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Abstract
Classification is an important issue both in Machine Learning and Data Mining. Decision tree
is one of the famous classification models. In the reality case, the dimension of data is high
and the data size is huge. Building a-decision in large data base cost much time in

computation. It is a computationally expensive problem.

GPU is a special design processor.of graphic.. The highly parallel features of graphic
processing made today’s GPU architecture. GPGPU means use GPU to solve non-graphic
problems which need amounts of computation power. Since the high performance and
capacity/price ratio, many researches use GPU to process lots computation. Compute Unified

Device Architecture (CUDA) is a GPGPU solution provided by NVIDIA.

This paper provides a new parallel decision tree algorithm base on CUDA. The algorithm
parallel computes building phase of decision tree. In our system, CPU is responsible for flow
control and GPU is responsible for computation. We compare our system to the Weka-j48
algorithm. The result shows out system is 6~5x times faster than Weka-j48. Compare with

SPRINT on large data set, our CUDT has about 18 times speedup.

k423 : GPGPU ~ CUDA -~ Decision Tree ~ Classification
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Chapter 1 Introduction

1.1 Motivation

Machine learning is a theory which concerned with constructing computer systems with the
ability to learn by either experience or by studying instructions. This capability to learn results
in a system that can continuously self improve and thereby offer increased efficiency and

effectiveness.

Machine learning algorithm is widely used in many domains. Usual tasks of machine learning
algorithm includes classification, prediction, clustering and rule finding. They are used in

computer graphic, image processing, intrusion detecting.

Many machine learning has a common characteristic. They need scan data bases repeated to
find patterns of the data. The process of analyzing high dimension and lots of data requires
huge computation power and storage. Many process needs several hours even several days in

reality data bases. The performance of machine learning algorithm is endless.

Recently, the General-purpose computing on graphics processing units (GPGPU) has become
popular since the its highly parallelization and powerful computing ability of float point.
Some documents shows the computing power of GPUs can now vastly exceed a CPU [1][2].
More and more non-graphic applications which needed amounts of computation are employed
on GPU. Since GPGPU became a tendency, NVIDIA provides a platform of GPGPU which
called Compute Unified Device Architecture. Many applications and researches of machine
learning use CUDA as their GPGPU platform. Such as SVM, K-NN, K-means has CUDA

version.



The decision tree learning algorithm is a very famous learning model in classification. Many
researches are focus on improving performance of decision tree [5][6][7]. However, those

algorithms are base on a distributed system. The cost of those devices is high.

In this paper, we will present detail in a parallelized decision tree algorithm base on CUDA.
The goal is to evaluate the performance of the algorithm in terms of execution time, compared

to CPU version decision tree.

1.2 Objectives

The following are our objectives:

1. A parallel decision tree algorithm on"GPUSs
2. High performance

3. Binary tree

4. Binary classification

In our experience of CUDA programming, binary classification and binary branch is suiting

for CUDA architecture. Therefore, our decision tree is a binary tree with binary classification.

1.3 Outline of the Thesis

The rest of the paper is organized as follows. Chapter 2 is background and related works. We
will present the CUDA architecture and some important parallel primitives. The related works
shows the recently researches of decision tree on GPUs. Chapter 3 is our system architecture.
We will describe our system in detail in this chapter. Chapter 4 is the evaluation of our

algorithm. The last part of the paper is the conclusion and future work.



Chapter 2 Background and Related Work

2.1 Decision Tree

Decision tree is a supervised learning algorithm commonly used in machine learning and data

mining. In classification, the goal of decision tree is evaluating a data which contains several

values called attributes to predict the class of data. An example is shown in Figure 1.

Rid Age T(:I::a Risk
0 23 Family High
1 17 Sports High
2 43 Sports High
3 68 Family Low
4 32 Truck kow
5 20 Family High

Training data

>
L\

Car Type in
{Sports}

}/

Figure 1 Example of Decision Tree

There are two kind of node in the tree. An internal node (oval-shaped) denotes a classified

rule. The rule decides the path of tested data. A leaf node (triangle) denotes a result of

classification. The leaf decides the target value of classification.

The learning process of tree is shown on Table 1 [5]. The algorithm needs a set of data called

Train Data. Each record contains several values which called feature to describe the data. The



building process would partition the train data into several subspaces in each internal node.
For each subspace, treat as a new training set and recursive called process. The partition will

be terminated if all data on the node are of the same class and the node would become a leaf.

