2 USB /i & § I AD/DA 5 a2

USB AD/DA Signal Processing

2 S L

B 2w E EL

1 USB 4 6 4 3 AD/DA 8L &a2

USB AD/DA Signal Processing

S e A L Student : Kevin Cheng
PR (e A o Advisor : Dr. Wei-Hua Chieng

A Thesis
Submitted to Department of Mechanical Engineering
College of Electrical Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Mechanical Engineering

June 2004
Hsinchu, Taiwan, Republic of China

PEARAY L E

2 USB 4 & F 3. AD/DA 5. k2

g4 e kR daEEd

CERE AR S S

3 &
g 2 & 4] Cypress = & 4 A& ¢— 3gUSB Versionl.l %
#——-EZ-USB FX o F]yt dp & B 5 3 5% A4 180501 ModZ % > Hip 4+
£d USB/ & 4 @ igiesic st ? €57 & 7| # (Renumeration ™Y, =
PR AT g R Bl R s B pon USBen g 2 2
HID(Human Interface Device)@& # ¥ i 4] » MHIDZK % &3 - B 73 3
o ERESRSALNE D F O ET RS TR R B
BB ArpR A /B BB USB 1L £ 6 ¢ dmki o A b
s SHEM W iz A0S AR EZ-USB i
Keil C %% KiEF - fick8t 4 p] @ * Microsoft Visual C++ 6.0 & B

FAE A B Rt o

etz USB-HID» i@ % B 5| Ringt » v el 5 A2

USB AD/DA Signal Processing

Student: Kevin Cheng Advisor: Dr. Wei — Hua Chieng

Institute of Mechanical Engineering
National Chiao Tung University

Abstract
The thesis is chiefly on utilizing the chip USB Versionl.1, EZ-USB
FX, which is manufactured by Cypress Semiconductor Corporation. This
chip possesses an enhanced 8051 microprocessor. Its firmware can directly

download by USB and.se Renumeration ™

technology to enumerate
automatically. It has improved the convenience on development. The
purpose of the thesis is:to capitalizeson the popularization of USB and the
utility of HID (Human Interface Device), to capture and process the
Analog-to-digital signal and Digital-to-analog signal by means of HID
(Human Interface Device) within the utilization of USB 1.1 interface. The
device has supported users to capture signals without the help of drivers
and the necessity of electricity. The structure of the thesis is divided into 3
parts: Hardware, firmware, and software. EZ-USB is put to use as the
hardware, the firmware is edited by Keil C Complier and the software is

primarily compiled by Microsoft Visual C++ 6.0 to develop the program

of windows interface.

Keyword: USB, HID, Analog-Digital signal.

o

RA DT AAFIA oA T PP R E

|
il

R FEARFOWE BB PEEP A B P ST KEA
FrEGABRELE L LA
4 EL. o %/"\l}!‘ fé;kfgﬁ ’ -Qrﬁ%

MR LB g aone v S o A NS RERELS L4

*

Fenat e AR SRR A M AT R R R

2

Mt E 2 4R R R B F RS R RN E

Contents

B e I
A B S T R A C T e e e e e e e e e e e e 11
== i1
CON T EN T S . e e e e e e e e e e e e v
TABLE CONT EN T S .ttt et e e e e e e e e e Vi
FIGURE CONTENT S .t e e e e e e \VAN|
CHAPTER 1 INTRODUCTION ..t e e e e e 1
1.1 USDB BACKGROUND .ttt tetteeeeaeaeasasas s smanaeasasasnsnsnsnsnanaeesararnss 1
T2] = e e 4
.20 Cabl e e e 4
1.2.2 BleCtriCal. ..o e e e e e e e 8

. B USB 2.0 e e e e 10
1.4 USB COMMUNICATIONS & aiuie £ 8 fuim s e e e e e e e s s sn s memssassees s s snsnananeenens 13
1.5 USB TRANSFERS AND PACKETS w.i e e e snsnsnsnenaeaeaeasasasasnsnanaeeeaenes 16
CHAPTER 2 USB CHIP-=—EZ-USB .. it e 19
2.0 INTRODUCTION & b ettt et eeee e e e d e e e e e e e e e e e e e e e e aeasasasnsnsnananns 19
2.2 FEATURES .ot itee e it e e e e e e e e e e e e e e et et et et e et et e e erarararananns 20
CHAPTER 3 HARDWARE DEVELOPMENT ..ottt 24
B L EZ-US B .ot e e e e e e e 24
3.2 AD CONVERTER/ DA CONVERTER .« e et et e e e e e e e e e e e 25
CHAPTER 4 FIRMWARE DEVELOPMENT ..ot 32
4.1 FIRMWARE CONFIGURATION ..ttt tttaeteaeaeaeassnsnsnsnasasasasarasasnananns 32
g I I 15 = B 9 7= o] o) 01 34
4.1.2 Peripheral Circular Programooiiiiiiiiiiiiiiiiiiiiaaass 37

A 2 HID CLASS .ttt et e e et e e e e e e e et e e e e et 38
CHAPTER 5 HOST APPLICATION .. e 41
5.1 WINDOWS APPLICATION .. ettt ettt aeaeaeasasassasnsnanasasasasarasnasnananns 42
5.2 HARDWARE DRIVER -ttt it ettt et ettt e et e e e e e e et eae e aaeaeasasararrnananns 50
CHAPTER 6 CONCLUSITON ..t e e e e e 52
6.1 TRANSFER RATE CALCULATION &t uteteaeataeesassnsasnananasasasasasasasnananns 52
5.2 EXPERIMENT RESULT ettt itit et et ettt et e e e e e e e eae e eanaeaeasasararasnananns 53
5.3 CONCLUSION & tutteeeaeaeeeasaea s e e e ae e e e sasas s s snanasaeasasasasasnananns 59

REFERENCES

Table Contents

TABLE 11 CHIRP STATE tttuuttenaaseeenaaseeenaaseennnasseannaaseennaaesennnanenns 10
TABLE 1-2 SYNCHRONIZATION TYPES . .tttitettaaeeetnaasennnaasennnaassennnannens 14
TABLE 1-3 TRANSFER TYPES ¢ uttttastetnaaseteaaseeennasseennaeseennnassennnannens 15
TABLE 1-4 USB PID .. ettt 17
TABLE 4-1 FILES THAT MAKING A EZ-USB FIRMWARE NEEDSvvviiiiiieennnns 32
TABLE 5-1 USEFUL WINDOWS API FOR HID ..o 50

