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CUDT: 以 CUDA 為基礎之決策樹演算法 

 

學生：邱俊傑         指導教授：袁賢銘 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

 

分類(classification)在機器學習(Machine Learning)和資料探勘(Data mining)中是一個很重

要的議題。其中，決策樹被廣為運用在這個領域中，然而在現實生活中，資料多為高維

度且資料量非常鉅量，在大量的資料下，整個決策樹建立的時間大多消耗在計算上，也

就是這是一個運算密集的問題，也因此相當多的研究專注於加速分類模型的建立。 

 

圖形處理器(GPU)是專門為處理圖形而設計的，因為影像的處理具高度平行化的特性，

造就 GPGPU 的產生; 許多研究專注於使用 GPU 來處理非圖形處理的大量運算，其加速

的效果非常驚人，因此也有著極高的性價比。而 CUDA(Compute Unified Device 

Architecture)即為 NVIDIA 所提出的 GPGPU 的方案。 

 

本論文基於 NVIDIA’s CUDA 提出一個新的決策樹的演算法，在此架構中 CPU 負責流

程處理，而 GPU 負責處理大量資料的運算。我們與著名的資料探勘軟體 Weka 和 SPRINT

來做比較，結果顯示我們的 CUDT 比起 Weka 在效能上有 6~5x 倍的加速，較大的資料

上比起 SPRINT 我們在效能上有 18 倍的加速。 

 

 

關鍵詞：GPGPU、CUDA、Decision Tree、Classification 
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Abstract 

Classification is an important issue both in Machine Learning and Data Mining. Decision tree 

is one of the famous classification models. In the reality case, the dimension of data is high 

and the data size is huge. Building a decision in large data base cost much time in 

computation. It is a computationally expensive problem. 

 

GPU is a special design processor of graphic. The highly parallel features of graphic 

processing made today’s GPU architecture. GPGPU means use GPU to solve non-graphic 

problems which need amounts of computation power. Since the high performance and 

capacity/price ratio, many researches use GPU to process lots computation. Compute Unified 

Device Architecture (CUDA) is a GPGPU solution provided by NVIDIA. 

  

This paper provides a new parallel decision tree algorithm base on CUDA. The algorithm 

parallel computes building phase of decision tree. In our system, CPU is responsible for flow 

control and GPU is responsible for computation. We compare our system to the Weka-j48 

algorithm. The result shows out system is 6~5x times faster than Weka-j48. Compare with 

SPRINT on large data set, our CUDT has about 18 times speedup. 

 

關鍵詞：GPGPU、CUDA、Decision Tree、Classification 
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Chapter 1 Introduction 

1.1 Motivation 

Machine learning is a theory which concerned with constructing computer systems with the 

ability to learn by either experience or by studying instructions. This capability to learn results 

in a system that can continuously self improve and thereby offer increased efficiency and 

effectiveness. 

 

Machine learning algorithm is widely used in many domains. Usual tasks of machine learning 

algorithm includes classification, prediction, clustering and rule finding. They are used in 

computer graphic, image processing, intrusion detecting.  

 

Many machine learning has a common characteristic. They need scan data bases repeated to 

find patterns of the data. The process of analyzing high dimension and lots of data requires 

huge computation power and storage. Many process needs several hours even several days in 

reality data bases. The performance of machine learning algorithm is endless. 

 

Recently, the General-purpose computing on graphics processing units (GPGPU) has become 

popular since the its highly parallelization and powerful computing ability of float point. 

Some documents shows the computing power of GPUs can now vastly exceed a CPU [1][2]. 

More and more non-graphic applications which needed amounts of computation are employed 

on GPU. Since GPGPU became a tendency, NVIDIA provides a platform of GPGPU which 

called Compute Unified Device Architecture. Many applications and researches of machine 

learning use CUDA as their GPGPU platform. Such as SVM, K-NN, K-means has CUDA 

version. 
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The decision tree learning algorithm is a very famous learning model in classification. Many 

researches are focus on improving performance of decision tree [5][6][7]. However, those 

algorithms are base on a distributed system. The cost of those devices is high. 

 

In this paper, we will present detail in a parallelized decision tree algorithm base on CUDA. 

The goal is to evaluate the performance of the algorithm in terms of execution time, compared 

to CPU version decision tree.  

 

1.2 Objectives 

The following are our objectives: 

1. A parallel decision tree algorithm on GPUs 

2. High performance 

3. Binary tree 

4. Binary classification 

 

In our experience of CUDA programming, binary classification and binary branch is suiting 

for CUDA architecture. Therefore, our decision tree is a binary tree with binary classification. 

