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ABSTRACT

In this study, methods are proposed for video surveillance by a video
surveillance vehicle equipped with a pair of two-camera omni-imaging devices on its
roof, with emphasis on monitoring of blind spots and nearby cars around the vehicle.

First, for generating perspective-view images to facilitate inspection of the
vehicle’s surrounding environment;, a space-mapping table and an r-p mapping table
are created to accelerate the related coordinate transformation process. Also, a method
for generating the perspective-view image of the surrounding area of the vehicle by
estimating the vehicle’s moving direction using optical flow analysis is proposed. For
off-line inspection of the driving history, a method of using a perspective-mapping
table proposed in this study to generate a series of perspective-view images of any
view direction decided by mouse clicking is proposed as well.

Furthermore, a method for monitoring a nearby static car around the surveillance
vehicle is proposed, which employs image processing and pattern recognition
techniques like ground region elimination, moment-preserving thresholding, region
growing, etc. to segment a car shape out of the omni-image. Also proposed is a
method for extracting the bottom-edge points of the car window and eliminating the

outlier points by simple linear regression, in order to compute the 3D data of the
i



detected car and generate a surround map.

In addition, a method for monitoring a nearby static or moving car from a
moving video surveillance vehicle is proposed, which may be used to segment the
nearby car region in the omni-image by the use of motion vector lengths. To further
grow a complete car shape from the segmented regions, a method for finding the
pixels of the car body by a k-means algorithm and using the pixels as seed points to
grow the entire car region by the use of color information is also proposed. With the
aid of a space-mapping table, car masks derived from a simple car model are used for
locating the position of the detected car. Finally, a top-view surround map showing
the relative position of the detected car with respect to the video surveillance vehicle
IS generated.

Good experimental results are also shown, which prove the feasibility of the

proposed methods for real video surveillance applications.



ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions, and
support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this
thesis, but also in every aspect of his personal growth.

Appreciation is also given to the colleagues of the Computer Vision Laboratory
in the Institute of Computer Science and Engineering at National Chiao Tung
University for their suggestions and help during his thesis study.

Finally, the author also extends his profound thanks to his dear mom and dad for

their lasting love, care, and encouragement.



CONTENTS

ABSTRACT (IN ChINESE)euutentererenreereeerenrenesansesasensesesasanssscsnsansenssansanses i
ABSTRACT (in ENGHISN) cuiieiiiiiiiiiiiiiiiiiiieiieriisnieatiessecnssesssssssnssnniesnsons I
ACKNOWLEDGEMENTS . ctiitiiiiiiiiiiiiiiiiiiiiiiierineiesieesesssecssassnnn. v
(OO N I =\ I TP Vv
LIST OF FIGURES. ...cutitiuiiiiiiiiiiiiiiiiiiiiiiiniieiitiiesnieniassesssasasnsnnn. viii
LIST OF TABLES...c.uitiiiiiiiiiiiiiiiiiiiiiiiietiiietatittesasetsesassnsisnses. Xii
Chapter 1 INErOAUCTION ... e 1
R |V [ (V[ o SO PR SRS 1
1.2 Survey of Related STUAIES........cccoveiiiiiiiiereeeee e 3
1.3 Overview of Proposed Methods............ccocoriiiiiniiiince e 5
1.4 CONIDULIONS. .....eiiiieiieie e nreas 7
1.5 ThesSiS Organization ...........coieieeierieieienese s 8
Chapter 2 Idea of Proposed Methods and System Design...........c.ccoovvevevenennn. 10
2.1 ldea of Analyzing Surrounding Environment and \Vehicles................. 10
2.2 System ConfigUIAtIoN ......c.e it caitiniins et e 14
2.2.1 Hardware CONFIQUIATION ............iiivmreeereeieieniese e 14
2.2.2  Software confIguration.....c.....fuiiueeeieeiesese e 16
2.2.3  Network Configuration ...« e 16
2.3 Review of Adopted Camera System and 3D Data Acquisition Process
............................................................................................................ 17
2.4 SYSEEIM PTOCESSES ....ecvvereiiiieitietisiee st ettt ettt nneas 22
Chapter 3 ~ Generation of Perspective-view Images Using Pano-mapping
L= 6] 2SSOSR STSSSRRR 26
3.1 Review of Adopted Pano-mapping Method for Omni-image
UNWAIPING ...ttt bbbttt 26
3.2 Construction of Pano-mapping Table ... 27
3.2.1  Landmark Learning........ccoovverenineeiieieie e 27
3.2.2 Estimation of Coefficients of Radial Stretching Function....... 28
3.2.3 Filling of Pano-mapping Table ENtries............cccccoovvviivnveinnn. 30
3.2.4 Creation of r-p Mapping Table ... 33
3.3 Image Unwarping and Generation of Perspective-view Images.......... 34
3.4 Construction of Perspective Mapping Table for Computation Speedup
............................................................................................................ 39