VI

Figure Contents

FIGURE 1-1 STANDARD HIGH/FULL SPEED HARDWIRED CABLE ASSEMBLY 5
FIGURE 1-2 STANDARD LOW SPEED HARDWIRED CABLE ASSEMBLY ...cvuuiiveeennnn. 6
FIGURE 1-3 CABLE CONSTRUCTION OF HIGH/FULL SPEED «..vevieeeeeeeeeeeaneannannnn 7
FIGURE 1-4 FULL-SPEED DEVICE CABLE AND RESISTOR CONNECTIONS 8
FIGURE 1-5 LOW-SPEED DEVICE CABLE AND RESISTOR CONNECTIONS 9
FIGURE 1-6 COMMUNICATION FLOW IN A USB SYSTEM ..ivuiiiiiiiiiiiieiaanaennns 16
FIGURE 1-7 THE PACKET'S ELEMENT &t uuttttaeseeenaaseeenaseennnaasennnnaeeennnn 18
FIGURE 2-1 CY7C64613 (128 PIN) SIMPLIFIED BLOCK DIAGRAM................ 20
FIGURE 2-2 FINAL SYSTEM DIAGRAM OF EZ-USB FX...civiiiiiiiiiiiiiiieeee 22
FIGURE 2-3 ENUMERATION & RENUMERATION utteisseetiaeeennaaseennnaaeennns 23
FIGURE 3-1 EZ-USB 8051-BASED CPU ... e eeee 24
FIGURE 3-2 EZ-USB FX 128 PIN . .uuuuieee e eeeeeeeeeeeeeaeaaaaanns 25
FIGURE 3-3 MAIN SCHEMATIC e uuttttaseeeeaaaseeeaaaseneaaassennaaseennanaeeennnn 27
FIGURE 3-4 ANALOG TO DIGITAL INPUT SCHEMATIC «uuueetiaeeeeeaaseennnaneennns 28
FIGURE 3-5 DIGITAL TO ANALOG OUTPUT .1ttt eetnianseeenaseeennaaseennnaaeennnn 29
FIGURE 3-6 ADCO809 TIME DIAGRAM 41 .. cvuunneeenasseennaassennaaaseennaaeeennnn 30
FIGURE 3-7 PHOTO OF THE'AD CONVERTER £, . uuuteteiieeeetaiaeeeenaaasennnnaaeennnn 30
FIGURE 3-8 PROTOTYPE OF THE HID AD/DA-PROCESSING SYSTEM 31
FIGURE 4-1 FLOW CHART-OF THE EZ-USB DRIVER FUNCTION ...c.vivivrnnnnnnnnns 33
FIGURE 4-2 THE ORDER OF USB DESCRIPTORS .. ctuuiitettiieeereaaaseennnaaeeenns 35
FIGURE 4-3 DESCRIPTORS INFORMATION % ¢t teeaaeseeenassennnaasennnnaeeennnn 35
FIGURE 4-4 DESCRIPTORS INUSB ... i i eeee e e eeeas 36
FIGURE 4-5 THE FLOWCHART OF THE SIGNAL BETWEEN HOST AND USB 38
FIGURE 4-6 REPORT DESCRIPTOR ... ttuusttttaaseeennasseenaaasseennasseennaaeeennnn 40
FIGURE 5-1 THE FLOW CHART OF USB SOFTWARE DEVELOPMENTuvvveuuisennns 41
FIGURE S5-2 PID AND VID ..ttt ettt et e et a e eeeas 42
FIGURE 5-3 THE FLOW CHART OF HID DEVICE CHECK ...vvuiiiiiiiiiineennaaaennns 47
FIGURE 5-4 THE FLOW CHART OF THE PROGRAM . ..uuuuteitiaeeernnaaanennnaaeennnn 48
FIGURE 5-5 SNAPSHOT OF THE PROGRAM ... tuuttttnaaseeenaaseennnaaseennnaaeennnn 49
FIGURE 5-6 HID DEVICE SHOWS UP ON DEVICE MANAGER.cvviviieernnannennnn 51
FIGURE 6-1 1O0OHZ SIGNAL .ttt tttieae et aee e et eaaa e et aaa e e e eaaae e eeaaaeeeennn 53
FIGURE 6-2 100HZ SIGNAL (2) - uuuuieeee et eeeeeeaeeeaanns 54
FIGURE 6-3 1 KHZ SIGNAL ...ttt it e e e e e aaae e eenas 54
FIGURE 6-4 1 KHZ SIGNAL (2) cuuuuiieeei e ee e eaeeaaeanns 55
FIGURE 6-5 2 KHZ SIGNAL ...ttt it e ettt e aaaa e eenas 55
FIGURE 6-6 2 KHZ SIGNAL (2) tuuuuieieee e ee e eeee e 56
FIGURE 6-7 3 KHZ SIGNAL ...ttt e et et rea e aaa e e eenas 56
FIGURE 6-8 3 KHZ SIGNAL (2) cuuuuiiiiii e eeeeeenns 57

FIGURE 6-9 DIGITAL-TO-ANALOG OUTPUT TEST (1)..

FIGURE 6-10 DIGITAL-TO-ANALOG OUTPUT TEST (2)

VI

Chapter 1

Introduction

1.1 USB Background

Universal Serial Bus (USB) was invented in 1995 by Universal Serial
Bus Implementers Forum (USB-IF), which the group included computer
manufacturers and peripherals vendors. A major purpose of USB is to
replace most of traditional interface ports on personal computer with one
user-friendly way. The-original maotivation for the Universal Serial Bus
(USB) came from three interrelated considerations:
« Connection of the PC to the telephone

It is well understood that the merge of computing and communication
will be the basis for the next generation of productive applications. The
movement of machine-oriented and human-oriented data types from one
location or environment to another depends on ubiquity and low-priced
connectivity. Unfortunately, the computing and communication industries
have evolved independently. The USB provides a ubiquitous link that can
be used across a wide range of PC-to-telephone interconnection.

- Ease-of-use

The lack of flexibility in reconfiguring the PC has been
acknowledged as the Achilles’ heel to its further deployment. The
combination of user-friendly graphical interfaces, the hardware and
software mechanisms associating with new-generation bus architectures
has made computers less confrontational and easier to reconfigure.
However, from the end user’s point of view, the PC’s I/O interfaces, such
as serial/parallel ports, keyboard/mouse/joystick interfaces, etc., do not
have the attributes of plug-and-play.

- Port expansion

The addition of external! peripherals continues to be constrained by
port availability. The lack of ‘@ bidirectional, low-cost, low-to-mid speed
peripheral bus has held back:the creative proliferation of peripherals such
as telephone/fax/modem adapters, answering machines, scanners, PDA’Ss,
keyboards, mice, etc. Existing interconnections are optimized for one or
two point products. As each new function or capability is added to the PC,
a new interface has been defined to address this need.

Goals for the Universal Serial Bus

The USB is specified to be an industry-standard extension to the PC

architecture with a focus on PC peripherals that enable consumer and

business applications. The following criteria were applied in defining the

2

architecture for the USB:

Ease-of-use for PC peripheral expansion

Low-cost solution that supports transfer rates up to 480 Mb/s

Full support for real-time data for voice, audio, and video

Protocol flexibility for mixed-mode isochronous data transfers and

asynchronous messaging

Integration in commodity device technology

Comprehension of various PC configurations and form factors

Provision of a standard _interface capable of quick diffusion into

product

Enabling new classes of devices-that augment the PC’s capability

Full backward compatibility’of USB 2.0 for devices built to previous

versions of the specification.

The USB has three speeds which can be used from low-speed,
full-speed to hi-speed. In USB 1.1, there are only the first two speeds,
low-speed and full-speed. In USB2.0, the third speed, hi-speed, is added.
Transmission rate of three speeds are: 1.5 Mb/s, 12 Mb/s and 480 Mb/s.

The USB2.0 is full compatible with USB1.1.

1.2 USB 1.1

The USB1.1 was invented in September 23, 1998. Its speeds support
1.5Mb/s and 12Mb/s. It is the most popular USB version that we used in
the market. It includes many applications such as: mouse, scanner, printer,
flash memory and the MP3 player etc. These devices do not need a fast
speed rate, thus the USB1.1 can be used to implement the devices. The

details of USB1.1 will be described below.

1.2.1 Cable

The USB cable consists of four-conductors, two power conductors, and
two signal conductors,the recommended-colors are white, grey, or black.
Figurel-1 illustrates a standard high-/full- speed hardwired cable assembly.

Figure 1-2 illustrates a standard low-speed hardwired cable assembly.

| 8 7 g 5 | 4 | 3 2
H A - =B £
L o ‘ <50 s i
S A - \ = B
G \ a
Overmolded Series "A" Plug]
{Always upstream towards the "host" system.) ‘ |
e ! s
Detail A- A
(Series "A" Plug) _
F F
157
’* *‘ - Cut End
e {Always downstream towards the USE Device.)
()
E ¥ Detail B - B (Typical Terminations E
o O 120
[&]
- —I— Blunt Cut Termination Prepared Termination
T Paolyvinyl Chioride (PVC) Jacket FPolbyvinyl Chloride (FVC) Jackat
27.0 b Iﬁ — Blunt Cut Termination . ;'f’lg?;‘ Tinned Copper Braidad
J e ¥ (Langth Dimensian Point) vy .
o R 28 AWG STC Drain Wirs D
o 3 /" Red (Vaus
* | v "f‘=_§ Black {Ground)
[o~ % — Groan (D +) -
L ™ Whita (0
2.0 b = — lUsar Spacified
"— Length Dimensicn Peint
= Optional Molded E
Strain Relief
z| All dimensions are in millimeters (mm) 3
unless otherwise note.
Dimensions are TYPICAL and are for
general reference purposes only. Series "A" Plug to Cut End
USB High-/full-speed
A Hardwired Cable Assembly |-
SIZE DATE DRAWIRG NUMBER REW
A | o2o8 NIA c
SCALE: N/A |SHEI:_|' 10f1
| a 7 3 5] I 3 T 5 -

Figure 1-1 Standard high/full speed hardwired cable assembly

Reference: USB Specification V2.0

g | 7 [G | 5 | 4

| 3

| 2 |

| N A=

Ch

IMPORTANT NOTICE: For use in low-speed applications only.

