
國 立 交 通 大 學

機 械 工 程 研 究 所

碩 士 論 文

以 USB 介面實現 AD/DA 訊號處理

USB AD/DA Signal Processing

 研 究 生 : 鄭 凱 文

 指導教授 : 成 維 華 博士

中 華 民 國 九 十 三 年 六 月

以 USB 介面實現 AD/DA 訊號處理

USB AD/DA Signal Processing

研 究 生：鄭 凱 文 Student：Kevin Cheng

指導教授：成 維 華 博士 Advisor：Dr. Wei-Hua Chieng

國 立 交 通 大 學

機 械 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Mechanical Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Mechanical Engineering
June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 I

以 USB 介面實現 AD/DA 訊號處理

學生：鄭凱文 指導教授：成維華博士

國立交通大學機械工程研究所

摘要

本篇論文主要利用Cypress 公司生產的一顆USB Version1.1 的晶

片---EZ-USB FX。因此晶片具有增強型的 8051 微處理器，其韌體可

經由USB介面直接傳輸燒錄並可重新裝置列舉（Renumeration TM），因

此增加了發展時的便利性。本論文目的在利用目前USB的普及性及

HID(Human Interface Device)使用上的便利，以HID裝置設計一個不需

使用者提供驅動程式及不需外接電源的方便性來實現類比/數位訊號

擷取和測試類比/數位的擷取訊號於USB 1.1 介面中的效能。本論文的

架構分為硬體，韌體，軟體三大部分，硬體即使用EZ-USB，韌體使用

Keil C 編譯器來撰寫，軟體部分則使用Microsoft Visual C++ 6.0 來開

發視窗介面的程式。

關鍵字：USB，HID，通用序列匯流排，類比數位訊號處理

 II

USB AD/DA Signal Processing

Student: Kevin Cheng Advisor: Dr. Wei – Hua Chieng

Institute of Mechanical Engineering
National Chiao Tung University

Abstract
The thesis is chiefly on utilizing the chip USB Version1.1, EZ-USB

FX, which is manufactured by Cypress Semiconductor Corporation. This

chip possesses an enhanced 8051 microprocessor. Its firmware can directly

download by USB and use Renumeration TM technology to enumerate

automatically. It has improved the convenience on development. The

purpose of the thesis is to capitalize on the popularization of USB and the

utility of HID (Human Interface Device), to capture and process the

Analog-to-digital signal and Digital-to-analog signal by means of HID

(Human Interface Device) within the utilization of USB 1.1 interface. The

device has supported users to capture signals without the help of drivers

and the necessity of electricity. The structure of the thesis is divided into 3

parts: Hardware, firmware, and software. EZ-USB is put to use as the

hardware, the firmware is edited by Keil C Complier and the software is

primarily compiled by Microsoft Visual C++ 6.0 to develop the program

of windows interface.

Keyword: USB, HID, Analog-Digital signal.

 III

誌謝

生我者父母，育我者交大。於此優秀學府七百餘日，時日非長，

唯同窗好友秉霖，彬佐，瑗焄，朝群等朝夕相處，終日為伍，教學相

長，育樂相邀，感情甚深。實驗室乃地靈人傑匯居之地，各方學長齊

聚一堂：時龍，淳彬，永成，嘉豐，晉偉，旭生等。於此做學，如醍

醐灌頂，收事半功倍之效。心中崇敬之意，尤以成教授維華先生為鉅，

弟子蒙先生指導，循循善誘，如沐春風。感謝之意，無引長江之水不

能宣，無登台北一零一不能示。

除此，尚有多年莫逆，相互砥礪支持，感謝之意，言語難表。

行文至此，尚懷羞愧之心，跪於父母親大人膝下，感謝家父家母

供於無慮之生活，溫暖之親情，使敝人責無旁貸，專於拙作。

 IV

Contents
摘要...I

ABSTRACT.. II

誌謝..III

CONTENTS... IV

TABLE CONTENTS.. VI

FIGURE CONTENTS...VII

CHAPTER 1 INTRODUCTION.. 1

1.1 USB BACKGROUND ..1
1.2 USB 1.1..4

1.2.1 Cable ...4
1.2.2 Electrical...8

1.3 USB 2.0..10
1.4 USB COMMUNICATIONS...13
1.5 USB TRANSFERS AND PACKETS ..16

CHAPTER 2 USB CHIP---EZ-USB .. 19

2.1 INTRODUCTION ...19
2.2 FEATURES ...20

CHAPTER 3 HARDWARE DEVELOPMENT 24

3.1 EZ-USB ..24
3.2 AD CONVERTER/ DA CONVERTER..25

CHAPTER 4 FIRMWARE DEVELOPMENT 32

4.1 FIRMWARE CONFIGURATION ...32
4.1.1 USB Descriptor ..34
4.1.2 Peripheral Circular Program...37

4.2 HID CLASS ...38

CHAPTER 5 HOST APPLICATION.. 41

5.1 WINDOWS APPLICATION...42
5.2 HARDWARE DRIVER..50

CHAPTER 6 CONCLUSION.. 52

6.1 TRANSFER RATE CALCULATION ..52
6.2 EXPERIMENT RESULT...53
6.3 CONCLUSION ...59

 V

REFERENCES ... 60

 VI

Table Contents
TABLE 1-1 CHIRP STATE ..10
TABLE 1-2 SYNCHRONIZATION TYPES ...14
TABLE 1-3 TRANSFER TYPES..15
TABLE 1-4 USB PID..17
TABLE 4-1 FILES THAT MAKING A EZ-USB FIRMWARE NEEDS32
TABLE 5-1 USEFUL WINDOWS API FOR HID...50