Chapter 4  Car-driving Assistance by Analyzing Omni-images of Surrounding

ENVIFONMENT ..ottt et nre e enes 41
4.1 Idea of Proposed Method ..........cccceriiiiiiiiiiieeee e 41
4.2  Analysis of Car Direction by Motion Vectors in Omni-images........... 42
4.2.1 ldea of car direction analysis by motion vectors ..................... 42
4.2.2 Car Direction Detection and Display of Corresponding
Perspective-VIEW IMages ........coovvvreierenene e 43
4.2.3  AlGOrtNM .....cciiiiiii e 53
4.3 Sequential Driving Recording for Off-line Inspection of Driving
HISTOTY ..o 56
1 R o[- USRS 56
4.3.2 Inspection of Sequential Driving Record via Perspective-view
IMAGE .. 58
4.3.3  AlGOrthm .....ccoiiiiiiiicce e 59
Chapter5  Monitoring of a Nearby Static Car around a Static Video
SUNVEIIaNCe VENICIE ..o et i e e et 62
5.1 Idea of Static Car Detection in Omni-iMageS ..........ccccererererienieniienne. 62
5.2 Nearby Vehicle DeteCtion i et uiurmmn it it e 63
5.2.1 Ground Region LEArMING .......00..ciueeeeeieeieneninieseseseeeeeenes 63
5.2.2 Object'Segmentation by Mement-preserving Thresholding....65
5.2.3 Noise ENMINAtION ........ocveroiiiite e 66
5.3 Distance Estimation of @ StatiC Car............cccccevereneninenineseeeiee, 69
5.3.1 Car Side Extraction and Analysis ..........ccccoevnireniininnienicnienn. 69
5.3.2 Elimination of Noise by Simple Linear Regression ................ 74

5.3.3 Calculation of Car Distance and Creation of Surround Map...77

Chapter 6  Monitoring of a Nearby Static or Moving Car with a Moving Video

SUNVEITANCE VENICIE ... 79
6.1 Idea of Detection of Static or Moving Car in Omni-images................ 79
6.2 Moving Car Detection by Motion Vectors Generated by Optical Flow
ANBIYSIS ...t 81
6.2.1 Detection of Car Region by Motion Vector Lengths................ 81
6.2.2 Detection of Car Body by k-means Algorithm ...........ccccceee. 83
6.2.3 Detection of Car Region by Color Information ....................... 86
6.3 Updating of Car State.........cccoeririiiiiiisieie e 89
6.3.1 Estimation of Car Location by Rectangular-shaped Models ...89
6.3.2 Update of Car State and Generation of Surround Map............ 94
Chapter 7 Experimental Results and DiSCUSSIONS..........ccccoevverieieereerieseennenn, 98

Vi



7.1
7.2

Chapter 8

8.1
8.2

References...

Experimental RESUIES ..........ccoooviiiiiiiiee e, 98

DISCUSSIONS ...ttt e sie et siee sttt e sre et be e sreesteeneesreenne e 106
Conclusions and Suggestions for Future Works .............cccccue.ee. 108
CONCIUSIONS ...ttt st nreas 108
Suggestions for FUtUIre WOIKS..........cccoveiiriieneiie e 109
.............................................................................................................. 111

Vil



LIST OF FIGURES

Figure 2.1 The video surveillance vehicle used in this study with a pair of two-camera
omni-directional devices affixed on the car roof. (a) A front view of the
video surveillance vehicle. (b) A side view of the video surveillance
Y= 0T T [ SRRSO 10

Figure 2.2 Positions of cameras affixed to the video surveillance vehicle roof and the
corresponding FOV. (a) The omni-camera is affixed at the rear-middle of
the car roof. (b) The omni-camera is affixed at the right-rear of the car roof.