Partition (Data S)

if (all points in S are of the same class) then
return;

For each attribute A do
evaluate splits on attribute A;

Use best split found to partition S into S; and S;

Partition(S,);

Partition(Sy);

Initial call: Partition(TrainData)

Table 1 Traditional Algorithm of Decision Tree [5].

2.2 GPU

A GPU is a processor that processes 3D graphics rendering. The GPUs deliver very high
performance of float-points processing since is that it is a highly parallel machine comprised
by many cores. GPUs keep these processors busy by juggling thousands of parallel
computational threads. In theory, GPUs are capable of performing any computation that can
be mapped to the stream computing model. This model has been exploited for many
algorithms such as ray-tracing, K-means, matrix multiplication, K-NN, SVM and the other
applications. The comparison of computation power of float-point between CPU and GPU

was depicted as Figure 2.
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Figure 2 Floating-Point Operations per Second for the CPU and GPU [1].

The primary difference between CPU and GPU is that the GPU is specialized for rendering
graphics, highly parallel computations. As tllustrated by Figure 3, GPU devotes more
transistors to data processing rather than data caching and flow control. GPU is more

efficiently than CPU if a problem needs lots of computation and shit for parallel.

0

C

Figure 3 The GPU Devotes More Transistors to Data Processing [1].




2.3 Compute Unified Device Architecture (CUDA)

CUDA is a general purpose parallel computing architecture including a new parallel
programming model and an instruction set architecture. The CUDA programming model
provides a C extended language for developers. The program will then run in thousands or
millions of parallel invocations, or threads on device. The source files include a mix of host
code runs on CPU and device code which runs on GPUs. When running a CUDA program,
developers simply run the program on the host CPU. The CUDA driver automatically loads

and executes the device programs on the GPU.

In the CUDA programming model, the GPU is treated as a co-processor onto which an
application running on a CPU can launch-a massively parallel compute kernel. This is called
massively threaded architecture. The CUDA function needs a configuration of the size of
thread to be launch. The configuration set up a grid. A-gird composes several blocks. The
threads in the same block would have a serial ID called.thread index. It can be used to help

divide up work among the threads:



Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Figure 4-Architecture of CUDA

Threads running on the GPU in the CUDA programming model have access to several
memory regions including on'chip memory, registers, shared memory, constant cache, texture
cache, and off chip memory, global-memory constant memory and texture memory. Figure 4

shows each multi-processor can access on/off chip memory of the several types as following:

Device storages consist of constant memory, texture memory, global memory, local memory
and registers. Constant memory and texture memory are read-only caches of device memory
and must be allocated before calling device functions. They are rare on device. The on chip
caches, constant cache and texture cache, can have significant performance increasing of
optimization of CUDA program. Global memory is the main storage of CUDA. It is a slower
and biggest memory on device. Threads can read/write the global memory directly, but there
is no cache supported for global memory. Register is the fastest storage of CUDA. The
number of registers of a multi-processor would restrict the maximum number of concurrent

executed threads. Shared memory is visible to threads which are runs on the same block. It is

T



a highly speed storage. The local memory space is not cached, the usage of local memory

should be avoided since it is very slow. The overhead of accessing local memory is large.

2.4 Prefix-sum

Prefix-sum, as known as scan, is a very important building block of parallel algorithm. Many
applications such as sorting, lexically compare strings, evaluated polynomial can be
implemented by scan [13]. The element which is prefix-sum will be the result of operated

all elements before current element. The following is the definition of prefix-sum:

Given an array A of n elements
A =13y, a;,+san_1]
Given a binary-operator ©

Given | as identify of ©

Scan(A) = [I;ap, (Qg+ay),--,(@p+as + -+ ap_,)]
Table 2 Definition of Prefix-sum (Scan) [8][13].

Prefix-sum makes no sense in sequence algorithm but it is very important in parallel
algorithms. Both CUDA SDK and CUDPP implement scan as an important library. The
CUDPP Sorting algorithm is a high performance CUDA radix sort. The scan is the backbone
of CUDPP sort, each round of sorting is building on prefix-sum [4]. Our system also uses the

parallel prefix-sum of CUDPP in many components.

2.5 Related Work

We introduce two researches related with our research. The first one is a classical parallel

decision tree algorithm “SPRINT”. The second is a random forests base on CUDA.



