-

FF 4 Sk TR B B GRNANdroid 5 b B BAcR
TR
DroidTracking : Detecting Sensitive Data Stealing on Android

with System-Wide Information Flow Tracking

41 iR Student : Hsiu-Tsun Su

= RIS R

o+
|

t R HET R Advisor : Dr. Shiuhpyng Shieh

3§ 4 ok R R 3 B HR] Android o b PR
TRt 3

T R ST e e R i

EREGHRN

YRR S T AR

!

Lookout Mobile Security(= £S5, HJ)}‘F’,L" Google Android Market I—UI% i 50 ffi
P FpjEs R EE RN DroidDream B @i =Y > DroidDream x2S & @ e YR £
ﬁfﬁifﬁ]ﬁﬁ%ﬁi‘ R et SESLE S ISR R | Android [=R R = oo
HAEHZY o B}y RIE PE;NF’T malware » =5 [(SR ARM CPU » $fHE | 55k g
FETE I O R FV L S 0 DroidTracking 53 477 50 Tk S B 40 HL Y
DroidTracking i’ 7 ?TEZ[H Android [F k] AR T‘ij/\fﬁ?Viﬁ PRRIFUST L P [ﬂ T
RS 5! DroidTracking 3670 17 72ak @t e Y24 R 'ﬁi’ﬁ? PR RO A
SUETRYEE > TSR i byte-level fuoi AR E R R K e AR EL - 25 e Sl
(4 F3EIMEGPS, IMEL IMSI A ICCHD + o - HfifI%ER 1 2= 85 srieaeh] - b
FlT > 25 {pu s & =1#L DroidDream o= HIEsH [Fd=C » 5] DroidTracking fft7 #7
i (R S e PR T BV AR -

DroidTracking : Detecting Sensitive Data Stealing on

Android with System-Wide Information Flow Tracking

Student: Hsiu-Tsun Su Advisor: Dr. Shiuhpyng Shieh

Department of Computer Science

National Chiao Tung University

Abstract

A large number of Android applications injected with DroidDream malware have been
found on the Google Android Market by Lookout Mobile Security. According to Lookout,
DroidDream sends a variety of sensitive data to a remote server. It is the first malware that
exploits vulnerabilities of the-Android operating system (Android OS). To cope with the
problem, we propose DroidTracking, a system-wide and fine-grained information flow
tracking system with emulated ARM CPU. DroidTracking analyzes the entire Android OS to
detect sensitive data stealing behaviors. _Unlike the conventional operating system call
tracking schemes, our VM-based, system-wide analysis can avoid malware interference, and
its fine-grained information flow tracking supports accurate byte-level system objects analysis.
DroidTracking has been implemented to track sensitive information leakage, such as GPS,
IMEI, IMSI and ICC-ID. To evaluate the DroidTracking, we collected a number of popular
Android applications infected with DroidDream. Our experiment showed that the infected

applications’s behaviors of stealing sensitive data can be accurately identified and detected.

Bl

I BGET S 4) 58 American ACM Distinguished Scientist Ui 7425868 T
T > 52 FYRERE RS S pVE o (R YRR R H I R
R (R PPV RRT IRV RrF - S I DS R - Y
fTjaet e F?" SR E = e T e g SHER Ep AR
BREIOTER - 15 e my Ry RUPri it e [g » R | % RGeSt
AT PR e
7+ F::r% 5 RS 1 B3 DSNS (Distributed System and Network Security) Lab i Jfﬁ it

PUEREF R ~ BTSRRI ~ [V ATT 0 e SO MREY Y R PR Y

FJ:EI%%{LT%' °
B PR AP R e L 8 F PR
S P S UL S PY R R F”&F T @ S

R Mashi 57 » A =y SR AT R Dot - i'“mwuﬂ’ lSREES R

L= ”JWl%r%ﬁkF’lﬂ?&@*ﬁ%fﬁ”‘F FIESEFSE> 5 P =5 2 b BRI
FF”EIE “'5Ff‘”¢ U Pk psRE lJ—E}j’EIfJ,%EIE:T{‘J_]gﬂj& fg\j%ﬁ;:sﬁi,g °

T3} Sky ~ Michael ~ Pokai ~ Vic &%= » &% Fﬁ—ﬁm‘p J_‘]‘Tu?ﬂ B AR AT S
TR ﬁ?{[l’?l’?%@ﬁfl%ﬁlﬁ@ﬁ? TRLAY | “'Fh?i/ EH PR O RLAF R R o

B E R S R Ry Ry Hﬁﬁ]@ > RS L R S J;#JJ
R PVEE IR~ ZDRIFIA O o g g pIa s e e e s
AT o SRR 1 9 R 5038 5 4D 752 4 DSNS Lab
= 3= [R

i BIIFGORRRSIVE o IR pusas » BRI R sy
AR AT =55 [ERLRL P fﬁlﬁ%%ﬁﬁﬁ%ﬂ SR RS RS)
PR > F B Ty 2 SRR B -

£

Table of Content

B O et |
AADSTTACT. ...t bbb i
L AT iii
TabIe OF CONTENT ... et 1\
LISE OF FIQUIES. ...ttt Vi
LISt OF TADIES ..o bt vii
Chapter 1 INTrOQUCTIONc.coiiiieieee e 1
1.1 CONEPIDULION .ot 3
1.2 SYNOPSIS c.eitiiiteeite ettt ettt ettt et a et e e e reenreereanes 4
Chapter 2 Related WOTK............ooviiieie e i ene e ste et seesaeeste e et saeeaesneesreeneans 5
2.1 Information Flow Tracking (IFT)icitiieininicee e 5
2.1.1 Fine-grained DIFT ... oot e 5
2.1.2 Coarse-grainet DIFT i it ccieiiimi s i 7
2.2 Manifest-based ACCESS CONIOL. i i ettt it 7
2.3 USEI QWAIEINESS. ... cxeirkenrsubacdasssan ieensan b eatheneshdmine s essesseesseessesseesseesnesseenneennennes 8
Chapter 3 APProach OVEIVIEW ... i sasfettans ettt 10
3.1 ChAlBNGES ..ot e e e 10
3.2 TWO-Phase SChEMEccviiiiiiee et 11
3.3 SYStEM AIChITECIUIE ..o s 12
Chapter 4 DroidTraCKiNgc.civeieeieieeie et sreeene e 15
4.1 SysStem FIOW Chart........coooiiiiiiieiie e 15
4.2 INSrUCTION ANAIYSIS ..o 16
4.3 Information FIOW EXPreSSIONcccooceriririiiiiiiiiiese s 17
4.4 Information FIOW ANAIYSIScccooiiiiiiiiiiiiiceeee e 19
441 Data-processing Instruction with Register Operand.............cccceevnee. 21
4.4.2 Data-processing Instruction with Shifter Operandccccevnee. 21
443 Data-processing Instruction with Immediate Operand...................... 22
44.4 MUITIPIY oo 22
Chapter 5 EVAIUALIONcooiiiiieiee e 24
5.1 Experiment ENVIFONMENTcccviiieiiieiie ittt 24
5.2 Self-programmed C and JAVA ... s 25

