

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

有效率且安全的群組金鑰管理方法-用於付費電視系統且支援

頻繁的金鑰更新

An Efficient and Secure Group Key Management

Scheme Supporting Frequent Key Updates on

Pay-TV Systems

研 究 生：周桂伊

指導教授：曾文貴 教授

中 華 民 國 一 百 年 六 月

有效率且安全的群組金鑰管理方法-

用於付費電視系統且支援頻繁的金鑰更新

An Efficient and Secure Group Key Management Scheme Supporting Frequent

Key Updates on Pay-TV Systems

研 究 生：周桂伊 Student：Kuei-Yi Chou

指導教授：曾文貴 Advisor：Wen-Guey Tzeng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年六月

i

有效率且安全的群組金鑰管理-用於付費電視系統且

支援頻繁的金鑰更新

學生：周桂伊 指導教授：曾文貴

國立交通大學資訊科學與工程研究所碩士班

摘 要

在現在的時代裡，付費電視已經變成一個普遍的訂閱服務。為了防止沒

有付錢的人非授權的存取電視內容，付費電視的供應商通常會對每一個頻

道的內容加密，並把對應的金鑰分配給合法的使用者，如此一來，只有合

法的使用者才可以正確解密。用來維持和分配一個共有的解密金鑰給眾多

的使用者的方法，通稱為群組金鑰管理。

在這篇論文，我們提出了一個很適合付費電視系統且安全有效率的樹狀

架構群組金鑰管理方法。之前的樹狀架構有以下優點，每個使用者只需要

存 O(logN)個密鑰，每一次群組金鑰更新時伺服器只需傳送 O(logN)個訊

息，N 為使用者的總數。除了之前的這些優點外，我們的方法還有另外兩

個特點：(1)當有使用者加入或離開時，其他的使用者只需要計算一次就可

以取得群組金鑰。(2)為了使離線的使用者重新上線時可快速取得最新的金

鑰，伺服器只需要在佈告欄存 O(N)個公開訊息，而一個離線的使用者只需

要解密 O(logN)次就可以更新最新的金鑰和群組金鑰，所需的解密次數與離

線時間有多少次更新無關。在付費電視系統，這些特點不只最小化群組金

鑰更新的延遲時間，並使系統在頻繁的金鑰更新之下更為實際。在最後，

我們有討論如何將我們的群組金鑰管理方法用於多個頻道的服務上。

關鍵字：群組金鑰管理，付費電視，計次付費頻道(Pay-Per-View)

ii

An Efficient and Secure Group Key Management Scheme Supporting

Frequent Key Updates on Pay-TV Systems
student：Kuei-Yi Chou

Advisors：Dr. Wen-Guey Tzeng

Institute of Network Engineering College of Computer Science

National Chiao Tung University

ABSTRACT

Pay-TV has become a popular subscribed-based service in recent years. To

prevent unauthorized access from non-paid users over a broadcast channel, the

TV server usually encrypts each TV program to a ciphertext such that only the

legal members can decrypt it. The way of maintaining the common decryption

key of a TV program to a dynamic subscription group of members is called the

group key management.

In this paper, we propose a secure and efficient tree-based group key

management scheme that is very suitable for Pay-TV systems. In addition to

possessing the advantages of the former tree-based scheme, such as O(logN)

communication cost for each group key update and O(logN) secret key for each

member, our scheme has two distinct features, where N is the total number of

members. (1) Each member only needs to decrypt one ciphertext or compute one

hash value to get the group key from the rekey messages for each member

leaving/joining. (2) To handle the key update for reconnected members who

have missed the group key updates in the off-line period of time, the server only

needs to store O(N) public tokens on the bulletin and each off-line member only

needs O(logN) decryptions for getting the newest group key, which are

independent of the number of group key updates. In Pay-TV systems, these

features not only minimize the delay time for each group key update, but also let

the system more practical even if the key update frequency is very high, such as,

the Pay-Per-View TV service. Finally, we have a discussion of applying our

GKM scheme to a multi-program service.

Keywords: Group key management, Pay-TV, Pay-Per-View

iii

誌 謝

首先感謝我的指導教授曾文貴教授，在我碩班的兩年期間，教會我許多密

碼學的知識，並給我許多的建議和指導，使我對密碼學與資訊安全的領域

更加認識，從老師身上學到做研究的嚴謹，報告技巧的磨練，使我受益良

多。另外，我要感謝各位口試委員，清大孫宏民教授、交大謝續平教授與

交大蔡錫鈞教授，在論文上給我許多的建議與指導，讓我的論文能更加完

善。除此之外，我也要感謝博班學姐林孝盈、學長沈宣佐與學長陳毅睿，

在研究上給我很多的幫助。也感謝碩士班的同學們以及學弟們讓我的碩士

班生活充滿歡樂。最後，我要感謝我的家人和朋友們，給予我精神和物質

上的支持，讓我能夠順利完成學業。在此，謹以此文獻給所有我想感謝的

人。

Contents

Abstract in Chinese i

Abstract ii

Acknowledgement iii

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Related work . 3

1.2 Our Contribution . 6

2 Preliminaries 10

2.1 The Logical Key Hierarchical (LKH) Scheme 10

2.2 The One-Way Function Tree (OFT) Scheme 12

2.3 The Shared Key Derivation (SKD) Scheme 14

iv

3 The Proposed GKM scheme 17

3.1 Construction . 17

3.2 Security Analysis . 23

3.3 Performance Analysis . 27

4 Simulation 29

5 GKM for Multiple Programs 35

6 Conclusion 38

Bibliography 39

v

List of Figures

2.1 A binary key tree of the LKH/OFT/SKD scheme with 8 mem-

bers. 12

3.1 A proposed key tree with 8 members. 18

3.2 The updated key tree after U1 leaves the group in Fig. 3.1. . . 21

3.3 The updated key tree after U9 joins the group in Fig. 3.2. . . . 23

4.1 System setup time of the server. 30

4.2 The computation time of updating keys for the server. 31

4.3 The communication cost. 32

4.4 The computation time of a member for updating his auxiliary

keys (in the worst case.) . 33

4.5 The computation time of updating the group key for a member

(in the worst case.) . 33

4.6 The computation time of updating keys for a reconnected

member . 34

5.1 A multiple key tree with three TV programs 36

5.2 A two-level tree of Sun and Liu [21] with three TV programs . 37

vi

List of Tables

1.1 An asymptotic comparison of GKM schemes 9

vii

Chapter 1

Introduction

Pay television (Pay-TV) has become a popular subscribed-based service in

recent years. A TV server can provide its services by broadcasting the TV

programs (e.g. sport, news, movie, etc.) via satellites or the Internet. To pre-

vent unauthorized access, a common solution is to encrypt the broadcasted

programs into ciphertexts such that only the authorized members who have

the decryption keys (usually embedded in a set-top box) can decrypt the

ciphertexts. The way of maintaining a common decryption (group) key to

a dynamic group of members over a broadcast channel is called the group

key management (GKM) [2, 3, 8, 13, 14, 12, 17, 19, 18, 24, 26, 25]. To give

consideration of protecting benefits of the server and letting members watch

TV programs smoothly, the chosen GKM scheme for Pay-TV systems has to

be secure and efficient.