2.5.1 SPRINT: A Scalable Parallel Classifier for Data Mining

SPRINT is a classical algorithm of parallel decision tree. The algorithm has several targets as
follow:
1. Reduced the time of building a decision tree

2. Eliminated the barrier of memory size

In order to achieve the two targets, they design a special data structure called attribute lists.
The function of attribute list is isolated each attributes. It makes independence of each
attribute. There are two advantages of the data structure. First, only need one-time sort for
each attribute since the relationship between data and each feature is eliminated. The attribute

can keep the order by one-time sorting.

There are two importance issues of SPRINT. They are “How to finding a split point” and
“How to splitting attributes”. SPRINT focus on the two parts of computation. The building

process is in sequence.

2.5.1.1 Data Structure

The traditional decision tree algorithms need repeat sorting for continuous attributes. The
sorting cause lots of unnecessary execution time. Many researches devoted in reducing the
overhead of the sorting. SPRINT is a representative of such algorithms. In SPRINT, it only
need a pass sorting for continuous attributes since its special data structures called“attribute
list”. Since the attribute lists separate each attribute, SPRINT need other histograms to

calculate the split criteria.



2.5.1.1.1 Attributes Lists

The Figure 6 shows an example of an attribute list. The left one is an attribute list of
continuous attribute, and the right one is an example of categorical attribute. An attribute list
is composed of three arrays. The First array is the attribute value, the second is the class label
of the record and the third is the index of record. It is obvious that each attribute list is
independent, so we can sort each continuous attribute one time and doesn’t need extra sorting.
In the split stage, each list will be split into two disjoint subspaces. Figure 7 shows an
example of slitting. This mechanism reduces the overhead of sorting but increase the
overhead in splitting the attribute lists. However, the new overhead is smaller compare to

repeat sorting.

Age | Class | rid Car Type | Class | nd
17 | High | 1 family High | 0
20 [ High | 5 sports . | High | 1
23 | High'| © sports High | 2
32 Low | 4 family Low 3
43 | High | 2 truck Low | 4
68 | Low | 3 family’ | High | 5

Figure 5 Example of Attribute Lists [6].

10



Agmbae st Jor node O

l-ﬂh‘f Class | Tid Cur Type | Class | Tid
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Auribute Fists for node | Abribute lists for node 2
Age | Class | Tid Age | Clats | Tid
17 | High | | @ 2 | Lew | o
20 | High | 5 | 43 | High | 2 |
1 -lEHigh o | Lna_hln_:l-—z
|f'_A'rT]’]'_! &u | Tid._ CarType | Class | Tid
fumily | High | 8 spos | High | 2
| dpacts Hgh | 1 Bamily | Law k]
Bumity | High | § muck | Low | 4

Figure 6 Example of Splitting Attribute List of SPRINT [6].

2.5.1.2 Finding Split point

In order to finding the best split point, the algorithm needs to calculate the criteria of splitting.
The classes distributed information.is used to calculating the split criteria. SPRINT has two
different approaches for each attributes. For continuous attribute, SPRINT uses two
histograms, denoted as Cpelow and Canove, t0 capture the class distribution of the attribute
records at a given node. The Figure 8 shows an example of the two histograms. Cyeow records

the sum of each class number before current data and Canove records the sum of each class

number after current data.

11



Position of H L

Antribute List CUFSOT in SCan cursor Cbe]nw 0o ]
.‘; Age | Class | tid Ii‘! oD position {: o I_.d_—lj
[ 17 [mign | 1 P ' above
ll_l'_l}__ _lr!igh_ 1. _5_ | H L
21 | Hi 0 cursar Chel
N A I Fa
32 Lo 4 1
2| Low 7] Canove (112 ]
43 | High | 2
68 Low 3

il

H L
s oA ]2 ]
Cane (0 [0 ]

For categorical attribute, SPRINT uses a histogram called “count matrix”. Figure 9 shows an
example of count matrix. Each entry of counting matrix records a class distributed of a
different value of the attribute. After finishing the calculation of class distribution, we have all

information of calculating split.criteria.

Attribute List
Car Type |~ Class | tid Count Matrix
| family | High "0 H|L
| sports | High/7p ol . family | 2 | 1
| sports | High | 2 | —  gons | 2] 0
L .fﬁm_'“}f, J -I‘.'“l"r_ d- _3F i truck 0] 1
| truck | Low | 4
family | High | S

Figure 8 Count Matrix of SPRINT [6].

In parallel version SPRINT, it partitions the attribute lists into several subspace with the same
size. Each processor calculates the local class distributed and exchange with each other to get
the global class distributed. After getting the global class distributed, each processor

calculates the local split criteria of each possible split points. For continuous attribute, the

12



possible split points of an attribute are each different value points. For categorical attribute,

the number of possible split points is equal to the number of different value of the attribute.

