BN EE TIEMEM

RN

/u

- R BT AR S = AR
= o4

=

An Approach for Transferring 2.5D Graph Entities into 3D Ones

bt

k|

TEN I

- B T AR = AR 2

An Approach for Transferring 2.5D Graph Entities into 3D Ones

T A 3 Student : Hoting Liang
hERE YR Advisor : Feng-Jian Wang

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science
March 2011

Hsinchu, Taiwan, Republic of China

dEAE- R £z

- M- g AR F A A
A5 M e 2

A RakE R 2 E% AL

4

% % Flash 385 1= Eﬁj BanPTE R o A B BT Beadsgt o B R
FBR-BZRDRALZTREREFERN DR o R EE 2 T
§aldzie * HHHE B AR Y o Flt > JE B (72 R e (DR o g
TRPFHS L2 AP iz AP E—- B BT Aavsiid kS =

Mg hF - K ATY 0B BRAMEF RAZ BT AHROLT (£

A2 @ o L b iF AP - B RARR c EBRFRAN A2
BFARA (1) f- B BT s ? 5 B 87 B B G = Bl
Koo (DFd Eibide » = P A e B SRR L - &2 Bagrd - (3)drk
WO R g d § MR B B i 2 R B BT Bt
B iE e S - B R o T SR B N R- BTG C B
TSR s - B BET M-z MR Rk s R - B2 sy Ly

f]l » ,,.:\.;_Q m/,b ?L)

M 4EF : Flash actionscript ~ = 8:7 ‘2= @R % 2558 ~ - 2L7 Afr= BT ~ 2 87 Aoz B3 3 iT%

An Approach for Transferring 2.5D Graph
Entities into 3D Ones

Student: Hoting Liang Advisor: Feng-Jian Wang
Institute of Computer Science and Engineering
National Chiao Tung University

1001 University Road, Hsinchu, Taiwan 300, ROC

Abstract

Many Flash games were developed with 2.5D technique. These games are
restricted with single plain and limited views. Building a 3D version based on a
2.5D game directly is needed to reconstruct the game rules, entities and world, etc.,
and especially might cause users’ chaos for the game. Therefore, to upgrading a
2.5D game as a 3D one might be valuable by concurrently and gradually (1)
transferring existing 2.5D entities into 3D one and (2) adding extra new 3D entities.
Each new version owns the interactive activities of original 2.5D game in each

upgrade.

In this thesis, we propose a modification process for above work. The
modification process can be divided into three sub-processes: (1) Prepare a 3D skin
for each 2.5D entity in a 2.5D game. (2) Provide some 3D features by adding 3D
entities into the game. (3) If the entity definitions are associated with 3D features,

the game is transferred into a 3D game by replacing the 2.5D scene with a 3D stage.
I

Therefore, the modification process may upgrade an existing 2.5D game to a

2.5D-3D hybrid game or fully 3D game without introducing non-necessary chaos.

Keywords: Flash actionscript, 2.5D-3D hybrid game, 2.5D and 3D rendition, 2.5D

and 3D interaction

hhe KE

PBE A Y BT A4 ¢

S A

*2010-2011 & Rt F9 ERpES &

R L

®#t
AR E R A B R BRI BRI B S F Y
WRAEA AHMI AR 1 (ERRAAR Y RSFEr T 3 X2 EEF ST e
R e Vbl TARSA e RA R IR P L RS RE L FLTHE

iﬁﬂ%‘giia ,,lz;ﬁ‘i’/‘v\:‘m] i7[‘ o

HERRHT % T L ﬂ\%ﬁﬁﬁ%%ﬁﬂﬁmﬁ% PRAF 217575 o &
Er XA BATRE PG IR RIIRESY R FENE Y

EFSRFEAL e o T ERY O FIRY FERARY FHE R

hig Fo 3 4 A F ACPR iR 2 BTk BB A A AT T 2 E Y B PR 0P i A
USTEW SR e N R AR S i1t EE S-S

BEDREF b g AfHe A @ Efln S

RESBRBMASNLCE S BPIHF A BN ARSI B RT 24 238

"™

£ E R e 0 LAY L R 4 kR T

Table of Contents

- fEfg - BT AR Z BB 2 I
- fEfg - BT AR Z BB 2 I
- fEfg R - BT AR Z BB R T I
B T s |
An Approach for Transferring 2.5D Graph Entities into 3D ONescccecevvevvenneneenne. I
N o511 - Tod RSP PRSRTRIN I
BT G i v
B S SPSPR Vv
Tahle OF CONTENTS ...ttt s te e te e e sreenne s VI
TaDIE OF FIGUIES ...ttt s Vil
Chapter 1 INTrOTUCTION.......cuiiiiierieeeeeece e 1
Chapter 2 BaCKgrOUNGooiierireeieieeeseseete ettt 4
AgentCubes: Incremental 3D end-user developmentccccoceveverieieiicneneniens 4
AdvancED ActionScript 3.0 ANIMALION.ccieriririeierieeseseeeeeee e 5
3D N FIASN . e 6
Chapter 3 Consistency between 3D Entity and 2.5D Coordinates...........cccevvvevereeene 7
Section 3-1 Transforming a 2.5D game into a 3D Version.........cccceeeevvvecvernnene. 7
Section 3-2 Coordinate transformation — a fundamental ISsueccccoueneee. 9
Section 3-3 Aunification Technique for transformation...........c.ccccecevvenenee. 13
Chapter 4 Interaction and Rendition between 2.5D and 3D Entities............cccc...... 16
Section 4-1 Interaction Problem in different dime dimensions...........c.ccccc..... 16
Section 4-2 A pattern for graph entities in different dimensions 19
Section 4-3 The virtual class inherits from an appropriate 2.5D class............ 24
Section 4-4 Rendering problem containing 2.5D and 3D graph entities 27
Section 4-5 A class structure for Rendition Integrationc.ccocceevvevvennenen. 30

Chapter 5 Modification Process from a Pure 2.5D Game to a Hybrid or 3D Game 33
Section 5-1 Developing process from a 2.5D(2.5D) game to a hybrid game .33

Section 5-2 Developing process from a hybrid game to a fully 3D game36
Section 5-3 Modification Process constructed by three processes.................. 43
Chapter 6 Conclusion and FUture WOrKccoceeeereereeceseeseceseeeeee e 45
RETEIBNCE ...ttt sb e s bbbttt et e be st e sbe b 46

Vi

Table of Figures

FIGURE 2-1 THE FUNCTIONS OF TRANSFORMATION FOR 2D AND 2.5D COORDINATE SYSTEM IN

COLLISIONTEST . titeetetesteneetestese st ste st etesee st etesae st sbesae st ebesseneebe st ene et e saeneebesbene et e st et ebesbeneebesteneesenteneas 6
FIGURE 3-1 (1) ANTICIPANT POSITION OF THE 3D BALL (2) ACTUAL POSITION OF THE 3D BALL 10
FIGURE 3-2 PROJECTED PERSPECTIVE FROM VANISHING POINT [9]....cvevirieieiriiieirieiecsieiecsiesee e 11
FIGURE 3-3 (1)AWAY3D COORDINATE SYSTEM (2)FLASH COORDINATE SYSTEM ..ccvvevvevverreveiennenne 12
FIGURE 3-4 EXPLANATION FOR POSITION OF THE RED BALL ..c.veuvevertieerirteeesestesenessessenessessenessessenessessenes 12
FIGURE 3-5 TRANSFORM 2.5D COORDINATE SYSTEM TO 3D COORDINATE SYSTEM. ...cevvvvierreenereenveenenees 14