Pay-TV is classified with pay-per-channel (PPC) and pay-per-view (PPV).

In PPC, a user1 can subscribe many groups of channels for a period (e.g. a

1In this paper, a ”user” means a non-member or member

1

month). A member cannot cancel his subscription during the period but can

switch to different channels in the subscription group. In PPV, a user can

subscribe his favorite channels or programs arbitrary. Note that the users

can subscribe or cancel his subscription frequently.

In security, a GKM scheme has to guarantee that each program can only

be decrypted by its subscription group of members (group key secrecy.) Since

the members are free to add or cancel the subscription of each TV program,

the GKM scheme has to satisfy forward secrecy and backward secrecy. The

forward secrecy guarantees that a member cannot decrypt the future cipher-

texts of a program after he cancels his subscription of the program. The

backward secrecy guarantees that after subscribing a new program, a user

cannot decrypt the past ciphertexts of the program.

In efficiency, a GKM scheme concerns the communication cost for main-

taining the group key, and the storage and computation cost of each member

and the server. To satisfy forward/backward secrecy, the server has to up-

date the group key and let the remaining/existent members get the new

group key via broadcasted rekey messages (or notifications.) While receiving

the rekey messages, each member needs to compute the new group key before

decrypting the ciphertext of a TV program under the new group key. Since

the computation ability of members (set-top boxes) may be weak, delay may

occur for each group key update. If the frequency of group key update is

very high (especially, in Pay-Per-View services), members cannot watch TV

2

programs smoothly.

In practicality, a member may disconnected from the network from time

to time such that he cannot update each new group key from the rekey

messages in time. Thus, in order to let a member update the group key after

he gets on-line again, the server needs to keep the whole history of rekey

messages on a public bulletin. Each member, after reconnecting, needs to

access the bulletin to update his missed group keys one by one till the newest

one is obtained. A practical GKM scheme should handle the key update for

the reconnected members efficiently.

1.1 Related work

The GKM problem has been studied intensively [2, 3, 8, 13, 14, 12, 17, 19,

18, 24, 26, 25]. Wong, et al. [24] proposed the GKM schemes using key

graphs. In a star-based GKM scheme, the server assigns a secret key and

common group key to each member of a program such that only the mem-

bers can decrypt the broadcasted ciphertexts of the program under the group

key. To satisfy the forward/backward secrecy, when a member cancel/add

his subscription of a program, the server broadcasts the rekey messages that

contain the ciphertexts of a new group key under the secret keys of remain-

ing/existent members. In the key star-based scheme, each member only needs

to store 2 secret keys and one decryption for updating the group key from

the rekey messages. However, the communication cost for each member leav-

3

ings/joinings grows proportional to the number of members. To solve this

problem, a common way is to use the tree-based GKM schemes such as the

shared key derivation (SKD) [13], efficient large-group key (ELK) [17], one-

way function tree (OFT) [19], and logical key hierarchy (LKH) [24] schemes.

By storing O(logN) secret keys for each member, the size of rekey messages

for each member leaving/joining is only O(logN), where N be the number

of members in a subscription of a program. To reduce the rekey overhead

of high frequent group key updates, Li, et al [11] proposed the concept of

batch rekeying. The server does the rekey procedure for a batch of member

leavings and joinings.

To handle the key update for reconnected members in [13, 17, 19, 24],

the size of the public bulletin and the computation time of the reconnected

members for updating the newest keys grow proportional to the number of

group key updates [3]. To solve this problem, Chen, et al. [3] proposed

a tree-based GKM scheme using uni-directional proxy re-encryption (PRE)

schemes. In Chen, et al.’s scheme, the server only needs to store O(N) pub-

lic tokens on the bulletin and each reconnected member only needs O(logN)

re-encryptions plus one decryption to update the newest group key, which

are independent of the number of group key updates. However, the compu-

tation time of the constructed RSA-based GKM scheme of Chen, et al. is

costly. Note that in the tree-based GKM schemes as above, each member

needs O(logN) computations to get the newest group key for each member

4

leaving/joining. It causes a delay before decrypting the ciphertext of a TV

program.

In Pay-TV systems, a server can provider many TV programs [5, 21, 23].

To satisfy the security considerations for each TV program, a simple solution

is to use a GKM scheme to maintain an independent group key of each

program. If a member subscribes many TV programs, he has to store the

corresponding group keys and secret keys for each subscribed program. If

a member cancels his subscription of all programs, the size of the rekey

messages for the member leaving is proportional to the number of subscribed

TV programs. Sun and Liu [21] proposed a two-level tree-based multi-GKM

scheme that reduces the communication cost to O(d(M2+logdN)), where d is

the degree of the key tree and M is the number of TV programs. Then, Wang,

et al. [23] halves the communication cost in [21] by using a one-way function

on the two-level tree-based multi-GKM. Recently, Gu, et al. [5] notices that

some of the keys in the two-level tree-based multi-GKM scheme do not need

to be changed so that they can further decrease the communication cost.

In additional, conditional access system (CAS) [4, 6, 7, 1, 9, 10, 15, 16,

20, 22, 27] also can be used in Pay-TV. In order to let a member decrypt

programs simply, CASs use a control word (CW) to scramble TV programs.

But CW is easy to be broken, the server needs to change it for every 5-

20 second and broadcast to legal members. To protect CW, many scholars

proposed CASs with a four-level key hierarchy [4, 6, 7, 9, 15, 16, 22]. It

5

consists of four keys, CW, direct entitlement key (DEK), distribution key

(DK), and master private key (MPK.) CW is encrypted by DEK. DEK is

encrypted by DK and changed for a day. DK is encrypted by MPK and

changed for a subscription period of time (may be a month). By using CAS

in a Pay-TV system, the decryption cost of a TV program for a member is

very efficient. However, a member cannot leave or change his subscription

during the subscription period of time and the server needs to broadcast

O(N) rekey messages for each member leaving.

1.2 Our Contribution

In this paper, we propose a secure and efficient tree-based GKM scheme that

is very suitable for Pay-TV systems. In addition to possessing the advantages

of the tree-based GKM schemes, our scheme is the first GKM scheme having

the following two features simultaneously.

• Each member only needs to decrypt one ciphertext or compute one hash

value to get the group key from the rekey messages for each member

leaving/joining.

• To handle the key update for reconnected members, the server only

needs to store 2N−2 public tokens on the bulletin and each reconnected

member only needs lgN2 decryptions for getting the newest group key,

which are independent of the number of group key updates.

2In this paper, we denote lgN = dlog2 Ne

6

In Pay-TV systems, these features not only minimize the delay time for each

group key update, but also make the system more practical even if the key

update frequency is very high.

Our GKM scheme is efficient since we only use a symmetric encryption

scheme Π and a one-way hash function h as our construction primitives. The

security of our GKM scheme is based on the semantic security of Π and one-

way property of h. To satisfy forward and backward secrecy, our scheme only

needs to broadcast 2 lgN−3 rekey messages for each member leaving and one

notification message for each member joining. For each subscribed program,

each member stores the group key and lgN secret (auxiliary) keys. For each

member leaving, after updating the group key, each remaining member only

needs lgN − 2 decryptions and one hashing (in worst case) to update his

auxiliary keys. For each member joining, after updating the group key, each

existent member only needs lgN − 2 hashings (in worst case) to update his

auxiliary keys.

