity3D of

corresponding v-entity which inherits from the 2.5D class of the blue cube.

When the grey cube is moved to collide with the blue cube, the v-entity of

the grey cube uses the function, “canMove”, to detect whether there is a

collision between them. Once the function detects a collision between the

v-entity and blue cube, it returns a “Boolean” value to the v-entity and blue

cube. According to this value, the v-entity controls the motion of the grey

cube in the 2.5D scene by using the method2.5D, “motion2.5D”, as Figure

4-8 shows. Therefore, the grey cube makes a stop rather than passes through

the other. The 3D entity successfully interacts with a 2.5D entity for collision

through our structure.

23

However, we do not solve the limit of interaction detections in this

section. For example, “canMove” has a limit of detection, because it only

checks the overlap of the grids between entities for collision detection. It

does not provide the collision detection for high or low entities. In Chapter 5 ,

we shall upgrade the fully 3D game from a 2.5Dgame, and use the methods

in 3D libraries for solving limits of interaction detection in 2.5D.

Figure 4-7 Collision for the 3D entity and 2.5D entity

Figure 4-8 Interaction exception of a entity3D

24

Section 4-3 The virtual class inherits from an appropriate 2.5D class

According to the pattern in above section, the programmer should create a

virtual class which contains an entity3D, an instance of its corresponding 3D

class, and inherits an appropriate 2.5D class. An entity3D interacts with other

2.5D entities and entity3Ds based on its v-entity’s attributes inherited from the

selected 2.5D class. During an interaction, if the v-entity cannot provide enough

supporting attributes, the interaction fails. Thus, it is important to select an

appropriate 2.5D class to be inherited by the virtual class. We present an

algorithm of eleven steps for programmers to do the selection shown below, and

construct the corresponding virtual class described in above.

 Algorithm Class_Selection

 Input: a 3D class

 Output: a 2.5D class

 begin

1: Get the number k, k is the number of capabilities of which each is

corresponding to a distinct property of the input 3D class.

2: Search a class which contains these k capabilities from the 2.5D

classes. If one is found, it is returned and the algorithm stops.

3: Set each of these capabilities with a distinct id, pi, 1≤i≤k, where pi

has higher priority than pj if i>j , and x=k-1.

4: Search a set of the class(es) which contain x of above k

capabilities.

5: If there is no one which contains x capabilities, then x=x-1 and go

to Step 4.

25

6. If there is only one class, then return the class and stop.

7: Get the id of highest-order capability among these classes.

8: If there is only one class containing id, then return this class and

stop.

9: If id is the lowest-order capability of these classes, return one of

the classes and stop.

10: Delete the class(es) not containing id.

11: Get the id of next-order capability among these classes; go to 8.

end

Algorithm Class_Selection is applied to find the 2.5D class used as the

parent class of the virtual class. Step 1 derives the capabilities of which each is

corresponding to a distinct property extracted from the input 3D class. In the

hybrid games discussed in the thesis, the properties of input 3D class are defined

based on its operations. For example, if the entity3D is movable and collided, the

motion and collision are selected as its capabilities. Similarly, each 2.5D class

has its own capabilities derived from its own operations. For example, a 2.5D

entity such as a barrier has no capability of motion. By comparing the

capabilities of the entity3D with that of 2.5D classes, a 2.5D class containing all

above k capabilities can be selected to be the parent class of the virtual class in

Step 2. In other words, when this step finds such a 2.5D class, and the algorithm

returns the class directly.

In case no one is selected in Step 2, a 2.5D class containing some of these k

capabilities is selected to play the role. In our algorithm, Step 3 sets the priorities

of these capabilities for the search in the following steps. Because the selected

26

2.5D class which contains more of above k capabilities is better, Steps 4 and 5

look for a set which have most capabilities of above k capabilities. To simplify

the search, we assume that the priority value of a capability is larger than the sum

of priority values of those capabilities which are lower than this capability.

Because Steps 4 and 5 ensure the set which is not a null set, it is bound to find an

approximate one. Steps 6 to 11 start from the capability of highest priority to

compare the classes. The comparison continues until the capability of lower

order does not exist in the set. Now, one class in the set is selected as the parent

class of the virtual class.

The following example shows how to select an appropriate 2.5D class for

the insertion of a 3D castle. In this example, there is no a corresponding virtual

class for the 3D castle, and the programmer need select a 2.5D class as the parent

class of the virtual class. With algorithm Class_Selection, Step 1 gets the

capabilities of motion, collision and rotation from the class, 3D_castle. There is

no class which contains three capabilities in Step 2. Thus, Step 3 sets the priority

order for these capabilities. Assume that Steps 4 and 5 find two classes,

IsoObject and Cube, which contain two capabilities, motion and collision. Steps

6-11 filter these classes through the priority order, pid. Because both contain the

same capabilities, Step 9 finally chooses one of them arbitrarily. For example, let

the algorithm return the class, IsoObject. The virtual class is set as the subclass

of IsoObject then.