 VII

Figure Contents
FIGURE 1-1 STANDARD HIGH/FULL SPEED HARDWIRED CABLE ASSEMBLY5
FIGURE 1-2 STANDARD LOW SPEED HARDWIRED CABLE ASSEMBLY6
FIGURE 1-3 CABLE CONSTRUCTION OF HIGH/FULL SPEED.............................7
FIGURE 1-4 FULL-SPEED DEVICE CABLE AND RESISTOR CONNECTIONS8
FIGURE 1-5 LOW-SPEED DEVICE CABLE AND RESISTOR CONNECTIONS9
FIGURE 1-6 COMMUNICATION FLOW IN A USB SYSTEM16
FIGURE 1-7 THE PACKET’S ELEMENT...18
FIGURE 2-1 CY7C64613 (128 PIN) SIMPLIFIED BLOCK DIAGRAM................20
FIGURE 2-2 FINAL SYSTEM DIAGRAM OF EZ-USB FX...............................22
FIGURE 2-3 ENUMERATION & RENUMERATION..23
FIGURE 3-1 EZ-USB 8051-BASED CPU ..24
FIGURE 3-2 EZ-USB FX 128 PIN ..25
FIGURE 3-3 MAIN SCHEMATIC ...27
FIGURE 3-4 ANALOG TO DIGITAL INPUT SCHEMATIC28
FIGURE 3-5 DIGITAL TO ANALOG OUTPUT ...29
FIGURE 3-6 ADC0809 TIME DIAGRAM ...30
FIGURE 3-7 PHOTO OF THE AD CONVERTER ..30
FIGURE 3-8 PROTOTYPE OF THE HID AD/DA PROCESSING SYSTEM31
FIGURE 4-1 FLOW CHART OF THE EZ-USB DRIVER FUNCTION33
FIGURE 4-2 THE ORDER OF USB DESCRIPTORS......................................35
FIGURE 4-3 DESCRIPTORS INFORMATION ...35
FIGURE 4-4 DESCRIPTORS IN USB..36
FIGURE 4-5 THE FLOWCHART OF THE SIGNAL BETWEEN HOST AND USB38
FIGURE 4-6 REPORT DESCRIPTOR..40
FIGURE 5-1 THE FLOW CHART OF USB SOFTWARE DEVELOPMENT..................41
FIGURE 5-2 PID AND VID ...42
FIGURE 5-3 THE FLOW CHART OF HID DEVICE CHECK47
FIGURE 5-4 THE FLOW CHART OF THE PROGRAM48
FIGURE 5-5 SNAPSHOT OF THE PROGRAM...49
FIGURE 5-6 HID DEVICE SHOWS UP ON DEVICE MANAGER.........................51
FIGURE 6-1 100HZ SIGNAL..53
FIGURE 6-2 100HZ SIGNAL (2)...54
FIGURE 6-3 1 KHZ SIGNAL...54
FIGURE 6-4 1 KHZ SIGNAL (2)..55
FIGURE 6-5 2 KHZ SIGNAL...55
FIGURE 6-6 2 KHZ SIGNAL (2)..56
FIGURE 6-7 3 KHZ SIGNAL...56
FIGURE 6-8 3 KHZ SIGNAL (2)..57

 VIII

FIGURE 6-9 DIGITAL-TO-ANALOG OUTPUT TEST (1).................................58
FIGURE 6-10 DIGITAL-TO-ANALOG OUTPUT TEST (2)58

 1

Chapter 1

Introduction

1.1 USB Background

Universal Serial Bus (USB) was invented in 1995 by Universal Serial

Bus Implementers Forum (USB-IF), which the group included computer

manufacturers and peripherals vendors. A major purpose of USB is to

replace most of traditional interface ports on personal computer with one

user-friendly way. The original motivation for the Universal Serial Bus

(USB) came from three interrelated considerations:

‧ Connection of the PC to the telephone

It is well understood that the merge of computing and communication

will be the basis for the next generation of productive applications. The

movement of machine-oriented and human-oriented data types from one

location or environment to another depends on ubiquity and low-priced

connectivity. Unfortunately, the computing and communication industries

have evolved independently. The USB provides a ubiquitous link that can

be used across a wide range of PC-to-telephone interconnection.

‧ Ease-of-use

 2

The lack of flexibility in reconfiguring the PC has been

acknowledged as the Achilles’ heel to its further deployment. The

combination of user-friendly graphical interfaces, the hardware and

software mechanisms associating with new-generation bus architectures

has made computers less confrontational and easier to reconfigure.

However, from the end user’s point of view, the PC’s I/O interfaces, such

as serial/parallel ports, keyboard/mouse/joystick interfaces, etc., do not

have the attributes of plug-and-play.

‧ Port expansion

The addition of external peripherals continues to be constrained by

port availability. The lack of a bidirectional, low-cost, low-to-mid speed

peripheral bus has held back the creative proliferation of peripherals such

as telephone/fax/modem adapters, answering machines, scanners, PDA’s,

keyboards, mice, etc. Existing interconnections are optimized for one or

two point products. As each new function or capability is added to the PC,

a new interface has been defined to address this need.

Goals for the Universal Serial Bus

The USB is specified to be an industry-standard extension to the PC

architecture with a focus on PC peripherals that enable consumer and

business applications. The following criteria were applied in defining the

 3

architecture for the USB:

 ‧ Ease-of-use for PC peripheral expansion

 ‧ Low-cost solution that supports transfer rates up to 480 Mb/s

‧ Full support for real-time data for voice, audio, and video

‧ Protocol flexibility for mixed-mode isochronous data transfers and

asynchronous messaging

 ‧ Integration in commodity device technology

 ‧ Comprehension of various PC configurations and form factors

‧ Provision of a standard interface capable of quick diffusion into

product

 ‧ Enabling new classes of devices that augment the PC’s capability

 ‧ Full backward compatibility of USB 2.0 for devices built to previous

versions of the specification.

The USB has three speeds which can be used from low-speed,

full-speed to hi-speed. In USB 1.1, there are only the first two speeds,

low-speed and full-speed. In USB2.0, the third speed, hi-speed, is added.

Transmission rate of three speeds are: 1.5 Mb/s, 12 Mb/s and 480 Mb/s.

The USB2.0 is full compatible with USB1.1.

 4

1.2 USB 1.1

The USB1.1 was invented in September 23, 1998. Its speeds support

1.5Mb/s and 12Mb/s. It is the most popular USB version that we used in

the market. It includes many applications such as: mouse, scanner, printer,

flash memory and the MP3 player etc. These devices do not need a fast

speed rate, thus the USB1.1 can be used to implement the devices. The

details of USB1.1 will be described below.

1.2.1 Cable

The USB cable consists of four conductors, two power conductors, and

two signal conductors, the recommended colors are white, grey, or black.

Figure1-1 illustrates a standard high-/full- speed hardwired cable assembly.

Figure 1-2 illustrates a standard low-speed hardwired cable assembly.

Figure 1-1 Standard high/full speed hardwired cable assembly

Reference: USB Specification V2.0

 5

Figure 1-2 Standard low speed hardwired cable assembly

Reference: USB Specification V2.0

 6

High-/full-speed cable consists of a signaling twisted pair, VBUS,

GND, and an overall shield. High-/full- speed cable must be marked to

indicate suitability for USB usage. High-/full-speed cable can be used with

either low-speed, full-speed, or high-speed devices. Low-speed is

recommended, but does not require using the cable with twisted signaling

conductors. The maximum allowable cable length is determined by signal

pair attenuation and propagation delay, usually the limited length is less

than 5.0 meters for high-/full- speed and 3.0 meters for low-speed. Figure

1-3 shows the cable construction of high/full speed.

Figure 1-3 Cable construction of high/full speed

Reference: USB Specification V2.0

 7

1.2.2 Electrical

This electrical utility of USB contains signaling, power distribution,

and physical layer specifications. We will put the focus on the major

difference between USB1.1 and USB2.0; other details will not be

described so much here.