Table 1.1 shows a comparison among LKH [24], OFT [19], SKD [13], and

our GKM schemes on performance factors of communication, storage, and

computation cost. In Table 1.1, ”multicast” means broadcasting messages to

all and ”unicast” means sending messages to a designated receiver through

a secure channel.

The paper is organized as follows. In Chapter 2, we introduce the re-

lated tree-based schemes. In Chpater 3, we demonstrate the proposed GKM

7

scheme and give security and performance analyses. We then give the simu-

lation results of our GKM scheme in Chapter 4 and a discussion of applying

our GKM scheme to a multi-program service in Chapter 5.

8

T
ab

le
1.

1:
A

n
as

y
m

p
to

ti
c

co
m

p
ar

is
on

of
G

K
M

sc
h
em

es

S
ch

em
e

L
K

H
[2

4]
O

F
T

[1
9]

S
K

D
[1

3]
O

u
rs

C
o
m

m
u
n
ic

a
ti

o
n

co
st

J
oi

n
M

u
lt

ic
as

t
2

lg
N

lg
N

0
0

U
n
ic

as
t

1
lg
N

+
1

lg
N

2
L

ea
ve

M
u
lt

ic
as

t
2

lg
N

lg
N

lg
N
−

1
2

lg
N
−

3

S
to

ra
g
e

co
st

M
em

b
er

se
cr

et
ke

y
lg
N

+
1

lg
N

+
1

lg
N

+
1

lg
N

+
1

P
u
b
li
c

b
u
ll
et

in
2

lg
N
·(
J

a
ll

+
L

a
ll
)

lg
N
·(
J

a
ll

+
L

a
ll
)

(l
g
N
−

1)
·L

a
ll

2
N
−

2

C
o
m

p
u
ta

ti
o
n

co
st

(m
em

b
er

s
ar

e
al

w
ay

s
on

-l
in

e)
A

u
x
il
ia

ry
ke

y
L

ea
ve

lg
N
·t

D
e
c

2
lg
N
·t
h

+
t D

e
c

(l
g
N
−

1)
·t

D
e
c

+
t h

(l
g
N
−

2)
·t

D
e
c

+
t h

u
p

d
at

e
J
oi

n
lg
N
·t

D
e
c

2
lg
N
·t
h

+
t D

e
c

lg
N
·t
h

(l
g
N
−

1)
·t
h

G
ro

u
p

ke
y

L
ea

ve
lg
N
·t

D
e
c

2
lg
N
·t
h

+
t D

e
c

(l
g
N
−

1)
·t

D
e
c

+
t h

t D
e
c

or
t h

u
p

d
at

e
J
oi

n
lg
N
·t

D
e
c

2
lg
N
·t
h

+
t D

e
c

t h
t h

C
o
m

p
u
ta

ti
o
n

co
st

(m
em

b
er

s
m

ay
b

ec
om

e
off

-l
in

e)
R

ec
on

n
ec

te
d

m
em

b
er

lg
N
·(
J

o
ff
t D

e
c

+
L

o
ff
t D

e
c
)

lg
N
·[J

o
ff
(t

D
e
c

+
t h

)
J

o
ff
·[(

lg
N
−

1)
·t

D
e
c

lg
N
·t

D
e
c

+
L

o
ff
(t

D
e
c

+
t h

)]
+
t h

]+
L

o
ff
(l

g
N
t h

)]
†
N

:
T

h
e

n
u

m
b

er
of

m
em

b
er

s
in

a
su

b
sc

ri
p

ti
on

gr
ou

p
of

a
p

ro
gr

am
†
h

:
A

on
e-

w
ay

h
as

h
fu

n
ct

io
n

†
J

a
ll
/
L

a
ll
:

T
h

e
n
u

m
b

er
of

m
em

b
er

jo
in

in
gs

/l
ea

v
in

gs
in

th
e

li
fe

ti
m

e
of

th
e

sy
st

em
†
J

o
ff
/L

o
ff
:

T
h

e
n
u

m
b

er
of

m
em

b
er

jo
in

in
gs

/
le

av
in

gs
in

an
off

-l
in

e
p

er
io

d
of

ti
m

e
of

a
m

em
b

er
.

†
t f

:
T

h
e

co
m

p
u

ta
ti

on
ti

m
e

of
a

fu
n

ct
io

n
f

9

Chapter 2

Preliminaries

In this chapter, we introduce the LKH, OFT, and SKD schemes in Chap-

ter 2.1, 2.2 and 2.3, respectively.

2.1 The Logical Key Hierarchical (LKH) Scheme

The LKH scheme is the most well-know GKM scheme for its efficiency [24].

The LKH scheme is a tree-based GKM scheme using a symmetric key en-

cryption scheme. Let {M}K denote the ciphertext of a plaintext M under

an encryption key K. The server first builds a tree T with N leaf nodes. The

root node of the tree T is assigned the group key. Each node, excepts the

root node, is assigned an auxiliary key, and each member is associated with

a leaf node. Fig. 2.1 is a binary key tree of the LKH scheme with members

U1, U2, . . ., U8. Each member U is assigned the keys on the path from T ’s

root node to U ’s associated leaf node. For example, U1 is assigned the group

key GK, K1, K3, and K7. To encrypt a program P , the server encrypts P into

{P}GK and broadcast it. Then, only the authorized members who hold GK

10

can decrypt the ciphertexts.

Considering the membership changes, assume that U1 leaves the subscrip-

tion group of P in Fig. 2.1, the server de-associates U1 from the leaf node

7 and updates GK, K1, and K3 to GK′, K′1, and K′3, respectively. Then, the

server broadcasts the rekey messages

C1 = 〈{GK′}K′
1
, {GK′}K2 , {K′1}K′

3
, {K′1}K4 , {K′3}K8〉

to let the remaining members U2, U3, . . ., U8 update their keys. Again,

assume that U9 joins the subscription group of P , the server associates U9

to the leaf node 7 and updates GK′, K′1, K′3, and K7 to GK′′, K′′1, K′′3, and K′′7,

respectively. Then, the server unicasts K′′7 to U9 and broadcasts the rekey

messages

C2 = 〈{GK′′}GK′
1
, {K′′1}K′

1
, {K′′3}K′

3
, {GK′′}K′′

7
, {K′′1}K′′

7
, {K′′3}K′′

7
〉

to let the existent members U2, U3, . . ., U9 update their keys.

In the LKH scheme, for each key update, the rekey message size is 2 lgN

and each member only needs to compute lgN decryptions. Each member

only needs to store lgN keys. The LKH scheme is very efficient in almost all

the performance factors. However, one of the deficiencies of the LKH scheme

is to handle the key update for the reconnected members [3]. Assume that U3

misses the rekey messages C1 for U1 leaving and C2 for U9 joining, he has to

compute GK′ and K′1 from C1 before computing GK′′, K′′1 from C2. Therefore,

the storage cost of the server and the computation cost of the reconnected

11

GK

K1

K3

K7

U1

K8

U2

K4

K9

U3

K10

U4

K2

K5

K11

U5

K12

U6

K6

K13

U7

K14

U8

Figure 2.1: A binary key tree of the LKH/OFT/SKD scheme with 8 mem-
bers.

members grow proportional to the number of group key updates. If the

frequency of the key updates is very high, it is a great burden for handling

the key updates for the reconnected members.