After finishing the local split criteria, each processor finds the local best point. In order to get
the global best split point, processors communicate with each other to find the best spilt

points.

2.5.1.2 Splitting Attribute Lists

SPRINT uses attribute lists for each attributes so it needs special mechanism for partition data.
Since each attribute lists are partition into several subspaces to processors, different attribute
lists may has different data on the processor. In-order to keep the sorted value in order,
SPRINT uses a global hash table to records-the location of data on child nodes. All processors
would communicate with each other to getting the global hash table. After finishing the hash

table, each processor can split the local attribute-lists into.the attribute of child nodes.

2.5.2 Random Forests for CUDA GPUs

Random forest was first introduced by Len Breiman [12]. It is comprised by many decision
trees. Each tree uses a randomized features selected. The train data is used a sampling process.
Each tree uses the same data set to generate the training data with replacement. This has

proven to be effective for large data sets with missing attributes values [12].

The CUDA implemented random forests parallelize both building and classification. They use
a CUDA thread to build a tree. All trees are built in parallel to each other but the trees
themselves are built sequentially. However, this approach is not suit for large data sets if the

data set is bigger than GPU memory size.

13



Chapter 3 System Architecture

In the traditional decision tree building algorithm, continuous attributes cost lots of the
execution time since it need repeat sorting when calculated the split criteria. In order to reduce
the sorting time, many researches are focus on reduce the times of sorting. SPRINT is one of
the classical algorithms which parallelize builds a decision tree. SPRINT aim at reducing the
building time and eliminating the restriction of memory size. Since above, SPRINT uses
special data structure and mechanism to solve the problem. Though our algorithm aims at the
in-memory problem, we learn from SPRINT because it provides some features are suit for
CUDA’s architecture. This chapter is organized as follows. Section 3.1 is an overview of our

system. Section 3.2 is a flowchart of the system. We will describe in detail in section 3.3.

3.1 System Overview

Figure 10 shows an overview-of our system. The blue part-is the jobs of CPU and the green
part is the jobs of GPU. The principle of our design is obvious that the CPU is responsible for
the flow control, 1/0 handle and communication'with graphic device, the GPU focuses on the
computing intensive jobs. For instance, create attribute lists needs sorting each attribute lists,
we put this part into device; the time of calculate split criteria and split attribute lists are in

proportion to the data size and attribute number.

14
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Figure 10 Flowchart of CUDT




3.2 System Flowchart

Comparing to the CudaRF, both training phase and the classification phase are parallelized in
CudaRF. This approach shows a nice performance on smaller data sets. However, there is no
guarantee that the device memory can store all trees. The algorithm needs backup the trees in
host memory if the trees sizes are over the device memory. This will increase the overhead in

memory between host and device.

In our CUDT, we only focus on the phase of building trees. It’s more accurate to say that we
focus on parallel processing the computing of splitting nodes. Although reducing the
parallelism in building multiple trees, this policy increases the scalability and performance in

huge data sets.

The Figure 11 shows a flowchart of system. The following:steps illustrate the main execution

steps in our system.

1. Training and testing data are loaded.to host-memory from disk.

2. Initialization of the device includes query device information, allocation memory space
and copy training data into device.

3. Inthis step, the system will setup some parameters from user. For instance, the minimum
numbers of data of a leaf, the maximum depth of the classifier.

4. Create attribute lists in device. We will move each attribute to correspond position. After
finishing the data movement, we would sort each attribute lists in device,

5. The most important step of the system. Instead of using the recursive model of decision

tree building algorithm, we use an iterative breadth first scheme for our system. Host

plays a role of a manager. It is in charge of working flow of system. The computation

intensive problem is send to device. Figure 12 shows a flowchart of building classifier.

16



6. The classification is performed on host. In other words, the process of classification is in
sequence.

7. The results are presented on host.

We will now describe in more detail of the flowchart of building classifier. The system will
loop until all data has belonged to leaf. For a segment of data, the system would check if all
data of this segment has same class label, positive and negative in our system. Make a leaf
node if all class of data is the same or processing the finding a split point of the segment. A
leaf node denotes a result of classification. The data would be classified as the class of leaf
node if it stops at this node in classifying. After find a candidate split point, we need to split
the attribute list and make an internal node. An'internal node could be thought as a rule which

decides the path to classify the data.