Devices detection

The USB hub should monitor each port to check if there is connection

or disconnection. Two pull-down resistors on the D+ and D- lines of the

hub ensure that both data lines are ground. The USB device should include

a pull-up resistor on either D+ or D- to trigger connect detection. Figure

1-4 and Figure 1-5 show the difference between full-speed device and

low-speed device.

Figure 1-4 Full-speed device cable and resistor connections

Reference: USB Specification V2.0

 8

Figure 1-5 Low-speed device cable and resistor connections

Reference: USB Specification V2.0

Power distribution

All USB ports provide power for devices which are attached to them.

The peripheral devices can be designed for either using the power that the

USB hub supplies or using their own power supply. The Cable power is 5

Volt dc and can be used to generate the devices. The self-powered hub can

provide current up to a maximum of 500ma and at a minimum of 100ma

for the devices. For example, when the external 4-ports hub is used

without the AC adepter, each port can provide a maximum current of

100ma. However, when it is used with AC adepter, each port can provide

a maximum current of 500ma. The power setup of the device is defined in

the Configuration Descriptor.

 9

1.3 USB 2.0

In April 2000, the new specification of USB was released, as known

as USB 2.0. The transmission rate of USB 2.0 is 480Mbps, which is 40

times faster than USB 1.1. In the best case, while the bus is idling, a

high-speed bulk transfer can move data at 53Mbps, using 90% of the bus’

bandwidth. For the compatibility, USB 2.0 device should be enumerated

as a full-speed device that can communicate to USB 1.1 hub. In other

words, USB 2.0 hub supports three speeds and allows full-speed and

low-speed while transferring the data.

High-speed Signaling Levels

The high-speed signaling voltage specification had defined “Chirp K”

state and “Chirp J” state. Table 1-1 shows these two states’ definition.

Table 1-1 Chirp state

Chirp J State
(differential voltage; applies only
during reset time when both hub and
device are high-speed capable)

DC Levels:
VCHIRPJ (min) (D+-D-) ≤ ≤
VCHIRPJ (max)

Chirp K State
(differential voltage; applies only
during reset time when both hub and
device are high-speed capable)

DC Levels:

VCHIRPK (min) ≤ (D- - D+) ≤
VCHIRPK (max)

 10

 11

Devices detection

The high-speed Reset and Detection mechanisms follow the

behavioral model for low-/full-speed. When reset is completed, the link

must to be operating in its appropriate signaling mode (low-speed,

full-speed, or high-speed as governed by the preceding usage rules), and

the speed indication bits in the port status register will report this mode

correctly. High-speed capable devices initially attach as full-speed devices.

After the initial attachment, high-speed capable transceivers engage in a

low level protocol during reset to establish a high-speed link and to

indicate high-speed operation in the appropriate port status register.

High-speed Detection Handshake is used to detect whether the device

is at high-speed or not. The procedure is listed as below.

1. The high-speed device leaves the D+ pull-up resistor connected, leaves

the high-speed terminations disabled, and drives the high-speed

signaling current into the D- line. This creates a Chirp K on the bus.

The device chirp must last no less than 1.0 ms (TUCH) and must end no

more than 7.0 ms (TUCHEND) after high-speed Reset time T0.

2. The hub must detect the device chirp after the assertion of the Chirp K

is seen for no less than 2.5 µs.

3. No more than 100 µs (TWTDCH) after the bus leaves the Chirp K state,

 12

the hub must begin to send an alternating sequence of Chirp K’s and

Chirp J’s. There must be no idle status on the bus between the J’s and

K’s. This sequence must continue to a time (TDCHSE0) no more than

500 µs and no less than 100 µs before the end of Reset. (This will

guarantee that the bus remains active and prevent the device from

entering the high-speed Suspend state.) Each individual Chirp K and

Chirp J must last no less than 40 µs and no more than 60 µs

(TDCHBIT).

4. After completing the hub chirp sequence, the hub asserts SE0 until the

end of Reset. At the end of reset, the hub must switch to the high-speed

Enabled state.

5. After the device completes its chirp, it looks for the high-speed hub

chirp. At a minimum, the device is required to see the sequence Chirp

K-J-K-J-K-J in order to detect a valid hub chirp. Each individual Chirp

K and Chirp J must be detected for no less than 2.5 µs (TFILT).

A) If the device detects the sequence Chirp K-J-K-J-K-J, then no more

than 500 µs (TWTHS) after detection that the device is required to

disconnect the D+ pull-up resistor, enable the high-speed terminations,

and enter the high-speed Default state.

B) If the device has not detected the sequence Chirp K-J-K-J-K-J by a

 13

time no less than 1.0 ms and no more than 2.5 ms (TWTFS) after

completing its own chirp, then the device is required to revert to the

full-speed Default state and wait for the end of Reset.

1.4 USB Communications

USB supports four transmission types: control, interrupt, bulk, and

isochronous.

Control transfer--- control transfer is used to transfer specific data of

USB device. Control transfer is commonly used during device

configuration.

Interrupt transfer--- interrupt transfer is used for devices that must be

polled periodically to see if the device has data to transfer. Applications

can be applied such as mice and keyboards.

Bulk transfer --- a bulk transfer is used for large blocks of data. There

is no periodic or transfer rate required. Applications can be applied such as

printer or scanner.

Isochronous transfer --- isochronous transfer is used to the transfer

which requires a constant delivery rate. Applications can be applied such

as microphone, speaker. There is a problem with isochronous transfers

which is synchronization. In USB, we have feedback and feed forwarding

 14

solution. Table 1-2 lists the synchronization types for both source and sink.

Table 1-3 contains more details for these four transfers. Figure 1-6 is the

communication flow in a USB system

Table 1-2 Synchronization types

 Source Sink

Asynchronous Free running source clock
Provides implicit feed
forward. The data rate is
carried implicitly in the
data stream based on the
number of samples it
produces in a frame

Free running sink clock
Provides explicit feed
back via a synchronous
pipe. The endpoint sends
feedback to the host to
indicate its data rate. This
feedback info is relative to
the frame (SOF) timing.

Synchronous Source clock lock to USB
clock
Uses implicit feedback.
The feedback is supplied
via the SOF packet. The
endpoint slaves its sample
clock to the SOF via a
PLL.

Sink clock lock to USB
clock
Uses implicit feedback.
The feedback is supplied
via the SOF packet. The
endpoint slaves its sample
clock to the SOF via a
PLL.

Adaptive Source clock lock to sink

Uses explicit feedback via
an isochronous pipe to
determine the desired
frequency of the sink. The
feedback info is relative to
the frame (SOF) timing.

Sink locked to data flow
Uses implicit free
forwarding. The data rate
is carried implicitly in the
data stream based on the
number of samples it
produces in a frame. The
adaptive endpoint
synchronizes its sample
clock to the data stream
rate.