5.3
Chapter 6

Reference

DIOIADICAIM ..ottt e e e e e e e e et e e e e e e e e e e eneeees

CONCIUSTON ettt e e e e e e e e et e e e e e e e e e e aeeees

Figure 3.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

Figure 5.

List of Figures

1 SYStemM ATCNITECIUIE ... 11
1 System FIOW Chart........oooo i 14
2 TAINt METATALA.cviviieiiiici e 17
SAND RO, RL, R2 .ot 20
4 MOV RO, RL, LSRHLGceiiiieieeeee e 20
5ADD RO, R1, OX11223344 ..ot 20
6 MOV RO, OX11223344 ...ttt 20
TMULRO, RL R2 ..t 20
1 BOWHING TIME...oiiiiicccee et 29

vi

List of Tables

Table 4. 1 Information FIOW EXPreSSION.........cccveiveiieiieieaie e seesie e e esie e 19
Table 5. 1 Current Android DiStribUtion ..., 25
Table 5. 2 Applications infected by DroidDreamccccoccvvvevvevesiieneese e, 26
Table 5. 3 Instruction Analysis — Bowling TIMe..........ccccvveveiievvere s 28
Table 5. 4 Memory Working Set — Bowling TIMecccccevvieninininnsiceeee, 28

vii

Chapter 1

Introduction

DroidDream malware becomes Android Market nightmare. On 1% March, 2011,
Lookout Mobile Security [4] finds that there are more than fifty Android Market
applications have been implanted with malware called DroidDream. These popular
applications have been stolen, encrypted, garbled and republished by someone.
Google has removed these infected applications from the Google Android Market.
Google also issues a remote kill to applications which are injected with DroidDream
from infected Android smart phones. We are_not trying to be sensationalist. Android
malware poses serious threats €0 user privacy. In order to know something about
DroidDream, we study reference reports written by Lookout Mobile Security.
According to Lookout researches, DroidDream @ steals mobile identification
information, including IMEI (International Mobile Equipment Identity Number) and
IMSI (International Mobile Equipment Subscriber Identity Number). In our opinion,
malware would be interested in SMS (Short Message Service), GPS (Global
Positioning System) and other files in the future. DroidDream is a warning to arouse
our attention to mobile security.

Android malware have been able to invade the Android OS for concealment.
Malware authors republish appealing applications with malicious DroidDream code.
Garbled documentations and manifests (installation list) are always used to induce
users to install republished and malicious applications. These malware-infested and
republished malicious applications silently download other applications, and silently
send information to a remote server. The thorniest problem is that malware attacks

Linux kernel directly to get root access in Android OS. In order to do malicious

1

behaviors, malware root an Android using exploits named ‘“exploid” and
“rageagainstthecage”. It helps malware to totally control whole Android OS. These
problems come from vulnerabilities derived from the Linux file system YAFFS2 (Yet
Another Flash File System 2). It helps malicious applications to steal user information
and hide their malicious behaviors. There comes several challenges, including: a)
malware could affect the integrity of the Android OS, so that we could not believe
messages retrieved from Android OS libraries, b) malware could affect the accuracy
of analysis tools developed in the Android OS environment, ¢) An Android OS
manifest (installation list) could not really limit behaviors of specific applications, so
that related analysis techniques based on manifest mechanism could be circumvented
by malware with exploit ability.

Users could download third-party. Android. applications from the Internet and
Android Markets. It is noteworthy that more and more Android Markets are
established by telecommunications industry and private agency. In view of today’s
sophisticated malware technology;. but Android-Markets impose no checking on
published applications uploaded by programmers. Users could only know manifest
about behaviors of downloaded application. However, DroidTracking supports an
automatic checking mechanism to reveal behaviors that steal sensitive information
being monitored. Our proposed scheme shows that DroidTracking proposes an
fine-grained and system-wide information flow tracking on the Android. Even if
malicious applications exploit the Android OS, destroy integrity of Android libraries
and download third-party modules, DroidTracking could keep information flow
tracking accurate. Because the Android Emulator provides the hardware level
simulation, DroidTracking is implemented on the Android Emulator to prevent our
scheme from malicious application attacks. In order to achieve fine-grained

information flow tracking and fine-grained object analysis, we append an information
2

flow tracking to the emulated ARM CPU. Therefore, the modified and the emulated
ARM CPU can trace each instruction execution, memory access and register access.
Furthermore, we record byte-level granularity status of memory and registers after
each instruction execution. Our scheme could help program analysts to reveal
behaviors of stealing sensitive information. Actually, DroidTracking could benefit end
users and Android Markets.

In order to prevent Android users from sensitive data leakage attacks, related
work such as information flow tracking [8, 9, 10, 11, 12, 13], manifest-based access
control [14, 15, 16] and user awareness [19] have been proposed to solve the
problems. Coarse-grained information tracking [13] find behaviors about information
leakage caused by malware. Howeyer, their scope is limited inside Java application
and Android libraries. Because of static analysis used to analyze Android libraries,
they could not trace information flow of downloaded unknown malware modules.
According to manifest (installation/list), access control provides the right application
with the right access to information.. Although access permissions are granted by user,
user is always the weakest link of computer security. User could not pay attention to
garbled and complicated documentations, but grants it all. The worst of all, manifest
could not prevent permissions from abusing. User awareness reminds user to
understand the information is being used. Generally speaking, customized hardware
device such as camera light is designed for Android users to know camera is in used.
User awareness does not apply to a multi-resource Android phone. These limitations
make related work inapplicable in advanced Android malware such as DroidDream,

since DroidDream could totally control whole Android OS.