27

Section 4-4 Rendering problem containing 2.5D and 3D graph entities

Depth makes a game world look more realistic. The methods and

associated computations for depth expression in the 2D and 3D libraries are

different. In a 2D library, each entity is a piece of graph, and a 2.5D scene is

composed of layers. Each layer represents a distinct depth. The 2D library

uses a queue structure for layers of a scene. An entity put into a front layer is

rendered at the front side of the scene. Therefore, the entities are put into

their corresponding layers that he wants, and the frame renders a visual effect

of depth through sequence of layers. The example in Figure 4-9 (1) shows a

2.5D game where an entity is in front of another when its y-axis value is

larger than others. Thus, the blue cube is in front of the brown cube in the

scene, and both cubes are the same size. If the layer of the brown cube is in

front of the layer of the blue one, the unusual vision is showed in Figure 4-9

(2).

Figure 4-9 (1) Layer of front cube is front. (2) Layer of behind cube is front.

In Section 3-2 , we know the vanishing point which expresses the

depth of game world in the 3D library. Therefore, the 3D library makes

z-axis based on the vanishing point. The method of depth renders the

sequence of entities in a scene through z values of each entity.

28

There is a problem when 2.5D entities coexist with 3D entities because

rendition of depth is different between 2.5D and 3D entities. In addition, the

2D and 3D libraries do not consider about the hybrid application. Therefore,

the 3D entity is not put into layer of graph, and the 2.5D entity does not

have a z value. The rendition for depth individually adopted by the entities

need to be displayed in consistency.

In Figure 4-10, a 3D entity and 2.5D entity are at a scene. The grey

cube is a 3D entity, and the blue cube is a 2.5D entity. It is expected that the

grey cube moves around the blue cube circularly. Figure 4-10 (1)-(3)

indicates three instances in order during the movement inside a circle. These

figures indicate that the grey cube is always in front of the blue cube. I.e.,

this phenomenon does not satisfy the expectance.

29

(1) (2)

(3)

Figure 4-10 (1) The grey cube in top-right corner of the blue cube (2) The grey cube

in back of the blue cube (3) the grey cube in top-left corner of the blue cube

30

Section 4-5 A class structure for Rendition Integration

As the phenomenon discussed in Section 4-4 , we propose a model to

solve the problem of depth difference at the display of 2.5D and 3D entities.

The model is based on a simple concept: Each 2.5D entity is given a 3D

skin. Such a 3D skin helps its 2.5D entity to have a similar display as a 3D

entity based on the depth rendering in Section 4-4 . The class, Sprite3D,

describes the attributes for positioning a 2.5D entity with a 3D skin to be

inside a 3D space in Away3D [8]. Let the 3D sprite be the 3D skin of each

2.5D entity. Therefore, the image of the 2.5D entity is associated a

corresponding 3D sprite, accepted by the rendering method(s) of the 3D

library. On the other hand, the 2.5D entity should use the methods in

Chapter 3 to synchronize the positions with the 3D sprite.

Figure 4-11 The class structure for rendition of depth

To simplify the model, we add an attribute, sprite3D, and two methods,

“method_position3D” and “method_image3D”, into the root class structure

as Figure 4-11 illustrates. Each 2.5D class inherits the root class in this

game. Therefore, these 2.5D classes use the sprite3D for rendition of depth

with 3D entities directly. The method, “method_position3D”, is used to

31

synchronize the positions of the 2.5D entity and its sprite3D based on the

methods defined Section 3-3 , and the method, “method_image3D”, is used

to put the image of the 2.5D entity into its sprite3D. The 2.5D entities

execute the original work entirely, and the problem of depth is solved

through their sprite3Ds.

Figure 4-12 shows a scenario of rendition of depth refined from the

entities in Figure 4-10. After the attribute, sprite3D, and the methods,

“method_position3D” and “method_image3D”, are added into the root class,

“IsoObject”, the position and image of the blue cube and its sprite3D are

synchronized. Based on the z-axis values of both cubes, the rendition of the

blue cube make its own deem as another 3D cube, the grey cube. The

three-dimensional displays in Figure 4-12 (1)-(3) show the corresponding,

compared with Figure 4-10 (1)-(3).