 15

Table 1-3 Transfer types

Type Control Interrupt Isochronous Bulk

Transfer rate of

high-speed(Byte/1ms)

15872 24576 24576 53248

Transfer rate of

full-speed(Byte/1ms)

832 64 1023 1216

Transfer rate of

low-speed(Byte/1ms)

24 0.8

(8Byte/10ms)

Not

allow

Not

allow

10% 90% in USB 1.1 Bandwidth

20% 80% in USB 2.0

No

CRC Check Yes Yes No Yes

Guaranteed delivery

time

No No Yes No

Guaranteed delay

time

No Yes No No

Figure 1-6 Communication flow in a USB system

1.5 USB Transfers and Packets

There are three stages in USB transfers. And the smallest unit is

“Packet”; each packet contains information of transfer and data. The first

byte of packet is always a Packet Identifier (PID), which defines the

packet’s type. The packet identifier byte is formed with 4 bites and

complement of these 4 bits. Table 1-4 shows some of packet identifiers

(PID) and their types, and category. Others will be found in USB

 16

 17

document. Figure 1-7 will show the packet’s element and the number

below is the element’s data (in bits).

Table 1-4 USB PID

PID Value Packet type Packet category

 0101 SOF token
 1101 SETUP token
 1001 IN token
 0001 OUT token
 0011 DATA0 data
 1011 DATA1 data
 0010 ACK handshake
 1010 NAK handshake
 1110 STALL handshake

 18

Figure 1-7 The packet’s element

Token Packet

S
O
F
8

F
R

11

C
R
C
5

A
D
D
R

I
N

E
P

C
R
C
5

8 4
7

Token Packet

Token Packet

O
U
T
8

A
D
D
R
7

E
P
4

C
R
C
5

S
E
T
U
P

A
D
D
R

E
P

C
R
C
5

4
7

Token Packet

Data Packet

D
A
T
A
8

Payload

Data
0~1023

C
R
C
16

H/S Packet

A
C
K
8

 19

Chapter 2

USB Chip---EZ-USB

2.1 Introduction

The Cypress Semiconductor EZ-USB™ FX CY7C646xx is a

compact integrated circuit that provides a highly integrated solution for a

USB peripheral device. The key EZ-USB FX features are:

• The EZ-USB FX provides a “soft” (RAM-based) solution that allows

unlimited configuration and upgrades.

• The EZ-USB FX delivers full USB throughput. Designs that use

EZ-USB are not limited by the number of endpoints, buffer sizes, or

transfer speeds.

• The EZ-USB FX does much of the USB housekeeping in the EZ-USB

core, simplifying code and accelerating the USB learning curve. Figure

2-1 is the block diagram of EZ-USB FX.

Figure 2-1 CY7C64613 (128 pin) simplified block diagram

Reference: Cypress Semiconductor

2.2 Features

• Single-chip integrated USB Transceiver, Serial Interface Engine

(SIE), and Enhanced 8051 Microprocessor

• Soft: 8051 runs from internal RAM, which is: downloaded via USB,

or loaded from EEPROM

• 14 Bulk/Interrupt endpoints, each with a maximum packet size of 64

bytes. 16 isochronous endpoints, with 2 KB of buffer space (1 KB, double

buffered) which may be divided among the sixteen isochronous endpoints

• Integrated, industry standard 8051 with enhanced features: 4 clocks

per cycle, 2 UARTS, 3 counter/timers and 256 bytes of register RAM.

 20

 21

• Integrated I2C™ controller

• Five 8-bit IO ports

• 48-MHz or 24-MHz 8051 operation selectable by EEPROM

configuration byte.

• Four integrated general purpose 8-bit FIFOs

• DMA Controller

• Moves data between slave FIFOs, memory, and ports

• Very fast transfers—one clock (20.8 ns) per byte for internal

transfers

• Can use external RAM as additional FIFO (addressed through A/D

buses)

• General Programmable Interface (GPIF)

• Allows direct connection to most parallel interfaces: 8- and 16-bit

• Programmable Waveform Descriptors and Configuration Registers

to define waveforms

• Supports multiple Ready (RDY) inputs and Control (CTL) outputs

Cypress’ EZ-USB FX family is available in three packages: 52 PQFP,

80 PQFP, and 128 PQFP. The CY7C64613, a 128-pin version of the

EZ-USB FX, has 40 IO pins, a 16-bit address bus and 8-bit data bus for

external memory expansion. We will use this chip for our project. Figure

2-2 is the final system diagram of EZ-USB FX.

USB Device USB-Capable Computer
Host

EZ-USB Device Application
Program

8051 Application

Custom USB
Device Driver

USBD.SYS
(Microsoft USB Driver)

USB BUS

Figure 2-2 Final system diagram of EZ-USB FX

Reference: Cypress Semiconductor

We need to work on the parts of Windows application program and

device firmware configuration and 8051 application program. Then using

the drivers provided by Cypress and Microsoft Windows. Figure 2-3 is the

flow chart of EZ-USB enumeration and re-enumeration.

 22

Host Device

Host identifies device is

attached

E N
 U

 M
 E R

 A
 T I O

 N

Host assigns unique

address to device

 23

Figure 2-3 Enumeration & Renumeration

Device provides

initial device

Host issues configuration

to be used to be used by

device

Device disconnects

and reconnects
Host loads new

firmware from S/W file

Host begins Device provides

updated configure

info.

"Enumeration" again

Host verifies new

resources available

R
 E N

 U
 M

 E R
 A

 T I O
 N

Host issues configuration

to be used

Chapter 3

Hardware Development

3.1 EZ-USB

The EZ-USB FX (CY7C64613) has 128 pins, including an enhanced

8051. Supply voltage is from +3.0V to +3.6V, with an oscillator 12MHz

+/- 0.25%. And DC input voltage to any pin is from -0.5V to +5.8V.

Figure 3-1 is a block diagram of the EZ-USB’s 8051-based CPU.

8-bit CPU

Oscillator

Bus

Control

Interrupt
Control

I/O Ports
5 Ports

Serial Port1
Register

RAM
(256bytes) Serial Port0

Timer 2

Timer 1

Timer 0

Crystal

Figure 3-1 EZ-USB 8051-based CPU

 24

There are some notices in the hardware fabrication. We should build

smooth connection in USB signal lines: D+ and D-. The crystal connection

is also important. Any rough welding will possibly result the Windows in

being not able to recognize the device. Moreover, in order to avoid the

noise transients and protect EZ-USB, we add a SN75240 between the USB

port and the EZ-USB’s D+ and D- pin.

Figure 3-2 EZ-USB FX 128 Pin

3.2 AD Converter/ DA Converter

The AD converter, we use ADC0809, which is an 8-channel output,

8-bit resolution, and from 0V to 5V input range with ingle 5V power

 25

 26

supply. The conversion time of it is 100 µs. Figure 3-3 displayed it’s time

diagram which shows the convert timing.