= B

° || [+80)

(I

['%]

A - Le B
m Overmolded Series "A" Plug
{Always upstream towards the "host” system.)
) Detail A- A \
{Series "A" Plug)
w157 Cut End
T5 {Always downstream towards the USB Device.)
” N i £
E [pRANEED] E
ng Detail B - B (Typical Terminations
i R L
— o ol 2o Blunt Cut Termination Prepared Termination —
o } i~ Polyvinyl Chiorids {PVC}) Jackst 0 Palyvinyl Chloride (PVC) Jackat
| /— Blunt Gut Termination /~ Red (Vaus)
o [—— ¥ ilength Dimension Foint) 4 .~~~ Black (Ground) 1o
7.0 T
\\ Graen (D +)
- = Whita (D -}]
* Iy Usar Specified
- —1 ™~ Length Dimansicn Point c
8.0
- Opticnal Molded]
Strain Relief
B 3
All dimensions are in millimeters (mm}
unless otherwise noted.
Dimensions are TYPICAL and are for Series "A" Plug to Cut End
general reference purposes only. USB Low-speed
A Hardwired Cable Assembly |

E |

EZE | CAIE DRANING NUMEER REV
A 208 N/A |
SCALE: MiA |SHEET 10f1
[| 7 | B | g 4 | 1

2 |

Figure 1-2 Standard low speed hardwired cable assembly

Reference: USB Specification V2.0

High-/full-speed cable consists of a signaling twisted pair, VBUS,
GND, and an overall shield. High-/full- speed cable must be marked to
indicate suitability for USB usage. High-/full-speed cable can be used with
either low-speed, full-speed, or high-speed devices. Low-speed is
recommended, but does not require using the cable with twisted signaling
conductors. The maximum allowable cable length is determined by signal
pair attenuation and propagation delay, usually the limited length is less
than 5.0 meters for high-/full- speed and 3.0 meters for low-speed. Figure

1-3 shows the cable construction of high/full speed.

/ Polyvinyl Chloride (PVC) Jacket

: Quter Shield > 65% Interwoven
Tinned Copper Braid

on-Twisted Power Pair:
Red: vgus
Black: Power Ground

Inner Shield Aluminum
Metallized Polyester

Twisted Signaling Pair:
White: D-
Green: D+

28 AWG Tinned
Copper Drain Wire

Figure 1-3 Cable construction of high/full speed

Reference: USB Specification V2.0

1.2.2 Electrical

This electrical utility of USB contains signaling, power distribution,
and physical layer specifications. We will put the focus on the major
difference between USB1.1 and USB2.0; other details will not be
described so much here.

Devices detection

The USB hub should monitor each port to check if there is connection
or disconnection. Two pull-down resistors on the D+ and D- lines of the
hub ensure that both data.lines are ground. The USB device should include
a pull-up resistor on either D+ or'D- to trigger connect detection. Figure
1-4 and Figure 1-5 show the difference between full-speed device and

low-speed device.

Rpu
D+
|Full-speed USB
Transceiver

Full-speed or '

Low-speed USB j(:)):
Transceiver - D-
| Z,=900() £15% |
Rp=15K0 5% Hub Upstream Port
Host or or
Hub Port Rp=1.5K(+5% Full-speed Function

Figure 1-4 Full-speed device cable and resistor connections

Reference: USB Specification V2.0

D+ Low-speeq USB|
_| Transceiver

ia =

Rpo=15K1 £5%

Full-speed or |
Low-speed USB
Transceiver

~{Slow Slew Rate
Buffers

Host or
Hub Port

Rpe=1.5K0) £5%

Low-speed Function

Figure 1-5 Low-speed device cable and resistor connections

Reference: USB Specification V2.0

Power distribution

All USB ports provide power for devices which are attached to them.
The peripheral devices €an/be'designed for either using the power that the
USB hub supplies or usingtheir own power supply. The Cable power is 5
Volt dc and can be used to generate the devices. The self-powered hub can
provide current up to a maximum of 500ma and at a minimum of 100ma
for the devices. For example, when the external 4-ports hub is used
without the AC adepter, each port can provide a maximum current of
100ma. However, when it is used with AC adepter, each port can provide
a maximum current of 500ma. The power setup of the device is defined in

the Configuration Descriptor.

1.3 USB 2.0

In April 2000, the new specification of USB was released, as known
as USB 2.0. The transmission rate of USB 2.0 is 480Mbps, which is 40
times faster than USB 1.1. In the best case, while the bus is idling, a
high-speed bulk transfer can move data at 53Mbps, using 90% of the bus’
bandwidth. For the compatibility, USB 2.0 device should be enumerated
as a full-speed device that can communicate to USB 1.1 hub. In other
words, USB 2.0 hub supports three speeds and allows full-speed and
low-speed while transferring the data.
High-speed Signaling Levels

The high-speed signaling voltage specification had defined “Chirp K”

state and “Chirp J” state. Table 1-1 shows these two states’ definition.

Table 1-1 Chirp state
Chirp J State DC Levels:

(differential voltage; applies only|VCHIRPJ (min) < (D+-D-) <
during reset time when both hub and|VCHIRPJ (max)

device are high-speed capable)

Chirp K State DC Levels:

(differential voltage; applies only|VCHIRPK (min) < (D- - D+) <

during reset time when both hub and|VCHIRPK (max)
device are high-speed capable)

10

Devices detection

The high-speed Reset and Detection mechanisms follow the
behavioral model for low-/full-speed. When reset is completed, the link
must to be operating in its appropriate signaling mode (low-speed,
full-speed, or high-speed as governed by the preceding usage rules), and
the speed indication bits in the port status register will report this mode
correctly. High-speed capable devices initially attach as full-speed devices.

After the initial attachment, high-speed capable transceivers engage in a

low level protocol during reset to establish a high-speed link and to

indicate high-speed operation i the appropriate port status register.
High-speed Detection Handshake is used to detect whether the device

Is at high-speed or not. The'procedure is listed as below.

1. The high-speed device leaves the D+ pull-up resistor connected, leaves
the high-speed terminations disabled, and drives the high-speed
signaling current into the D- line. This creates a Chirp K on the bus.
The device chirp must last no less than 1.0 ms (TUCH) and must end no
more than 7.0 ms (TUCHEND) after high-speed Reset time TO.

2. The hub must detect the device chirp after the assertion of the Chirp K
Is seen for no less than 2.5 ps.

3. No more than 100 ps (TWTDCH) after the bus leaves the Chirp K state,

11

the hub must begin to send an alternating sequence of Chirp K’s and
Chirp J’s. There must be no idle status on the bus between the J’s and
K’s. This sequence must continue to a time (TDCHSEO) no more than
500 ps and no less than 100 us before the end of Reset. (This will
guarantee that the bus remains active and prevent the device from
entering the high-speed Suspend state.) Each individual Chirp K and
Chirp J must last no less than 40 ps and no more than 60 s
(TDCHBIT).

. After completing the hub chirp sequence, the hub asserts SEO until the
end of Reset. At the:end of reset, the hub must switch to the high-speed
Enabled state.