 

1.3 Outline of the Thesis 

The rest of the paper is organized as follows. Chapter 2 is background and related works. We 

will present the CUDA architecture and some important parallel primitives. The related works 

shows the recently researches of decision tree on GPUs. Chapter 3 is our system architecture. 

We will describe our system in detail in this chapter. Chapter 4 is the evaluation of our 

algorithm. The last part of the paper is the conclusion and future work. 
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Chapter 2 Background and Related Work 

2.1 Decision Tree 

Decision tree is a supervised learning algorithm commonly used in machine learning and data 

mining. In classification, the goal of decision tree is evaluating a data which contains several 

values called attributes to predict the class of data. An example is shown in Figure 1. 

 

 

Figure 1 Example of Decision Tree 

 

There are two kind of node in the tree. An internal node (oval-shaped) denotes a classified 

rule. The rule decides the path of tested data. A leaf node (triangle) denotes a result of 

classification. The leaf decides the target value of classification. 

 

The learning process of tree is shown on Table 1 [5]. The algorithm needs a set of data called 

Train Data. Each record contains several values which called feature to describe the data. The 
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building process would partition the train data into several subspaces in each internal node. 

For each subspace, treat as a new training set and recursive called process. The partition will 

be terminated if all data on the node are of the same class and the node would become a leaf.  

 

Partition (Data S) 

if ( all points in S are of the same class) then 

return; 

For each attribute A do 

evaluate splits on attribute A; 

Use best split found to partition S into S1 and S2; 

Partition(S1); 

Partition(S2); 

Initial call: Partition(TrainData) 

Table 1 Traditional Algorithm of Decision Tree [5]. 

  

 

2.2 GPU  

A GPU is a processor that processes 3D graphics rendering. The GPUs deliver very high 

performance of float-points processing since is that it is a highly parallel machine comprised 

by many cores. GPUs keep these processors busy by juggling thousands of parallel 

computational threads. In theory, GPUs are capable of performing any computation that can 

be mapped to the stream computing model. This model has been exploited for many 

algorithms such as ray-tracing, K-means, matrix multiplication, K-NN, SVM and the other 

applications. The comparison of computation power of float-point between CPU and GPU 

was depicted as Figure 2. 
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Figure 2 Floating-Point Operations per Second for the CPU and GPU [1]. 

 

The primary difference between CPU and GPU is that the GPU is specialized for rendering 

graphics, highly parallel computations. As illustrated by Figure 3, GPU devotes more 

transistors to data processing rather than data caching and flow control. GPU is more 

efficiently than CPU if a problem needs lots of computation and shit for parallel.  

 

 

Figure 3 The GPU Devotes More Transistors to Data Processing [1]. 
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2.3 Compute Unified Device Architecture (CUDA) 

CUDA is a general purpose parallel computing architecture including a new parallel 

programming model and an instruction set architecture. The CUDA programming model 

provides a C extended language for developers. The program will then run in thousands or 

millions of parallel invocations, or threads on device. The source files include a mix of host 

code runs on CPU and device code which runs on GPUs. When running a CUDA program, 

developers simply run the program on the host CPU. The CUDA driver automatically loads 

and executes the device programs on the GPU. 

 

In the CUDA programming model, the GPU is treated as a co-processor onto which an 

application running on a CPU can launch a massively parallel compute kernel. This is called 

massively threaded architecture. The CUDA function needs a configuration of the size of 

thread to be launch. The configuration set up a grid. A gird composes several blocks. The 

threads in the same block would have a serial ID called thread index. It can be used to help 

divide up work among the threads.  
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Figure 4 Architecture of CUDA 

 

Threads running on the GPU in the CUDA programming model have access to several 

memory regions including on chip memory, registers, shared memory, constant cache, texture 

cache, and off chip memory, global memory constant memory and texture memory. Figure 4 

shows each multi-processor can access on/off chip memory of the several types as following: 

 

Device storages consist of constant memory, texture memory, global memory, local memory 

and registers. Constant memory and texture memory are read-only caches of device memory 

and must be allocated before calling device functions. They are rare on device. The on chip 

caches, constant cache and texture cache, can have significant performance increasing of 

optimization of CUDA program. Global memory is the main storage of CUDA. It is a slower 

and biggest memory on device. Threads can read/write the global memory directly, but there 

is no cache supported for global memory. Register is the fastest storage of CUDA. The 

number of registers of a multi-processor would restrict the maximum number of concurrent 

executed threads. Shared memory is visible to threads which are runs on the same block. It is 
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a highly speed storage. The local memory space is not cached, the usage of local memory 

should be avoided since it is very slow. The overhead of accessing local memory is large. 