The DA converter, we use DAC0800, which is a monolithic 8-bit

high-speed, current-output, digital-to-analog converter featuring typical

settling times of 100ns. Supply voltage from ±4.5V to ±18V. Its output

voltage is from -10V to +18V.

To process the analog-to-digital signal, we use EZ-USB’s I/O port.

Port A to receive the data comes from ADC0809, and Port B to control

AD converter’s “start” signal and to switch the channel of AD converter.

To process the digital-to-analog signal, we use Port D to send the

signal to DA converter.

Figure 3-3 is the circuit of EZ-USB FX. As the schematic shows,

there is a 12HMhz oscillator connected on pin 19 and pin 20. EZ-USB

uses I2C bus communicates with EEPROM. The “SCL” and “SDA” pins

are used by I2C bus. Figure 3-4 is analog-to-digital signal input circuit.

For AD converter, it has a 1.2MHz oscillator connected on pin 10. Pin 17

to Pin 21 are the signal lines connected to EZ-USB’s Port A, and the

channel selection pins are controlled by Port B. Figure 3-5 is

digital-to-analog signal output circuit. We use an operation amplifier to

output the DA signal.

Figure 3-3 Main Schematic

 27

Figure 3-4 Analog-to-digital input Schematic

 28

Figure 3-5 Digital-to-analog output

Schematic

 29

Figure 3-6 ADC0809 time diagram

Figure 3-7 Photo of the AD converter

 30

Figure 3-8 Prototype of the HID AD/DA Processing System

 31

Chapter 4

Firmware Development

In this chapter, the firmware development of USB device will be

briefly introduced.

4.1 Firmware configuration

EZ-USB firmware contains some files; some are provided by Cypress,

other files we have to configure on our own. Table 4-1 shows the file that

configures a firmware needs.

 Table 4-1 Files that making a EZ-USB firmware needs

File Description

FW.c EZUSB Firmware code

Periph.c User Function code

Dscr.a51 USB Descriptor table

EZUSB.lib EZUSB Library(Provide by Cypress)

EZUSB.h EZUSB header code(Provide by Cypress)

EZREGS.h EZUSB register header code(Provide by Cypress)

EZ-USB firmware implements a simple co-operative tasking

executive. Figure 4-2 is the flow chart of the firmware. Cypress has the

example code for EZ-USB’s basic firmware, so that we merely

concentrate on the configuration that the input and output need, like the
 32

periphery function program.

NO

NO
NO

FALSE

TRUE
Yes

Yes

Yes

Power on/Reset

Initialize State
Variables

Call TD_Init ()

Enable
interrupts

Delay 1 second
& Remunerate

 Setup Packet
received?

Call TD_Poll ()

Parse and
implement

Device Request

Suspend
Processor

Call
TD_Resume ()

USB Bus
Idle flag set?

Call
TD_Suspend

 Setup Packet
received?

Figure 4-1 Flow chart of the EZ-USB driver function

 33

 34

We use an EEPROM to store our firmware. During the enumeration,

EZ-USB will load the program form EEPROM by I2C bus. The detail of

downloading firmware to EEPROM can be found in EZ-USB document.

In this project, we would like to carry out to an AD/DA processing,

thus we will configure the EZ-USB chip which has 2 endpoints: 1 for IN

and 1 for OUT. Because that the AD converter is an 8-bit resolution and 8

channels converter. Each endpoint is configured to have 64 bytes packet,

and polling interval is 1ms. To implement these endpoints, we shall

setup the related information in device descriptor, and the periphery

function program.

4.1.1 USB Descriptor

All USB devices have their own descriptors. Descriptor data may

include standard device descriptors, class descriptors, and user specific

descriptors. There are 5 to 7 descriptor types in USB. The order of USB

descriptors is listed in Figure 4-4 .And Figure 4-5 are descriptors

constructions of USB. A HID device should have a HID descriptor and a

Report descriptor. In the EZUSB firmware, the device descriptors are

contented in DSCR.A51. Figure 4-6 listed the Device descriptor,

Configuration descriptor, Interface descriptor in my USB device.

Device Descriptor
Configuration 1 Descriptor

Interface 1 Descriptor HID

Descriptor

Report Desc.

Endpoint 1 Descriptor
Endpoint 2 Descriptor
…

Interface 2 Descriptor
Endpoint 1 Descriptor
…
…

Configuration 2 Descriptor
…

String Descriptor 1
String Descriptor 2
…
Class Descriptor 1
Class Descriptor 2
…

Null Descriptor

Figure 4-2 The order of USB descriptors

Device
Length =18 Configure

Type 1 Length =9 Interface HID descriptor
USB Ver. Type 2 Length =9 Endpoint Length = 9

Class Total length. Type 4 Length = 7 Type = 21H
SubClass Interfaces This interface. Type = 5 Version
Protocol ThisConfig Alternate EP. Addr. County code
EP0 Size Config Name Endpoint Attributes HID descriptor

VID Attributes Class Max. Size Report = 21H
PID Max power Subclass PollingInterv Total Length

Ver. Num. Protocol
Manufacturer Interface name
PrductName

SeriialNumbe
Configuration

Device
Length =18 Configure

Type 1 Length =9 Interface HID descriptor
USB Ver. Type 2 Length =9 Endpoint Length = 9

Class Total length. Type 4 Length = 7 Type = 21H
SubClass Interfaces This interface. Type = 5 Version
Protocol ThisConfig Alternate EP. Addr. County code
EP0 Size Config Name Endpoint Attributes HID descriptor

VID Attributes Class Max. Size Report = 21H
PID Max power Subclass PollingInterv Total Length

Ver. Num. Protocol
Manufacturer Interface name
PrductName

SeriialNumbe
Configuration

Figure 4-3 Descriptors information

 35

(Device Descriptor)
db 18 ;; Descriptor length

 db DSCR_DEVICE ;; Decriptor type
 db 10H,01H ;; Specification Version (BCD)
 db 00H ;; Device class
 db 00H ;; Device sub-class
 db 00H ;; Device sub-sub-class
 db 64 ;; Maximum packet size
 dw 3412H ;; Vendor ID ;;************************
 dw 7856H ;; Product ID ;;************************
 db 01h,00h ;; Product version ID
 db 1 ;; Manufacturer string index
 db 2 ;; Product string index
 db 0 ;; Serial number string index
 db 1 ;; Numder of configurations

(Configurate Descriptor)
 db 9 ;; Descriptor length
 db DSCR_CONFIG ;; Descriptor type
 db EPDscrEnd-ConfigDscr ;; Configuration + End Points length (LSB)
 db 00 ;; Configuration length (MSB)
 db 1 ;; Number of interfaces
 db 1 ;; Interface number
 db 0 ;; Configuration string
 db 01100000b ;; Attributes (b7 - buspwr, b6 - selfpwr, b5 - rwu)
 db 250 ;; Power requirement (div 2 ma)