. After the device completesrits chirp, it looks for the high-speed hub
chirp. At a minimum, the device is required to see the sequence Chirp
K-J-K-J-K-J in order to detect a valid hub chirp. Each individual Chirp
K and Chirp J must be detected for no less than 2.5 pus (TFILT).

A) If the device detects the sequence Chirp K-J-K-J-K-J, then no more
than 500 ps (TWTHS) after detection that the device is required to
disconnect the D+ pull-up resistor, enable the high-speed terminations,
and enter the high-speed Default state.

B) If the device has not detected the sequence Chirp K-J-K-J-K-J by a

12

time no less than 1.0 ms and no more than 2.5 ms (TWTFS) after
completing its own chirp, then the device is required to revert to the

full-speed Default state and wait for the end of Reset.

1.4 USB Communications

USB supports four transmission types: control, interrupt, bulk, and
isochronous.

Control transfer--- control transfer is used to transfer specific data of
USB device. Control transfer is commonly used during device
configuration.

Interrupt transfer-=- interrupt transfer is used for devices that must be
polled periodically to see. if ‘the device has data to transfer. Applications
can be applied such as mice and keyboards.

Bulk transfer --- a bulk transfer is used for large blocks of data. There
IS no periodic or transfer rate required. Applications can be applied such as
printer or scanner.

Isochronous transfer --- isochronous transfer is used to the transfer
which requires a constant delivery rate. Applications can be applied such
as microphone, speaker. There is a problem with isochronous transfers

which is synchronization. In USB, we have feedback and feed forwarding

13

solution. Table 1-2 lists the synchronization types for both source and sink.

Table 1-3 contains more details for these four transfers. Figure 1-6 is the

communication flow in a USB system

Table 1-2 Synchronization types

Source

Sink

Asynchronous

Free running source clock
Provides implicit feed
forward. The data rate is
carried implicitly in the
data stream based on the
number of samples it
produces in a frame

Free running sink clock

Provides explicit feed
back via a synchronous
pipe. The endpoint sends
feedback to the host to
indicate its data rate. This
feedback info is relative to
the frame (SOF) timing.

Synchronous

Source gelock lock to USB
clock

Uses = implicit - feedback.
The feedback-is=supplied
via the “SOF packet.-"The
endpoint slaves its sample
clock to the SOF via a
PLL.

Sink clock lock to USB
clock

Uses implicit feedback.
The feedback is supplied
via the SOF packet. The
endpoint slaves its sample
clock to the SOF via a
PLL.

Adaptive

Source clock lock to sink

Uses explicit feedback via
an isochronous pipe to
determine the desired
frequency of the sink. The
feedback info is relative to
the frame (SOF) timing.

Sink locked to data flow

Uses implicit free
forwarding. The data rate
Is carried implicitly in the
data stream based on the

number of samples it
produces in a frame. The
adaptive endpoint
synchronizes its sample

clock to the data stream
rate.

14

Table 1-3 Transfer types

Type Control | Interrupt Isochronous | Bulk

Transfer rate of 15872 | 24576 24576 53248

high-speed(Byte/1ms)

Transfer rate of 832 64 1023 1216

full-speed(Byte/1ms)

Transfer rate of 24 0.8 Not Not

low-speed(Byte/1ms) (8Byte/10ms) | allow allow

Bandwidth 10% 90% in USB 1.1 No
20% 80% in USB 2.0

CRC Check Yes Yes No Yes

Guaranteed delivery | No No Yes No

time

Guaranteed delay | No Yes No No

time

15

Host Interconnect Physical Device
Client SW Function Function Layer
USB Logical
USB S'sua:!stem Devics USB Device
Layer

USB Bus

USB Host M USBE Bus
Interface Layer

Controller

<

Interface

Actual communications flow
Logical communications flow

Implementation Focus Area

Figure 1-6 Communication flow in a USB system

1.5 USB Transfers and Packets

There are three stages in USB transfers. And the smallest unit is
“Packet”; each packet contains information of transfer and data. The first
byte of packet is always a Packet Identifier (PID), which defines the
packet’s type. The packet identifier byte is formed with 4 bites and
complement of these 4 bits. Table 1-4 shows some of packet identifiers

(PID) and their types, and category. Others will be found in USB

16

document. Figure 1-7 will show the packet’s element and the number

below is the element’s data (in bits).

Table 1-4 USB PID

PID Value Packet type Packet category
0101 SOF token

1101 SETUP token

1001 IN token

0001 ouT token

0011 DATAO data

1011 DATA1 data

0010 ACK handshake

1010 NAK handshake

1110 STALL handshake

17

Token Packet

Token Packet

Data Packet

Token Packet

Token Packet

H/S Packet

Figure 1-7 The packet’s element

18

Chapter 2

USB Chip---EZ-USB

2.1 Introduction

The Cypress Semiconductor EZ-USB™ FX CY7C646xx is a
compact integrated circuit that provides a highly integrated solution for a
USB peripheral device. The key EZ-USB FX features are:

* The EZ-USB FX provides a “soft” (RAM-based) solution that allows
unlimited configuration.and upgrades.

e« The EZ-USB FX deliversfull_ USB throughput. Designs that use
EZ-USB are not limited by.the .number of endpoints, buffer sizes, or
transfer speeds.

» The EZ-USB FX does much of the USB housekeeping in the EZ-USB
core, simplifying code and accelerating the USB learning curve. Figure

2-1is the block diagram of EZ-USB FX.

19

12 MHz
XTAL

T Tor

w4 48 MHz,
= 4-clock cyele 4
B0E1 Cores SO 510 3 Timers
L Y Fy Y
_ ¥ h r\
Er'ha_ﬁl:ad 4BKE 0 < 110 Parts P{
UsB o

p—N
- RAM
SIE v :
2 KB
FIFG
—

=0
(150)

[T 0
17

DMA

CY7C64613-128 i

Figure 2-1 CY7C64613 (128 pin) simplified block diagram

Reference: Cypress.Semiconductor

2.2 Features

« Single-chip integrated "USB “Transceiver, Serial Interface Engine
(SIE), and Enhanced 8051 Microprocessor

» Soft: 8051 runs from internal RAM, which is: downloaded via USB,
or loaded from EEPROM

« 14 Bulk/Interrupt endpoints, each with a maximum packet size of 64
bytes. 16 isochronous endpoints, with 2 KB of buffer space (1 KB, double
buffered) which may be divided among the sixteen isochronous endpoints

* Integrated, industry standard 8051 with enhanced features: 4 clocks

per cycle, 2 UARTS, 3 counter/timers and 256 bytes of register RAM.

20

* Integrated 12C™ controller

* Five 8-bit 10 ports

e 48-MHz or 24-MHz 8051 operation selectable by EEPROM
configuration byte.

* Four integrated general purpose 8-bit FIFOs

* DMA Controller

» Moves data between slave FIFOs, memory, and ports

» Very fast transfers—one clock (20.8 ns) per byte for internal
transfers

* Can use external-RAM 'as additional FIFO (addressed through A/D
buses)

 General Programmable Interface (GPIF)

* Allows direct connection to most parallel interfaces: 8- and 16-bit

» Programmable Waveform Descriptors and Configuration Registers
to define waveforms

* Supports multiple Ready (RDY) inputs and Control (CTL) outputs

Cypress’ EZ-USB FX family is available in three packages: 52 PQFP,
80 PQFP, and 128 PQFP. The CY7C64613, a 128-pin version of the
EZ-USB FX, has 40 10 pins, a 16-bit address bus and 8-bit data bus for

external memory expansion. We will use this chip for our project. Figure

21

2-2 is the final system diagram of EZ-USB FX.

USB-Capable Computer USB Device
Host
Application EZ-USB Device
Program

8051 Application

Custom USB
Device Driver

USBD.SYS
(Microsoft USB Driver)

USB BUS

Figure 2-2 Final system diagram of EZ-USB FX

Reference: Cypress Semiconductor

We need to work on the parts of Windows application program and
device firmware configuration and 8051 application program. Then using
the drivers provided by Cypress and Microsoft Windows. Figure 2-3 is the

flow chart of EZ-USB enumeration and re-enumeration.