In the next section, we will describe in more detail of each system components, for instance,
how the attribute list is created, i.e.; step4, and how.finding a candidate split point and
splitting attribute lists in setp5. We also shows how apply those parallel primitives and how

we employ the computation power of GPU to our system.

17
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Figure 11 Flowchart of Building Phase

3.3 System Components

3.3.1 Load Data & Initial Device

The execution starts with the host reading input data from disk. After loading data from disk,
the system will allocated the space of the device memory to store data. The allocation
includes entire training data, the space of attribute lists and some internal buffer inside of the

device.

3.3.2 Initial Classifier Parameters

After finishing the allocation of device memory, we set the parameters of our CUDT. The

parameters are user defined. For example, the minimum size of data of a leaf, the maximum

18



depth of the decision tree, the type of classification evaluation. (ex: cross validation,

sampling...etc)

3.3.3 Create Attribute Lists

There are two parts of creating attribute lists. The first is moving the data to its corresponding
list. After finishing the data movement, we need sorting each attribute lists. There is a
well-known CUDA library which called CUDPP (CUDA Data Parallel Primitives Library).
CUDPP offers a serial efficient library to developers. Several important algorithms are
implemented in those libraries, for instance parallel prefix sum and parallel sorting. However
the CUDPP has a wonderful parallel radix sort algorithm, the sorting algorithm is not suit for

our system.

The sorting algorithm of CUDPP can sort two 1-D arrays as input, the first is called key array
and the second is called value array. The key array would.be sorted and the element of value
array would be changed its position according to-its corresponding key element. It’s called a
key value pair sorting. The sorting algorithm of CUDPP only supports a key value pair sorting,
but we have two values to one key (key is the attribute value field, rid and class label are

values ).

According to above, we modify the CUDPP sorting algorithm into one key to two values. In

order to get the best performance, we modified the sorting algorithm from the CTA level to

public interface level [4].

19



3.3.4 Classifier Building

There are two important functions of building classifier. The first is “Finding Split point”
which performs finding the candidate split point and attribute. The second is “Split Attribute

Lists” which would be performed after finding a valid spit point.

3.3.4.1 Finding a split point

While growing the tree, the goal at each node is finding the “best” attribute and split point that
“best” divided the train data. The value of a split point depends on how well it separates the
classes distribution. There are many split criteria has been proposed in the pasts. We use gini

index [14] as splitting criteria of our CUDT.

At first, let’s consider how the sequential algorithm works. In the sequential version, the
process need scan an attribute-list to finish a class distributed table. After finishing the table,
the process has all information.to calculate the gini index.and find the best split point of this
attribute. However, it only processes one.attribute. WWe need calculate all attribute lists and

find the best among them.

In our CUDT, we find the best split point in one pass; we process all attribute lists in one pass.
The Table 6 shows the algorithm of finding a best split point. First, the system needs to record
the class distribution into below table and save the number of total positive class. For
continuous attribute, the candidate split points are mid-points between every two consecutive
attribute values. It is obvious that there are many redundant elements of the below table, so
the system need to remove unnecessary data from the histogram. The processing is called

compact.
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Table 4 shows the algorithm of compact. The compact needs a flag array and other arrays
(payloads) as input. The value of flag element is “0” and “1”. “0” means the correlative
payloads are true elements. True elements should be reserved in final output. The algorithm
first scans the flag array to get the positions of true elements. After getting the position, the
threads with true elements would put the elements into their positions. Each thread loops
several times to put all payloads into correct address. The Figure 13 shows an example of

compact.

After getting valid split points of all attributes, the system will calculate the splitting criteria
of each possible split points. Since the class distributed table has all class information of the

data segment, we can calculate the gini index of each possible split points.

The final step of this algorithnis finding the best point from the possible splitting points. v
There are a parallel primitive called “Reduction”. A brief description of reduction is that
many parallel threads generate a single result. The Figure 14 shows how reducing an array to
finding a minimum value. We use the CUDPP prefix-sum library of CTA level to

implement the reduction. The algorithm of reduce is described in detail in Table 4.