2.2 The One-Way Function Tree (OFT) Scheme

The OFT scheme is an improvement of the LKH scheme using one-way func-

tion. In a binary key tree T of the OFT scheme, each auxiliary key including

the group key K0 of T ’s root node Ki is computed as

Ki = f(g(Klchild(i)), g(Krchild(i))),

where g and f are one-way functions and Klchild(i) and Krchild(i) are the aux-

iliary keys of node i’s left child node lchild(i) and right child node rchild(i),

respectively. Each member is associated with a leaf node. Fig. 2.1 is a binary

key tree of the OFT scheme with members U1, U2, . . ., U8. Each member U

12

is assigned the secret key of his associated leaf node and the blinded keys

g(Kj), where Kj are the auxiliary keys of the sibling nodes of the nodes on

the path from U ’s associated leaf node to T ’s root node. For example, U1 is

assigned the secret key K7 and blind keys g(K8), g(K4), and g(K2). Then, U1

can compute

K3 = f(g(K7), g(K8)),

K1 = f(g(K3), g(K4)),

GK = K0 = f(g(K1), g(K2)).

To encrypt a program P , the server encrypts P into {P}GK and broadcast it.

Then, only the authorized members who hold GK can decrypt the ciphertexts.

Considering the membership changes, assume that U1 leaves the subscrip-

tion group of P in Fig. 2.1, the server de-associates U1 from the leaf node 7

and updates K3, K1, and GK to K′3, K′1, and GK′, respectively, where

K′3 = f(g(K′7), g(K8)),

K′1 = f(g(K′3), g(K4)),

GK′ = K′0 = f(g(K′1), g(K2)).

Then, the server broadcasts the rekey messages

C1 = 〈{g(K′7)}K8 , {g(K′3)}K4 , {g(K′1)}K2〉

to let the remaining members U2, U3, . . ., U8 update their keys. For example,

after receiving C1, U2 first decrypts {g(K′7)}K8 by his secret key K8 to get the

13

updated blind key g(K′7), he then computes K′3, K′1, GK′ = K′0 accordingly.

The rekey procedure for member U joining in the OFT scheme is similar to

the rekey procedure for member leaving excepts that the server has to unicast

lgN keys (the updated secret key of U ’s associated leaf node and the blind

keys) to the new member.

In the OFT scheme, for each key update, the rekey message size is lgN

and each member only needs to compute one decryption plus 2 lgN one-way

functions (lgN times f and lgN times g.) Each member only needs to store

lgN keys. Similar to the LKH scheme, in the OFT scheme, the storage cost

of the server and the computation cost of the reconnected members grow

proportional to the number of group key updates.

2.3 The Shared Key Derivation (SKD) Scheme

The SKD scheme is an improvement of the OFT scheme. Each member is

associated with a leaf node. Fig. 2.1 is a binary key tree of the SKD scheme

with members U1, U2, . . ., U8. Each member U is assigned the secret key of

the nodes on the path from U ’s associated leaf node to T ’s root node. For

example, U1 is assigned the secret key K7, K3, K1, and GK. To encrypt a

program P , the server encrypts P into {P}GK and broadcast it. Then, only

the authorized members who hold GK can decrypt the ciphertexts.

Considering the membership changes, assume that U1 leaves the subscrip-

tion group of P in Fig. 2.1, the server de-associates U1 from the leaf node 7

14

and updates K3, K1, and GK to K′3, K′1, and GK′, respectively, where

K′3 = f(K3 ⊕ K8),

K′1 = f(K1 ⊕ K4),

GK′ = K′0 = f(K0 ⊕ K2).

Then, the server broadcasts the rekey messages

C1 = 〈{K′1}K′
3
, {GK′}K′

1
〉

to let the remaining members U2, U3, . . ., U8 update their keys. For example,

after receiving C1, U2 first computes K′3 by his secret key K8 and one-way

function f , he then decrypts {K′1}K′
3

and {GK′}K′
1

in order to get the updated

keys K′1 and GK′. Again, assume that U9 joins the subscription group of P

in Fig. 2.1 again, the server associates U9 to the leaf node 7 and updates K7,

K′3, K′1, and GK′ to K′′7, K′′3, K′′1, and GK′′, respectively, where

K′′3 = f(K′3),

K′′1 = f(K′1),

GK′′ = K′0 = f(K′0).

Then, the server broadcasts a notification to the remaining members U2, U3,

. . ., U8, and unicasts K′′7, K′′3, K′′1, and GK′′ (the updated secret keys) to U9.

After receiving the notification for U9 joining, the existent members U2, U3,

. . ., U8 can update the keys K′′3, K′′1, and GK′′ accordingly.

In the SKD scheme, for each member leaving, the rekey message size

is lgN − 1 and each remaining member needs to compute lgN − 1 times

15

decryptions plus an one-way function f . For each member joining, the server

only needs to broadcast one notification message and each member needs

to compute lgN times one-way function f . Each member only needs to

store lgN keys. Similar to the LKH and OFT scheme, in the SKD scheme,

the storage cost of the server and the computation cost of the reconnected

members grow proportional to the number of group key updates.

16

Chapter 3

The Proposed GKM scheme

We first demonstrate the construction of the proposed GKM scheme in Chap-

ter 3.1. Then, we give the security analysis and performance analysis of our

scheme in Chapter 3.2 and 3.3, respectively.

3.1 Construction

Let Π be a symmetric encryption scheme (e.g. AES) with a security parame-

ter τ and {M}K be the ciphertext of a plaintext M under an encryption key

K. Let h : {0, 1}∗ → {0, 1}τ be an chosen public one-way hash function (e.g.

MD5.)

System setup. For each TV program with N members, the server

constructs a completed binary tree T with N leaf nodes. The root node of T

is labeled by 0 and other nodes from left to right then from top to bottom are

labeled from 1 to 2N − 2. The root node is assigned the group key GK = K0

and each node i is assigned an auxiliary key Ki. Note that the group key

and auxiliary keys are generated by Π randomly and independently. For

17

GK

K1

K3

K7

U1

{K3}K7

K8

U2

{K3}K8

{K1}K3

K4

K9

U3

{K4}K9

K10

U4

{K4}K10

{K1}K4

{GK}K1

K2

K5

K11

U5

{K5}K11

K12

U6

{K5}K12

{K2}K5

K6

K13

U7

{K6}K13

K14

U8

{K6}K14

{K2}K6

{GK}K2

Figure 3.1: A proposed key tree with 8 members.

each edge from a node i to its parent node j, the server computes the public

token {Kj}Ki
and put it on a public bulletin. For each member, the server

associates him to a leaf node of T . For example, Fig. 3.1 is a constructed key

tree with 8 members U1, U2, . . ., U8. For each member U , the server assigns

the group key GK and the auxiliary keys on the path from T ’s root node to

U ’s associated leaf node. For example, in Fig. 3.1, U1 is assigned GK, K1, K3,

and K7.