22

Host Device

NOILVHIINNN3I

NOILVHIINNNIY

Host identifies device is

attached

Host assigns unique Device provides

address to device initial device

Host issues configuration

to be used to be used by

device

Device disconnects

Host loads new

and reconnects

firmware from S/W file

Host begins

Device provides

"Enumeration” again updated configure

info.

Host verifies new

resources available

Host issues configuration

to be used

Figure 2-3 Enumeration & Renumeration

23

Chapter 3

Hardware Development

3.1 EZ-USB

The EZ-USB FX (CY7C64613) has 128 pins, including an enhanced
8051. Supply voltage is from +3.0V to +3.6V, with an oscillator 122MHz

+/- 0.25%. And DC input voltage to any pin is from -0.5V to +5.8V.

Figure 3-1 is a block diagram of the EZ-USB’s 8051-based CPU.

Crystal
Serial Portl Timer 2
Oscillator Register Timer 1
(25R6ﬁ;:|es) Serial Port0 Timer 0
17 17 17
8-bit CPU <
17 17 17

Bus
Control

Interrupt
Control

I/0 Ports
5 Ports

Figure 3-1 EZ-USB 8051-based CPU

24

There are some notices in the hardware fabrication. We should build
smooth connection in USB signal lines: D+ and D-. The crystal connection
Is also important. Any rough welding will possibly result the Windows in
being not able to recognize the device. Moreover, in order to avoid the
noise transients and protect EZ-USB, we add a SN75240 between the USB

port and the EZ-USB’s D+ and D- pin.

L5 Lk &5 g dk8

RFP128L U 5mm

Figure 3-2 EZ-USB FX 128 Pin

3.2 AD Converter/ DA Converter

The AD converter, we use ADC0809, which is an 8-channel output,

8-bit resolution, and from OV to 5V input range with ingle 5V power

25

supply. The conversion time of it is 100 ps. Figure 3-3 displayed it’s time
diagram which shows the convert timing.

The DA converter, we use DACO0800, which is a monolithic 8-bit
high-speed, current-output, digital-to-analog converter featuring typical
settling times of 100ns. Supply voltage from £4.5V to £18V. Its output
voltage is from -10V to +18V.

To process the analog-to-digital signal, we use EZ-USB’s 1/O port.
Port A to receive the data comes from ADCO0809, and Port B to control
AD converter’s “start” signal and to switch the channel of AD converter.

To process the digital-to-analog. signal, we use Port D to send the
signal to DA converter:

Figure 3-3 is the circuit'of '/EZ-USB FX. As the schematic shows,
there is a 12HMhz oscillator connected on pin 19 and pin 20. EZ-USB
uses 12C bus communicates with EEPROM. The “SCL” and “SDA” pins
are used by 12C bus. Figure 3-4 is analog-to-digital signal input circuit.
For AD converter, it has a 1.2MHz oscillator connected on pin 10. Pin 17
to Pin 21 are the signal lines connected to EZ-USB’s Port A, and the
channel selection pins are controlled by Port B. Figure 3-5 is
digital-to-analog signal output circuit. We use an operation amplifier to

output the DA signal.

26

1 N
W] W
. :| o =
1w S : o s b
-] '—"h:_\"‘—'
i
t.
P Tt
Pl Tl
FARTIE

=1, T
(e FALYRIN
AR i
maz PATRED e
W
ST
= PR
w3 FRARAD
FATAT
Imis
(e 2]
s
=5
e
Al
NI
&3
bl
Fi3
3
AT
a
@
Al
All
Al
ALl
Ald
AlLS
I
:i LCWTCBLETI-128NC
=
e
e
s
r;
T
o
Faiza =
s 1—
(1 L
nLE BIVAE R [
e EoysE R E—
WA .
CTEANEAG gl —
sl CTLLANGLAG [
Fn CTLIADUTRAG [—

LEAR.

|3
&

I

Figure 3-3 Main Schematic

27

8,
R o

— o ol
- o s
B0 L&

10 L+

18] DS

10} Db

N7 T

FEE+ AD

EEF- Al

Az

CLE
START
oE ALE
2]
=
e nr w
3 [+
:» H[H ‘J
I: =
FEELE S B L

%é&& i

28

Figure 3-4 Analog-to-digital input Schematic

.|||_

s FAY

SR L
IV
0
- 151
3 [st
=
. Ty 8 i 1
= ._’_,.-"‘"r _.,;1 b
L]
HATAL AR O
— = L £
LV
[+] [—
. B)
12
1 | 2
1
J lwr
i R
§ cour
4 1 15
L gomur 2 | o 15 [0 sauusn
nm.!,.. 3 3 14 g PLLENE
ot 4| 13 pemy
= 4 13 i
= 5 12 =
[5 11 [T |
By | 5 1 e
i 10
B g
| FOLE BRSO
= IV
2 ol 9
..1..
2t
-IH
"

(=11
oy
) l

Figure 3-5 Digital-to-analog output

Schematic

29

i
LU L

ALE m% m#
ALE —=

———=— STABLE ADDRESS

ADDRESS S0%)ESHH

r———t— 1y

g
ANALOG
1NPUT :X] S FTANLE 4*

=12
[

COMPARATOR T
INPUT |

ERMAL NODE)]
|

_-—tgm = ‘

ouTPuT I / k-—-——
ENABLE [

EODC

TRISTATE
DUTPUTS === o o o o o o s s e s e o . s S o S o B S S S S S . S e e

lllll.l...lﬂﬂﬂ g
oooECaaeeEaaE
aaaGaeE@Ea 2

.=

[s lel
EEEEEGR e e oo - IIIIIII
uu-nli---.n.. .

isgasaa88

8 1==5=====
i a]n‘s(.l\ er

-..!'B!

..--------d.. anoaoaa

a a O

Figure 3-7 Photo of the AD converter

30

'=== AD Converter
1

Figure 3-8 Prototj}ibe‘bf th‘e;H"I"D'AD/DA Processing System

31

Chapter 4

Firmware Development

In this chapter, the firmware development of USB device will be

briefly introduced.

4.1 Firmware configuration

EZ-USB firmware contains some files; some are provided by Cypress,
other files we have to configure on our own. Table 4-1 shows the file that

configures a firmware needs.

Table 4-1 Files that making a EZ-USB firmware needs

File Description

FW.c EZUSB Firmware code

Periph.c User Function code

Dscr.ab1 USB Descriptor table
EZUSB.lib |[EZUSB Library(Provide by Cypress)

EZUSB.n |[EZUSB header code(Provide by Cypress)
EZREGS.h |[EZUSB register header code(Provide by Cypress)

EZ-USB firmware implements a simple co-operative tasking
executive. Figure 4-2 is the flow chart of the firmware. Cypress has the
example code for EZ-USB’s basic firmware, so that we merely

concentrate on the configuration that the input and output need, like the

32

periphery function program.

(N\

Power on/Reset

(. J

A
4)

Initialize State
Variables
. J

\ 4
e A

Call TD_Init ()

A

A

e ™
Enable
interrupts
- ¢ J

Setup Packet
received?

Y4s

Delay 1 second
& Remunerate

»la
P&
A\ 4

[Call TI?_POII ()]

l

Setup Packet
received?

o
NO
USB Bus Yes
Idle flag set?
FALSE

Parse and
implement

Device Request

Call
TD_Suspend

N
Suspend
Processor
J
N
Call

TD_Resume ()
- J

Figure 4-1 Flow chart of the EZ-USB driver function

33

We use an EEPROM to store our firmware. During the enumeration,
EZ-USB will load the program form EEPROM by I°C bus. The detail of
downloading firmware to EEPROM can be found in EZ-USB document.