 

2.4 Prefix-sum 

Prefix-sum, as known as scan, is a very important building block of parallel algorithm. Many 

applications such as sorting, lexically compare strings, evaluated polynomial can be 

implemented by scan [13].  The element which is prefix-sum will be the result of operated 

all elements before current element. The following is the definition of prefix-sum: 

 

Given an array A of n elements 

                  

Given a binary operator ◎ 

Given I as identify of ◎ 

                                        

Table 2 Definition of Prefix-sum (Scan) [8][13]. 

 

Prefix-sum makes no sense in sequence algorithm but it is very important in parallel 

algorithms. Both CUDA SDK and CUDPP implement scan as an important library. The 

CUDPP Sorting algorithm is a high performance CUDA radix sort. The scan is the backbone 

of CUDPP sort, each round of sorting is building on prefix-sum [4]. Our system also uses the 

parallel prefix-sum of CUDPP in many components. 

 

2.5 Related Work 

We introduce two researches related with our research. The first one is a classical parallel 

decision tree algorithm “SPRINT”. The second is a random forests base on CUDA. 
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2.5.1 SPRINT: A Scalable Parallel Classifier for Data Mining 

SPRINT is a classical algorithm of parallel decision tree. The algorithm has several targets as 

follow:  

1. Reduced the time of building a decision tree 

2. Eliminated the barrier of memory size 

 

In order to achieve the two targets, they design a special data structure called attribute lists. 

The function of attribute list is isolated each attributes. It makes independence of each 

attribute. There are two advantages of the data structure. First, only need one-time sort for 

each attribute since the relationship between data and each feature is eliminated. The attribute 

can keep the order by one-time sorting.  

 

There are two importance issues of SPRINT. They are “How to finding a split point” and 

“How to splitting attributes”. SPRINT focus on the two parts of computation. The building 

process is in sequence. 

 

 

2.5.1.1 Data Structure 

The traditional decision tree algorithms need repeat sorting for continuous attributes. The 

sorting cause lots of unnecessary execution time. Many researches devoted in reducing the 

overhead of the sorting. SPRINT is a representative of such algorithms. In SPRINT, it only 

need a pass sorting for continuous attributes since its special data structures called“attribute 

list”. Since the attribute lists separate each attribute, SPRINT need other histograms to 

calculate the split criteria.  
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2.5.1.1.1 Attributes Lists 

The Figure 6 shows an example of an attribute list. The left one is an attribute list of 

continuous attribute, and the right one is an example of categorical attribute. An attribute list 

is composed of three arrays. The First array is the attribute value, the second is the class label 

of the record and the third is the index of record. It is obvious that each attribute list is 

independent, so we can sort each continuous attribute one time and doesn’t need extra sorting. 

In the split stage, each list will be split into two disjoint subspaces. Figure 7 shows an 

example of slitting. This mechanism reduces the overhead of sorting but increase the 

overhead in splitting the attribute lists. However, the new overhead is smaller compare to 

repeat sorting.  

 

Figure 5 Example of Attribute Lists [6]. 
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Figure 6 Example of Splitting Attribute List of SPRINT [6]. 

 

2.5.1.2 Finding Split point 

In order to finding the best split point, the algorithm needs to calculate the criteria of splitting. 

The classes distributed information is used to calculating the split criteria. SPRINT has two 

different approaches for each attributes. For continuous attribute, SPRINT uses two 

histograms, denoted as Cbelow and Cabove, to capture the class distribution of the attribute 

records at a given node. The Figure 8 shows an example of the two histograms. Cbelow records 

the sum of each class number before current data and Cabove records the sum of each class 

number after current data.  
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Figure 7 Cabove and Cbelow of SPRINT [6]. 

 

For categorical attribute, SPRINT uses a histogram called “count matrix”. Figure 9 shows an 

example of count matrix. Each entry of counting matrix records a class distributed of a 

different value of the attribute. After finishing the calculation of class distribution, we have all 

information of calculating split criteria. 

 

Figure 8 Count Matrix of SPRINT [6]. 

 

In parallel version SPRINT, it partitions the attribute lists into several subspace with the same 

size. Each processor calculates the local class distributed and exchange with each other to get 

the global class distributed. After getting the global class distributed, each processor 

calculates the local split criteria of each possible split points. For continuous attribute, the 
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possible split points of an attribute are each different value points. For categorical attribute, 

the number of possible split points is equal to the number of different value of the attribute. 

 

After finishing the local split criteria, each processor finds the local best point. In order to get 

the global best split point, processors communicate with each other to find the best spilt 

points. 

 

2.5.1.2 Splitting Attribute Lists 

SPRINT uses attribute lists for each attributes so it needs special mechanism for partition data. 