FIGURE 3-6 THE FUNCTIONS FOR TRANSFORMING 2D COORDINATE SYSTEM TO 3D COORDINATE SYSTEM

FIGURE 4-1 (1) BEFORE THE COLLISION IN ORIGINAL 2.5D GAME (2) COLLISION (SUCCESS).....cccccvenvenne. 17

FIGURE 4-2 (1)BEFORE THE COLLISION IN THE HYBRID VERSION (2) COLLISION (FAILURE DETECTION)

17
FIGURE 4-3 THE CLASS PATTERN FOR INTERACTION ..eicutiiitteiiteteniieenieeesreesieeesreesseeesseessesesseessssesssesssens 19
FIGURE 4-4 THE MODEL OF INTERACTION FOR 2.5D ENTITIES ..ieiuviiiiieiieiiieeneeenieeesteesieeesineesiseeseeesaeees 20
FIGURE 4-5 THE MODEL OF INTERACTION FOR 2.5D ENTITY AND 3D ENTITY .evevviierieenieenieenireeseeenieees 21
FIGURE 4-6 THE MODEL OF INTERACTION FOR 3D ENTITIEScicvitienuiiesreeniiiesreesieeesseesiaeesseessenesneenseens 22
FIGURE 4-7 COLLISION FOR THE 3D ENTITY AND 2.5D ENTITY ..uviiiiiiiieiiiieneeenieeesre e esveeseseesveesenees 23
FIGURE 4-8 INTERACTION EXCEPTION OF AENTITY3D ..oiiiiiiiie ittt 23
FIGURE 4-9 (1) LAYER OF FRONT CUBE IS FRONT. (2) LAYER OF BEHIND CUBE IS FRONT........ccuv..... 27

FIGURE 4-10 (1) THE GREY CUBE IN TOP-RIGHT CORNER OF THE BLUE CUBE (2) THE GREY CUBE IN BACK
OF THE BLUE CUBE (3) THE GREY CUBE IN TOP-LEFT CORNER OF THE BLUE CUBE.....c..cccuevuenueniennene 29
FIGURE 4-11 THE CLASS STRUCTURE FOR RENDITION OF DEPTH...cccutetietinieenieenieeieeiesieseeseeeseeeseeeneeenne 30

FIGURE 4-12 (1) THE GREY CUBE IN TOP-RIGHT CORNER OF THE BLUE CUBE (2) THE GREY CUBE IN BACK

OF THE BLUE CUBE (3) THE GREY CUBE IN TOP-LEFT CORNER OF THE BLUE CUBE.....c.cccsceveeruevenne 32
FIGURE 5-1 (1) THE HYBRID GAM (2) THE 3D PLANE REPLACES THE 2.5D SCENE.......cccccueuue. 37
FIGURE 5-2 (1) ADJUST THE PROPERTIES OF (2) CHANGE THE ANGLE AND COOR- THE 3D

ENTITIES DINATE OF THE CAMERA 39
FIGURE 5-3 (1)2.5D MOTION OF THE 3D ENTITIES (2) 3D MOTION OF THE 3D ENTITIES ...coveveevenene 39
FIGURE 5-4 THE FUNCTION OF COLLISION DETECTION IN FULLY 3D GAME....cc.cciteiiienienienie e 40
FIGURE 5-5 THE GAME WORLD FROM DIFFERENT VIEWPOINTSveettetietieiienieenieeieesieseeseesieesaeeseeeneeenes 41
FIGURE 5-6 THE FUNCTION FOR SWITCHING THE ANGLE OF VIEWeetiitieiienieenieeieeieeie e sieesaeeseeenee e 42

Vil

Chapter 1 Introduction

Today, Flash is more than half of use as the standard plug-in for displaying
interactive multimedia and graphic content over World-Wide Web. Many browser
games [1] and casual games [2] are developed through Flash Actionscript. These
games are light-weighted because they need only browsers and the plug-ins like Flash
Player for operation without installation of specific software. With Flash, the games
also have problems of using hardware resources of personal computers like
hardware-accelerated graphics, which are necessary for more computing power.

Because of few limits, they can be played when user has a device and Internet.

These games are traditionally developed as 2D games or its isometric variants,
2.5D game [3], and are more or less restricted with a single plain and limited views.
Animation, motion and rotation of 2.5D entities in these games are presented through
changing of pictures. For example, the aspects of a 2.5D entity are usually presented
by various hand-drawing pictures. When user turns the entity from one aspect to
another, the representation of the entity is changed from one picture to the
corresponding one. However, 2.5D representation is limited in expressing depth of a
scene, such as the information hidden for overlapping entity. Besides, Flash may not
provide the rich 3D applications in its own library. Thus, the programmer focuses on

developing the 2.5D game.

2.5D (2D)-3D hybrid applications are widely adopted in various domains. 3D
Geographic Information System [4] , eyegaze analysis [5], etc. are the representative

2.5D (2D)-3D hybrid applications which mix 2.5D (2D) views/ entities with 3D ones
1

for displaying more plentiful visual information to the users. Nowadays, Flash is
associated with many 3D libraries, e.g. Papervision3D, Sandy 3D, Away3D [8], etc.
However, 2.5D (2D)-3D hybrid applications are rarely discussed in development of
Flash games. On the other hand, to upgrade a 2.5D game as a 3D game is by building
another 3D version directly. When users play the 3D version, they will feel the chaos
between 2.5D and 3D versions. It might be valuable by applying one way adopting
the 2.5D-3D hybrid applications to avoid the chaos. Therefore, we may present the
modification process generates 2.5D-3D hybrid versions which are added 3D entities
gradually without rewriting the logic related to game rules and strategies, and provide
some 3D features for better “look & feel” with animation, motion and rotation of 3D
entities. Besides, users which play the 2.5D-3D hybrid versions are easy to feel these

3D features in the 2.5D-3D hybrid versions.

In this thesis, we develop a modification process expected to be applied on the
development of 2.5D-3D hybrid Flash games from its initial 2.5D versions. It
describes the details for upgrading a 2.5D Flash game by gradually replacing 2.5D
entities with 3D ones and adding extra 3D entities. The modification process is a
gradual procedure. Therefore, the upgraded version reserves the interactivities of
original 2.5D version and gives players additional entertainment with 3D features.
The rest of this paper is organized as following: In chapter 3, we illustrate our
motivation and a fundamental issue: Coordinate transformation. In chapter 4, we
discover two main problems for developing 2.5D-3D hybrid versions: 1. Interaction
between 2.5D and 3D entities, 2. Rendition for depth of 2.5D scene. We explain the
problems and solutions in this chapter. In chapter 5, the modification process is
presented in our thesis. With the development process, 2.5D game can be upgraded to

2.5D-3D hybrid game or fully 3D one. Finally chapter 6 concludes this thesis and
2

presents our future work.

® To simplify the discussion, hybrid game is used to represent 2.5D-3D hybrid

game.