In this project, we would like to carry out to an AD/DA processing,
thus we will configure the EZ-USB chip which has 2 endpoints: 1 for IN
and 1 for OUT. Because that the AD converter is an 8-bit resolution and 8
channels converter. Each endpoint is configured to have 64 bytes packet,
and polling interval is 1ms. To implement these endpoints, we shall
setup the related information_in device descriptor, and the periphery

function program.

4.1.1 USB Descriptor

All USB devices have their own descriptors. Descriptor data may
include standard device descriptors, class descriptors, and user specific
descriptors. There are 5 to 7 descriptor types in USB. The order of USB
descriptors is listed in Figure 4-4 .And Figure 4-5 are descriptors
constructions of USB. A HID device should have a HID descriptor and a
Report descriptor. In the EZUSB firmware, the device descriptors are
contented in DSCR.A51. Figure 4-6 listed the Device descriptor,

Configuration descriptor, Interface descriptor in my USB device.

34

Device Descriptor
Configuration 1 Descriptor
Interface 1 Descriptor
Endpoint 1 Descriptor
Endpoint 2 Descriptor

Interface 2 Descriptor
Endpoint 1 Descriptor
Configuration 2 Descriptor

String Descriptor 1
String Descriptor 2

Class Descriptor 1
Class Descriptor 2

Null Descriptor

Descriptor

Report Desc.

Figure 4-2,.The order of USB descriptors

HID

Device
Length =18 | Configure
Type 1 Length =9 Interface HID descriptor
USB Ver. Type 2 Length =9 | Endpoint Length=9
Class Total length. Type 4 Length=7 Type = 21H
SubClass Interfaces | This interfacd Type =5 Version
Protocol ThisConfig Alternate EP. Addr. County code
EPO Size] Config Name Endpoint Attributes HID descriptor
VID Attributes Class Max. Size Report = 21H
PID Max power Subclass fPolling Interv Total Length
Ver. Num. Protocol
Manufacturer Interface namp
PrductName
SeriialNumbe

Configuration]

Figure 4-3 Descriptors information

35

(Device Descriptor)

db
db
db
db
db
db
db
dw
dw
db
db
db
db
db

(Configurate Descriptor)

db
db
db
db
db
db
db
db
db

18
DSCR_DEVICE
10H,01H
00H

00H

00H

64
3412H
7856H
01h,00h
1

2
0
1

9

DSCR_CONFIG

;; Descriptor length

;» Decriptor type

;; Specification Version (BCD)
;; Device class

;; Device sub-class

;; Device sub-sub-class

;; Maximum packet size

' ekkhkhkkhkhkhkhkkhkhkhkkhkhkhkhkkhkhkhkkhkikhkkhkik
>Vendor ID

' ik khkhkhkAhkhkhkkhkhkhkhkkhkhkhkkhkikhkikikikkik
2 Product ID :;

;; Product version 1D

;; Manufacturer string index
;; Product string index

;; Serial number string index
;; Numder of configurations

;» Descriptor length
;mDeseriptor. type

EPDscrEnd-ConfigDscr ;;-Configuration + End Points length (LSB)

00

1

1

0
01100000b
250

(Interface Descriptor)

db
db
db
db
db
db
db
db
db

9
DSCR_INTRFC
0

0

2

03H

00H

00H

;»-configuration length (MSB)

i Number of'interfaces

.» Interface number

;; Configuration string

;3 Attributes (b7 - buspwr, b6 - selfpwr, b5 - rwu)
;; Power requirement (div 2 ma)

;; Descriptor length

;; Descriptor type

;; Zero-based index of this interface
;» Alternate setting

;; Number of end points

;> Interface class(HID:03H)

;; Interface sub class

;; Interface sub sub class

;; Interface descriptor string index

Figure 4-4 Descriptors in USB

36

4.1.2 Peripheral Circular Program

In EZUSB, there is an enhanced 8051 inside. The peripheral circular
IS used to setup the 8051 and initial the EZ-USB chip. Cypress
Semiconductor had provided the driver and contained some functions that
we can use. The flow chart of the EZ-USB driver function is in Figure 4-2.

The firmware was written, using the Keil C51 C compiler and tools.
The complier will create a HEX file that we can download to EZ-USB.
EZ-USB has an enhanced 8051 in it, and 8051 is used to take care of
input/ output control such:.as control"AD converter and DA converter. The
flowchart of the signal-between the host and USB is in Figure 4-7. In the
“Write” stage, PC sendsan “OUT” request to USB at the first, after USB
sends an “ACK” back to the PC, and then the PC will send the output data
to USB. In the “Read” stage, PC sends an “IN” request to USB at the first,
the USB will send the data in endpoint buffer back. The endpoint buffer

contains the data that 8051 read from the AD converter.

37

EZ-USB

Figure 4-5 The flowchart of the signal between host and USB

4.2 HID class

HID (Human Interface Device) is the most useful class in USB
application. There are -many.applications in HID: mice, keyboard, joy
sticker are good examples of HID. A HID device does not require a human
interface. After Windows 98 SE, Windows have supported HID. It means
that user does not need to install driver for HID device. A HID-Class
device supplies low amounts of data at infrequent times. The HID transfer
speed is 800 Bytes/s at low-speed, 64KB/s at full-Speed, 24MB/s at
high-speed. The latest version of HID is 1.1. EZ-USB FX (CY7C64613) is
a full-speed USB chip. Therefore, | enumerate my device as a full-speed
HID device.

The HID descriptor is a specific descriptor for HID Device, as Figure

3-4 shows. To configure a HID-class device, the class code in interface

38

descriptor must set to 3. The PC host will look for a HID Descriptor and a
Report descriptor. This is an example code below, the total bytes is 9 bytes.

The second parameter must be 21 for HID device, and the current version

of HID is 1.1.
db 09h ; length
db 21h ; type: HID
db 10h,01h ; release: HID class rev 1.1
db 00h ; country code (none)
db 0l1h ; number of HID class descriptors
db 22h ; report descriptor type (HID)

Report descriptor is the unique descriptor in HID device. HID device
communicates with PC" host by sending report descriptors. Report
descriptor contains input. report and-output report. While processing
communication, HID sends data into the host according to the input report,
and uses output report to process the data coming from host. To write the
report descriptor, we can use Report Generator Tool, which is provided by
USB-IF. Figure 4-8 is the report descriptor of HID device. The input
report size is 8 bits, and report count is 63. The output report size is 8 bits,

and report count is 8.

39

ReportDscr:
db 06H, 0AOH, OFFH ;; Usage Page (vendor defined)

db 09H, 01H ;; Usage (Vendor defined)
db OAlH, 01H ;; Collection (Application)
db 09H, 02H ;; Usage (vendor defined)
db OA1H, O0H ;; Collection (Physical)

db 06H, 0A1H, OFFH ;; Usage Page (vendor defined)

;; The input report

db 09H, O3H ;; Usage (vendor defined)

db 09H, 04H ;; Usage (vendor defined)

db 15H, 80H ;; Logical minimum (80H = -128)

db 25H, 7FH ;; Logical maximum (7FH = 127)

db 35H, O0OH ;; Physical minimum (0)

db 45H, OFFH ;; Physical maximum (255)

db 75H, 08H ;; Report size (8 bits)

db 95H, 3FH ;; Report count (63 fields)

db 81H, 02H ;» Input (Data, Variable, Absolute)
;; The output report

db 09H, O5H ;; Usage (vendor defined)

db 09H, O6H ;; Usage (vendor defined)

db 15H, 80H ;; Logical minimum (80H = -128)

db 25H, 7FH ;; Logical maximum (7FH = 127)

db 35H, O0OH ;; Physical minimum (0)

db 45H, OFFH ;; Physical maximum (255)

db 75H, O8H ;; Report size (8 bits)

db 95H, 08H ;; Report count (8 fields)

db 91H, 02H ;; Output (Data, Variable, Absolute)

dob OCOH ;; End Collection (Physical)

db OCOH ;; End Collection (Application)

ReportDscrEnd:

Figure 4-6 Report descriptor

40

Chapter 5

Host Application

There are three parts that we should put into consideration: device
firmware, windows user application, and device driver. The flow chart is

showed below as Figure 5-1.