After finding the best split point, device will upload the information to host. After getting the

data, host can setup the information of children of this node and splits the attribute lists.
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Algorithm Compact

Input: A class distribution table C
A flag array Flag (Records each possible splits point)

An address array Addr (Records address of valid elements)

1. Declare buffer[]

2. For each element CJi] do in parallel

3. If (Flag[i]==1)

4, buffer[-Addr[i] ]= Cli]

5. For each element buffer[i] do in parallel

6. CIi] = buffer[i]

Table 3 Algorithm of Compact
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Figure 12 Example of Compact
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Figure 13 Example of Reduce




Algorithm Reduce

Input: An evaluated array E

Output: The minimum value of E

1. Declare n = sizeof(E)

N

. Declare buffer[]
3. Declare Min
. While(n>1)

N

5. For each segment E; of E do.in parallel
buffer[i] = FindMinOf(E;)
n = sizeof(buffer)

6
7
8. E = buffer
9

10.Return Min

Table 4 Algorithm of Reduce
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Algorithm  Finding Split Points

Input: A Set of attribute lists A which comprised by rid, value, label
Output: A winning attribute W
Index of split point X

. For each attribute list A; do in parallel
C; <- Scan(A;.label)
For each data of A; doin parallel

IsSplitPointFlagi[ j 1= (‘Aivalue; 1= Ai.valuej,; )?1:0

1

2

3

4

5. Addr;<- Scan(lsSplitPointFlag;)

6 Compact( C;, IsSphtPointFlag;, Addr;)
7 value;<- SplitCriteria(C;)

8. Reduce(value)

9

. Return W, X

Table 5 Algorithm of Finding Split Points
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3.3.4.2 Splitting Attribute Lists

In traditional algorithms of building decision tree, the split attribute lists doesn’t need extra
work since all data are stored in order. It labels the split points of the data segment of this
node. However, it’s not working in our system Since we partition an attribute as a single list.
The different lists may have different data in the same position. Since above, we need a extra
operation of splitting lists. Although the system need some extra executing time in splitting
attribute lists, CUDA architecture is suit for binary split. It reduces the overhead caused by

splitting.

The table 7 shows the algorithm of splitting the attribute lists. Partitioning the attribute list of
the wining attribute is trivial. It just set the split index of wining split point of this attribute to
node. Handling the winning attribute is very easy, however, we need a mapping between rid
and sub-trees. The system useS a map table to store this mapping. A record is assigned to left
partition if its value is smallerthan the split point, or it will be assigned to right partition.

After finishing split the winning attribute, the algorithm will keep work in the other attributes
by the map table. As same with finding a split point, the system splits all attributes in one pass.
A thread handles a record of an attribute list, finding the location of the record and store the
result into a side array. We call a CUDPP parallel prefix-sum to calculate the side array.
Moving all data of the segment into a buffer and performing a partition function. Figure 15

shows an example of splitting attribute lists.

The basic ideal of partition is partition an array into two disjoint subspaces. The Table 8
shows Partition algorithm in detail. The algorithm will partition the input data into two
subspaces according to the flag array. The element will be assigned to left group if its flag is 0,
or it would be assigned to right group. The algorithm first complements flag array and prefix

sum it to get a false array. The total number of the false elements is recorded. The next step of
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the algorithm is calculating the index of each element after partitioning. The index of an
element is calculated above if it is a false element. If it is a true element, the index will equal
to “the original index — above index + total number of false elements”. The final step is

moving the elements to his position of the partition.

Algorithm  Split attribute lists

Input: Wining attribute W
An index of split point X
A Set of attribute lists A

1. For each data d; in'W.do in parallel

2 Flag[ j ] = (index(d;)>X") 20 : 1
3. For each attribute list A; do in parallel

4, if (Al1=W)

5 Partition(A; , Flag)

6

. Return

Table 6 Algorithm of Split Attribute Lists
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Algorithm  Partition

Input: Target array A
A flag array with 0, 1 Flag
A Set of attribute lists A

. Declare max = sizeof(A)
. Declare buffer[max]
. Declare FalseArray[max]

. Declare TotalFalse

1

2

3

4

5. Declare Address[max]
6. For each element i in Flag[] do in parallel

7 buffer[i] = Flag[i]

8. FalseArray[] <- Scan(buffer[])

9. TotalFalse = InverFlag[max] + FalseArray[max]

10.For each element i in buffer[] do in parallel

11. buffer[i] = i — FalseArray[i] + TotalFalse

12, Address[i] = (Flag[i] == 0) ? FalseArray[i] : buffer[i]
13.For each element i in A[] do in parallel

14, buffer[i] = A[i]

15. A[Address[i]] = buffer[i]

Table 7 Algorithm of Partition
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Flag array

Attribute value
Record id

Class label

Figure 14 Example of Split Attribute Lists

3.4.5 Classification

The tree is stored in host memory. The reason of constructing the classifier in host is the
consideration of scalability. If the size of a tree is greater than the memory size of device,
there are no ideal to maintain the tree in device memory. Our algorithm is designed for
general cases. The system should be ease to scale in bigger data set. That is why we choice
the policy. Since the tree is stored in host memory, the classification is processed in host side.