Chapter 2 Background

In this chapter, we survey related works which upgrade 2.5D games to 3D games,
and introduce the 2.5D game model and 3D library. AgentCubes: Incremental 3D
end-user development surveys related process which is used to upgrade 2D games to
3D games. 3D in Flash and AdvancED ActionScript 3.0 Animation introduce the 2.5D

game model and 3D library.
AgentCubes: Incremental 3D end-user development

AgentCubes [6] is an Incremental 3D end-user development tool for
creating 2.5D and 3D games. In AgentCubes, the programmer is asked to
develop a 2.5D game, and design rules and strategies of games first, according
to the tools/libraries provided. In this step, he/she does not worry about 3D
model, orientation and location of entities for the 3D version. Second, when
he/she wants to construct a corresponding 3D game, he/she is asked to construct

the corresponding code and data for all the classes and entities at a time.

Obviously, upgrading a 2.5D game to a 3D game at a time might introduce
a lot chaos. For example, because lots of 3D classes and entities of classes are
introduced, programmers can not build the 3D game easily according to their
experience. [6] leaks of additional tools or methodology to help programmers to

upgrade the existing 2.5D games to 3D games for coding.

AdvancED ActionScript 3.0 Animation

When a programmer develops a game by using Flash Actionscript, he/she
has many problems in all respects of the game, such as animations and
interactions of entities. In [7], Keith provides advanced algorithms and libraries
for Flash game, such as collision detection, steering behaviors and Isometric
Projection, etc. The programmer may quickly develop a Flash 2D and 2.5D

game, and solve these problems with the goal of efficiency and precision.

The program of “GridCollision” is a 2D game, and the ones of “MapTest”
and “CollisionTest” are a 2.5D game in this book. These programs display the
basic properties like size and angle of the game world, motion and interaction of
entities, etc. For example, Figure 2-1 illustrates how to transform a coordinate
between the 2D and 2.5 coordinate systems, where “isoToScreen” works for 2D
to 2.5D coordinate systems and “screenTolso” works for reverse direction. In

this thesis, our methodology is based on the examples in these games.

coor_A5D @ coordinates of 2.50 coordinate svaten
coor_gscreen @ coordinates of 2D coordinate swyaten

lieToScreenicoor_25D0)

begin
coor_gcreen = (0,07;
coor_acreen.¥ = coor_250.¥-coor 25D.z;
coor_gscreen.v = {(coor_250. x+coor_25D.20#%0.5;
return coor_Screen;

end

gcreenTolsolcoor_screen)

begin
coor_2500 = (0,0,0%;
coor 250.% = coor_screen.vhcoor_screen.®w*0.5;
coor_ 25D,y = 0;
coor_250.z = coor_gscreen.v-coor_gzcreen.x*0.5;
return coor 250;

end

Figure 2-1 The functions of transformation for 2D and 2.5D coordinate system in

“CollisionTest”

3D in Flash

Away3D [8] is a real-time 3D engine for Actionscript 3.0 in Flash. The
engine is an Open Source that is continuously maintained and added support by
new features for new Flash Players. On the other hand, it is free to use for any
purpose such as commercial applications. Away3D is easy to learn and show 3D

features for beginners.

The book, “3D in Flash”, is a reference book for Away3D, and illustrates
how to write a 3D application in detail. It explains the capability of each class of
Away3D library based on examples of programs, such as applications of the
Camera class. In this thesis, we use Away3D as example of 3D library to

upgrade 2.5D games to 3D games.

Chapter 3 Consistency between 3D Entity
and 2.5D Coordinates

Section 3-1 Transforming a 2.5D game into a 3D version

25D game provides lots of fun through rich playing ways like
“side-scrolling games” and displays of sophisticated graphs. However, the 2.5D
games are restricted to a single plane and limited views. For example, the
rotation of the 2.5D entity is difficultly displayed in the 2.5D scene based on
changing of pictures. The limited views are hard to clearly represent the whole

game world like the back of a barrier.

To overcome the limitation of the single plane, it might allow to let the
programmer add 3D entities into the 2.5D game, because the 3D entity is a
complete individual rather than a set of pictures and can provide better visual
effects, such as motion, rotation and animation. Correspondingly, it is interesting
to transfer a 2.5D game to a 3D version with this technology. Thus, we construct
such a 3D game with two steps: (1) Let the programmer develops a hybrid game
from a 2.5D game through gradually adding or replacing 2.5D entities with 3D
ones, where the logic related to game rules and strategies is maintained for
reducing the upgrading cost. (2) Once each entity is the 3D entity in the 2.5D
scene, the programmer can transform such a hybrid game into a 3D game with a

given facility.

When programmers put a 3D entity into a hybrid game like insertion and
7

replacement, there are at least three factors to be solved, including:

(1) Some properties of the 3D entity need be modified for compatibility in
the 2.5D game. For example, a 3D entity has to be taken off its third
dimension of location when put in a 2.5D scene.

(2) The interaction behavior between existing entities and 3D entities need be
built based on the current behavior in the game.

(3) The relative depth between 2.5D and 3D entities need be shown in the

hybrid game.

When programmers replace the 2.5D scene with a 3D one, there are at least

two factors to be solved, including:

(1) The properties of the 3D scene are set up based on those of the 2.5D
scene.

(2) The properties of 3D entities are upgraded if necessary.

Section 3-2 Coordinate transformation — a fundamental Issue

We present a technique between 2.5D and 3D entities for interaction and
rendition of depth in the following chapters. The technique makes each 3D entity
which is put into the 2.5D scene to have a corresponding 2.5D entity for helping
interaction and rendition of depth. To finish this technique, we should overcome

the problem of coordinate transformation.

Before entering the study, a fundamental issue occurs: to present an entity

of 3D coordinate in a 2.5D(2D) system.

When a 3D entity, supported by 3D library such as Away3D [8], is put into a
2D scene, the coordination system corresponding to the entity might cause it to
be shown at an unexpected place in the scene. For example, in Figure 3-1, the red
ball is a 3D entity and the yellow ball is a 2D one. When the red ball is put at the
left column of the yellow ball, the expected scene is shown as in Figure 3-1 (1).
However, the real scene might show that the red ball is at one column right and
3/2 row up of the yellow ball as in Figure 3-1 (2). Therefore, the coordinates of a
3D entity have to be reorganized for display consistency in a scene. Similarly, the

coordinates of a 2D entity have to be re-organized when it is put into a 3D scene.

>,

Figure 3-1 (1) anticipant position of the 3D ball

O

(2) actual position of the 3D ball

Intuitively, there are two reasons causing above defects. First, the origin of

the coordinate system in Away3D is different from that in Flash (for 2D display),

the top-left corner of a scene. In Away3D, the origin is at the vanishing point

representing the position where entities converge the further away they are. The

vanishing point is usually at the center of a scene, and is the foundation for

building a 3D scene. Figure 3-2 explains how a 3D world is established through

a 3D library. A 3D entity can be displayed in a 2D scene with projection from the

vanishing point. The projection indicates illusion of depth and distance among

3D entities when displaying 3D entities closer to the screen with larger size, and

vice versa.

10

vanishing point

Figure 3-2 projected perspective from vanishing point [9]

Secondly, Away3D [8] uses the “Cartesian” coordinate system adopted in
mathematics and geometry. Let x-axis be the abscissa, and y-axis be the ordinate,
and z-axis be the applicate. The x-axis value of a point is positive if it is at the
right of origin, and negative if left. The y-axis value of a point is positive if it is
higher than the origin, and negative if lower. However, the value of y-axis is
reverse in Flash; i.e. the y-axis value of a point in Flash is negative if it is higher

than the origin, and positive if lower.