Let Key(U) be the set of keys on the path from T ’s root node to U ’s

associated leaf node and SibKey(U) the set of keys of the sibling nodes of the

nodes on the path from T ’s root node to U ’s associated leaf node. We also

extend the definition of {M}K to {M}K := {{M}K : K ∈ K}. For example,

in Fig. 3.1, Key(U1) = {GK = K0, K1, K3, K7}, SibKey(U1) = {K2,K4,K8},

and {M}SibKey(U1) = {{M}K2 , {M}K4 , {M}K8}.

18

Member leaving. When a member U cancels his subscription (leaves

the subscription group) of a TV program, to guarantee the forward secrecy,

the server does the following rekey procedures.

1. De-associate U from its associated leaf node z and treat z as a dummy

node.

2. Update each key Ki ∈ Key(U) \ {Kz} to K′i = h(Kj||Ki), where Kj ∈

SibKey(U) and j is the child node of node i. The new group key is

GK′ = K′0.

3. Update the affected public tokens but {Kparent(z)}Kz on the public bul-

letin. The affected public tokens are the tokens that one (or both) of

the encrypted key and encryption key has been updated.

4. Broadcast the rekey messages

LEAVE(U) = 〈EncryptedGK(U),UpdatedToken(U)〉,

where EncryptedGK(U) are the elements of {GK′}SibKey(U) but the ci-

phertext of GK′ under the encryption key of the child node of T ’s root

node, and UpdatedToken(U) are the updated public tokens on the path

from T ’s root to z but the encryption of GK′.

After receiving LEAVE(U), each remaining member first updates the group

key from EncryptedGK(U) and decrypts the TV program, then updates other

auxiliary keys by using the function h or from UpdatedToken(U).

For example, assume that U1 leaves the group in Fig. 3.1, the server does:

19

1. De-associate U1 from the leaf node 7.

2. Update K0, K1, and K3 to K′0, K′1, and K′3, respectively, where K′0 =

h(K2||K0), K′1 = h(K4||K1), and K′3 = h(K8||K3). The new group key is

GK′ = K′0.

3. Update the public tokens {GK}K1 , {GK}K2 , {K1}K3 , {K1}K4 , and {K3}K8

on the public bulletin to {GK′}K′
1
, {GK′}K2 , {K′1}K′

3
, {K′1}K4 , and {K′3}K8 ,

respectively. Fig. 3.2 shows the updated key tree after U1 leaves the

group in Fig. 3.1.

4. Broadcast the rekey messages

LEAVE(U1) = 〈{GK′}K4 , {GK′}K8 , {K′1}K′
3
〉.

After receiving LEAVE(U1), each remaining members update their keys as

follows.

• Group key update. U5, U6, U7, and U8 compute GK′ = h(GK||K2); U3

and U4 decrypt {GK′}K4 by K4; U2 decrypts {GK′}K8 by K8.

• Auxiliary key update. U3 and U4 update K1 to K′1 = h(K4||K1); U2

updates K3 to K′3 = h(K8||K3) and updates K1 to K′1 by decrypting

{K′1}K′
3
.

Member joining. After granting a user U (non-subscriber or subscriber)

to subscribe a new TV program, to guarantee the backward secrecy, the server

does the following rekey procedures.

20

GK′

K′
1

K′
3

K7

{K3}K7

K8

U2

{K′
3}K8

{K′
1}K′

3

K4

K9

U3

{K4}K9

K10

U4

{K4}K10

{K′
1}K4

{GK′}K′
1

K2

K5

K11

U5

{K5}K11

K12

U6

{K5}K12

{K2}K5

K6

K13

U7

{K6}K13

K14

U8

{K6}K14

{K2}K6

{GK′}K2

Figure 3.2: The updated key tree after U1 leaves the group in Fig. 3.1.

1. Associate U to a dummy node z.

2. Update each key Ki ∈ Key(U) \ Kz to K′i = h(Ki) and generate a new

secret key of z randomly. The new group key GK′ = K′0.

3. Update the affected public tokens on the public bulletin.

4. Unicast U the auxiliary key Kz and the newest group GK′. After U gets

on-line at the first time, he has to access to the public bulletin then

computes his other auxiliary keys by the public tokens on the path

from T ’s root node to z.

5. Broadcast a notification message of U joining to the old members.

After receiving the notification message of U joining, the old members update

each key Ki from T ’s root node to U ’s associated leaf node to K′i = h(Ki).

For example, assume that U9 joins the group in Fig. 3.3, the server does:

21

1. Associate U9 to the leaf node 7.

2. Update K′0, K′1, and K′3 to K′′0, K′′1, and K′′3, respectively and generate K′′7

to node 7, where K′′0 = h(K′0), K′′1 = h(K′1), K′′3 = h(K′3). The new group

key is GK′′ = K′′0.

3. Update the public tokens {GK′}K′
1
, {GK′}K2 , {K′1}K′

3
, {K′1}K4 , {K3}K7 ,

and {K′3}K8 on the public bulletin to {GK′′}K′′
1
, {GK′′}K2 , {K′′1}K′′

3
, {K′′1}K4 ,

{K′′3}K′′
7
, and {K′′3}K8 , respectively. Figure 4 shows the updated key tree

after U9 joins the group in Fig. 3.2.

4. Unicast U9 the K′′7 and GK′′. After U9 gets on-line at the first time, he

has to access the public bulletin then decrypts K′′3 from {K′′3}K′′
7

by K′′7

and K′′1 from {K′′1}K′′
3

by K′′3.

5. Broadcast a notification message of U9 joining to the old members.

After receiving the notification message of U9 joining, the old members up-

date each key K′i to K′′i = h(K′i) for i = 0, 1, 3.

Key update for reconnected members. To let an off-line member U

update his keys after he gets on-line again (becoming a reconnected member),

the server only needs to maintain the newest public tokens on the public

bulletin. Each reconnected member only needs to access to the bulletin then

updates his secret keys by the public tokens on the path from T ’s root node

to U ’s associated leaf node. For example, assume that U3 misses the rekey

messages for U1 leaving and the notification message for U9 joining, he only

22

GK′′

K′′
1

K′′
3

K′′
7

U9

{K′′
3}K′′

7

K8

U2

{K′′
3}K8

{K′′
1}K′′

3

K4

K9

U3

{K4}K9

K10

U4

{K4}K10

{K′′
1}K4

{GK′′}K′′
1

K2

K5

K11

U5

{K5}K11

K12

U6

{K5}K12

{K2}K5

K6

K13

U7

{K6}K13

K14

U8

{K6}K14

{K2}K6

{GK′′}K2

Figure 3.3: The updated key tree after U9 joins the group in Fig. 3.2.

needs to get {K′′1}K4 and {GK′′}K′′
1

from the bulletin and update K1, GK to

K′′1, GK′′ by decrypting {K′′1}K4 by K4 then decrypting {GK′′}K′′
1

by K′′1.

3.2 Security Analysis

The security of our scheme is based on the use of the chosen symmetric

encryption scheme Π and one-way hash function h.