Since each attribute lists are partition into several subspaces to processors, different attribute 

lists may has different data on the processor. In order to keep the sorted value in order, 

SPRINT uses a global hash table to records the location of data on child nodes. All processors 

would communicate with each other to getting the global hash table. After finishing the hash 

table, each processor can split the local attribute lists into the attribute of child nodes. 

 

2.5.2 Random Forests for CUDA GPUs 

Random forest was first introduced by Len Breiman [12]. It is comprised by many decision 

trees. Each tree uses a randomized features selected. The train data is used a sampling process. 

Each tree uses the same data set to generate the training data with replacement. This has 

proven to be effective for large data sets with missing attributes values [12].  

 

The CUDA implemented random forests parallelize both building and classification. They use 

a CUDA thread to build a tree. All trees are built in parallel to each other but the trees 

themselves are built sequentially. However, this approach is not suit for large data sets if the 

data set is bigger than GPU memory size.  
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Chapter 3 System Architecture 

In the traditional decision tree building algorithm, continuous attributes cost lots of the 

execution time since it need repeat sorting when calculated the split criteria. In order to reduce 

the sorting time, many researches are focus on reduce the times of sorting. SPRINT is one of 

the classical algorithms which parallelize builds a decision tree. SPRINT aim at reducing the 

building time and eliminating the restriction of memory size. Since above, SPRINT uses 

special data structure and mechanism to solve the problem. Though our algorithm aims at the 

in-memory problem, we learn from SPRINT because it provides some features are suit for 

CUDA’s architecture. This chapter is organized as follows. Section 3.1 is an overview of our 

system. Section 3.2 is a flowchart of the system. We will describe in detail in section 3.3. 

 

3.1 System Overview 

Figure 10 shows an overview of our system. The blue part is the jobs of CPU and the green 

part is the jobs of GPU. The principle of our design is obvious that the CPU is responsible for 

the flow control, I/O handle and communication with graphic device, the GPU focuses on the 

computing intensive jobs. For instance, create attribute lists needs sorting each attribute lists, 

we put this part into device; the time of calculate split criteria and split attribute lists are in 

proportion to the data size and attribute number. 
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Figure 9 Jobs Dispatch of CUDT. 

 

 

Figure 10 Flowchart of CUDT 

 



16 

3.2 System Flowchart 

Comparing to the CudaRF, both training phase and the classification phase are parallelized in 

CudaRF. This approach shows a nice performance on smaller data sets. However, there is no 

guarantee that the device memory can store all trees. The algorithm needs backup the trees in 

host memory if the trees sizes are over the device memory. This will increase the overhead in 

memory between host and device. 

 

In our CUDT, we only focus on the phase of building trees. It’s more accurate to say that we 

focus on parallel processing the computing of splitting nodes. Although reducing the 

parallelism in building multiple trees, this policy increases the scalability and performance in 

huge data sets. 

 

The Figure 11 shows a flowchart of system. The following steps illustrate the main execution 

steps in our system. 

1. Training and testing data are loaded to host memory from disk. 

2. Initialization of the device includes query device information, allocation memory space 

and copy training data into device. 

3. In this step, the system will setup some parameters from user. For instance, the minimum 

numbers of data of a leaf, the maximum depth of the classifier. 

4. Create attribute lists in device. We will move each attribute to correspond position. After 

finishing the data movement, we would sort each attribute lists in device. 

5. The most important step of the system. Instead of using the recursive model of decision 

tree building algorithm, we use an iterative breadth first scheme for our system. Host 

plays a role of a manager. It is in charge of working flow of system. The computation 

intensive problem is send to device. Figure 12 shows a flowchart of building classifier. 
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6. The classification is performed on host. In other words, the process of classification is in 

sequence. 

7. The results are presented on host. 

 

We will now describe in more detail of the flowchart of building classifier. The system will 

loop until all data has belonged to leaf. For a segment of data, the system would check if all 

data of this segment has same class label, positive and negative in our system. Make a leaf 

node if all class of data is the same or processing the finding a split point of the segment. A 

leaf node denotes a result of classification. The data would be classified as the class of leaf 

node if it stops at this node in classifying. After find a candidate split point, we need to split 

the attribute list and make an internal node. An internal node could be thought as a rule which 

decides the path to classify the data.  

 

In the next section, we will describe in more detail of each system components, for instance, 

how the attribute list is created, i.e., step4, and how finding a candidate split point and 

splitting attribute lists in setp5. We also shows how apply those parallel primitives and how 

we employ the computation power of GPU to our system. 
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Figure 11 Flowchart of Building Phase 

 

3.3 System Components 

3.3.1 Load Data & Initial Device 

The execution starts with the host reading input data from disk. After loading data from disk, 

the system will allocated the space of the device memory to store data. The allocation 

includes entire training data, the space of attribute lists and some internal buffer inside of the 

device.  