1.1 Contribution

This paper present DroidTracking, a fine-grained and system-wide information
flow tracking. We equip the Android emulator with system-wide instruction tracking,
byte-granularity memory tracking and byte-granularity register tracking. We do
system-wide instruction tracking to prevent DroidTracking from malicious
interference. Even if the Android OS is infected by malware, analysis results of
DroidTracking are still correct. Our evaluation shows that DroidTracking exactly
reveals behaviors of DroidDream. By putting DroidDream under observation, more
than two monitored resources are stolen through packet sending by DroidDream. We
highlight our contributions in this paper below.

® Behaviors of stealing information are modeled and revealed with

byte-granularity object analysis. Each .instruction execution of the target
application is monitored by DroidTracking.

® Malware cannot touch our modules since it locates below the emulator.

DroidTracking is “uncompromisable. WWe make our claim according to
state-of-the-art Android malware.

® DroidTracking supports a comprehensive monitoring. The scope of our

scheme comprehends not only Java applications but also whole Android

machine.

1.2 Synopsis

The rest of this paper is organized as follows. Chapter 2 discusses previous work
related to information flow tracking and information protection. Chapter 3 provides a
high-level overview of DroidTracking. Chapter 4 describes the system design of
DroidTracking and instruction design of ARM architecture. Chapter 5 presents

analysis result of our experiments. Chapter 6 summarizes and concludes this paper.

Chapter 2

Related Work

Ubiquitous mobile devices become the part of life. A mobile operating system
includes i0OS, Android OS, web OS, Windows Mobile, or Symbian OS that controls a
mobile device or information appliance. Mobile security becomes the important
concern. There are approaches to prevent sensitive information from being stolen by
malware. The first one is information flow tracking [8, 9, 10, 11, 12, 13] to track
sensitive information flowing in the Android operating system. Sensitive information
is labeled as a specific identity label. By tracking the taint label, we could reveal
behaviors about information leakage cause by malware. It helps users to know what
process accesses the sensitive: information and where. the sensitive information is
flowing. Importantly, it reveals that the sensitive information leaves the system at a
taint sink. The second one is manifest-based access control [14, 15, 16]. To get the
right access to information, programmer has to-claim their permission request in the
manifest (installation list). When users go to install an application, there is a manifest
to be granted by users. It helps users to understand what the application does. A
manifest provides the right application with the right access to information. The third
one is user awareness mechanism. It protects users from unnecessary use of
microphone, camera, Bluetooth, and other sensors. Customized hardware device such
as camera light is used to remind users of camera in use. This technique is widely

used on small hardware device.
2.1 Information Flow Tracking (IFT)

Information flow tracking means that it tracks information flowing between

5

application-level objects (e.g., function parameters, libraries and messages passing
between applications) or system-level objects (e.g., registers, memory, and 1/O events);
furthermore, dynamic information flow tracks running process, whereas static

information flow tracks application with static source code analysis.

2.1.1 Fine-grained DIFT

Fine-grained dynamic information flow tracking (Fine-grained DIFT) tracks
sensitive information by analyzing system-wide information [8, 9, 10, 11, 12]. By
using hardware extensions and emulation environments supports, fine-grained DIFT
analyzes whole system (e.g., memory, registers, instruction set, and emulated
hardware device) and operating system (e.g., applications, user libraries, and kernel
modules). The approach identifies the sensitive . information with a taint source.
Fine-grained DIFT tracks the taint source at the instruction translation level. By
analyzing instruction set, accurate tainted data is propagated and recorded by
fine-grained DIFT system. Finally, fine-grained DIFT checks tainted data when
information is transmitted to the remote server by the network interface card. These
related works are designed for x86 architecture. Of course x86-based design concepts
cannot all be used to ARM-based DIFT. According to our survey, there is the related
work [13] for the first time proposed some ARM-based DIFT concepts not being
implemented yet. The concepts are not enough, because ARM-based smartphone has
particular architecture (e.g., ARM instruction set, Thumb instruction set, coprocessor,
register banking, addressing mode and so on), sensors (e.g., camera, GPS, microphone
and so on) and variety of sensitive information (e.g., IMEI, IMSI, ICC-ID and so on)
to be solved. Finally, we propose total solution to address issues on Android operating

system.

2.1.2 Coarse-grained DIFT

Coarse-grained dynamic information flow tracking (Coarse-grained DIFT) tracks
sensitive information inside the application [13]. Coarse-grained DIFT analyzes
whole operating system, including applications, user libraries and kernel modules
without hardware extensions and emulation environments supports. The approach
identifies the sensitive information with a taint source also. However, coarse-grained
DIFT proposes the multi-level (message-level, variable-level, method-level and
file-level) approaches to track taint source in a physical smartphone. According to our
knowledge, TaintDroid [13] proposes the most complete solution to solve the taint
propagation in many issues, including. Android-specific inter-process communication
(IPC), Dalvik VM interpreter. and native-methods: The most important of all,
TaintDroid minimizes a runtime overhead to .make realtime analysis real.
Unfortunately, the approach relies on native libraries’ integrity, taint interface libraries’
integrity and firmware’s integrity. In our comment, TaintDroid could not prevent their
scheme from malicious attacks caused ‘by" DroidDream, because DroidDream can

attack integrity of the Android OS.

2.2 Manifest-based Access Control

Manifest-based access control supports an application-level permission
mechanism. The permission mechanism provides the right application with the right
access to information. In order to access confidential information and device service
(e.g., phone call, SMS message, camera and GPS, etc.), Android application lists the
manifest (install list) to acquire user permission. During the period of installing an

Android application, users could check the manifest to grant it all or not. Nevertheless,

users cannot grant partial permission also, and refuse unneeded permission that can be
abused.