Definition 1 (Semantic Secuity). A symmetric encryption scheme Π is se-

mantically secure if for every polynomial-time adversary A, AdvSSΠ,A is a neg-

ligible function of τ , where

AdvSSΠ,A := |Pr[A({m∗}K) = 1]− Pr[A({R}K) = 1]|,

R, chosen by a challenger, is a random string with the same length of the

message m∗ chosen by A.

23

We show that a set of collude members cannot compute any key that are

not assigned to them. Let SK(T) be the set of keys in a key tree T and Tv a

subtree of T with root node v.

Theorem 1 (Collusion Attack). Consider the key tree of our GKM scheme.

If Π is a semantically secure encryption scheme, any polynomial-time adver-

sary cannot compute key Kv from public tokens on the bulletin and SK(T) \

SK(Tv)
1.

Proof. Assume that there exists a polynomial-time adversary A who can

compute a target Kv with a non-negligible probability ε > 0 from public

tokens on the bulletin and SK(T) \ SK(Tv). We can construct a polynomial-

time algorithm B for breaking the semantic security of Π with a non-negligible

advantage as follows.

At beginning, the challenger randomly generates a secret key K ∈ {0, 1}τ

and chooses a message set M = {0, 1}τ . B randomly chooses a message

m∗ ∈M to the challenger. The challenger randomly picks b ∈ {0, 1}. Then,

the challenger set c∗ = {m∗}K if b = 1 and c∗ = {R}K if b = 0, where R is

a random string with the same length of the message m∗. The challenger

returns c∗ to B and B does the following.

1. Build a key tree T with N members according to our system setup.

Select a target leaf node z in T and let ξ be the parent node of z.

1Consider a set of collude members C ⊂ {U1, U2, . . ., UN}. If Ui does not associated
with any leaf node of Tv for Ui ∈ C, SK(C) =

⋃
Ui∈C Key(Ui) is a subset of SK(T) \SK(Tv).

24

Replace the auxiliary key Kξ with m∗ and public token {Kξ}Kz with c∗

to form a new key tree T̄ .

2. Call A with the input of the public tokens and SK(T̄) \ SK(T̄z) in T̄ .

A returns a guess K̂z for Kz.

3. Decrypt c∗ by K̂z to get m̂. If m̂ = m∗, output b̂ = 1. Otherwise,

output b̂ = 0.

When b = 1, B implicitly sets Kz = K in step 1. It does not matter

that B does not know K since the target Kz is not given to A. The public

tokens and keys given to A in step 2 are set as the way of our system setup.

Thus, A can compute K̂z = Kz correctly with a non-negligible probability ε

by assumption. In step 3, since K̂z = Kz implies that m̂ = m∗, B guesses

b̂ = b correctly with probability ε.

When b = 0, the public tokens and keys given to A in step 2 are not

set as the way of our system setup. In fact, it is randomly assigned and Kz

is random. Thus, the probability for A to compute K̂z is 1/2τ , a random

guessing.

Therefore, B outputs the guess for b with success advantage

AdvSSΠ,A = |Pr[A({m∗}K) = 1]− Pr[A({R}K) = 1]|

= |ε− 1/2τ |.

Since AdvSSΠ,A is non-negligible, B breaks the semantic security of Π. This is

a contradiction. Hence, we conclude that such A does not exist.

25

For group key secrecy, from Theorem 1, our GKM scheme is secure against

a non-member who knows the public tokens on the bulletin but does not know

GK = K0 and any other auxiliary key. For forward/backward secrecy, we show

that after the rekey procedure for member leaving/joining, the left/joined

member cannot decrypt future/past ciphertexts of TV programs. The proofs

are similar to Theorem 1, here we just give brief illustrations.

Forward secrecy. For each member U leaving, the server de-associates

U from his associated leaf node z, updates each key Ki ∈ Key(U) \ {Kz}

to K′i = h(Kj||Ki) with Kj ∈ SibKey(U), and updates the affected public

tokens but {Kparent(z)}Kz . Since U does not hold any Kj ∈ SibKey(U) and

{Kparent(z)}Kz is not updated, U cannot update his Ki ∈ Key(U) \ {Kz} to

K′i. Since U cannot know K′i, he cannot decrypt the updated keys from

the updated public tokens {K′parent(i)}K′
i

and cannot decrypt the updated

GK′ = K′0 from the EncryptGK(U) of the broadcasted rekey messages for U

leaving. Therefore, our GKM scheme guarantees the forward secrecy.

Backward secrecy. For each member U joining, the server associates U

to a dummy leaf node z, updates each key Ki from T ’s root node to U ’s

associated leaf node to K′i = h(Ki), and updates the affected public tokens.

The server unicasts U the updated group key and K′z such that after U gets

on-line again, he can get the updated group key GK′ = K′0 and auxiliary keys

K′i ∈ Key(U). However, since the one-way property of h, U cannot compute

the old group key GK and auxiliary keys Ki from GK′ and K′i. Therefore, our

26

GKM scheme guarantees the backward secrecy.

Theorem 2 (Forward/Backward Secrecy). Consider the key tree of our

GKM scheme. If Π is a semantically secure encryption scheme and h is

a one-way hash function, the rekey procedure for member leaving/joining

guarantees forward/backward secrecy.

3.3 Performance Analysis

In this chapter, we illustrate the communication, storage, and computational

cost of our GKM scheme as follows.

Communication cost. When a member U leaves the subscription group

of a program, the server needs to broadcast LEAVE(U) = 〈EncryptedGK(U),

UpdatedToken(U)〉 as the rekey message for U leaving. The size of LEAVE(U)

is |EncryptedGK(U)|+ |UpdatedToken(U)| = (|SibKey(U)| − 1) + (|Key(U)| −

2) = 2 lgN − 3. The communication cost for each member joining is very

efficient since the server does not need to broadcast any rekey messages (but

a notification message) for U joining and only needs to unicast two keys (GK

and Kz) to U .

Storage cost. For each program, the server needs to store 2N − 1 secret

keys that consist of the group key and the auxiliary keys in a key tree T .

Each member associated with the leaf node z is assigned lgN secret keys

that are on the path from T ’s root node to z. To handle the key update

for reconnected members, the storage cost of the bulletin is independent of

27

the number of group key updates since the bulletin only needs to keep the

newest public token for each edge of T . Thus, the number of stored public

tokens of the bulletin is only 2N − 2.

Computation cost. For each member leaving, an remaining member U

decrypts the new group key from EncryptedGK(U) or computes the new group

key by h. Thus, U only needs one decryption or one hash computation to

update the group key. Then, U updates other auxiliary keys by using the

function h or from the UpdatedToken(U). In worst cast, U needs to compute

one hash value and |UpdatedToken(U)| = lgN − 2 decryptions. For each

member joining, an old member only needs one hash computation to update

the group key. To update the other auxiliary keys, an old member needs to

compute lgN − 1 hash values.