Figure 3-3 illustrates the differences between the coordinate systems
adopted in the 2D and 3D libraries. Figure 3-4 helps to explain the problem of
position for the red ball. We draw the 2D and 3D coordinate systems in this
figure. Therefore, the position of the red ball is calculated form origin in 3D. The
x value of the red ball is smaller than the x value of the yellow ball but the red
ball is at the right side of the yellow one. The y-axis in the 2D library is inverted

for 3D, so the red ball is at top of the yellow one.

11

¥ Crigin (0,0})
|,
T
~
Figure 3-3 (1)Away3D coordinate system (2)Flash coordinate system

Figure 3-4 Explanation for position of the red ball

12

Section 3-3 A unification Technique for transformation

In this section, to unify the 25D and 3D coordinate systems, we

construct the formula to transform coordinate values from 2D to 3D as

followings.
position.3Dx = position.2Dx-vpoint.x +c_of.x;..............(1)
position.3Dy = - (position.2Dy-vpoint.y) +c_of.y;..........(2)

The parameters used in the formula are listed and defined below:
position.2Dx: the x-axis value of a point in 2D coordinate system.
position.2Dy: the y-axis value of a point in 2D coordinate system.
position.3Dx: the x-axis value of a point in 3D coordinate system.
position.3Dy: the y-axis value of a point in 3D coordinate system.
vpoint: the point used in 2D coordinate system represents the vanishing
point in 3D coordinate system.
c_of : the visual difference has two attributes, ¢_of.x and c_of.y, used

for unifying 2D and 3D coordinates.

When a 3D entity is put into 2D coordinate system, the management of
corresponding 2D and 3D coordinates of the entity can be handled with c_of
and vpoint as in formula (1) and (2). The vpoint is at the center of the scene
of 2D system. The values of vpoint can thus be defined as the difference of
first two coordinates between 2D origin and 3D origin in 2D coordinate
system. Therefore, to get position.3Dx and position.3Dy, the position.2Dx
and position.2Dy are subtracted with the first two coordinates of vpoint
individually. Since, the 2D entity exists in a plain surface only, and the 3D

entity in a 3D scene is displayed with convex camera lens, corresponding to
13

a curved surface, a pair “c_of” is adopted to reduce a visual difference when
putting a 3D entity at a position in a 2D scene. The value of ¢_of is defined
based on the curve ratio of the 3D system and distance between the entity
and 3D origin, i.e, c_ofx = dx * curve ratio.x and c ofy = dy *

curve_ratio.y.

Each 2.5D game has its own coordinate system for diagonal 2.5D
scene also. Because 2.5D game simulates depth in 2D coordinate system
with diagonally displayed scenes, it needs extra transformation when
displaying a 2.5D entity on a 2D system. Usually, game systems transform
2.5D coordinate system into 2D one based on the documents of original
game. Then, our formula can be worked for 2D coordinate to 3D one for

coordinate consistency:.

Let us use an example based on the codes of 2.5D game in [7] to show
add an 3D entity in a 2.5 game. According to “isoToScreen” in Figure 2-1,
we transform a 2.5D coordinate to a 2D coordinate, and use the 2D one
adopting the functions, “screento3Dx” and “screento3Dy”, as Figure 3-5
illustrates. The functions are our formulas for transforming 2D coordinates
into 3D coordinates as Figure 3-6 illustrates. With the functions for putting
the values which are transformed from 2.5D to 2D coordinates, the 2.5D

and 3D coordinate systems are unified.

cubel.x
cubel.y

gcreentoslx(2/5, box.x-box.z,250,cen_ot.x)
gcreento Dy (200, (box.xtbox.2)*¥0.5, 100, cen_of.v);

Figure 3-5 Transform 2.5D coordinate system to 3D coordinate system.

14

private function screentolDx(v_pointx:Nuonber, td_pointx
i
var temp3Dx : Number;
tenp3Dx = -v_pointx + td_pointx + ofxtc_ofx;
return temp3lng
1
private function zcreentoldDy(v_pointy:Number, td_pointy
i
var temp3Dy : Number;
tenp2Dy = v_pointy - td_pointy - of v+ 13+c_ofy;
return temp3Dy;

: Munber, ofuw:lHumber, c_ofu: Number):Hunber

: Number, ofy:Number,c_ofy: Number) :Number

Figure 3-6 The functions for transforming 2D coordinate system to 3D coordinate

system

15

Chapter 4 Interaction and Rendition

between 2.5D and 3D Entities

Section 4-1 Interaction Problem in different dime dimensions

In a 2.5D game, a movable entity may interact with another entity when
its boundary like the fringes of its image reaches that of the latter, if both are
in the same layer of depth. For example, a collision occurs once the images
of above two entities are overlapped their fringes in the same layer of depth.
In Flash library [9], the method, “hitTest”, used for collision detection
between two of “BitmapData”, “MovieClip” or “Sprite” entities in Flash
does not support Away3D [8] entities. Similarly, the method supporting
collision detection in Away3D cannot be adopted for general Flash entities

either.

In a 2.5D coordinate system, the 2.5D game simulates depth with a
diagonally displayed scene which is composed of finite grids. Each entity is
put into 2.5D scene based on a set of specific grids namely v-grids, and its
boundary is defined as the boundary of its v-grids in the 2.5D scene. When
an entity is moved up, down, left or right, its v-grids is moved
correspondingly, but its size and shape do not change. Figure 4-1 shows how
2.5D entities collide with each other through invocation of the function,
“canMove”. When the grey cube moves to the blue cube as Figure 4-1 (1)
shows, “canMove” detects the collision and feeds back to entities if there is

an overlap between the boundaries of their v-grids. Then, the movement is
16

stopped by the application as Figure 4-1 (1) shows. As Figure 4-2 (1) shows,
the grey cube as a 3D entity reaches to the blue one similarly. However, as
the Figure 4-2 (2) and (3) shows, when the grey cube moves to the other, the
grey cube passes through the blue one. Such a case indicates there is no
collision detection because the function “canMove” does not support
collision detection between 2.5D and 3D entities. Furthermore, currently
there is even no method handling interactions between 2.5D and 3D entities
in either Flash or 3D libraries. In next subsection, we will present a detection

technique between 2.5D and 3D entities through the example of collision

detection.

- Ty

Figure 4-2 (1)Before the collision in the hybrid version (2) Collision (failure

detection)

17

(3) After the collision

In this subsection, a technique enacting interactions between 2.5D and
3D entities is presented based on a way how the 3D entity is put into the
2.5D scene. For replacing a 2.5D entity with a 3D one, this way does not
delete the replaced 2.5D entity. It uses the functions of Section 3-2 for
covering the 2.5D entity with the 3D one. Under the premise of the way, we
present the interaction between 2.5D and 3D entities. Therefore, the solution

of this subsection is presented in next section.