Related works [14, 15, 16] devote to enhance manifest-based access control
mechanism. Kirin [15] and Saint [14] propose the enhanced permission mechanism to
prevent sensitive information from being accessed. These two systems propose a
concept of selective Android permissions. The goal enables users to refuse unwanted
permissions that can be maliciously used. The worst of all, user is the weakest link of
computer security. In addition, shared user-ID is another problem. If an Android
application A declares a shared user-1D permission to require the other application B’s
permission, it is difficult to predict behaviors of the application A actually. For
example, application A has an “INTERNET”_ and ‘“shared B” permission, and
application B has a “GPS” permission. Application A has ability to transmit GPS to
the Internet therefore.

In our comments, manifest could-not prevent permission from being abused, and
could not show what the application.actually has the behaviors at runtime. In addition,
by using a garbled documentation or a malware-downloaded application, DroidDream
is able with the root ability to read sensitive information. Manifest-based access

control could not have mediation methods to solve problems.

2.3 User awareness

In order to increase the interaction between user and mobile phone, mobile
applications have ability to access sensors such as GPS, camera, and microphone. By
confirming access permission during the period of installing mobile applications,
mobile applications could collect sensitive data via sensors. Our related work [19]

focuses on the problem that sensors may be maliciously used without user awareness.

Therefore, there is an idea related work [19] propose to protect users from unwanted
use of sensors. By appending hardware device warning to a mobile phone, it reminds
users that mobile resources are in used. For example, camera-used LED indicator
lights up if camera is in used to capture video data. However, the Android OS has
many hardware devices and information (e.g., IMEI, IMSI, SMS, address book, and
etc.). Especially, Android malware is interested in information, but related work is not
designed for widespread information. Because of DroidDream has the root ability to
destroy integrity of the Android OS, user awareness mechanism could not prevent

itself from malicious attacks.

Chapter 3

Approach Overview

By appending an information flow to emulated ARM CPU, we could know how
Android applications steal sensitive information. In addition, it is important to know
what information is stolen by malicious application, and what device is used to

transmit the sensitive data.
3.1 Challenges

To understand these problems, there are several challenges we present below.

a) Track the sensitive resources which are read and written to the memory space.
Therefore, we could-tag the specific memory space as a dirty space (tainted
space). After each executed instruction, we track-the whole memory and keep
a record of memory changes affected by the dirty space.

b) Track the memory space which is read and transmit to remote server by
hardware device. We should also check the memory space to know whether
the memory space is tagged as a dirty space. If the memory space is tagged as
a dirty space, it is the fact that sensitive resources are transmitted to the
network.

c) Process identification, register banking and instruction analysis are problems
to be discussed. These problems help us to know which process has the
malicious behaviors. In addition, it is certainly necessary to track the status of
register and memory after each executed instruction.

The challenges are proposed above. The rest of this section demonstrates that

proposed approaches solve the problems in detail.

10

3.2 Two-phase Scheme

In order to analyze whole Android OS, there are two phases we propose below.
The first phase, we modify emulated hardware devices on the Android emulator to
track triggered events including Taint Source events and Taint Sink events. For
example, character device is a virtual device used for communication with the shell
command (Android Emulator users could use telnet protocol to connect to the
Android OS for shell commands). Sensitive information such as GPS and SMS are
sent to the Android OS through emulated character devices. By modifying emulated
character devices, we could start to track these monitored resources and handle Taint
Source events. By modifying network:interface card (NIC), there is a packet sending
events occurred to be monitored by DroidTracking. Therefore, the challenge a) and
challenge b) are overcome ‘with-modified emulated hardware devices. Of course,
information flow tracking system helps us to know what information flows from the
Taint Source module to the Taint Sink module during the period of running Android
OS. The Chapter 4 will demonstrate the information flow tracking in detail. The
second phase, we analyze ARM or Thumb instructions to take down behaviors of
whole Android OS including Android applications, Android libraries and the
Android-based Linux kernel . In order to analyze system-wide behaviors of the
Android OS, there are Taint Metadata modules including memory metadata and
register metadata to be used to keep track of memory status and register status. To
acquire physical memory access space of instructions, we modify the memory
management unit (MMU) of the Android Emulator to record memory access. Because
of unique visible register issue of ARM architecture, re-banked register with CPU
state for instruction analysis is necessary. We do re-bank registers during the

instruction translation time. Additionally, a process identification issue is applied to
11

Guest System
(Android

Emulator)

{ Emulated HW
U MMUL NIC

Taint Engine

S
S

\ >

Figure 3.1: System Architecture

identify the process having the malicious _behaviors. We trace the context switch to

identify the process with the Linux-based Process ID (PID).
3.3 System Architecture

In this paragraph, we show our proposed system architecture and system
components with detail demonstration below.

Figure 3.1 presents our system implemented on the Android Emulator. The
Android Emulator emulates lots of physical Android hardware devices. By modifying
these emulated hardware devices, we finally carry out DroidTracking to track
information flows of sensitive data on the Android OS. There are CPU, MMU, NIC

module are enhanced on the Android Emulator. By modifying CPU module,

12

DroidTracking analyzes instruction execution so that memory access and register
access could be tracked. By modifying memory management unit (MMU) module,
DroidTracking acquires physical memory address access of the analyzed instruction.
By modifying network interface card (NIC) module, DroidTracking keeps the track of
each packet sending event. NIC module helps us to keep the track of the memory
spaces sent by NIC. The most of important, NIC module checks the memory spaces to
reveal behaviors of stealing sensitive data.

There are three modules Taint Metadata, Taint Source and Taint Sink in our core
Taint Engine. In order to achieve fine-grained and system-wide information flow
tracking, Taint Metadata module records the byte-granularity objects in system. Under
the state-of-the-art related work, byte-granularity object analysis is the most effective
and fine-grained as we know. Taint Source module is set of monitored resource. There
are ICC-ID (Integrated Circuit ‘Card Identifier), GPS (Global Positioning System),
IMEI (International Mobile”_Equipment “Identity Number) and IMSI (International
Mobile Subscriber Identity) in the Taint Source module at present. In the future, we
will add more and more monitored resources to the set of Taint Source module. Taint
Sink module is used to record specific triggered events. At present, we only track the
packet sending events to reveal malicious behaviors of stealing sensitive data.