28

Chapter 4

Simulation
In this chapter, we simulate LKH [24], SKD [13], and our GKM scheme

and compare their communication and computation cost in Fig. ??. In these

three schemes, we use crypto++ library to implement the encryption schemes

as AES with 128-bit secret key and the hash functions as MD5 with 128-bit

output. To simulate the real environment, we use boost library to implement

the Poisson distribution with rate λ and Normal distribution with mean µ

and variance σ2. We simulate the number of joining requests by the Poisson

distribution with rate λ. That is, in average, there are λ users join to a sub-

scription group of a TV program in a unit time. For each joining user, the

subscription time of a TV program is according to the Normal distribution

with mean µ1 and variance σ2
1. To simulate key update for the reconnected

members, for each on-line member, he may become an off-line member with

probability α and his off-line period of time is according to the Normal dis-

tribution with mean µ2 and variance σ2
2. We set the parameters (λ, µ1, σ1, α,

µ2, σ2) as (10, 100, 30, 0.3, 10, 3) and our simulations are implemented with

Windows 7 OS, C++ language, Intel Core (TM) 2 Due CPU U9400 (1.40

29

!"#$#%&'$#()'*+,'-.-$)(-'

/0111

1

0111

21111

20111

31111

30111

41111

1 0 21 20 31 30

LKH
SKD
our scheme

 C
om

pu
ta

tio
n

tim
e

(m
s)

Exponent e (N = 2e)

Figure 4.1: System setup time of the server.

GHz), and 3 GB memory. Fig. 4.1 shows the initial time for systems. The

performances of these three schemes are almost the same. When N = 220,

the computation time is about 28 s.

Fig. 4.2 shows the computation time of updating keys for the server. The

performances of these three schemes are almost the same. When N = 220,

the computation time is about 1,750 ms.

Fig. 4.3 shows the communication cost in our simulation. The commu-

nication cost of the SKD scheme is about half of the communication cost of

our scheme and the LKH scheme. In our scheme, when N = 220, there are

about 38, 000 tokens (ciphertexts) in a unit time over the Internet and each

token is 128-bit. That means, the server only needs 38, 000× 128 bit ≈ 0.58

MB bandwidth cost for maintaing a common group key to the dynamic sub-

scription group of members.

30

!"#$%&'()*+*,&-+.$%&/*$0&1$*"#$/#12#1$

3

433

533

633

733

8333

8433

8533

8633

8733

4333

3 9 83 89 43 49

LKH
SKD
our scheme

 C
om

pu
ta

tio
n

tim
e

(m
s)

Exponent e (N = 2e)

Figure 4.2: The computation time of updating keys for the server.

Fig. 4.4 shows the computation time of a member for updating his auxil-

iary keys (in worst case) and the performance of these three GKM schemes

are almost the same. When N = 220, in worst case, the computation time

for updating the auxiliary keys of each member is only about 23 µs.

Fig. 4.5 shows the computation time of updating the group key for each

member in the worst case. It is easy to see that the computation time of a

member for updating the group key in our scheme is the lowest (about 2 µs)

and is independent of the number of members. In our GKM scheme, each

member only needs to decrypt one ciphertext or compute a hash value for

updating the group key for each group key update. However, in the LKH and

SKD schemes, since each member has to decrypt the auxiliary keys from his

associated leaf node to the key tree root, the computation time of updating

31

!"##$%&'()&"%*'"+)*

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25

LKH
OKD
our scheme

C
om

m
un

ic
at

io
n

co
st

 (#
 o

f t
ok

en
s)

Exponent e (N = 2e)

SKD

Figure 4.3: The communication cost.

the group key for each member increases when the number of users increases.

Fig. 4.6 shows the computation time of updating keys for a reconnected

member. Since the computation time is related to the height of key tree, the

computation time of these three schemes increases as N increases. However,

our scheme is the most efficient one since the computation time of updating

keys for a reconnected member is independent of the number of group key

updates in his off-line period of time. Thus, even if N = 220, the computation

time of updating keys for a reconnected member is only about 20 µs.

32

!"#$%&'&(")'*+,"-&+".+%$/'&()0+&12+
324-+")+$'&1+."5+'+%-25+

0

5

10

15

20

25

30

0 5 10 15 20 25

LKH
OKD
our scheme

 C
om

pu
ta

tio
n

tim
e

(
s)

Exponent e (N = 2e)

SKD

Figure 4.4: The computation time of a member for updating his auxiliary
keys (in the worst case.)

!"#$%&'&(")'*+,"-&+".+/0&&()/+&10+
/2"%$+304+."2+'+%-02+

0

5

10

15

20

25

30

0 5 10 15 20 25

LKH
OKD
our scheme

 C
om

pu
ta

tio
n

tim
e

(
s)

Exponent e (N = 2e)

SKD

Figure 4.5: The computation time of updating the group key for a member
(in the worst case.)

33

!"#$%&'&(")'*+,"-&+./0)+')+"112*()0+
%-03+30,"))0,&-+

4

544

644

744

844

9444

9544

9644

4 : 94 9: 54 5:

LKH
OKD
our scheme

 C
om

pu
ta

tio
n

tim
e

(
s)

Exponent e (N = 2e)

SKD

Figure 4.6: The computation time of updating keys for a reconnected member

34

Chapter 5

GKM for Multiple Programs
In this chapter, we discuss the case of applying our GKM scheme to provide

multiple programs by the server. Suppose that there are M TV programs

provided by the server and users can subscribe them according to their in-

terest. To satisfy the security requirements, a simple solution is to associate

a group key to each program and maintain each group key by our GKM

scheme such that only the members who subscribe the program can get the

corresponding group key and auxiliary keys. Fig. 5.1 shows a multiple key

tree with three TV programs P1, P2, and P3. Each member U who subscribes

program Pi is assigned GKi and the auxiliary keys from the key tree root of

Pi to U ’s associated leaf node in the key tree of Pi . Thus, each member

holds M lgN secret keys in the worst case (if each member subscribes all

the programs.) In the worst case, if a member who subscribes all TV pro-

grams cancels all of his subscribed programs, the server needs to broadcast

2M lgN − 6 rekey messages and the existent members need to do the rekey

procedure as described in Chapter 3.1 for the member leaving.

We can apply the key assignment of our GKM scheme to the two-level key

35

GK1

P1

GK2

P2

GK3

P3

Figure 5.1: A multiple key tree with three TV programs

tree proposed by Sun and Liu [21]. The lower level consists of TSGi
, the key

trees of service groups (SGs) with roots SGi and the higher level consists of

TPi
, the key trees of TV programs with roots Pi. A service group is a subset

of the set of all TV programs. If there are M TV programs, the number

of service groups is 2M − 1 at most. In the lower level key trees, members

who associate with the leaf nodes of a TSG have the same subscribed TV

programs. In the higher level key trees, the root node of a TSG is a leaf node

of a TP if P ∈ SG. Fig. 5.2 shows a two-level key tree of Sun and Liu [21]

with three TV programs P1, P2, P3 and four service groups SG1 = {P1, P2},

SG2 = {P1, P2, P3}, SG3 = {P2, P3}, SG4 = {P3}. Since the height of a

TSG is at most lgN and the height of a TP is at most lg(2M − 1) ≈M , each

member who subscribes all TV programs holds at most M2+lgN secret keys.

In the worst case, if a member who subscribes all TV programs cancels all of

his subscribed programs, the server needs to broadcast (M + 1)(M2 + lgN)

rekey messages and the existent members need to do the rekey procedure as

described in Chapter 3.1 for the member leaving.