Each data is tested in sequence.
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Chapter 4 Evaluation

In our experiment evaluation, we focus on performance issue. Our goal is to design a high
performance decision tree algorithm. Although accuracy is not our focal point, our algorithm
also shows the accuracy of our system is acceptable. There are two objects which we compare
with. First is a well-know open source data mining tool which called Weka [15]. Weka
includes many data mining algorithms both classification and clustering, for example,
decision tree, support vector machine, k-means...etc. We choice the Weka-j48 which is a
C4.5 algorithm implemented in Java. Second one is our best optimized sequential SPRINT.
Since our CUDT is one kind of SPRINT on GPU, we also compare each components of
CUDT with SPRINT. This chapter is organized as following. The section 4.1 and 4.2 shows

the environment and data set. The section-4.3 shows the result of evaluations.

4.1 Evaluation Environment

We adopt Intel Core 2 Quad Q6600 and Geforce 9800GT for our computation platform. The
configuration information is described as following. Our host is Intel Core 2 Quad Q6600
which has 4 cores. Each core has a clock rate with 2.4GHz. Our device is GeForce 9800GT
which has 14 multiprocessors which called MPs. A MP has 8 CUDA Cores. There are 112
CUDA cores in total. The CUDA version is the version of the device driver. There are many
new features in the newer version. The newest version of CUDA is 4.0RC. However, the
features of CUDA 4.0 only impacts the recent generation of the GPU. There is no influence of
our device. The compute capability means difference generation of CUDA GPUs [1][2].

Although our device is not as good as CPU, our system shows a good speed up on 9800GT.
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CPU GPU
Device Intel Core 2 Quad Q6600 | GeForce 9800 GT (G92)
Number of cores 4 14x 8
Clocks 2.4GHz 700 MHz
Memory DDRII-800 DDRII1-900
Memory Size 2 GB 512 MB
oS Ubuntu 9.04(Linux 32 bit)
Compute Capability -- 1.1
CUDA Version -- 3.2

4.2 Data Sets

Table 8 Evaluation Environment

Magic Gamma MiniBooNE particle
Spambase
Telescope identification
Number of
58 11 51
Attribute
Number of Data 4601 19020 130065
Attribute Type Continuous Continuous Continuous
Number of Class 2 2 2
Source UCl UCl UCl

Table 9 Information of Data Sets

Table 10 shows the information of the data sets. There are three data sets in our evaluation.

The Spambase is a collection of mail data which has 57 continuous attributes of usually
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features of spam mail. A categorical attribute denotes spam and non-spam. The number of
data is 4601. The second data set is Magic Gamma Telescope. It is a physical data of high
energy gamma particles. There are 19020 data of this data set. Ten continuous attributes of
each record. A categorical attribute denotes the data into two classes. The final data is also a
physical data. It is used to distinguish electron neutrinos (signal) from muon neutrinos

(background). It has 51 attributes and 130065 data.

4.3 Evaluation of System

Table 11, 12, 13 shows the result of three algorithms. The table includes total cost time of
building classifier, the accuracy of the classifier and the size of classifier. We use cross
validation to evaluating the accuracy of our system. It means that we use all train data as test
data. It shows the accuracy of our system is-very close to-Weka-j48 and the execution time is
short than the both Weka and SPRINT. The tree sizes are the same of SPRINT and CUDT

since we use the same criteria of splitting. Figure 18 is the speedup of building classifier.

In order to evaluating the speedup of each components of CUDT, we compare with SPRINT

in detail. Table 14 shows the execution time of each component of CUDT and SPRINT.

Figure 16 shows the speedup of each component. The time of building a tree is sum of finding
split point and splitting the attribute lists. Since the speedup of creating attribute lists is too
higher than other components, we put it on Figure 17. Total time is the sum of building phase

and creating attribute lists. We can see that our system is good for large data set.

The speedup of creating attribute lists is very good. It can achieve 14x times faster than

SPRINT. However, the other components of our system are not as good as creating attribute
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lists. The first reason is the size of tree. Not only the execution time but also the times of
communication between CPU and GPU are proportional to the size of tree. Our system
generates too many nodes that increase the execution time of building. The second reason is
the size of data which really need calculated. The computation power of GPU is restricted by
decreasing the size of active. The third reason is the increasing of nodes per level. More nodes
makes more times of changing between CPU and GPU on each level. We will discuss those

issues in the following sections.