At the end of this section, we demonstrate the system control flow of our
proposed system to readers. First of all, DroidTracking uses Taint Source module to
know where sensitive data is written to the memory space. DroidTracking marks this
memory space as a dirty memory space then. At the following steps, DroidTracking
tracks the information flow during the period of program execution, and propagates
the taint tags in Taint Metadata module. Therefore, Taint Metadata components is
frequently updated by Taint Engine because of lots of executed instructions. The last,

Taint Sink module is the most important protector to reveal behaviors of stealing
13

sensitive data by checking status of memory space which emulated hardware device
reads. Of course DroidTracking also indicates the malicious process stealing sensitive

data.

14

Chapter 4

DroidTracking

There are two-phase scheme to monitor whole Android OS. The first one is
triggered events analysis. The second one is system-wide and fine-grained

information flow tracking. Figure 4.1 shows our proposed flow chart.

4.1 System Flow Chart

Guest Emulated Hardware _
Taint Metadata
Instruction/Analysis
, Updat
Android OS iInstruction Register Memory M paate
fmmmm———— N . . etadata
. Execution Banking Accessing

A Y
Application

N
\J
Register
Metadata
= .
| I -
1 I
H 1
I i
{[Android |1
: Librar !
H [
H 1
1 I
1 I
! i
! 1

Effects
Analysis

. A

Triggered

Events Taint Source

[—]ﬁ
Kernel LY Update
GPS IMEI Metadata

Events
Analysis

Taint Sink Check
f— Y, Metadata
q Packet Sending H
1

Figure 4.1: System Flow Chart
The left side of Figure 4.1 is monitored guest environment. Our scheme do not
limit the scope inside Java application; moreover, it monitors whole Android OS
including Java applications, Android libraries, Android-based Linux kernel and
downloaded unknown malware modules. By comprehensive monitoring, it prevents

our scheme from unknown malicious attacks. The right side of Figure 4.2 is

15

DroidTracking system based on Android Emulator. In order to achieve fine-grained
object analysis, we track system-wide objects including memory and register instead
of Java parameter, library parameter, and cross-application message. we propose a
Taint Metadata in Figure 4.2 to keep track of byte-granularity memory status and
byte-granularity register status. Memory Metadata could record whole Android
memory space emulated by the Android Emulator. Register Metadata could record all
general purpose registers of the ARM architecture. On the other hand, the rest
components of DroidTracking maintain the same Taint Metadata keeping track of
system-wide information. Taint Source component is used to identify what the
sensitive information is read to memory. By updating Taint Metadata, Taint Source
component keeps track of memory address.contaminated by sensitive data. To detect
behaviors of stealing sensitive.data, Taint Sink:-module distinguishes status of memory
address by checking Taint Metadata. In addition, Taint Metadata is frequently updated
by Instruction Analysis module salso “because of /changes after each executed

instruction.

4.2 Instruction Analysis

We use Register Banking, Memory Accessing and Effects Analysis components
to analyze each ARM or Thumb instruction. By the way, we do not analyze Thumb-1I
instructions because of the Android Emulator version not supported. It helps us to
realize how instructions make an impact on the Android OS. For example, an
instruction could move a register/memory/immediate object to a register/memory
object. Even if CPU processes a data processing instruction such as ADD, MUL and
MOV, results of the instruction execution are still a data movement from source

objects to destination objects. Therefore, DroidTracking analyzes the relationship

16

between source objects and destination objects to model behaviors of an instruction.
By updating a common Taint Metadata after each executed instruction, it helps us to
record the execution process of the executed Android OS including Android
application, Android libraries, Android-based Linux kernel and downloaded unknown
malicious module. Finally, we make a simple conclusion. Taint Source module reveals
what the monitored resource is accessed to the Android System. Instruction Analysis
module tracks the executed process of whole Android OS system. Taint Sink module

reveals what the monitored resource is stolen and transmitted to the Internet.

4.3 Information Flow Expression

We begin this section withta rigorous-expression of information flow and
granularity of objects. If a destination-object computed by CPU is affected by a source
object, there is an information flow from the source object to the destination object.
By the information flow tracking system we proposed; it is possible to comprehend
behaviors of the whole Android OS through instruction analysis.

Before our introduction to instruction analysis, we demonstrate object granularity
design to achieve our goal of fine-grained analysis. In order to achieve
byte-granularity object analysis, a study of the ARM instruction set architecture is
carried out. Because an instruction operand could be a register, memory or immediate
value, these operands should be considered as analyzed objects. Nevertheless, a
destination operand of an ARM instruction cannot be an immediate value. Therefore,
an immediate value cannot be affected by source objects. There is a Taint Metadata to
track the status of each byte-granularity memory and the status of each
byte-granularity register only. Figure 4.2 shows that the third and the forth bytes of

Register 1 (R1) are contaminated by IMSI information, but the first and the second

17

Taint Metadata

Memory Map Register Map

]
1] B s

o
i

Figure 4.2: Taint Metadata
bytes of R1 are not contaminated.

By analyzing the ARM instruction set architecture, there are five standard effects
we defined could describe that source objects make an impact on destination objects
(operands). The first one is ‘one-to-one effect that each byte of source object affects
one corresponding byte of destination object. The second one is a mixed effect that
each byte of source object affects all bytes of the destination object. The third one is
an assigning effect that the destination object is contaminated if the source object is
contaminated. The forth one is an appending effect that the destination object is
contaminated if the source object or the destination object is contaminated. The fifth
one is a clear effect that the destination object is not considered to be contaminated

with sensitive information.