 (Interface Descriptor)
 db 9 ;; Descriptor length
 db DSCR_INTRFC ;; Descriptor type
 db 0 ;; Zero-based index of this interface
 db 0 ;; Alternate setting
 db 2 ;; Number of end points
 db 03H ;; Interface class(HID:03H)
 db 00H ;; Interface sub class
 db 00H ;; Interface sub sub class
 db 0 ;; Interface descriptor string index

Figure 4-4 Descriptors in USB

 36

 37

4.1.2 Peripheral Circular Program

In EZUSB, there is an enhanced 8051 inside. The peripheral circular

is used to setup the 8051 and initial the EZ-USB chip. Cypress

Semiconductor had provided the driver and contained some functions that

we can use. The flow chart of the EZ-USB driver function is in Figure 4-2.

The firmware was written, using the Keil C51 C compiler and tools.

The complier will create a HEX file that we can download to EZ-USB.

EZ-USB has an enhanced 8051 in it, and 8051 is used to take care of

input/ output control such as control AD converter and DA converter. The

flowchart of the signal between the host and USB is in Figure 4-7. In the

“Write” stage, PC sends an “OUT” request to USB at the first, after USB

sends an “ACK” back to the PC, and then the PC will send the output data

to USB. In the “Read” stage, PC sends an “IN” request to USB at the first,

the USB will send the data in endpoint buffer back. The endpoint buffer

contains the data that 8051 read from the AD converter.

EZ-USB

PC

USB

End
Point
Buffer

8
0
5
1

AD
C

DA
C

Write

Read

Figure 4-5 The flowchart of the signal between host and USB

4.2 HID class

HID (Human Interface Device) is the most useful class in USB

application. There are many applications in HID: mice, keyboard, joy

sticker are good examples of HID. A HID device does not require a human

interface. After Windows 98 SE, Windows have supported HID. It means

that user does not need to install driver for HID device. A HID-Class

device supplies low amounts of data at infrequent times. The HID transfer

speed is 800 Bytes/s at low-speed, 64KB/s at full-Speed, 24MB/s at

high-speed. The latest version of HID is 1.1. EZ-USB FX (CY7C64613) is

a full-speed USB chip. Therefore, I enumerate my device as a full-speed

HID device.

The HID descriptor is a specific descriptor for HID Device, as Figure

3-4 shows. To configure a HID-class device, the class code in interface

 38

descriptor must set to 3. The PC host will look for a HID Descriptor and a

Report descriptor. This is an example code below, the total bytes is 9 bytes.

The second parameter must be 21 for HID device, and the current version

of HID is 1.1.

Repo

communic

descriptor

communic

and uses o

report des

USB-IF. F

report size

and report

db 09h ; length
db 21h ; type: HID
db 10h,01h ; release: HID class rev 1.1
db 00h ; country code (none)
db 01h ; number of HID class descriptors
db 22h ; report descriptor type (HID)
rt descriptor is the unique descriptor in HID device. HID device

ates with PC host by sending report descriptors. Report

 contains input report and output report. While processing

ation, HID sends data into the host according to the input report,

utput report to process the data coming from host. To write the

criptor, we can use Report Generator Tool, which is provided by

igure 4-8 is the report descriptor of HID device. The input

 is 8 bits, and report count is 63. The output report size is 8 bits,

 count is 8.

 39

ReportDscr:
 db 06H, 0A0H, 0FFH ;; Usage Page (vendor defined)
 db 09H, 01H ;; Usage (Vendor defined)
 db 0A1H, 01H ;; Collection (Application)
 db 09H, 02H ;; Usage (vendor defined)
 db 0A1H, 00H ;; Collection (Physical)
 db 06H, 0A1H, 0FFH ;; Usage Page (vendor defined)

;; The input report
 db 09H, 03H ;; Usage (vendor defined)
 db 09H, 04H ;; Usage (vendor defined)
 db 15H, 80H ;; Logical minimum (80H = -128)
 db 25H, 7FH ;; Logical maximum (7FH = 127)
 db 35H, 00H ;; Physical minimum (0)
 db 45H, 0FFH ;; Physical maximum (255)
 db 75H, 08H ;; Report size (8 bits)
 db 95H, 3FH ;; Report count (63 fields)
 db 81H, 02H ;; Input (Data, Variable, Absolute)
;; The output report
 db 09H, 05H ;; Usage (vendor defined)
 db 09H, 06H ;; Usage (vendor defined)
 db 15H, 80H ;; Logical minimum (80H = -128)
 db 25H, 7FH ;; Logical maximum (7FH = 127)
 db 35H, 00H ;; Physical minimum (0)
 db 45H, 0FFH ;; Physical maximum (255)
 db 75H, 08H ;; Report size (8 bits)
 db 95H, 08H ;; Report count (8 fields)
 db 91H, 02H ;; Output (Data, Variable, Absolute)

 db 0C0H ;; End Collection (Physical)
 db 0C0H ;; End Collection (Application)

ReportDscrEnd:

ReportDscr:
 db 06H, 0A0H, 0FFH ;; Usage Page (vendor defined)
 db 09H, 01H ;; Usage (Vendor defined)
 db 0A1H, 01H ;; Collection (Application)
 db 09H, 02H ;; Usage (vendor defined)
 db 0A1H, 00H ;; Collection (Physical)
 db 06H, 0A1H, 0FFH ;; Usage Page (vendor defined)

;; The input report
 db 09H, 03H ;; Usage (vendor defined)
 db 09H, 04H ;; Usage (vendor defined)
 db 15H, 80H ;; Logical minimum (80H = -128)
 db 25H, 7FH ;; Logical maximum (7FH = 127)
 db 35H, 00H ;; Physical minimum (0)
 db 45H, 0FFH ;; Physical maximum (255)
 db 75H, 08H ;; Report size (8 bits)
 db 95H, 3FH ;; Report count (63 fields)
 db 81H, 02H ;; Input (Data, Variable, Absolute)
;; The output report
 db 09H, 05H ;; Usage (vendor defined)
 db 09H, 06H ;; Usage (vendor defined)
 db 15H, 80H ;; Logical minimum (80H = -128)
 db 25H, 7FH ;; Logical maximum (7FH = 127)
 db 35H, 00H ;; Physical minimum (0)
 db 45H, 0FFH ;; Physical maximum (255)
 db 75H, 08H ;; Report size (8 bits)
 db 95H, 08H ;; Report count (8 fields)
 db 91H, 02H ;; Output (Data, Variable, Absolute)

 db 0C0H ;; End Collection (Physical)
 db 0C0H ;; End Collection (Application)

ReportDscrEnd:

Figure 4-6 Report descriptor

 40

Chapter 5

Host Application

There are three parts that we should put into consideration: device

firmware, windows user application, and device driver. The flow chart is

showed below as Figure 5-1.