32

(1) (2)

(3)

Figure 4-12 (1) the grey cube in top-right corner of the blue cube (2) the grey cube in

back of the blue cube (3) the grey cube in top-left corner of the blue cube

33

Chapter 5 Modification Process from a Pure

2.5D Game to a Hybrid or 3D Game

In this chapter, we describe a process for developing hybrid or fully 3D games

from existing pure 2.5D ones. The programmer can gradually replace 2.5D entities

with 3D ones in a 2.5D game, and accomplish the final 3D version by entirely

replacing the 2.5D scene with a 3D scene. The developing process is divided into two

sections. The first section describes how to update an existing 2.5D game or a hybrid

game gradually till all its 2.5D classes have corresponding virtual classes, and the

second section indicates how to construct a 3D game after the above condition

succeeds.

Section 5-1 Developing process from a 2.5D(2.5D) game to a hybrid game

Process Initialize_2.5D_to_Hybrid :

Input : the 2.5D classes and their instances ID(s)

 Output : the 2.5D classes and the existing instance ID(s)

begin

1. Add sprite3D, “method_position3D”, “method_image3D” and replacing_class

into the root class.

2. Synchronize the positions and images for each 2.5D entity and its sprite3D as

Section 4-5 illustrates.

3. Set the replacing_class of each class to NULL.

 end

34

Based on the discussion in Section 4.5, process, “Initialize_2.5D_to_Hybrid”,

adds a 3D skin to each entity in a 2.5D game to solve the rendition of depth for the 3D

display. Step 1 adds two attribute, sprite3D and replacing_class, and two methods,

“method_position3D” and “method_image3D” into the root class. Step 2 synchronizes

the positions and images of each 2.5D entity and its sprite3D by these two methods.

These 2.5D entities retain their functions, and each of them has a sprite3D to solve the

problem for depth rendition. On the other hand, step 3 set the replacing_classes as

null in each 2.5D class, because the value represents the name of a 3D class which

will replace a 2.5D class. In other word, the output of this process is a hybrid game

with no 3D class.

Process Upgrade_Hybrid_with_a_3Dentity :

Input : a 3D class

 Output : a virtual class

begin

1. Select an appropriate 2.5D class to be the parent class of the virtual class.

2. Build a virtual class to add a 3D entity.

3. Add the method_control3Ds into the virtual class.

4. Modify the replacing_class of the class if the 2.5D class will be replaced by

the 3D class of the replacing_class eventually.

end

Process, “Upgrade_Hybrid_with_a_3Dentity”, may add 3D features into a

hybrid game repeatedly by adding 3D entities into the game as pervious chapter

illustrates. Before adding a 3D entity, step 1 selects an appropriate 2.5D class to be the

parent class of the virtual class as discussed in Section 4-3 . When the virtual class is

35

built in step 2 as discussed in Section 4-2 , step 3 adds the method_control3Ds to

synchronize the attributes of the v-entity and 3D entity such as the synchronization of

the coordinates. The method_control3Ds is also used to control the 3D entity for

exception handling. Besides, step 4 modifies the existing value of the selected 2.5D

class to be a name of entity3D if the 2.5D class will be replaced by the 3D class of its

replacing_class in the following section.

36

Section 5-2 Developing process from a hybrid game to a fully 3D game

After the pervious processes, “Initialize_2.5D_to_Hybrid” and

“Upgrade_Hybrid_with_a_3Dentity”, the game under development is now a hybrid

game. Once all the entities in the 2.5D scene are 3D ones, the hybrid game can be

developed into an entire 3D one. However, because the scene of a hybrid game is still

a plain graph, the game may not provide complete 3D features. For example, the

2.5D-3D hybrid version only uses z-axis values to simulate the depth sequence of

entities as Figure 4-12 shows, and each entity actually moves on direction of x-axis

and y-axis. However, the 3D entity can be moved on the direction of z-axis in the

fully 3D version. Therefore, the hybrid game is replaced its 2.5D scene by a 3D stage

so that it can be upgraded to a fully 3D game.

Process Modify_Hybrid_To_3D :

Input : the classes

Output : the 3D classes, the existing instance ID(s) and success : boolean

Begin

0. success=true.

1. If the replacing_class of each 2.5D class is NULL, then return success = false.

2. Replace the 2.5D scene by a 3D stage.

3. Modify declaration of each existing instance from virtual class to 3D class.

4. Modify the properties of each existing instance and use the methods of its 3D

specification classes.

end

Therefore, step 1 checks the replacing_class of each 2.5D class to ensure that all

37

2.5D classes can be replaced by the 3D classes. The replacement can not be done

when a replacing_class of a class is null. During the replacement, step2 deletes the

2.5D scene and builds a new 3D scene by adopting the 3D class, “Plane”. It sets the

properties of the 3D plane based on the ones of the 2.5D scene such as size and graph.