18

Table 4.1: Information Flow Expression

Information Flow

Category Notation Algorithm Instruction Expression
(DST exp SRC)
One-to-One Fori=0to3
Assigning <- DST[i] = SRC] MOV RO, R1 RO[,2,1,0] <-R1[,2,1,0]
One-to-One Fori=0to 3 RO[3,2,1,0] <- R1[3,2,1,0]
<+ AND RO, R1, R2
Appending DSTIi] |= SRC[i] RO[3,2,1,0] <+ R2[3,2,1,0]
Fori=0to3
Mixed If SRC[i] ==dirty RO[*] <<+ R1[3,2,1,0]
+ MUL RO, R1, R2
Appending =< forj=0to3 P R RO[*] <<+ R2[3,2,1,0]
DST[j] = dirty
Fori=0to 3
Cl <<0 MOV RO, #9855 RO[*] <<0
ear DST[i] = clear [l

Table 4.1 shows expression of information flows. There are few examples shown
in this paragraph. The “MOV” instruction -has an one-to-one assigning effect on its
destination operand. If each byte of the ‘source .object is contaminated, the
corresponding byte of the destination object is contaminated. The “ADD” instruction
moves the sum of two source operands-to the destination operand. The first source
operand has an one-to-one assigning effect on its destination operand. The second
source operand has an one-to-one appending effect on its destination operand, because
it cannot change the status of bytes contaminated by the first source operand. The
“MUL” instruction moves the product of two source operands to the destination
operand. Because a computed result of the “MUL” instruction has a byte-mixed
computation, we evaluate the result with a rough estimate. As a result, the product of

two source operands has a mixed appending effect on the destination operand.

4.4 Information Flow Analysis

The instruction analysis system is quite a help to know any change of the

Android system. By checking and updating the Taint Metadata, the instruction

19

1ST 2ND 3RD 4TH 1ST 2ND 3RD 4TH

T 1K HEEN R

R1 >> 16 v.y
AND

BEEE R
.... R2 MOV RO, R1

¥ BEEENE =
BEEEr BEEN R

Figure 4.3: AND RO, R1, R2 Figure 4.4: MOV RO, R1, LSR#16

15T 9ND R0 4TH I I I I R0
I I I I R1 0t 22 33 4 immediat

f Oxt1 22 33 44 MOVRO. 1223

18T D 3RD 4TH

111 JlE

Figure 4.5: ADD RO, R1, 0x11223344 Figure 4.6: MOV RO, 0x11223344

1ST 2ND 3ZRD 4TH
AN N R

s« HE NN R
HEEEE

HEEEN

HENEBR
+ BEEEN

HENEN

Figure 4.7: MUL RO, R1, R2

20

analysis system records the changes of a whole execution process. A process of
updating metadata is also known as taint propagation. In other words, there is tainted
information propagated (or updated) to destination objects. In order to do taint
propagation, we are necessary to study the ARM instruction set architecture. We now

discuss topics to understand specific instruction set architecture.

4.4.1 Data-processing Instruction with Register Operand

Figure 4.3 shows an example. The third and the fourth bytes of RO are
contaminated by R1, because R1 has an one-to-one assigning effect on R0O. The rest
clear bytes of the RO may be contaminated by R2. Therefore, we use a one-to-one

appending effect to keep track of an impact onRO.

4.4.2 Data-processing Instruction with Shifter Operand

Figure 4.4 shows an example. That all bytes of R1 are logical shifted right by 16
bits (2 bytes). Thus the third and the fourth bytes of R1 are contaminated by the first
and the second bytes of R1. The first and the second bytes of R1 are clear, because
zeros are inserted into the vacated bit position. The move instruction moves R1 to RO
finally. R1 has an one-to-one assigning effect on RO. In this case shown in Figure 4.4,
there is no false positive and false negative. However, there is byte-granularity object
analysis used to analyze instruction. If the shift amount is not a multiple of 8, there is
few bits lead to false positive and false negative. In order to balance efficiency and
precision, byte-granularity object analysis is good enough according to our evaluation

and background knowledge.

21

4.4.3 Data-processing Instruction with Immediate

Operand

Figure 4.5 shows an example. The ADD instruction adds the value of register
operand R1 to the immediate value 0x11223344, and stores the result in the
destination register RO. The source register RO has an one-to-one assigning effect on
the destination register R1. Therefore, the first and the third bytes of the destination
register R1 are contaminated by the source register RO. The second source operand is
an immediate value treated as a clear object, and could not affect the status of the
destination register R1.

There is another example shown in-Figure 4.6. The MOV instruction moves the
clear immediate value 0x11223344-to the. destination register RO. Although the
original register RO is contaminated by sensitive information (tainted data), the result

of computation is that the register RO is clear-with:no sensitive information.

4.4.4 Multiply

Figure 4.7 shows an example. The MUL instruction multiplies the value of
register operand R1 to the value of register operand R2, and stores the result in the
destination register RO. The source register operand R1 and R2 have a mixed
appending effect on the destination register operand RO. In other words, if any byte of
source operands is contaminated by sensitive information, the all bytes of the
destination operand are contaminated by sensitive information. Register-granularity
object analysis is used to analyze the MUL instruction. However, there are false
positive and false negative in this case. In order to improve this problem, we could

take care of displacement from the product. It incurs much overhead for instruction

22

analysis system. To balance efficiency and precision, byte-granularity object analysis

is good enough according to our evaluation and background knowledge.

23

Chapter 5

Evaluation

To demonstrate DroidTracking, a fine-grained, system-wide information flow
tracking, several experiments are conducted. To demonstrate effectiveness of
approaches proposed in this paper, self-programmed C applications, self-programmed
JAVA applications and applications injected with DroidDream are evaluated. By
tracking information flow, it helps us to know system-wide behaviors of the target
application. DroidTracking records system logs including complete and detailed
information flow of whole Android OS: taint source events, taint sink events,
information flow occurred by. ‘instructions, ‘changed objects status, process
identification of each instruction block and the program counter of each instruction
block. However, system-wide behaviors and system-wide information are beyond
analyst comprehension. Instead ‘of - sophisticated ' information, the process of
information flow is modeled by DroidTracking ‘during the period of application
execution. We show triggered taint source events, triggered taint sink events,
unsophisticated objects status (e.g. Table 5.2 shows a memory working set to readers)

and unsophisticated information flow.