User Application
User mode

 41

Figure 5-1 The flow chart of USB software development

All USB devices have a Vendor ID (VID) and a Product ID (PID)

which are reported to Windows in the device descriptor. Windows uses the

Device driver

Kernel mode

Device hardware (firmware)

VID and PID to detect the appropriate device driver. The INF file is what

ties a VID/PID combination to a specific driver. Figure 4-3 shows the

relation between PID/VID and USB device.

Device

firmware

User
application

Driver
(INF file)

PID
&

VID

Figure 5-2 PID and VID

 42

5.1 Windows Application

In USB device development, the host application is another important

part. There are many programming languages that we can use to develop a

windows application, here I choose Visual C++ as the development tool.

A user mode application firstly gets a handle to the device driver via a

call to Win32 function “CreateFile ()”. Then the user mode application

uses Win32 function “DeviceIoControl ()” to submit an I/O control code

and related input and output buffers to the driver through the handle

returning by “CreateFile ()”. These two Win32 functions are provided by

Visual C++. And other I/O Control Code (IOCTL) will refer to The

EZ-USB General Purpose Driver.

There is another way to communicate to USB. If we configure our

device as a HID (Human Interface Device), therefore we can use Windows

API to establish communication with USB HID more easily. Table 5-1

lists some useful Windows API for HID device. In order to write a HID

program, we should equip Windows DDK (Driver Development Kit). For

the reason that there are many of the Windows system libraries and

declaration files within Windows DDK.

The process of opening a device consists of several steps.

Step 1: First of all before windows application communicates to a

HID device, it should obtain the Windows GUID (globally unique ID) of

HID. GUID has a 128 bits length. Each object all has its own GUID; The

GUID of HID class is contained in hidclass.h. We can use

“HidD_GetHidGuid ()” to obtain the GUID of HID.

Step 2: After obtaining the GUID, and then we should get an array of

structures that contain information about all attached HID devices. Here

we use “SetupDiGetClassDevs ()” to do this task. The function will return

all attached HID devices.

Example: // API function: HidD_GetHidGuid

 HidD_GetHidGuid(&HidGuid);

 43

Step 3: Now we use “SetupDiEnumDeviceInterfaces ()” to get

information about a device in the list that got from Step 2. We need to

check each index of device information until find the one that matches the

VID and PID that our device owns.

Step 4: When we already got the index of our device, using

“SetupDiGetDeviceInterfaceDetail ()” to return detailed data about the

device indexed in the previous step. After this procedure, we can get this

device path that we can use to open.

Example: // API function: SetupDiGetClassDevs
 hDevInfo=SetupDiGetClassDevs
 (&HidGuid, //ClassGuid,
 NULL, //Enumerator,
 NULL, //hwndParent,
 DIGCF_DEVICEINTERFACE //Flags

);

Example: // API function: SetupDiEnumDeviceInterfaces
 Result=SetupDiEnumDeviceInterfaces
 (hDevInfo, //DeviceInfoSet
 0, //DeviceInfoData
 &HidGuid, //InterfaceClassGuid

 MemberIndex, // MemberIndex
 &devInfoData // DeviceInterfaceData

);

 44

Step 5: Now we can call “CreateFile ()” to open the device using the

path obtained in the previous step.

Step 6: We should compare the open device’s VID and PID to check

the device is what we want to communicate. Here we can use

“HidD_GetAttributes()” to obtain the attributes of device. If the VID and

PID are incorrect, then we need to close the device handle and return to

Step 3 to check the next device which the list indexes.

Example: // API function: SetupDiGetDeviceInterfaceDetail
 Result = SetupDiGetDeviceInterfaceDetail
 (hDevInfo, //DeviceInfoSet,
 &devInfoData, //DeviceInterfaceData,
 NULL, //DeviceInterfaceDetailData,
 0, // DeviceInterfaceDetailDataSize,
 &Length, //RequiredSize,
 NULL //DeviceInfoData

);

Example: // API function: CreateFile
 DeviceHandle=CreateFile
 (detailData->DevicePath,
 GENERIC_READ|GENERIC_WRITE,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 (LPSECURITY_ATTRIBUTES)NULL,
 OPEN_EXISTING,
 0,
 NULL);

Example: // API function: HidD_GetAttributes
 Result = HidD_GetAttributes
 (DeviceHandle, // HidDeviceObject
 &Attributes // Attributes

);

 45

Step 7: If we have got the device we want, we can use

“HidP_GetCaps()” to obtain the device's capabilities. Such as Input report

length, Output report length can be obtained from the function return.

Figure 5-3 is the flow chart of the windows application checks the HID

device that we desired in the initial process.

Once we step through all initial communication, we can start to write

data to device and read data from device. I use “ReadFile()” and

“WriteFile()” functions to communicate with my device.

Example: // API function: ReadFile
Result = ReadFile

(ReadHandle,
&InputReport,
Capabilities.InputReportByteLength,
&NumberOfBytesRead,
(LPOVERLAPPED) &HIDOverlapped

);

Example: // API function: WriteFile
Result = WriteFile

(DeviceHandle,
&OutputReport,
Capabilities.OutputReportByteLength,
&NumberOfBytesWritten,
NULL

);

 46

HidD_GetHidGuid ()

 47

Figure 5-3 The Flow chart of HID device check

In my HID program, there are some features.

1. Detect specific HID device (HID AD/DA Processing System).

2. Show HID Features (input and output features)

3. Analog Output Control (form 0V~ 5V).

True

False

True

False

SetupDiEnumDevice-
Interfaces ()

SetupDiGet-
ClassDevs ()

SetupDiGetDeviceInterfac
eDetail ()

CreateFile ()

HidD_GetAttributes()

Check
VID & PID

HID not
Found

Device Found

4. Analog Signal Receive

5. Graphical Display.

Figure 5-4 is the flow chart of my Windows program to communicate

with HID device. The looping time is set to 10ms. There are 2

high-resolution timers in this program, “Timer1” and “Polling interval”.

Polling interval is used in order to record the one procedure (Write

function to Display function). Timer1 is to record the time that the

program loops specific times spend. The program also generates a file

which is used to record the transfer data. Due to the graphical display

function, it would reduce the transfer performance so this function can be

cancelled by user. When we test the performance, we turn off this

function.