  

3.3.2 Initial Classifier Parameters  

After finishing the allocation of device memory, we set the parameters of our CUDT. The 

parameters are user defined. For example, the minimum size of data of a leaf, the maximum 
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depth of the decision tree, the type of classification evaluation. (ex: cross validation, 

sampling…etc) 

 

3.3.3 Create Attribute Lists 

There are two parts of creating attribute lists. The first is moving the data to its corresponding 

list. After finishing the data movement, we need sorting each attribute lists. There is a 

well-known CUDA library which called CUDPP (CUDA Data Parallel Primitives Library). 

CUDPP offers a serial efficient library to developers. Several important algorithms are 

implemented in those libraries, for instance parallel prefix sum and parallel sorting. However 

the CUDPP has a wonderful parallel radix sort algorithm, the sorting algorithm is not suit for 

our system.  

 

The sorting algorithm of CUDPP can sort two 1-D arrays as input, the first is called key array 

and the second is called value array. The key array would be sorted and the element of value 

array would be changed its position according to its corresponding key element. It’s called a 

key value pair sorting. The sorting algorithm of CUDPP only supports a key value pair sorting, 

but we have two values to one key (key is the attribute value field, rid and class label are 

values ).  

 

According to above, we modify the CUDPP sorting algorithm into one key to two values. In 

order to get the best performance, we modified the sorting algorithm from the CTA level to 

public interface level [4]. 
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3.3.4 Classifier Building 

There are two important functions of building classifier. The first is “Finding Split point” 

which performs finding the candidate split point and attribute. The second is “Split Attribute 

Lists” which would be performed after finding a valid spit point. 

 

3.3.4.1 Finding a split point 

While growing the tree, the goal at each node is finding the “best” attribute and split point that 

“best” divided the train data. The value of a split point depends on how well it separates the 

classes distribution. There are many split criteria has been proposed in the pasts. We use gini 

index [14] as splitting criteria of our CUDT.  

 

At first, let’s consider how the sequential algorithm works. In the sequential version, the 

process need scan an attribute list to finish a class distributed table. After finishing the table, 

the process has all information to calculate the gini index and find the best split point of this 

attribute. However, it only processes one attribute. We need calculate all attribute lists and 

find the best among them.  

 

In our CUDT, we find the best split point in one pass; we process all attribute lists in one pass. 

The Table 6 shows the algorithm of finding a best split point. First, the system needs to record 

the class distribution into below table and save the number of total positive class. For 

continuous attribute, the candidate split points are mid-points between every two consecutive 

attribute values. It is obvious that there are many redundant elements of the below table, so 

the system need to remove unnecessary data from the histogram. The processing is called 

compact. 
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Table 4 shows the algorithm of compact. The compact needs a flag array and other arrays 

(payloads) as input. The value of flag element is “0” and “1”. “0” means the correlative 

payloads are true elements. True elements should be reserved in final output. The algorithm 

first scans the flag array to get the positions of true elements. After getting the position, the 

threads with true elements would put the elements into their positions. Each thread loops 

several times to put all payloads into correct address. The Figure 13 shows an example of 

compact. 

 

After getting valid split points of all attributes, the system will calculate the splitting criteria 

of each possible split points. Since the class distributed table has all class information of the 

data segment, we can calculate the gini index of each possible split points.  

 

The final step of this algorithm is finding the best point from the possible splitting points. v 

There are a parallel primitive called “Reduction”. A brief description of reduction is that 

many parallel threads generate a single result. The Figure 14 shows how reducing an array to 

finding a minimum value.  We use the CUDPP prefix-sum library of CTA level to 

implement the reduction. The algorithm of reduce is described in detail in Table 4.  

 

After finding the best split point, device will upload the information to host. After getting the 

data, host can setup the information of children of this node and splits the attribute lists. 
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Algorithm Compact  

Input:     A class distribution table C 

A flag array Flag (Records each possible splits point) 

An address array Addr (Records address of valid elements) 

 

1. Declare buffer[] 

2. For each element C[i] do in parallel 

3.       If ( Flag[i] == 1 ) 

4.            buffer[ Addr[i] ] = C[i] 

5. For each element buffer[i] do in parallel 

6.       C[i] = buffer[i] 

 

Table 3 Algorithm of Compact 

 



23 

 

Figure 12 Example of Compact 

 

 

 

Figure 13 Example of Reduce 
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Algorithm Reduce 

Input:     An evaluated array E 

Output:    The minimum value of E 

 

1. Declare n = sizeof(E) 

2. Declare buffer[] 

3. Declare Min 

4. While( n > 1 )  

5.      For each segment Ei of E do in parallel 

6.            buffer[i] = FindMinOf(Ei) 