5.1 Experiment Environment

Before the experiments, we show our experiment environment in detail. We
implement our DroidTracking on the Android emulator 8.0. The Android emulator
emulates ARMV5TEJ processor supporting ARM instruction set, Thumb instruction
set, system reserved coprocessor (CP15) and Jazelle DBX (Direct Bytecode

eXecution). It was known as the advanced RISC (Reduced Instruction Set Computer)

24

Table 5.1: Current Android Distribution

Android 2.3 - 232 Platform APl Level Distribution
Android 1.5 3 14%
- Android 16 4 22%
Android 2.1 7 175%
h — Andid22 8 59.4%
Andrid23- 8 1%
Andraid 23.2
—Android 2. Android 233- 10 176%
Andraid 2.3.4
Android 3.0 il 0.4%
Android 3.1 12 0.5%

Data collected during a 14-day period ending on July 5, 2011
machine. There is the Android.2.2'based on 2.6.29 Linux kernel running on the
Android emulator. Why we choose this version is according to the current Android
distribution released by Google duringa 14-day period ending on July 5, 2011. Table

5.1 shows that the Android 2.2 is the most popular-forAndroid users.

5.2 Self-programmed C and JAVA

We program C applications sharing a tainted data array between processes and
transmitting this tainted data to the Internet through the HTTP POST request and the
HTTP GET request. The HTTP POST request is the way that malware usually
transmits sensitive information to a specific remote server. We also program JAVA
applications accessing sensitive information (IMEI, IMSI, ICC-ID and GPS) and
transmitting sensitive information to the Internet through the HTTP request. These
two experiments help us to test our DroidTracking system. The taint source subsystem

records sensitive information reading events when the applications access sensitive

25

Applications Infected by DroidDream Publisher
1. Falling Down Myournet
2. Super Guitar Solo Myournet
3. Chess Myournet
4, Falling Ball Dodge Myournet
5. Spider Man Myournet
6. Bowling Time Kingmall2010
7. Advance Barcode Scanner Kingmall2010
8. Music Box Kingmall2010
0. Sexy Legs Kingmall2010
10. Piano we20090202
11. Bubble Shoot we20090202
12. Funny Face we20090202
13. TieaTie we20090202
14, Quick Notes we20090202
15. Basketball Shot Now we20090202

Table 5.2: Applications infected by DroidDream
information. The memory space to which sensitive information is written could be
marked as a taint tag by the taint/source subsystem. During execution time of the
applications, DroidTracking analyzes instructions-to record system-wide information
flow for the tested applications. Taint tags in taint metadata (including memory
metadata and register metadata) is also propagated by DroidTracking. Therefore, we
could tracks system-wide behaviors of the tested applications. When tainted memory
space is sent out by the HTTP POST request or the HTTP GET request, the taint sink
subsystem records sensitive information stealing events. According to our process
identification logging, we could identify the process that steals sensitive information.
The tested self-programmed C and JAVA help us to understand the correctness of
information propagation in sophisticated instruction analysis. Our DroidTracking

system could detect sensitive information stealing correctly.

26

5.3 DroidDream

A lot of applications are injected with DroidDream shown in Table 5.2. These
known applications all are deleted by Google Android Market, because Lookout
Mobile Security found the malicious semantic on March 1, 2011. DroidTracking
analyzes the majority of these applications to reveal malicious behaviors. We could
detect the malicious behaviors of DroidDream. We show our evaluation of
DroidDream below.

In order to demonstrate our evaluation precisely, we take a Bowling Time as an
example. There is the memory working set shown in Table 5.4 for Bowling Time
evaluation. The first, we start our emulator-based DroidTracking. There is sensitive
information such as IMEI, IMSI and GPS are read to-memory by Android OS during
the booting time. The second, we use our Android-emulator normally. Browser is
opened to browse lots of web pages. Because a browser does not access sensitive
information, a percentage of sensitive information’has no huge changes in memory.
The following steps, we run Bowling Time and check the memory working set. In our
finding, a percentage of GPS is about two thousand times the bytes of the past in
memory. In fact, Bowling Time logs GPS frequently. However, there is no GPS sent
out by Bowling Time. Next, there is an events in Table 5.4 occurred. Almost in the
same time, there is an advertisement downloaded and taint sink events occurred. A
percentage of IMEI is about twelve times the bytes of the past in memory. In fact,
Bowling Time accesses IMEI frequently. Table 5.3 shows partial processes.
DroidTracking logs process identifications, program counters, instructions,
destination operands, source operands, and status changes for instruction analysis. It is
the evidence that IMEI is accesses by Bowling Time. Behaviors of Bowling Time

change the memory status and the register status in taint metadata. After all,
27

DroidTracking finds that lots of bytes with IMEI taint tag are sent to a remote server.

Therefore, DroidTracking finds an IMEI stealing in this evaluation.

Table 5.3: Instruction Analysis — Bowlingtime

{PID:PC :Insn. } Dst. Op. = Src. Op. (changed status;
(BY:80218500:27851103) R1[Z] = 3070=e08[2] (0-=134217728)
(BY:80Z218500:27851103) R1[3] = 3070=e08[3] (0-=134217728)
(BY:80Z218500:27850102) RO[Z] = 3070=e08[2] (0-=134217728)
(BY:80Z216500:27850102) RO[3] = 3070=e08[3] (0-=134217728)
{339:afd34524:e01lczbal) R TMP[0] = RO[Z] (0-»>134217728)
{339:afd34524:e01lczbal) R TMP[1] = RO[3] (0-»>134217728)
(339:afd345Z4:ellczbal) Rz[0] |= R TMP[O0] (0->x134217728)
{339:afd345Z4:ellczbal) RzZ[1] = R TMP[1] (0-»x134217728)
(339:afd34524:ellczbal) R TMPI[0] = 0, (1342177z28->0)
{338:afd34524:e01cZbal) R TMP[1] = 0, {1342177Z8->0)
{339:afd34524:101c3bal) R TMP[0] = R1[Z2] (0-»134217728)
{339:afd34524:101c3bal) R TMP[1] = R1[3] (0-»134217728)
{339:afd34524:101c3kal) R3[0] [= R TMP[O] ({(0->=1342177248)
{339:afd34524:101c3kal) R3[1] = R TMP[1] (0->=134217728)
{339:afd34524:101c3kal)y R TMEI[O] = 0, (134217728-:>0)
{339:afd34524:101c3kal)y R TMP[1] = 0, (134217728->0)
{339:afd3453c:e0822003) R TMP[0] = R3I[0] (0-»134217728)
{339:afd3453c:e0822003) R TMP[1] = R3I[1] (0-»134217728)
{339:afd3453c:e0822003) R TMPIO] = 0, (1342177z0->0)
{339:afd3453c:e0822003) R TMP[1] = 0, (1342177z0->0)
Table 5.4: Memory Working Set — Bowlingtime
(Bytes)
10000000 Reading
1000000
1. IMEI Reading
10000 ——IMSI
1000 . — _//: -=-|MEI
— GPS
100
10
1 (Event-based
Booting Web Browsing Bowlingtime Bowlingtime Time)
(triggered)