User Application

User mode

Kernel mode

Device driver

Device hardware (firmware)

Figure 5-1 The flow chart of USB software development

All USB devices have a Vendor ID (VID) and a Product ID (PID)

which are reported to Windows in the device descriptor. Windows uses the

41

VID and PID to detect the appropriate device driver. The INF file is what
ties a VID/PID combination to a specific driver. Figure 4-3 shows the

relation between PID/VID and USB device.

Device
firmware

Driver
(INF file)

User
application

Figure 5-2 PID and VID

5.1 Windows:Application

In USB device development,the host application is another important
part. There are many programming languages that we can use to develop a
windows application, here | choose Visual C++ as the development tool.

A user mode application firstly gets a handle to the device driver via a
call to Win32 function “CreateFile ()”. Then the user mode application
uses Win32 function “DeviceloControl ()” to submit an I/O control code
and related input and output buffers to the driver through the handle
returning by “CreateFile ()”. These two Win32 functions are provided by
Visual C++. And other 1/O Control Code (IOCTL) will refer to The

EZ-USB General Purpose Driver.
42

There is another way to communicate to USB. If we configure our
device as a HID (Human Interface Device), therefore we can use Windows
API to establish communication with USB HID more easily. Table 5-1
lists some useful Windows API for HID device. In order to write a HID
program, we should equip Windows DDK (Driver Development Kit). For
the reason that there are many of the Windows system libraries and
declaration files within Windows DDK.

The process of opening a device consists of several steps.

Step 1: First of all before windows application communicates to a
HID device, it should obtain the Windows GUID (globally unique ID) of
HID. GUID has a 128 bits length._Each ebject all has its own GUID; The
GUID of HID class is‘icontained in hidclass.n. We can use

“HidD_GetHidGuid () to obtain the GUID of HID.

Example: // API function: HidD_GetHidGuid
HidD_GetHidGuid(&HidGuid);

Step 2: After obtaining the GUID, and then we should get an array of
structures that contain information about all attached HID devices. Here
we use “SetupDiGetClassDevs ()” to do this task. The function will return

all attached HID devices.

43

Example: // API function: SetupDiGetClassDevs
hDevInfo=SetupDiGetClassDevs
(&HidGuid, //ClassGuid,
NULL, /[Enumerator,
NULL, //hwndParent,
DIGCF_DEVICEINTERFACE //Flags
);

Step 3: Now we use “SetupDiEnumDevicelnterfaces ()” to get
information about a device in the list that got from Step 2. We need to
check each index of device information until find the one that matches the

VID and PID that our device owns.

Example: // API function: SetupDiEnumDevicelnterfaces
Result=SetupDiEnumDevicelnterfaces

(hDevinfo, //DevicelnfoSet
0, /IDevicelnfoData
&HidGuid, I InterfaceClassGuid
Memberindex, /l MemberlIndex
&devinfoData /I DevicelnterfaceData
);

Step 4. When we already got the index of our device, using
“SetupDiGetDevicelnterfaceDetail ()” to return detailed data about the
device indexed in the previous step. After this procedure, we can get this

device path that we can use to open.

44

(hDevinfo,
&devinfoData,
NULL,

0,

&Length,
NULL

);

Example: // API function: SetupDiGetDevicelnterfaceDetail
Result = SetupDiGetDevicelnterfaceDetall

/IDevicelnfoSet,
/IDevicelnterfaceData,
/[DevicelnterfaceDetailData,

/I DevicelnterfaceDetailDataSize,
//[RequiredSize,

/IDevicelnfoData

Step 5: Now we can call “CreateFile ()” to open the device using the

path obtained in the previous step.

Example: // API function: CreateFile

DeviceHandle=CreateFile
(detailData->DevicePath,
GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
(LPSECURITY_ATTRIBUTES)NULL,
OPEN_EXISTING,

0,
NULL);

Step 6: We should compare the open device’s VID and PID to check

the device is what we want to communicate. Here we can use

“HidD_GetAttributes()” to obtain the attributes of device. If the VID and

PID are incorrect, then we need to close the device handle and return to

Step 3 to check the next device which the list indexes.

Example: //

API function: HidD_GetAttributes
Result = HidD_GetAttributes

(DeviceHandle,
&Attributes

);

// HidDeviceObject
/I Attributes

45

Step 7: If we have got the device we want, we can use
“HidP_GetCaps()” to obtain the device's capabilities. Such as Input report
length, Output report length can be obtained from the function return.
Figure 5-3 is the flow chart of the windows application checks the HID
device that we desired in the initial process.

Once we step through all initial communication, we can start to write
data to device and read data from device. | use “ReadFile()” and

“WriteFile()” functions to communicate with my device.

Example: // API function: ReadFile
Result = ReadFile
(ReadHandle,
&lInputReport,
Capabilities.InputReportByteLength,
&NumberOfBytesRead,
(LPOVERLAPPED) &HIDOverlapped

);

Example: // API function: WriteFile
Result = WriteFile
(DeviceHandle,
&OutputReport,
Capabilities.OutputReportByteLength,
&NumberOfBytesWritten,
NULL

);

46

HidD_GetHidGuid ()

False

SetupDiGet-
ClassDevs ()

SetupDiEnumbDevice-
Interfaces ()

SetupDiGetDevicelnterfac
eDetail ()

CreateFile ()

HidD_GetAttributes()

Check False

VID & PID

Device Found I

Figure 5-3 The Flow chart of HID device check

In my HID program, there are some features.

1. Detect specific HID device (HID AD/DA Processing System).

2. Show HID Features (input and output features)

3. Analog Output Control (form 0V~ 5V).
47

4. Analog Signal Receive

5. Graphical Display.

Figure 5-4 is the flow chart of my Windows program to communicate
with HID device. The looping time is set to 10ms. There are 2
high-resolution timers in this program, “Timerl” and “Polling interval”.
Polling interval is used in order to record the one procedure (Write
function to Display function). Timerl is to record the time that the
program loops specific times spend. The program also generates a file
which is used to record the_transfer data. Due to the graphical display
function, it would reduce the transfer. performance so this function can be
cancelled by user. When,we_test the- performance, we turn off this

function.

[Programlnitial} _.[Continue () }

A 4

[Write () },
Yes

A 4

Device check

Read ()
\ J Timer/ loop
4‘ Error Message v
Display ()

(& J

Figure 5-4 The flow chart of the program

48

HID-AD Converter

~Device Information

Buthon

ID_ Length E

Manufactor: | NCTU-IM Lab Product: | USB-HID ADDA
Rescan
~ Input ~ Output
Yalue l2 Data ID Yalue |2 Data |D

Button ID_ Length Ig_

~A&nalog Output

= [o _omee |

Continuous l

usB

~Channel 1 Channel2———— Channel 3———— Channel4—————
Yalue: |D.4101562E { Yalue: I o ‘ Yalue: i} Yalue: I i}
~Channel 5 ~Channel & - ~Charnel 7 ~Channel 8————
Walug: | il Walue: | il ‘ Walue: il Walue: | il
Value Charnel
ICHl 'l
Sample
!520 'I
Timel

|? 92032

Palling Interval

|D.019355El

¥ Graph OM

Sample

Fige 5.5

i R-4=]=

49

Snapshotof the program

Table 5-1 Useful Windows API for HID

API function Use in HID communication
[HidD_GetHidGuid [Returns the GUID associated with HIDs
SetupDiGetClassDevs [Returns an array of structurescontaining
information about all installed HIDs
SetupDiEnumDevice- [Returns a pointer to a structure that
Interfaces identifies an interface in the array returned
by SetupDiGetClassDevs
SetupDiGetDevice- Returns a device pathname for a specified
InterfaceDetail device interface
[CreateFile Opens a handle to a HID using the
pathname returned by
SetupDiGetDevice-InterfaceDetail
[HidD_GetAttributes Returns the Vendor ID, Product ID, and
L/ersion for a specified HID
[HidD_GetPreparsedDatalReturns a handle to a buffer with
a|information about a device’s capabilities
Returns.a structure describing a device’s
capabilities
Returns.a structure describing the values in
a device port
IReadFile [Reads in input report from a specified HID

|\NriteFiIe Sends out output report to a specified HID

[HidD_GetCaps

[HidD_GetValueCaps

5.2 Hardware Driver

As shown in Figure 5-1, the device driver plays a role of connecter
between Windows and hardware. But USB driver doesn’t talk directly to
USB hardware; it talks to Microsoft USB driver called USBD.sys. In
EZ-USB, Cypress Semiconductor had provided a driver called: ezusb.sys,
so that we can use it directly.