If there are some scenic entities in the graph of the 2.5D scene, it may put the real 3D

entities like trees and rocks in the 3D plane for more reality. Figure 5-1 (1) illustrates

a hybrid scene. To transform the hybrid scene into a pure 3D scene, the 2.5D scene is

replaced by a 3D plane as Figure 5-1 (2) shows. Then, the properties of the 3D plane

are further adjusted to be the similar ones of the 2.5D scene, such as size and 20*20

grids as Figure 5-1 (3) illustrates.

Figure 5-1 (1) The hybrid gam (2) The 3D plane replaces

the 2.5D scene

(3) Adjust the properties of the 3D scene

38

Once the 3D scene is built, the 3D entities use the z-axis values in the

hybrid game entirely. However, the 3D entities co-operate with the v-entities for

the motion and interaction based on the framework of the hybrid game as

discussed in Chapter 4 . Step 3 modifies declaration of each existing instance

from the names of virtual class to the corresponding ones of its entity3D because

the virtual classes are no longer needed in this modified game. Therefore, the

existing instances have been the 3D class instances after this step.

Besides, these instances still work by the attributes and functions of virtual

classes. Therefore, the properties of 3D entities need to be modified for running

associated with the 3D plane. For example, when the programmer adopts the 3D

plane in Figure 5-1 (3), he may discover that the 3D entities look weird in the

scene because the properties such as angle, motion and interactions of the 3D

entities are still set based on the features of the replaced 2.5D scene. Step 4

adjusts the properties of the 3D entities and uses the methods of 3D classes. Take

the angle of the 3D entities as an example, after the step 4 adjusts the angles of

the 3D entities, the total 3D scene displays as Figure 5-2 (1) shows. Figure 5-2 (2)

shows a different viewpoint through changing the angle and coordinate of the

camera.

39

Figure 5-2 (1) Adjust the properties of (2) Change the angle and coor-

 the 3D entities dinate of the camera

The motion codes of the 3D entities in the hybrid version are of 2.5D

motion as Figure 5-3 (1) shows, and they should be changed as 3D ones like

Figure 5-3 (2) shows. The function, “motion_f3D”, makes each entity move in

the 3D world based on the 3D plane and xyz-axis values.

Figure 5-3 (1)2.5D motion of the 3D entities (2) 3D motion of the 3D entities

40

The interactions of each 3D entity in the hybrid game use the interaction

detection from the v-entities, but they are not enough for the 3D world. A typical

example is the collision of z-axis. Because the method of interaction detection

from the v-entities does not use z-axis value for interaction detection in the 2.5D

scene, it is no longer used for interactions in the 3D stage. The detection methods

in general 3D library is adapted instead. For example, each 3D entity receives the

message from the function, “canMove”, for collision detection discussed in

Chapter 4 , and it should be changed as the function, “collision_f3D”, which is

used for collision detection between the 3D entities based on 3D library. As

Figure 5-4 shows, “collision_f3D” compares the sum of radius and the distance

between any two 3D entities. If the sum of their radiuses is greater than the

distance, a collision occurs between them. It provides the collision detection not

only in 2.5D plane but also in 3D world because it uses the xyz-axis value.

Figure 5-4 the function of collision detection in fully 3D game

41

After finishing this developing process, the modified game becomes a fully

3D game. This game may start to provide some 3D features like switching the

angle of view and zooming for the 3D world. Therefore, the programmer may

add some functions for putting additional 3D features through the 3D library. For

example, we add a function for switching the angle of view in the previous

example in Figure 5-2. The function, “onEnterFrame3D”, controls the position

and angle, representing the viewpoint of the user as Figure 5-6 illustrates. There

is a collision between the cubes, and we may see the 3D world from different

viewpoints in Figure 5-5.

Figure 5-5 The game world from different viewpoints

42

Figure 5-6 The function for switching the angle of view

43

Section 5-3 Modification Process constructed by three processes

The modification process can be constructed by above three processes

entirely. Programmers may use the process to upgrade an existing 2.5D game to

a 3D game. The modification process is illustrated below:

Process Upgrade_2.5DTo3D :

begain

1. Add sprite3D, “method_position3D”, “method_image3D” and

replacing_class into the root class.

2. Synchronize the positions and images for each 2.5D entity and its

sprite3D as Section 4-5 illustrates.

3. Set the replacing_class of each class to NULL.

4. Select an appropriate 2.5D class to be the parent class of the virtual class.

5. Build a virtual class to add a 3D entity.

6. Add the method_control3Ds into the virtual class.

7. Modify the replacing_class of the class if the 2.5D class will be replaced

by the 3D class of the replacing_class eventually.