18

Section 4-2 A pattern for graph entities in different dimensions

2.5D Class

- attribute2.5D

- method2.5D()

Virtual Class
- attribute2.5D 3D Class
. - attribute3D
-entity3D : 3D Class |

- method2.5D() entity3D © | _ method3D()

- method_control3D()

Figure 4-3 The class pattern for interaction

In this subsection, a class pattern enacting interactions between 2.5D
entities and 3D entities is presented as in Figure 4-3. Each 3D class is
associated with a virtual class which contains an entity3D, an instance of the
3D class. Besides, the virtual class is defined to inherit from the 2.5D class
which is selected as in Section 4-3 . The virtual class instance, namely
v-entity, may invoke the methods to pass the control message of exception

handling to its entity3D.

On the other hand, the v-entity’s methods for 2.5D operations such as
“method2.5D” can be classified into three categories. The first category
contains the methods inherited from the 2.5D class, and they works among

its inherited attributes and other 2.5D entities/v-entities. The methods of the
19

second category are derived by overriding those in the 2.5D class. The
control of the entity3D is put into those methods. The third category contains
the methods added for handling the interaction or synchronization of the
entity3D and v-entity’s other attributes. For example, the v-entity needs to
synchronize coordinates of itself and its entity3D due to the difference of
2.5D and 3D coordinate systems described in Chapter 3 . Besides 2.5D
operations, the activity for the v-entity to control the entity3D appears
repeatedly in different exception handlings. The “method_control3D()” is
added to describe this activity and may be reused in the fully 3D version.

Therefore, the 2.5D classed need not be modified, neither the 3D classes.

Interaction
Detection

Interaction
Exception

Interaction
Exception

control .

Messag

Figure 4-4 The model of interaction for 2.5D entities

Figure 4-4 illustrates how a 2.5D entity interacts with another in Flash.
The entity checks the interaction(s) between them by using the function of

interaction detection such as the function, “hitTestObject”, which is a
20

function of collision detection. When an interaction is detected, the function
returns a message to both 2.5D entities to handle corresponding interaction

exceptions individually.

—~control | Interaction

Message| Detection

Interaction : Interaction

Exception i Exception

Figure 4-5 The model of interaction for 2.5D entity and 3D entity

As Figure 4-5 shows, the model adopts our class pattern for interaction
between the v-entity and other 2.5D entity. The v-entity uses the component
entity3D for rendition of the 3D entity. Therefore, the v-entity may use its
2.5D properties to interact with other 2.5D entities by the original methods
which are inherited from the corresponding 2.5D class, and control the
entity3D to do the exception handling of the interaction. For example, when
an entity3D collides with a 2.5D entity, its v-entity uses the function of
collision detection to work with other 2.5D entities. Once the function feeds
back to the v-entity, the v-entity controls its entity3D for necessary 3D

manipulation.

21

;
control
t

: Interaction
¢ Message| Detection | jjessaged

entity3D

entity3D

Interaction

Interaction : : !
setion : : Exception

Exception

Figure 4-6 The model of interaction for 3D entities

Figure 4-6 shows the model adopted in our class pattern for the
interaction between two 3D entities, and it is similar to Figure 4-5. Each
v-entity interacts with the other for their entity3D. Once an interaction occurs,
both v-entities control their entity3D for corresponding exception handling of

interaction.

We adopt our class pattern into the example as Figure 4-2 shows in
Figure 4-7. Blue cube is a 2.5D entity, and grey cube is an entity3D of
corresponding v-entity which inherits from the 2.5D class of the blue cube.
When the grey cube is moved to collide with the blue cube, the v-entity of
the grey cube uses the function, “canMove”, to detect whether there is a
collision between them. Once the function detects a collision between the
v-entity and blue cube, it returns a “Boolean” value to the v-entity and blue
cube. According to this value, the v-entity controls the motion of the grey
cube in the 2.5D scene by using the method2.5D, “motion2.5D”, as Figure
4-8 shows. Therefore, the grey cube makes a stop rather than passes through
the other. The 3D entity successfully interacts with a 2.5D entity for collision

through our structure.
22

However, we do not solve the limit of interaction detections in this
section. For example, “canMove” has a limit of detection, because it only
checks the overlap of the grids between entities for collision detection. It
does not provide the collision detection for high or low entities. In Chapter 5,
we shall upgrade the fully 3D game from a 2.5Dgame, and use the methods

in 3D libraries for solving limits of interaction detection in 2.5D.

Figure 4-7 Collision for the 3D entity and 2.5D entity

private function motion2D(bool:Boolean): void
{
if(bool)
{
if {_keyUp)
{
cubel.cube.x-=1.08;
cubel.cube.y+=0.54;
}
else if {_keyDown)
{
cubel.cube.x+=1.08;
cubel.cube.y-=0.54;
}
else if {_keyleft)
{
cubel.cube.x-=1.08;
cubel.cube.y-=0.54;
}
else if {_keyRight)
{
cubel.cube.x+=1.08;
cubel.cube.y+=0.54;
}
view.render();
}
}

Figure 4-8 Interaction exception of a entity3D

23

Section 4-3 The virtual class inherits from an appropriate 2.5D class

According to the pattern in above section, the programmer should create a
virtual class which contains an entity3D, an instance of its corresponding 3D
class, and inherits an appropriate 2.5D class. An entity3D interacts with other
2.5D entities and entity3Ds based on its v-entity’s attributes inherited from the
selected 2.5D class. During an interaction, if the v-entity cannot provide enough
supporting attributes, the interaction fails. Thus, it is important to select an
appropriate 2.5D class to be inherited by the virtual class. We present an
algorithm of eleven steps for programmers to do the selection shown below, and

construct the corresponding virtual class described in above.

Algorithm Class_Selection
Input: a 3D class

Output: a 2.5D class

begin

1: Get the number k, k is the number of capabilities of which each is
corresponding to a distinct property of the input 3D class.

2: Search a class which contains these k capabilities from the 2.5D
classes. If one is found, it is returned and the algorithm stops.

3: Set each of these capabilities with a distinct id, p;, 1<i<k, where p;
has higher priority than p; if i>] , and x=k-1.

4: Search a set of the class(es) which contain x of above k
capabilities.

5: If there is no one which contains x capabilities, then x=x-1 and go
to Step 4.

24

6. If there is only one class, then return the class and stop.

7 Get the id of highest-order capability among these classes.

8: If there is only one class containing id, then return this class and
stop.

9: If id is the lowest-order capability of these classes, return one of

the classes and stop.

10: Delete the class(es) not containing id.
11: Get the id of next-order capability among these classes; go to 8.
end

Algorithm Class_Selection is applied to find the 2.5D class used as the
parent class of the virtual class. Step 1 derives the capabilities of which each is
corresponding to a distinct property extracted from the input 3D class. In the
hybrid games discussed in the thesis, the properties of input 3D class are defined
based on its operations. For example, if the entity3D is movable and collided, the
motion and collision are selected as its capabilities. Similarly, each 2.5D class
has its own capabilities derived from its own operations. For example, a 2.5D
entity such as a barrier has no capability of motion. By comparing the
capabilities of the entity3D with that of 2.5D classes, a 2.5D class containing all
above k capabilities can be selected to be the parent class of the virtual class in
Step 2. In other words, when this step finds such a 2.5D class, and the algorithm

returns the class directly.