Cost Time 715 ms 1861.55 ms 124.78 ms
Accuracy 98.32% 97.82% 97.82%
Tree size 379 385 385
Leave Size 190 193 193

Table10 Result of Spambase

Cost Time 1350 ms 409.78 ms 257.72ms
Accuracy 90.6% 93.54% 93.54%
Tree size 707 1579 1579

Leave Size 354 790 790

Table 11 Result of Magic04




Cost Time 141000 ms 47391 ms 2541.86 ms
Accuracy 98.52% 98.31% 98.31%
Tree size 6441 8127 8127
Leave Size 3221 4064 4064

Table 12 Result of MiniBooNE

Algorithm SPRINT | CUDT | SPRINT | CUDT | SPRINT | CUDT
1. InitialDevice 7 1761.4 A 1686.25 -- 2106.58
2. CreateAttributeL.ists 9.4 29270.56 | 192.45
3. FindingSplitPoint 56.75 58.91 275.06 191.40 | 11022.46 | 1479.01
4. SplitAttributeL.ists 93.02 29.02 69.89 63.23 | 2973.29 | 726.78
5. Building phase (3+4) | 141.83 | 87.51 | 352.45 | 248.31 | 18120.47 | 2349.40
6. Total Time (2+3+4) 1861.55 | 124.78 | 409.78 257.72 | 47391.04 | 2541.86

Table 13 Comparison of SPRINT and CUDT
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Figure 17 Speedup of building classifier

4.4 Evaluation of Each Level

In this section, we will evaluate each level of building tree. Since create attribute lists
performs very nice speedup, we focus on building phase. Figure 19, 21, 23 show the
execution time of each level of CUDT and SPRINT: Figure 20, 22, 24 show the speed up of
each level. The best speedup is always on the first level. There are two reasons for the result.
First, the active data size is always big on the first level. A GPU device is composed with
many weak cores. Large data can exert the computation power of GPU. It is why CUDT is
always better than SPRINT on first level.

Second, increased nodes on each level increases the times of communication between CPU
and GPU. Since we only parallel the computation of creating a single node, the building phase
makes a tree iteratively. We need upload some data from GPU to CPU after finding the split
points. More nodes increase the data move between CPU and GPU. The following level’s

speedup is not as good as first level since the increased node size.
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Since above reasons, the upper levels have more good speed up than lower levels. There is a
performance turning point between CPU and GPU. Figure 25, 26, 27 shows the relationship
between node size and active data size. The blue line presents active data size. The red one is
the size of nodes on the level. We can see that the trend of execution time of CUDT is very
close to the size of node on each level. It shows that our system is sensitive with node sizes

instead data size.
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Chapter 5 Conclusion

Using GPU for problems with high density computation normally brings remarkable
improving of performance. Of course, these problems should be able to be parallelized. Many
machine learning algorithms has been developed on CUDA GPUs. They also show
performance improvement comparing to the implementation of CPU. Using CUDA for high
performance computation is more and more popular since it has high capacity/price and great
computing power. In this paper, we survey the background of existing decision tree algorithm
and CUDA programming model. We proposed a new parallel algorithm base on CUDA.
There are many parallel primitives, for instance the prefix-sum and parallel sorting, are used
in our algorithm. We parallel the computation and build tree in sequence. The basic ideal of

our choice is scalability.

The experiment result shows our performance improvement. Comparing to the famous java
open source project Weka. Our-CUDT has 5~55 time faster than Weka without significant
difference of accuracy. Comparing 10 our. best optimized SPRINT, our CUDT has maximum
18 times faster than SPRINT. However, the tree size of CUDT is greater than Weka. The
worst case of our evaluation is about 50% redundant nodes in our system on Magic04 data set.
Since the executed time is sensitive with tree size. Reducing tree size of our algorithm is

necessary.
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Chapter 6 Future Work

The following are our future work:

1. Reducing the tree size is necessary since the redundant nodes not only hurt performance
of building but also reduce the accuracy.

2. Handling miss value is very important issue. A miss value is a value of data is unable to
identify. Since, increase we aim at performance of building phase, we doesn’t solve
problem of miss value. The problem of miss value would be taken care in next step of
this project.

3. Implement more split criteria.

4. Parallel processing multiple nodes is a possible of our system since CUDA is a SIMT
architecture. More threads are launched would get more benefit from GPU. Since we use

a BFS algorithm in building phase.-It is possible to process multiple nodes concurrently.
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