8. success=true.

9. If the replacing_class of each 2.5D class is NULL, then return to Step 4

and set success = false.

10. Replace the 2.5D scene by a 3D stage.

11. Modify declaration of each existing instance from virtual class to 3D

class.

12. Modify the properties of each existing instance and use the methods of

its 3D specification classes.

44

end

Steps 1-3 are discussed in “Initialize_2.5D_to_Hybrid”; Steps 4-8 are

discussed in “Upgrade_Hybrid_with_a_3Dentity”; Steps 9-12 are discussed in

“Modify_Hybrid_To_3D”. The number of 2.5D entities is hypothesized to be m,

and the number of 3D entities is hypothesized to be n. Steps 1-3 add m 3D skins

into m 2.5D entities so the time complexity of steps 1-3 is O(m). Steps 4-8 get

the number of k capabilities for each 2.5D entity to add n 3D entities into the

modified game so the time complexity of steps 4-8 is O(m*n*k). Steps 9-12

change the attributes and methods of each entity to adopt into the 3D stage so the

time complexity of steps 9-12 is O(n). Besides, the number of 3D entities is

larger than the one of 2.5D entities in modification process. Therefore, the time

complexity of the modification process is O(n
2
*k+2n)=O(n

2
k).

45

Chapter 6 Conclusion and Future Work

Current topic of discussion based on development of Flash games is not

concerned for a 2.5D-3D hybrid game. In the thesis, we propose a modification

process to change an existing 2.5D game to a fully 3D game incrementally. The

modification process is divided into two phases: (1) hybrid game and (2)

scene-changed. At the phase of hybrid game, two processes,

Initialize_2.5D_to_Hybrid and Upgrade_Hybrid_with_a_3Dentity, are in charge of

upgrading from an existing 2.5D game to a hybrid game. In this phase, the hybrid

game may provide 3D features by adding 3D entities in a 2.5D scene, and avoid the

chaos between the 2.5D and 3D versions. At the phase of scene-changed, one process,

Modify_Hybrid_To_3D, is in charge of upgrading a hybrid game to a 3D game with

the 3D library completely. This approach can also be adopted for a 2D-3D

modification process.

In the future, under the modification process there might be several research

directions to improve the performance of game upgrade further. In hybrid and 3D

phases, we may provide an auto-generator for the modification process. The

auto-generator may generate templates like virtual classes to reduce the cost of

modification process. On the other hand, the algorithm, Class_Selection, uses the

priority order of input 3D entity’s capabilities to select an appropriate 2D class for the

parent class of a virtual class discussed in Section 4-3 . There may be a

misclassification which exists in the algorithm. For example, a 2D class which contains

capabilities of the second highest priorities may be the appropriate one. There, we

may upgrade this algorithm by adding more conditions.

46

Reference

[1]. Christoph Klimmt, Hannah Schmid, Julia Orthmann, “Rapid Communication

Exploring the Enjoyment of Playing Browser Games”, CyberPsychology &

Behavior, Volume 12, Number 2, 2009

[2]. Jussi Kuittinen, Annakaisa Kultima, Johannes Niemelä, Janne Paavilainen,

“Casual Games Discussion”, in Proceedings of the 2007 conference on Future

Play, Copyright 2007 ACM 978-1-59593-943-2/07/0011

[3]. Dirk Krause, “pixelpark’ White Paper”, 2008

[4]. Hyeyoung Kim, Chulmin Jun, Hyunjin Yi, “A SDBMS-based 2D-3D Hybrid

Model for Indoor Routing”, Tenth International Conference on Mobile Data

Management: Systems, Services and Middleware, IEEE Computer Society (2009)

[5]. Melanie Tory, M. Stella Atkins, Arthur E. Kirkpatrick, Marios Nicolaou,

Guang-Zhong Yang, “Eyegaze Analysis of Displays With Combined 2D and 3D

Views”, in VIS ’05, Proceedings of the IEEE Visualization.

[6]. Andri Ioannidou, Alexander Repenning and David C. Webb, “AgentCubes:

Incremental 3D end-user development”, Journal of Visual Languages and

Computing, Elsevier Ltd., 2009

[7]. Keith Peters, “AdvancED ActionScript 3.0 Animation”, 2009

[8]. Rob Bateman, Richard Olsson, Gregory Caldwel, “3D in flash”, 2009

[9]. Adobe Systems Incorporated., “ActionScript® 3.0 Reference for the Adobe®

Flash® Platform”, Sep 2, 2011