In case no one is selected in Step 2, a 2.5D class containing some of these k
capabilities is selected to play the role. In our algorithm, Step 3 sets the priorities

of these capabilities for the search in the following steps. Because the selected
25

2.5D class which contains more of above k capabilities is better, Steps 4 and 5
look for a set which have most capabilities of above k capabilities. To simplify
the search, we assume that the priority value of a capability is larger than the sum
of priority values of those capabilities which are lower than this capability.
Because Steps 4 and 5 ensure the set which is not a null set, it is bound to find an
approximate one. Steps 6 to 11 start from the capability of highest priority to
compare the classes. The comparison continues until the capability of lower
order does not exist in the set. Now, one class in the set is selected as the parent

class of the virtual class.

The following example shows how to select an appropriate 2.5D class for
the insertion of a 3D castle. In this example, there is no a corresponding virtual
class for the 3D castle, and the programmer need select a 2.5D class as the parent
class of the virtual class. With algorithm Class_Selection, Step 1 gets the
capabilities of motion, collision and rotation from the class, 3D_castle. There is
no class which contains three capabilities in Step 2. Thus, Step 3 sets the priority
order for these capabilities. Assume that Steps 4 and 5 find two classes,
IsoObject and Cube, which contain two capabilities, motion and collision. Steps
6-11 filter these classes through the priority order, piq. Because both contain the
same capabilities, Step 9 finally chooses one of them arbitrarily. For example, let
the algorithm return the class, IsoObject. The virtual class is set as the subclass

of IsoObject then.

26

Section 4-4 Rendering problem containing 2.5D and 3D graph entities

Depth makes a game world look more realistic. The methods and
associated computations for depth expression in the 2D and 3D libraries are
different. In a 2D library, each entity is a piece of graph, and a 2.5D scene is
composed of layers. Each layer represents a distinct depth. The 2D library
uses a queue structure for layers of a scene. An entity put into a front layer is
rendered at the front side of the scene. Therefore, the entities are put into
their corresponding layers that he wants, and the frame renders a visual effect
of depth through sequence of layers. The example in Figure 4-9 (1) shows a
2.5D game where an entity is in front of another when its y-axis value is
larger than others. Thus, the blue cube is in front of the brown cube in the
scene, and both cubes are the same size. If the layer of the brown cube is in

front of the layer of the blue one, the unusual vision is showed in Figure 4-9

(2).

Figure 4-9 (1) Layer of front cube is front. (2) Layer of behind cube is front.

In Section 3-2 , we know the vanishing point which expresses the
depth of game world in the 3D library. Therefore, the 3D library makes
z-axis based on the vanishing point. The method of depth renders the

sequence of entities in a scene through z values of each entity.
27

There is a problem when 2.5D entities coexist with 3D entities because
rendition of depth is different between 2.5D and 3D entities. In addition, the
2D and 3D libraries do not consider about the hybrid application. Therefore,
the 3D entity is not put into layer of graph, and the 2.5D entity does not
have a z value. The rendition for depth individually adopted by the entities

need to be displayed in consistency.

In Figure 4-10, a 3D entity and 2.5D entity are at a scene. The grey
cube is a 3D entity, and the blue cube is a 2.5D entity. It is expected that the
grey cube moves around the blue cube circularly. Figure 4-10 (1)-(3)
indicates three instances in order during the movement inside a circle. These
figures indicate that the grey cube is always in front of the blue cube. l.e.,

this phenomenon does not satisfy the expectance.

28

1) ()

Figure 4-10 (1) The grey cube g,: p-right c e of the blue cube (2) The grey cube

: orner of the blue cube

29

Section 4-5 Aclass structure for Rendition Integration

As the phenomenon discussed in Section 4-4 , we propose a model to
solve the problem of depth difference at the display of 2.5D and 3D entities.
The model is based on a simple concept: Each 2.5D entity is given a 3D
skin. Such a 3D skin helps its 2.5D entity to have a similar display as a 3D
entity based on the depth rendering in Section 4-4 . The class, Sprite3D,
describes the attributes for positioning a 2.5D entity with a 3D skin to be
inside a 3D space in Away3D [8]. Let the 3D sprite be the 3D skin of each
2.5D entity. Therefore, the image of the 2.5D entity is associated a
corresponding 3D sprite, accepted by the rendering method(s) of the 3D
library. On the other hand, the 2.5D entity should use the methods in

Chapter 3 to synchronize the positions with the 3D sprite.

Root

-attribute Sprite3D

-sprite3D : Sprite3D - attribute3D
.

-method2D() Sprite3D | - method3D()

-method image3D()
-method_position3D()

Figure 4-11 The class structure for rendition of depth

To simplify the model, we add an attribute, sprite3D, and two methods,
“method_position3D” and “method_image3D”, into the root class structure
as Figure 4-11 illustrates. Each 2.5D class inherits the root class in this
game. Therefore, these 2.5D classes use the sprite3D for rendition of depth

with 3D entities directly. The method, “method_position3D”, is used to

30

synchronize the positions of the 2.5D entity and its sprite3D based on the
methods defined Section 3-3 , and the method, “method_image3D”, is used
to put the image of the 2.5D entity into its sprite3D. The 2.5D entities
execute the original work entirely, and the problem of depth is solved

through their sprite3Ds.

Figure 4-12 shows a scenario of rendition of depth refined from the
entities in Figure 4-10. After the attribute, sprite3D, and the methods,
“method_position3D” and “method_image3D”, are added into the root class,
“IsoObject ”, the position and image of the blue cube and its sprite3D are
synchronized. Based on the z-axis values of both cubes, the rendition of the
blue cube make its own deem as another 3D cube, the grey cube. The
three-dimensional displays in Figure 4-12 (1)-(3) show the corresponding,

compared with Figure 4-10 (1)-(3).

31

1) (2)

Figure 4-12 (1) the grey cube in Op-Tig " the blue cube (2) the grey cube in

' left corner of the blue cube

32

Chapter 5 Modification Process from a Pure

2.5D Game to a Hybrid or 3D Game

In this chapter, we describe a process for developing hybrid or fully 3D games
from existing pure 2.5D ones. The programmer can gradually replace 2.5D entities
with 3D ones in a 2.5D game, and accomplish the final 3D version by entirely
replacing the 2.5D scene with a 3D scene. The developing process is divided into two
sections. The first section describes how to update an existing 2.5D game or a hybrid
game gradually till all its 2.5D classes have corresponding virtual classes, and the
second section indicates how to construct a 3D game after the above condition

succeeds.
Section 5-1 Developing process from a 2.5D(2.5D) game to a hybrid game

Process Initialize_2.5D _to_Hybrid :

Input : the 2.5D classes and their instances 1D(s)

Output : the 2.5D classes and the existing instance 1D(s)

begin

1. Add sprite3D, “method_position3D”, “method_image3D” and replacing_class
into the root class.

2. Synchronize the positions and images for each 2.5D entity and its sprite3D as
Section 4-5 illustrates.

3. Set the replacing_class of each class to NULL.

end

33

Based on the discussion in Section 4.5, process, “Initialize_2.5D_to_Hybrid”,
adds a 3D skin to each entity in a 2.5D game to solve the rendition of depth for the 3D
display. Step 1 adds two attribute, sprite3D and replacing_class, and two methods,
“method_position3D” and “method_image3D” into the root class. Step 2 synchronizes
the positions and images of each 2.5D entity and its sprite3D by these two methods.
These 2.5D entities retain their functions, and each of them has a sprite3D to solve the
problem for depth rendition. On the other hand, step 3 set the replacing_classes as
null in each 2.5D class, because the value represents the name of a 3D class which
will replace a 2.5D class. In other word, the output of this process is a hybrid game

with no 3D class.