7.      n = sizeof(buffer)  

8.      E = buffer 

9. Min = E[0] 

10. Return Min 

 

Table 4 Algorithm of Reduce 
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Algorithm   Finding Split Points  

Input:    A Set of attribute lists A which comprised by rid, value, label  

Output:   A winning attribute W 

          Index of split point X 

 

1. For each attribute list Ai do in parallel 

2.       Ci <- Scan(Ai.label)  

3.       For each data of Ai do in parallel 

4.            IsSplitPointFlagi[ j ] = ( Ai.valuej != Ai.valuej+1  ) ? 1 : 0  

5.       Addri<- Scan(IsSplitPointFlagi) 

6.       Compact( Ci , IsSplitPointFlagi , Addri ) 

7.       valuei<- SplitCriteria(Ci) 

8. Reduce(value) 

9. Return W, X 

 

Table 5 Algorithm of Finding Split Points 
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3.3.4.2 Splitting Attribute Lists 

In traditional algorithms of building decision tree, the split attribute lists doesn’t need extra 

work since all data are stored in order. It labels the split points of the data segment of this 

node. However, it’s not working in our system since we partition an attribute as a single list. 

The different lists may have different data in the same position. Since above, we need a extra 

operation of splitting lists. Although the system need some extra executing time in splitting 

attribute lists, CUDA architecture is suit for binary split. It reduces the overhead caused by 

splitting. 

 

The table 7 shows the algorithm of splitting the attribute lists. Partitioning the attribute list of 

the wining attribute is trivial. It just set the split index of wining split point of this attribute to 

node. Handling the winning attribute is very easy, however, we need a mapping between rid 

and sub-trees. The system uses a map table to store this mapping. A record is assigned to left 

partition if its value is smaller than the split point, or it will be assigned to right partition. 

After finishing split the winning attribute, the algorithm will keep work in the other attributes 

by the map table. As same with finding a split point, the system splits all attributes in one pass. 

A thread handles a record of an attribute list, finding the location of the record and store the 

result into a side array. We call a CUDPP parallel prefix-sum to calculate the side array. 

Moving all data of the segment into a buffer and performing a partition function. Figure 15 

shows an example of splitting attribute lists. 

 

The basic ideal of partition is partition an array into two disjoint subspaces. The Table 8 

shows Partition algorithm in detail. The algorithm will partition the input data into two 

subspaces according to the flag array. The element will be assigned to left group if its flag is 0, 

or it would be assigned to right group. The algorithm first complements flag array and prefix 

sum it to get a false array. The total number of the false elements is recorded. The next step of 
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the algorithm is calculating the index of each element after partitioning. The index of an 

element is calculated above if it is a false element. If it is a true element, the index will equal 

to “the original index – above index + total number of false elements”. The final step is 

moving the elements to his position of the partition. 

 

 

 

Algorithm   Split attribute lists  

Input:    Wining attribute W 

          An index of split point X 

          A Set of attribute lists A 

1. For each data dj in W do in parallel 

2.       Flag[ j ] = (index(dj) > X ) ? 0 : 1  

3. For each attribute list Ai do in parallel 

4.       if ( Ai != W ) 

5.           Partition(Ai , Flag) 

6. Return  

Table 6 Algorithm of Split Attribute Lists 
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Algorithm   Partition 

Input:    Target array A 

          A flag array with 0, 1 Flag 

          A Set of attribute lists A 

1. Declare max = sizeof(A) 

2. Declare buffer[max] 

3. Declare FalseArray[max] 

4. Declare TotalFalse 

5. Declare Address[max] 

6. For each element i in Flag[] do in parallel  

7.       buffer[i] = !Flag[i] 

8. FalseArray[] <- Scan(buffer[]) 

9. TotalFalse = InverFlag[max] + FalseArray[max] 

10. For each element i in buffer[] do in parallel  

11.        buffer[i] = i – FalseArray[i] + TotalFalse 

12.        Address[i] = (Flag[i] == 0) ? FalseArray[i] : buffer[i] 

13. For each element i in A[] do in parallel  

14.        buffer[i] = A[i] 

15.        A[Address[i]] = buffer[i] 

 

Table 7 Algorithm of Partition 
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Figure 14 Example of Split Attribute Lists 

 

 

3.4.5 Classification 

The tree is stored in host memory. The reason of constructing the classifier in host is the 

consideration of scalability. If the size of a tree is greater than the memory size of device, 

there are no ideal to maintain the tree in device memory. Our algorithm is designed for 

general cases. The system should be ease to scale in bigger data set. That is why we choice 

the policy. Since the tree is stored in host memory, the classification is processed in host side. 