As the previous section was described, we have configured the device

50

as a HID, so that we don’t have to make our own INF file. Windows will
recognize the device by using its own INF (in Windows 98, it will use
“hiddev.inf”. in Windows 2000, it will use “input.inf” for HID device.).
Figure 5-6 The HID device shows up in the device manager when we plug

device into USB port.

v Genetic SME devices

(= IDE ATAJATAPT $EHIEE

e TEEE 1394 FEFTHEF 4188
B pCMCIA TETR

¢ 5CS1 B RAID 4182

+ 3’ Sysbem Managment Bus contraollers

e[[] [

&8 HID-compliant device
&8 Logitech USE Wheel Mouse
Ha USE A ML EEE
+ Rifdsg
- EAg
,@ IEM ThinkPad Fast Infrared Port
+- @, T3 0 AR A TSI
+.i (2188

Figure 5-6 HID device shows up on Device Manager.

51

Chapter 6

Conclusion

6.1 Transfer rate calculation

Now we will test our device and its performance. As we know, for the
full-speed of HID, the maximum transfer speed is 64KB/s. We should
consider the hardware constrains: the ADC’s conversion time, and the
Start pulse. For ADC0809, the conversion time is 100 us, and we set the
Start pulse to about 0.6 s (the-mimimum time that EZ-USB’s internal
8051 can reach). Because the EZ-USB’s interrupt endpoint buffer is 64
bytes, so we set the 8051 to get 64 data from AD converter. We use
double buffers to save the AD data. When one buffer is full then sent by
USB core, 8051 can still save the data to another. The process will
continuously repeat when another buffer is full. Each buffer is 64bytes.
The USB core polling interval is set to 1 millisecond.

| set the program to run 100 loops and record the total spending time
form “Timerl” in my program. The data what EZ-USB transferred will be

output to file, “data”. The graph display is done with the assist of EXCEL.

52

6.2 Experiment Result

Testing environment:

Operation System: Windows XP Professional;

PC: P4-1.3G, 512M DDR Ram;

USB Host: USB 2.0;

In report size: 64 bytes;

Out report size: 64 bytes;

Packet size: 64 bytes;

Polling interval: 1ms;

Testing results are illustrated as below figures. All figures are marked

down 100 samples.

Output(Volt)

S PN W B~ o

100Hz Signal

N\

N\

/ O\ /

N\

/ N/

AN

NS N

0 12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19

Time(millisecond)

Figure 6-1 100Hz signal

53

100Hz Signal

5
O
33
32
=]
O1

0

01 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19
Time(millisecond)
Figure 6-2 100Hz signal (2)
1Khz Signal

5
4
S 3
2
= 2
@)

1

0

8 9
Time(millisecon)

Figure 6-3 1 KHz signal

54

Output(Volt)

N W B~ ol

[EEN

o

1KHz Signal

7

8 9
Time(millisecond)

Figure 6-4 1 KHz signal (2)

Output(Volt)

N W b~ Ol

o -

2KHz Signal

B RAAARAARRRAANRLAL]

" Tinf(millidecond)

Figure 6-5 2 KHz signal

55

2KHz Signal

RTTITITII TIT
AU UL LdUdLUdlddlUdll

’ 1 i ’) i ’ ! Timg(milligecond)

Figure 6-6 2 KHz signal (2)
3Khz Signal

5
SMIINIRImInRrmm
AT
©1

g te *e PP 0P PP PP L4 4 S

0

1

2

3 4 3) 6

! Time%millis%cond)

Figure 6-7 3 KHz signal

56

3KHz Signal
4.5
4 4 [9 R S ¢ 90 0 9 ¢ o 04»4»04»04.4»04»4»04

35 f
S 3
2 25
S 2
S 15 |
| il

Og ;J> ¢ o fu * j:h» < J’ﬂ ® ﬂ“» . M»«‘U» * <H>‘<H> . 4“»1&» * L»‘o ® ﬂ‘o . <H>

0 1 2 3 4 5 6 7 8 9
Time(millisecond)

Figure 6-8 3 KHz signal (2)

From the results of my experiment, we can calculate the transfer
speed. The transfer speed is approaching 6Kbytes/s. it means that the
system can sample 6000 points“within a second. Therefore, the input
signal frequency must be under 3 KHz. As Figure 6-7 shows, when the
input signal frequency is 3 KHz, the output has committed an error.

Furthermore, we found there is a non-continued point in every 64
points (a packet). That is due to the HID report whereas there ought to be a
Report ID in each report. In the program setting, we can easy skip this
byte, that is, we have skipped this byte while making the graphs.

Digital-to-Analog output result as below figure shows, | let my
Windows program to generate a sine wave and capture the photography

from oscilloscope.
57

ErEerEr el

" Wi
B L i T B S

EEEE

T TR i e Rt g R L TR B8 THHL Fier qeee i1 AT SRSL SRS Rt FE Has HOSE TGS W B S L I

- : CH1
B i

00 S W e R 2y

Figure 6-10 Digital-to-analog Output test (2)

58

6.3 Conclusion

In section 6.2, we can comprehend that the transfer speed is
approaching 6 Kbytes/s, but the report ID byte will reduce the transfer rate
of the useful data. In my experiment, there are 100 packets transferred.
There will be 100 bytes for report ID, hence the useful data transferred
will be 6400 bytes (6500 — 100 = 6400). And the total data transferred into
host is 6500 bytes/s.

Constrained by the Windows program and the AD converter’s
conversion time, the performance can’t reach the utility to the best of HID
ideal value, 64Kbytes/s. To improve the performance, there are some ways
to do. In the software part, we can use multi-thread or DirectX to increase
the software performance. In the Hardware part, we can change the AD
converter for better performance.

Nevertheless, there is a main problem that the USB is a master-slave
system. That is, the device cannot send the data unless the host makes
request. In USB, HID class is usually used to implement on moderate
device. In data acquisition, it provides an easy-used way, but not a fast
sample rate. In the future, the sample rate could be enhanced when the

system upgrades to USB 2.0.

59

References

[1] John Hyde, USB design by example: /a practical guide to building 1/O

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

devices, Wiley, 2001.

Don Anderson / Dave Dzatko, Universal Serial Bus System

Architecture. Second Edition, Addison Wesley, 2001.

Jan Axelson, USB Complete: Everything You Need to Develop

Custom USB Peripherals , Lakeview Research, 2001.

FAr o M AR %2 (USB/ w2 2 234> %) £ 8 d1K

Bl

A > 2003.

B o o i USB2L 0 ALAEE: » SR T >4 LA 5 2002,

FlA % - USB2. 0 A2 HEhis mE s i iz 5 " & - 2002.

e 8051 H & #CF 3 K Fir——@ *Keil C» 2003.

EZ-USB General Purpose Driver Specification Document, Cypress

Semiconductor, 1999.

EZ-USB Manual Technical Reference Vision 1.10, Cypress

Semiconductor, 2002.

[10]Jan Axelson, "HIDs Up", Embedded Systems Programming (ESP),

October 2000.

[11]USB HID specification, HID-usages tables, and HID descriptor tool,

60

www.usb.org/developers/hidpage.html.

[12]USB specification, www.usb.org/developers/docs.html

[13]Microsoft DDK, http://msdn.microsoft.com

61