While applying our GKM scheme, other properties shared by above of the

36

GK1

P1

GK2

P2

GK3

P3

SG2 SG3 SG4 SG1

Figure 5.2: A two-level tree of Sun and Liu [21] with three TV programs

multi-GKM schemes are as follows. (1) Each member only needs to decrypt

one ciphertext or compute one hash value to get the group key for each group

key update. (2) To handle the key update for reconnect members, the storage

size of the public bulletin and the computation time of reconnected members

are independent of the number of group key updates. Thus, the result multi-

GKM schemes minimize the delay time before decrypting a TV program and

can be used in Pay-TV systems practically even if the frequency of group key

update is very high (e.g. Pay-Per-View TV service.)

37

Chapter 6

Conclusion

We propose an efficient and secure GKM scheme that is very suitable for

Pay-TV systems. The simulation results confirm the usability of our scheme

and the theoretical comparisons with former schemes. In the future works,

we can try to improve the efficiency factors of our GKM scheme or find more

applications for our GKM scheme.

38

Bibliography

[1] Conditional-access broadcasting systems. International Telecommuni-

cation Union (ITU), 1992.

[2] Isabella Chang, Robert Engel, Dilip D. Kandlur, Dimitrios E. Pen-

darakis, and Debanjan Saha. Key management for secure internet mul-

ticast using boolean function minimization techniques. In Proceedings

of the IEEE International Conference on Computer Communications

(INFOCOM), pages 689–698, 1999.

[3] Yi-Ruei Chen, J. D. Tygar, and Wen-Guey Tzeng. Secure group key

management using uni-directional proxy re-encryption schemes. In Pro-

ceedings of the IEEE International Conference on Computer Communi-

cations (INFOCOM), pages 1322–1330, 2011.

[4] E. Cruselles, J. L. Melus, and M. Soriano. An overview of security

in eurocrypt conditional access system. In Proceedings of the IEEE

International Conference on Global Communications (GLOBECOM),

pages 188–193, 1993.

39

[5] Qijun Gu, Peng Liu, Wang-Chien Lee, and Chao-Hsien Chu. Ktr: An

efficient key management scheme for secure data access control in wire-

less broadcast services. IEEE Transactions on Dependable and Secure

Computing, 6(3):188–201, 2009.

[6] Yu-Lun Huang, Shiuh-Pyng Shieh, Fu-Shen Ho, and Jian-Chyuan Wang.

Efficient key distribution schemes for secure media delivery in pay-tv

systems. IEEE Transactions on Multimedia, 6(5):760–769, 2004.

[7] Yu-Lun Huang, Shiuh-Pyng Winston Shieh, and Jian-Chyuan Wang.

Practical key distribution schemes for channel protection. In Proceedings

of the International Computer Software and Applications Conference

(COMPSAC), pages 569–574, 2000.

[8] Junbeom Hur and Hyunsoo Yoon. A decentralized multi-group key man-

agement scheme. IEICE Transactions, 92-B(2):632–635, 2009.

[9] Tianpu Jiang, Shibao Zheng, and Baofeng Liu. Key distribution based

on hierarchical access control for conditional access system in dtv broad-

cast. IEEE Transactions on Consumer Electronics, 50(1):225–230, 2004.

[10] Jung-Yoon Kim and Hyoung-Kee Choi. Improvements on sun ’s condi-

tional access system in pay-tv broadcasting systems. IEEE Transactions

on Multimedia, 12(4):337–340, 2010.

[11] Xiaozhou (Steve) Li, Yang Richard Yang, Mohamed G. Gouda, and Si-

mon S. Lam. Batch rekeying for secure group communications. In Pro-

40

ceedings of International World Wide Web Conference (WWW), pages

525–534, 2001.

[12] Iuon-Chang Lin, Shih-Shan Tang, and Chung-Ming Wang. Multicast key

management without rekeying processes. Computer Journal, 53(7):939–

950, 2010.

[13] Jen-Chiun Lin, Kuo-Hsuan Huang, Feipei Lai, and Hung-Chang Lee.

Secure and efficient group key management with shared key derivation.

Computer Standards & Interfaces, 31(1):192–208, 2009.

[14] Jen-Chiun Lin, Feipei Lai, and Hung-Chang Lee. Efficient group key

management protocol with one-way key derivation. In Proceedings of

the IEEE Conference on Local Computer Networks (LCN), pages 336–

343, 2005.

[15] Baofeng Liu, Wenjun Zhang, and Tianpu Jiang. A scalable key distri-

bution scheme for conditional access system in digital pay-tv system.

IEEE Transactions on Consumer Electronics, 50(2):632–637, 2004.

[16] B.M. Macq and J.-J. Quisquater. Cryptology for digital tv broadcasting.

Proceedings of the IEEE, 83(6):944–957, 1995.

[17] Adrian Perrig, Dawn Xiaodong Song, and J. D. Tygar. Elk, a new pro-

tocol for efficient large-group key distribution. In Proceedings of IEEE

Symposium on Security and Privacy, pages 247–262, 2001.

41

[18] Ali Aydin Selçuk and Deepinder P. Sidhu. Probabilistic methods in mul-

ticast key management. In Proceedings of the International Workshop

on Information Security (ISW), pages 179–193, 2000.

[19] Alan T. Sherman and David A. McGrew. Key establishment in large

dynamic groups using one-way function trees. IEEE Transactions on

Software Engineering, 29(5):444–458, 2003.

[20] Hung-Min Sun, Chien-Ming Chen, and Cheng-Zong Shieh. Flexible-pay-

per-channel: A new model for content access control in pay-tv broad-

casting systems. IEEE Transactions on Multimedia, 10(6):1109–1120,

2008.

[21] Yan Sun and K. J. Ray Liu. Hierarchical group access control for secure

multicast communications. IEEE/ACM Transactions on Networking,

15(6):1514–1526, 2007.

[22] Fu-Kuan Tu, Chi-Sung Laih, and Hsu-Hung Tung. On key distribution

management for conditional access system on pay-tv system. IEEE

Transactions on Consumer Electronics, 45(1):151–158, 1999.

[23] Guojun Wang, Jie Ouyang, Hsiao-Hwa Chen, and Minyi Guo. Efficient

group key management for multi-privileged groups. Computer Commu-

nications, 30(11-12):2497–2509, 2007.

42

[24] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure

group communications using key graphs. IEEE/ACM Transactions on

Networking, 8(1):16–30, 2000.

[25] Junqi Zhang, Vijay Varadharajan, and Yi Mu. A scalable multi-service

group key management scheme. In Proceedings of the Advanced Interna-

tional Conference on Telecommunications and International Conference

on Internet and Web Applications and Services (AICT/ICIW), page

172, 2006.

[26] Zhibin Zhou and Dijiang Huang. An optimal key distribution scheme

for secure multicast group communication. In Proceedings of the IEEE

International Conference on Computer Communications (INFOCOM),

pages 331–335, 2010.

[27] Wen Tao Zhu and Robert H. Deng. On group key management for

secure multicast employing the inverse element. In Proceedings of the

International Conference on Multimedia Information Networking and

Security, pages 337–341, 2009.

43

	論文封面1
	論文封面2
	本文