Process Upgrade_Hybrid_with_a_3Dentity :

Input : a 3D class

Output : a virtual class

begin

1. Select an appropriate 2.5D class to be the parent class of the virtual class.
2. Build a virtual class to add a 3D entity.

3. Add the method_control3Ds into the virtual class.

4. Modify the replacing_class of the class if the 2.5D class will be replaced by
the 3D class of the replacing_class eventually.

end

Process, “Upgrade_Hybrid_with_a_3Dentity”, may add 3D features into a
hybrid game repeatedly by adding 3D entities into the game as pervious chapter
illustrates. Before adding a 3D entity, step 1 selects an appropriate 2.5D class to be the

parent class of the virtual class as discussed in Section 4-3 . When the virtual class is
34

built in step 2 as discussed in Section 4-2 , step 3 adds the method_control3Ds to
synchronize the attributes of the v-entity and 3D entity such as the synchronization of
the coordinates. The method_control3Ds is also used to control the 3D entity for
exception handling. Besides, step 4 modifies the existing value of the selected 2.5D
class to be a name of entity3D if the 2.5D class will be replaced by the 3D class of its

replacing_class in the following section.

35

Section 5-2 Developing process from a hybrid game to a fully 3D game

After the pervious processes, “Initialize_2.5D to Hybrid” and
“Upgrade_Hybrid_with_a_3Dentity”, the game under development is now a hybrid
game. Once all the entities in the 2.5D scene are 3D ones, the hybrid game can be
developed into an entire 3D one. However, because the scene of a hybrid game is still
a plain graph, the game may not provide complete 3D features. For example, the
2.5D-3D hybrid version only uses z-axis values to simulate the depth sequence of
entities as Figure 4-12 shows, and each entity actually moves on direction of x-axis
and y-axis. However, the 3D entity can be moved on the direction of z-axis in the
fully 3D version. Therefore, the hybrid game is replaced its 2.5D scene by a 3D stage

so that it can be upgraded to a fully 3D game.

Process Modify Hybrid_To 3D :

Input : the classes

Output : the 3D classes, the existing instance ID(s) and success : boolean

Begin

0. success=true.

1. If the replacing_class of each 2.5D class is NULL, then return success = false.
2. Replace the 2.5D scene by a 3D stage.

3. Modify declaration of each existing instance from virtual class to 3D class.

4. Modify the properties of each existing instance and use the methods of its 3D
specification classes.

end

Therefore, step 1 checks the replacing_class of each 2.5D class to ensure that all

36

2.5D classes can be replaced by the 3D classes. The replacement can not be done
when a replacing_class of a class is null. During the replacement, step2 deletes the
2.5D scene and builds a new 3D scene by adopting the 3D class, “Plane”. It sets the
properties of the 3D plane based on the ones of the 2.5D scene such as size and graph.
If there are some scenic entities in the graph of the 2.5D scene, it may put the real 3D
entities like trees and rocks in the 3D plane for more reality. Figure 5-1 (1) illustrates
a hybrid scene. To transform the hybrid scene into a pure 3D scene, the 2.5D scene is
replaced by a 3D plane as Figure 5-1 (2) shows. Then, the properties of the 3D plane
are further adjusted to be the similar ones of the 2.5D scene, such as size and 20*20

grids as Figure 5-1 (3) illustrates.

N

Figure 5-1 (1) The hybrid gam (2) The 3D plane replaces

the 2.5D scene

(3) Adjust the properties of the 3D scene

37

Once the 3D scene is built, the 3D entities use the z-axis values in the
hybrid game entirely. However, the 3D entities co-operate with the v-entities for
the motion and interaction based on the framework of the hybrid game as
discussed in Chapter 4 . Step 3 modifies declaration of each existing instance
from the names of virtual class to the corresponding ones of its entity3D because
the virtual classes are no longer needed in this modified game. Therefore, the

existing instances have been the 3D class instances after this step.

Besides, these instances still work by the attributes and functions of virtual
classes. Therefore, the properties of 3D entities need to be modified for running
associated with the 3D plane. For example, when the programmer adopts the 3D
plane in Figure 5-1 (3), he may discover that the 3D entities look weird in the
scene because the properties such as angle, motion and interactions of the 3D
entities are still set based on the features of the replaced 2.5D scene. Step 4
adjusts the properties of the 3D entities and uses the methods of 3D classes. Take
the angle of the 3D entities as an example, after the step 4 adjusts the angles of
the 3D entities, the total 3D scene displays as Figure 5-2 (1) shows. Figure 5-2 (2)
shows a different viewpoint through changing the angle and coordinate of the

camera.

38

Figure 5-2 (1) Adjust the properties of (2) Change the angle and coor-

the 3D entities dinate of the camera

The motion codes of the 3D entities in the hybrid version are of 2.5D
motion as Figure 5-3 (1) shows, and they should be changed as 3D ones like
Figure 5-3 (2) shows. The function, “motion_f3D”, makes each entity move in

the 3D world based on the 3D plane and xyz-axis values.

private function onKeyDown({event:KeyboardEvent):void
i
switch(event.keyCode)
{
case Keyboard.UP :
cubel.vx =-speed;
break; private function motion_f3D(}: void
case Keyboard. DOWN : { .
cubel.vx =speed; if [_kE‘;Up]
break; cubel.y+=1;
else if {_keyDown)
case Keyboard.LEFT : cubel.y-=1;
E“be‘i-“ =speed; else if {_keyLeft)
reat cubel.x-=1;
case Keyboard.RIGHT : else if (_keyRight)
cubel.vz =-speed cubel.x+=1;
break} else if {_keyRaise)
cubel.z-=1;
default: else if {_keyDrop)
break; cubel.z+=1;
H .
addEventlListener{Event.ENTER_FRAME, onEnterFrame); view.render();
} }
Figure 5-3 (1)2.5D motion of the 3D entities (2) 3D motion of the 3D entities

39

The interactions of each 3D entity in the hybrid game use the interaction
detection from the v-entities, but they are not enough for the 3D world. A typical
example is the collision of z-axis. Because the method of interaction detection
from the v-entities does not use z-axis value for interaction detection in the 2.5D
scene, it is no longer used for interactions in the 3D stage. The detection methods
in general 3D library is adapted instead. For example, each 3D entity receives the
message from the function, “canMove”, for collision detection discussed in
Chapter 4 , and it should be changed as the function, “collision_f3D”, which is
used for collision detection between the 3D entities based on 3D library. As
Figure 5-4 shows, “collision_f3D” compares the sum of radius and the distance
between any two 3D entities. If the sum of their radiuses is greater than the
distance, a collision occurs between them. It provides the collision detection not

only in 2.5D plane but also in 3D world because it uses the xyz-axis value.

private function colligion_f3D({a:Vector3D, b:Vector3D, rl:Number, r2:Number):void
i
var d,d1:Nunber=0;
d=Math.zqri(Math.powla.x-b.x, 2)+Math. powla.v-b. v, 20+Math. powla.z-b.2,207;
if(d==(rl+r2))
{
ifia.y=b.v)
_kevDown=false;
elae iffa.y<h.v)
_kevllp=falae;

ifia.x=b.x)
_kevLeft=falze;

elze if{a.x<b.x)
_kevRight=falze;

ifi{a.z=b.z)
_kevRaize=falze;

elze if{a.z<b.z)
_kevDrop=falae;

Figure 5-4 the function of collision detection in fully 3D game

40

After finishing this developing process, the modified game becomes a fully
3D game. This game may start to provide some 3D features like switching the
angle of view and zooming for the 3D world. Therefore, the programmer may
add some functions for putting additional 3D features through the 3D library. For
example, we add a function for switching the angle of view in the previous
example in Figure 5-2. The function, “onEnterFrame3D”, controls the position
and angle, representing the viewpoint of the user as Figure 5-6 illustrates. There
is a collision between the cubes, and we may see the 3D world from different

viewpoints in Figure 5-5.