Each data is tested in sequence. 
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Chapter 4 Evaluation 

In our experiment evaluation, we focus on performance issue. Our goal is to design a high 

performance decision tree algorithm. Although accuracy is not our focal point, our algorithm 

also shows the accuracy of our system is acceptable. There are two objects which we compare 

with. First is a well-know open source data mining tool which called Weka [15]. Weka 

includes many data mining algorithms both classification and clustering, for example, 

decision tree, support vector machine, k-means…etc. We choice the Weka-j48 which is a 

C4.5 algorithm implemented in Java. Second one is our best optimized sequential SPRINT.  

Since our CUDT is one kind of SPRINT on GPU, we also compare each components of 

CUDT with SPRINT. This chapter is organized as following. The section 4.1 and 4.2 shows 

the environment and data set. The section 4.3 shows the result of evaluations.  

 

4.1 Evaluation Environment 

We adopt Intel Core 2 Quad Q6600 and Geforce 9800GT for our computation platform. The 

configuration information is described as following. Our host is Intel Core 2 Quad Q6600 

which has 4 cores. Each core has a clock rate with 2.4GHz. Our device is GeForce 9800GT 

which has 14 multiprocessors which called MPs. A MP has 8 CUDA Cores. There are 112 

CUDA cores in total. The CUDA version is the version of the device driver. There are many 

new features in the newer version. The newest version of CUDA is 4.0RC. However, the 

features of CUDA 4.0 only impacts the recent generation of the GPU. There is no influence of 

our device. The compute capability means difference generation of CUDA GPUs [1][2]. 

Although our device is not as good as CPU, our system shows a good speed up on 9800GT.  
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Table 8 Evaluation Environment 

 

4.2 Data Sets   

 

 Spambase 
Magic Gamma 

Telescope 

MiniBooNE particle 

identification 

Number of 

Attribute 
58 11 51 

Number of Data 4601 19020 130065 

Attribute Type Continuous Continuous Continuous 

Number of Class 2 2 2 

Source UCI UCI UCI 

Table 9 Information of Data Sets 

 

Table 10 shows the information of the data sets. There are three data sets in our evaluation. 

The Spambase is a collection of mail data which has 57 continuous attributes of usually 

 CPU GPU 

Device Intel Core 2 Quad Q6600 GeForce 9800 GT (G92) 

Number of cores 4  14 x 8  

Clocks 2.4GHz 700 MHz 

Memory DDRII-800 DDRIII-900 

Memory Size 2 GB 512 MB 

OS Ubuntu 9.04(Linux 32 bit) 

Compute Capability -- 1.1 

CUDA Version -- 3.2 
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features of spam mail. A categorical attribute denotes spam and non-spam. The number of 

data is 4601. The second data set is Magic Gamma Telescope. It is a physical data of high 

energy gamma particles. There are 19020 data of this data set. Ten continuous attributes of 

each record. A categorical attribute denotes the data into two classes. The final data is also a 

physical data. It is used to distinguish electron neutrinos (signal) from muon neutrinos 

(background). It has 51 attributes and 130065 data. 

 

4.3 Evaluation of System 

Table 11, 12, 13 shows the result of three algorithms. The table includes total cost time of 

building classifier, the accuracy of the classifier and the size of classifier. We use cross 

validation to evaluating the accuracy of our system. It means that we use all train data as test 

data. It shows the accuracy of our system is very close to Weka-j48 and the execution time is 

short than the both Weka and SPRINT. The tree sizes are the same of SPRINT and CUDT 

since we use the same criteria of splitting. Figure 18 is the speedup of building classifier. 

 

In order to evaluating the speedup of each components of CUDT, we compare with SPRINT 

in detail. Table 14 shows the execution time of each component of CUDT and SPRINT. 

 

Figure 16 shows the speedup of each component. The time of building a tree is sum of finding 

split point and splitting the attribute lists. Since the speedup of creating attribute lists is too 

higher than other components, we put it on Figure 17. Total time is the sum of building phase 

and creating attribute lists. We can see that our system is good for large data set. 

 

The speedup of creating attribute lists is very good. It can achieve 14x times faster than 

SPRINT. However, the other components of our system are not as good as creating attribute 
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lists. The first reason is the size of tree. Not only the execution time but also the times of 

communication between CPU and GPU are proportional to the size of tree. Our system 

generates too many nodes that increase the execution time of building. The second reason is 

the size of data which really need calculated. The computation power of GPU is restricted by 

decreasing the size of active. The third reason is the increasing of nodes per level. More nodes 

makes more times of changing between CPU and GPU on each level. We will discuss those 

issues in the following sections. 