28

N0l MO [dsusedsas-deskiop AEE HES
P ROBIFDRT [10113.216172 (g ” -
‘) ’\ ¢ ' 1:; 7
2 AERR) HT

011-08-01 18:29 A
08-01 19:13

2306234 2011-65-31 09:18 com.Beauty.Leg-1.apk

BOOKING.

EECEECE

o (o »
v
Ao A

: Normal Total: 0

11203 Js.5.J5 [a.s |o.Jo
o e Ja x|y Ju s Jo Je |
oo 6o JiJo [[
]2 x Jc v]s [Ju]. Je
HighScores Help) mr—r—[__wr-w-r;

4 s v T dsns@dsms-deskiop %) Yahoo! A &F - Mosills =B ° Qan? R TR

Figure 5.1: Bowling Time

To know DroidDream more, we also evaluate the majority of applications listed
in Table 5.2. In our findings,-Sensitive information such as IMEI, IMSI and GPS is
accessed by these applications. So far as DroidTracking analyzing, behaviors of
stealing sensitive information are revealed.- According to process identification
logging, malicious application is confirmed and-identified by the system.

In our findings, DroidTracking analyzes the DroidDream with root capability.
Detailed system-wide information is listed for analyst by the system. DroidTracking
keeps analyzing correctly, Even if malware downloads new applications and infects
the Android OS. Because of emulated-based analysis system, it prevents our system
from being circumvented. Our findings demonstrate the effectiveness with

emulated-based analysis tools such as DroidTracking.

29

Chapter 6

Conclusion

DroidDream and others malware could get the root access in Android OS even if
Android OS beforehand denies the application permission to have root access.
OS-based analysis system fails to protect or detect behaviors of stealing sensitive
information. Our primary goals are to prevent DroidTracking from being attacks and
to support accurate analysis results. To achieve this, we present DroidTracking, a
fine-grained, system-wide information flow tracking that can reveal behaviors of
stealing sensitive information (GPS, IMEI, IMSI, ICC-ID and other sensitive
information presented in future). A key-design concept of DroidTracking is that we
equip Android emulator .with —information . flow tracking capability and
byte-granularity system object tracking capability.

We run a lot of Android applications injected ‘with DroidDream in Android
emulator quipped with DroidTracking. It is-the fact that DroidDream accesses
sensitive information while an advertisement is downloaded by DroidDream. There is
a sequential of information flow in whole memory space and registers. In the course
of program execution, several packets with sensitive information are transmitted to
the Internet. DroidDream keeps track of memory space sent by malware, sensitive
information, the process of information flow and malware’s process ID for malware
analysis. Our findings demonstrate the Android analysis platform monitoring the

whole Android OS and prevent the system from being attacks.

30

Reference

[1]
[2]
3]
[4]
[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Android Project. http://source.android.com

Android Developer. http://developer.android.com/index.html

ARM. http://www.arm.com

Lookout Mobile Security. http://www.mylookout.com

A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and S. Dolev. Google Android: A

State-of-The-Art Review of Security Mechanisms. CoRR, abs/0912.5101. 20009.

W. Enck, M. Ongtang, and P. McDaniel. Understanding Android security. IEEE
Security & Privacy Magazine, 7(1):10-17, 20009.

A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. Google
Android: A Comprehensive Security Assessment. IEEE Security & Privacy, vol.
8, no. 2, 2010, pp. 35-44.

C.W. Wang and S.P. Shieh. SWIFT: Decoupling System-Wide Information Flow
Tracking for Malware Analysis. 2011.

H. Yin, D. Song, M. Egele;, C. Kruegel, and E. Kirda. Panorama: Capturing
System-wide Information Flow ‘for 'Malware Detection and Analysis. In
Proceedings of ACM Computer and Communications Security. 2007.

F. Qin, C. Wang, Z. Li, H. Kim, Y, Zhou, and Y. Wu. LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks.
Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, 2006.

D. Chandra and M. Franz. Fine-Grained Information Flow Analysis and
Enforcement in a Java Virtual Machine. In Proceedings of the 23rd Annual
Computer Security Applications Conference (ACSAC) , 2007.

R. Whelan and D. Kaeli. Toward Whole-System Dynamic Analysis for

ARM-Based Mobile Device. In Proceedings of the 13th International Conference
31

on Recent Advances in Intrusion Detection, 2011.

[13] W Enck, P Gilbert, B Chun, LP Cox, J Jung, P McDaniel, and AN Sheth.
TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2010.

[14] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich
application-centric security in Android. Proceedings of the 25th Annual
Computer Security Applications Conference, ACSAC *09.

[15] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. CCS ’09 : Proceedings of the 16th ACM Conference on
Computer and Communications-Security.

[16] A. Fuchs, A. Chaudhuri; ‘andJ. Foster. SCanDroid: Automated Security
Certification of Android Applications. Proceedings of the 31st IEEE Symposium
on Security and Privacy, .2010.

[17] W. Enck, M. Ongtang, and P..McDaniel. Mitigating Android Software Misuse
Before It Happens. Technical Report NAS-TR-0094-2008, Network and Security
Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA, November 2008.

[18] A. Chaudhuri. Language-based Security on Android. In PLAS’09: Programming
Languages and Analysis for Security, pages 1-7. ACM, 2009.

[19] J. Howell and S. Schechter. What You See is What they Get: Protecting users
from unwanted use of microphones, camera, and other sensors. Proceedings of

Web 2.0 Security and Privacy Workshop, 2010.

32