NN

AN,
NAYAY,

'.".‘ﬁﬂﬂ.ﬂ!
(2N
IAVAYaTAY

YH%YEL

AS
NANN
AV,

ORRRARR
A

AVAVAVANAVANANAN
AVATATATANANY

E’Eﬂ_ﬂﬁﬁﬂﬂl
A s
3
0
NN

AVAVAN
N
N/

AY)

NN
AN
\/

IVAVA

NS
NN

AVAVAN

N/
\/

Figure 5-5 The game world from different viewpoints

41

private function onEnterFrame3D(event:Event):void

!

if(keylaDown){
ffoif the key iz 2till preszed, just keep on moving

switchi lastEey){

caze
CHBe
CAze
Caze
CHZe
caze
CHBe
CAze
Caze
CABE
Caze
CHZe
caze
}
!

view.render();

}

- can.
oocan.
Locanm.
oocan.
oocan.
- can.
oocan.
Locanm.
oocan.
Locanm.
-ocan.
oocan.
- can.

novelp307; hreak;
moweDown(20%; break;
noveleft(30); break;
moweR ight(307; break;
moveForvard({307); break;
noveBackward(30); break;

¥+=20; break;
¥-=20; break;
v+=20; break;
v-=20; break;
rotationf += 5; break;

rotationY += 5; break;
rotationZ += 5; break;

Figure 5-6 The function for switching the angle of view

42

Section 5-3 Modification Process constructed by three processes

The modification process can be constructed by above three processes
entirely. Programmers may use the process to upgrade an existing 2.5D game to

a 3D game. The modification process is illustrated below:

Process Upgrade_2.5DTo3D :

begain

1. Add sprite3D, “method_position3D”, “method_image3D” and
replacing_class into the root class.

2. Synchronize the positions and images for each 2.5D entity and its
sprite3D as Section 4-5 illustrates.

3. Set the replacing_class of each class to NULL.

4. Select an appropriate 2.5D class to be the parent class of the virtual class.
5. Build a virtual class to add a 3D entity.

6. Add the method_control3Ds into the virtual class.

7. Modify the replacing_class of the class if the 2.5D class will be replaced
by the 3D class of the replacing_class eventually.

8. success=true.

9. If the replacing_class of each 2.5D class is NULL, then return to Step 4
and set success = false.

10. Replace the 2.5D scene by a 3D stage.

11. Modify declaration of each existing instance from virtual class to 3D
class.

12. Modify the properties of each existing instance and use the methods of

its 3D specification classes.

43

end

Steps 1-3 are discussed in “Initialize_2.5D_to_Hybrid”; Steps 4-8 are
discussed in “Upgrade_Hybrid with_a_3Dentity”’; Steps 9-12 are discussed in
“Modify_Hybrid_To_3D”. The number of 2.5D entities is hypothesized to be m,
and the number of 3D entities is hypothesized to be n. Steps 1-3 add m 3D skins
into m 2.5D entities so the time complexity of steps 1-3 is O(m). Steps 4-8 get
the number of k capabilities for each 2.5D entity to add n 3D entities into the
modified game so the time complexity of steps 4-8 is O(m*n*k). Steps 9-12
change the attributes and methods of each entity to adopt into the 3D stage so the
time complexity of steps 9-12 is O(n). Besides, the number of 3D entities is
larger than the one of 2.5D entities in modification process. Therefore, the time

complexity of the modification process is O(n’*k+2n)=0(n’k).

44

Chapter 6 Conclusion and Future Work

Current topic of discussion based on development of Flash games is not
concerned for a 2.5D-3D hybrid game. In the thesis, we propose a modification
process to change an existing 2.5D game to a fully 3D game incrementally. The
modification process is divided into two phases: (1) hybrid game and (2)
scene-changed. At the phase of hybrid game, two processes,
Initialize_2.5D_to_Hybrid and Upgrade_Hybrid_with_a_3Dentity, are in charge of
upgrading from an existing 2.5D game to a hybrid game. In this phase, the hybrid
game may provide 3D features by adding 3D entities in a 2.5D scene, and avoid the
chaos between the 2.5D and 3D versions. At the phase of scene-changed, one process,
Modify_Hybrid_To_3D, is in charge of upgrading a hybrid game to a 3D game with
the 3D library completely. This approach can also be adopted for a 2D-3D

modification process.

In the future, under the modification process there might be several research
directions to improve the performance of game upgrade further. In hybrid and 3D
phases, we may provide an auto-generator for the modification process. The
auto-generator may generate templates like virtual classes to reduce the cost of
modification process. On the other hand, the algorithm, Class_Selection, uses the
priority order of input 3D entity’s capabilities to select an appropriate 2D class for the
parent class of a virtual class discussed in Section 4-3 . There may be a
misclassification which exists in the algorithm. For example, a 2D class which contains
capabilities of the second highest priorities may be the appropriate one. There, we

may upgrade this algorithm by adding more conditions.

45

[1].

[2].

13].
[4].

[5].

[6].

[7].
[8].
[9].

Reference

Christoph Klimmt, Hannah Schmid, Julia Orthmann, “Rapid Communication
Exploring the Enjoyment of Playing Browser Games”, CyberPsychology &
Behavior, Volume 12, Number 2, 2009

Jussi Kuittinen, Annakaisa Kultima, Johannes Niemeld, Janne Paavilainen,
“Casual Games Discussion”, in Proceedings of the 2007 conference on Future
Play, Copyright 2007 ACM 978-1-59593-943-2/07/0011

Dirk Krause, “pixelpark’ White Paper”, 2008

Hyeyoung Kim, Chulmin Jun, Hyunjin Yi, “A SDBMS-based 2D-3D Hybrid
Model for Indoor Routing”, Tenth International Conference on Mobile Data
Management: Systems, Services and Middleware, IEEE Computer Society (2009)
Melanie Tory, M. Stella Atkins, Arthur E. Kirkpatrick, Marios Nicolaou,
Guang-Zhong Yang, “Eyegaze Analysis of Displays With Combined 2D and 3D
Views”, in VIS ’05, Proceedings of the IEEE Visualization.

Andri loannidou, Alexander Repenning and David C. Webb, “AgentCubes:
Incremental 3D end-user development”, Journal of Visual Languages and
Computing, Elsevier Ltd., 2009

Keith Peters, “AdvancED ActionScript 3.0 Animation”, 2009

Rob Bateman, Richard Olsson, Gregory Caldwel, “3D in flash”, 2009

Adobe Systems Incorporated., “ActionScript® 3.0 Reference for the Adobe®

Flash® Platform”, Sep 2, 2011

46