 

 

Table 10 Result of Spambase 

 

 

 

Table 11 Result of Magic04 
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Table 12 Result of MiniBooNE 

 

 

Data Sets  Spambase  Magic04  MiniBooNE  

Algorithm  SPRINT CUDT SPRINT CUDT SPRINT CUDT 

1. InitialDevice  -- 1761.4 -- 1686.25 -- 2106.58 

2. CreateAttributeLists  1719.71 37.27 57.33 9.4 29270.56 192.45 

3. FindingSplitPoint  56.75 58.91 275.06 191.40 11022.46 1479.01 

4. SplitAttributeLists  93.02 29.02 69.89 63.23 2973.29 726.78 

5. Building phase (3+4)  141.83 87.51 352.45 248.31 18120.47 2349.40 

6. Total Time (2+3+4)  1861.55 124.78 409.78 257.72 47391.04 2541.86 

Table 13 Comparison of SPRINT and CUDT 
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Figure 15 Speedup of each Component (1) 

 

 

Figure 16 Speedup of each Component (2) 
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Figure 17 Speedup of building classifier 

 

4.4 Evaluation of Each Level 

In this section, we will evaluate each level of building tree. Since create attribute lists 

performs very nice speedup, we focus on building phase. Figure 19, 21, 23 show the 

execution time of each level of CUDT and SPRINT. Figure 20, 22, 24 show the speed up of 

each level. The best speedup is always on the first level. There are two reasons for the result.  

First, the active data size is always big on the first level. A GPU device is composed with 

many weak cores. Large data can exert the computation power of GPU. It is why CUDT is 

always better than SPRINT on first level. 

Second, increased nodes on each level increases the times of communication between CPU 

and GPU. Since we only parallel the computation of creating a single node, the building phase 

makes a tree iteratively. We need upload some data from GPU to CPU after finding the split 

points. More nodes increase the data move between CPU and GPU. The following level’s 

speedup is not as good as first level since the increased node size. 
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Since above reasons, the upper levels have more good speed up than lower levels. There is a 

performance turning point between CPU and GPU. Figure 25, 26, 27 shows the relationship 

between node size and active data size. The blue line presents active data size. The red one is 

the size of nodes on the level. We can see that the trend of execution time of CUDT is very 

close to the size of node on each level. It shows that our system is sensitive with node sizes 

instead data size. 
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Figure 18 Execution Time of each Level on Spambase 

 

 

Figure 19 Speedup of Level of Spambase 
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Figure 20 Execution Time of each Level on Magic04 

 

 

 

Figure 21 Speedup of Level of Magic04 
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Figure 22 Execution Time of each Level on MiniBooNE 

 

 

 

Figure 23 Speedup of Level of MiniBooNE 
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Figure 24 Active Data Size v.s. Node Size on Spambase 

 

 

Figure 25 Active Data Size v.s. Node Size on Magic04 
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Figure 26 Active Data Size v.s. Node Size on MiniBooNE 
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Chapter 5 Conclusion 

Using GPU for problems with high density computation normally brings remarkable 

improving of performance. Of course, these problems should be able to be parallelized. Many 

machine learning algorithms has been developed on CUDA GPUs. They also show 

performance improvement comparing to the implementation of CPU. Using CUDA for high 

performance computation is more and more popular since it has high capacity/price and great 

computing power. In this paper, we survey the background of existing decision tree algorithm 

and CUDA programming model. We proposed a new parallel algorithm base on CUDA. 

There are many parallel primitives, for instance the prefix-sum and parallel sorting, are used 

in our algorithm. We parallel the computation and build tree in sequence. The basic ideal of 

our choice is scalability. 

 

The experiment result shows our performance improvement. Comparing to the famous java 

open source project Weka. Our CUDT has 5~55 time faster than Weka without significant 

difference of accuracy. Comparing to our best optimized SPRINT, our CUDT has maximum 

18 times faster than SPRINT. However, the tree size of CUDT is greater than Weka. The 

worst case of our evaluation is about 50% redundant nodes in our system on Magic04 data set. 

Since the executed time is sensitive with tree size. Reducing tree size of our algorithm is 

necessary. 
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Chapter 6 Future Work 

The following are our future work: 

1. Reducing the tree size is necessary since the redundant nodes not only hurt performance 

of building but also reduce the accuracy. 

2. Handling miss value is very important issue. A miss value is a value of data is unable to 

identify. Since, increase we aim at performance of building phase, we doesn’t solve 

problem of miss value. The problem of miss value would be taken care in next step of 

this project. 

3. Implement more split criteria.  

4. Parallel processing multiple nodes is a possible of our system since CUDA is a SIMT 

architecture. More threads are launched would get more benefit from GPU. Since we use 

a BFS algorithm in building phase. It is possible to process multiple nodes concurrently. 
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