 48

Figure 5-4 The flow chart of the program

Program Initial

Device check

Continue ()

Write ()
Yes

No

Error Message

Read ()
Timer/ loop

Display ()

Figure 5-5 Snapshot of the program

 49

 50

Table 5-1 Useful Windows API for HID

API function Use in HID communication
HidD_GetHidGuid Returns the GUID associated with HIDs
SetupDiGetClassDevs Returns an array of structurescontaining

information about all installed HIDs
SetupDiEnumDevice-
Interfaces

Returns a pointer to a structure that
identifies an interface in the array returned
by SetupDiGetClassDevs

SetupDiGetDevice-
InterfaceDetail

Returns a device pathname for a specified
device interface

CreateFile Opens a handle to a HID using the
pathname returned by
SetupDiGetDevice-InterfaceDetail

HidD_GetAttributes Returns the Vendor ID, Product ID, and
Version for a specified HID

HidD_GetPreparsedData Returns a handle to a buffer with
information about a device’s capabilities

HidD_GetCaps Returns a structure describing a device’s
capabilities

HidD_GetValueCaps Returns a structure describing the values in
a device port

ReadFile Reads in input report from a specified HID
WriteFile Sends out output report to a specified HID

5.2 Hardware Driver

As shown in Figure 5-1, the device driver plays a role of connecter

between Windows and hardware. But USB driver doesn’t talk directly to

USB hardware; it talks to Microsoft USB driver called USBD.sys. In

EZ-USB, Cypress Semiconductor had provided a driver called: ezusb.sys,

so that we can use it directly.

As the previous section was described, we have configured the device

as a HID, so that we don’t have to make our own INF file. Windows will

recognize the device by using its own INF (in Windows 98, it will use

“hiddev.inf”. in Windows 2000, it will use “input.inf” for HID device.).

Figure 5-6 The HID device shows up in the device manager when we plug

device into USB port.

Figure 5-6 HID device shows up on Device Manager.

 51

 52

Chapter 6

Conclusion

6.1 Transfer rate calculation

Now we will test our device and its performance. As we know, for the

full-speed of HID, the maximum transfer speed is 64KB/s. We should

consider the hardware constrains: the ADC’s conversion time, and the

Start pulse. For ADC0809, the conversion time is 100 µs, and we set the

Start pulse to about 0.6 µs (the minimum time that EZ-USB’s internal

8051 can reach). Because the EZ-USB’s interrupt endpoint buffer is 64

bytes, so we set the 8051 to get 64 data from AD converter. We use

double buffers to save the AD data. When one buffer is full then sent by

USB core, 8051 can still save the data to another. The process will

continuously repeat when another buffer is full. Each buffer is 64bytes.

The USB core polling interval is set to 1 millisecond.

I set the program to run 100 loops and record the total spending time

form “Timer1” in my program. The data what EZ-USB transferred will be

output to file, “data”. The graph display is done with the assist of EXCEL.

6.2 Experiment Result

Testing environment:

Operation System: Windows XP Professional;

PC: P4-1.3G, 512M DDR Ram;

USB Host: USB 2.0;

In report size: 64 bytes;

Out report size: 64 bytes;

Packet size: 64 bytes;

Polling interval: 1ms;

Testing results are illustrated as below figures. All figures are marked

down 100 samples.

100Hz Signal

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-1 100Hz signal

 53

100Hz Signal

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-2 100Hz signal (2)

1Khz Signal

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9
Time(millisecon)

O
ut

pu
t(V

ol
t)

Figure 6-3 1 KHz signal

 54

1KHz Signal

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9
Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-4 1 KHz signal (2)

2KHz Signal

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-5 2 KHz signal

 55

2KHz Signal

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 1 2 3 4 5 6 7 8 9
Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-6 2 KHz signal (2)

3Khz Signal

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-7 3 KHz signal

 56

3KHz Signal

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 1 2 3 4 5 6 7 8 9
Time(millisecond)

O
ut

pu
t(V

ol
t)

Figure 6-8 3 KHz signal (2)

From the results of my experiment, we can calculate the transfer

speed. The transfer speed is approaching 6Kbytes/s. it means that the

system can sample 6000 points within a second. Therefore, the input

signal frequency must be under 3 KHz. As Figure 6-7 shows, when the

input signal frequency is 3 KHz, the output has committed an error.

Furthermore, we found there is a non-continued point in every 64

points (a packet). That is due to the HID report whereas there ought to be a

Report ID in each report. In the program setting, we can easy skip this

byte, that is, we have skipped this byte while making the graphs.

 57

Digital-to-Analog output result as below figure shows, I let my

Windows program to generate a sine wave and capture the photography

from oscilloscope.

Figure 6-9 Digital-to-analog Output test (1)

Figure 6-10 Digital-to-analog Output test (2)

 58

 59

6.3 Conclusion

In section 6.2, we can comprehend that the transfer speed is

approaching 6 Kbytes/s, but the report ID byte will reduce the transfer rate

of the useful data. In my experiment, there are 100 packets transferred.

There will be 100 bytes for report ID, hence the useful data transferred

will be 6400 bytes (6500 – 100 = 6400). And the total data transferred into

host is 6500 bytes/s.

Constrained by the Windows program and the AD converter’s

conversion time, the performance can’t reach the utility to the best of HID

ideal value, 64Kbytes/s. To improve the performance, there are some ways

to do. In the software part, we can use multi-thread or DirectX to increase

the software performance. In the Hardware part, we can change the AD

converter for better performance.

Nevertheless, there is a main problem that the USB is a master-slave

system. That is, the device cannot send the data unless the host makes

request. In USB, HID class is usually used to implement on moderate

device. In data acquisition, it provides an easy-used way, but not a fast

sample rate. In the future, the sample rate could be enhanced when the

system upgrades to USB 2.0.

 60

References

[1] John Hyde, USB design by example: /a practical guide to building I/O

devices, Wiley, 2001.

[2] Don Anderson / Dave Dzatko, Universal Serial Bus System

Architecture. Second Edition, Addison Wesley, 2001.

[3] Jan Axelson, USB Complete: Everything You Need to Develop

Custom USB Peripherals , Lakeview Research, 2001.

[4] 許永和，微處理機程式設計(USB介面之完全解決方案)，長高出版

社，2003.

[5] 蕭世文，精通USB2.0 硬體設計，文魁資訊股份有限公司，2002.

[6] 劉志安，USB2.0 程式設計，文魁資訊股份有限公司，2002.

[7] 楊明豐，8051 單晶片C語言設計實務---使用Keil C，2003.

[8] EZ-USB General Purpose Driver Specification Document, Cypress

Semiconductor, 1999.

[9] EZ-USB Manual Technical Reference Vision 1.10, Cypress

Semiconductor, 2002.

[10] Jan Axelson, "HIDs Up", Embedded Systems Programming (ESP),

October 2000.

[11] USB HID specification, HID-usages tables, and HID descriptor tool,

 61

www.usb.org/developers/hidpage.html.

[12] USB specification, www.usb.org/developers/docs.html

[13] Microsoft DDK, http://msdn.microsoft.com