Figure 2.3 An example of static nearby car detection. (a) An omni-image of a static
car parked at the nearby roadside. (b) A generated surround map showing
the relative position from the top view. Note that the direction of an object
is 180° reversed in the omni-image when compared with the real situation

as Hlustrated IN (D). ..o s BB e 13
Figure 2.4 Structure of the proposed surveillance System. .........cccoceevreniiininnicinennn, 15
Figure 2.5 The network architecture of transmission between two laptops. ............... 16
Figure 2.6 (a) Relation between.the world coordinates and the image coordinates (b)
Geometry between the mirror and the CMOS sensor in camera. .............. 19

Figure 2.7 Computation of ‘depthusing the two-camera omni-directional imaging
device. (a) The ray tracing of a scene point P in the imaging device with a

hyperboloidal-shaped mirror. (b) A'triangle in detail (part of (a))............. 20
Figure 2.8 System configuration of upper omni-camera with a hyperboloidal-shaped

] 1 o] SR 22
Figure 2.9 Flowchart of proposed 1earning proCess. .........c.cueerereneneneseseeeeneenes 23
Figure 2.10 Flowchart of the moving direction analysis. .........cccccoverveienenininnicnenn, 24
Figure 2.11 Flowchart of vehicle deteCtions...........cooveiiiiniieiie e 25
Figure 3.1 An interface to for user to select the landmark points.............cccocoerennnen, 28
Figure 3.2 Mapping between a radius distance r and elevation angle p. ...........cccc...... 29

Figure 3.3 Illustration of mapping between the azimuth-elevation angle pair of the
omni-image and the horizontal and vertical axes of the pano-mapping table,

TESPECLIVETY. .ttt 31
Figure 3.4 An example of generating the perspective-view image. ..........c.cccovvvernennn. 35
Figure 3.5 A top view configuration of generating a perspective-view image............ 37
Figure 3.6 A lateral-view configuration of generating a perspective-view image. .....38
Figure 3.7 A top view of segmenting an omni-iMage. ........cccevererenerienesenreeereenes 40

Figure 4.1 Illustration of selecting the detection region where the red points represent
the spots on which optical flows need be found. (a) Detection region used

viii



in the case of turning to the right. (b) Detection region used in the case of
moving forward. (c) Detection region used in the case of turning to the left.

Figure 4.2 The optical flow pattern and the corresponding detection region. (a) The
case of turning to the right. (b) The case of moving forward. (c) The case

of turning to the left. ..o 44

Figure 4.3 An example of results of implementing the optical flow analysis method. (a)
An image frame taken at time t. (b) An image frame taken at time t + dt. (c)

The result of the motion vectors produced by the optical flow analysis

method with (a) and (D) @S INPULS. .....eeveeieiieiieee e 47

Figure 4.4 Transformation of a motion vector from the ICS to the WCS. (a) An
illustration of the camera system and the motion vector. (b) The ray tracing

of a scene point P on the ground projected on the hyperboloidal-shaped

LT 0] ST TP PR PROPPPRP 49

Figure 4.5 A distribution chart of the direction angle of motion vectors. ................... 51
Figure 4.6 A graph of finite state machine proposed to determine the moving direction.
.......................................................................................................................................... 52

Figure 4.7 Structure of the communication between two laptops used in this study...54
Figure 4.8 An example of-results of optical  flow analysis on omni-images and
corresponding perspective-view  images, where the red arrowheads
represent motion ‘vectors: (a) Optical-flows of “turning to the left.” (b)
Optical flow of “moving forward.” (c) Optical flow of “turning to the
right.” (d) ~ (e) Corresponding perspective-view images of (a) ~ (c),

TESPECTIVEIY. .ttt 57

Figure 4.9 The car-driving assistance by analyzing omni-images of the surrounding
LAY T (0] 0] 11T | SRR 57

Figure 4.10 An interface for inspecting the sequential driving record. ...........cccccco.... 59

Figure 4.11 The result of inspecting the driving history. (a) The omni-image and the
perspective-view image obtained from transforming the omni-image
acquired with the right-front camera. (b) The omni-image and the
perspective-view image obtained from transforming the omni-image

acquired with the left-rear cCamera. ..........ccccooeiiiiiei i, 60
Figure 4.12 A flowchart of sequential driving recording for off-line inspection......... 61
Figure 5.1 A flow chart of static car detection with a static video surveillance vehicle.
.................................................................................................................... 63

Figure 5.2 The interface for ground learning. (a) An example of initializing the region
of the ground. (b) An example of selecting the ground region by a user...64
Figure 5.3 Related images of noise elimination. (a) The original omni-image. (b) The
bi-level image of eliminating the ground and thresholding in the image (a).

iX



Figure 5.4 The bi-level images of the nearby static car detection. (a) The image before
noise elimination. (b) The image after noise elimination. ......................... 67
Figure 5.5 An illustration of the region growing process — the blue region represents
the car region and the white region represents the non-car region. Once the
scan point finds the car region, the region growing process starts. .............. 69
Figure 5.6 An illustration of detecting the edge points in bi-level image.................... 70
Figure 5.7 An example of edge-point extraction. (a) The bi-level image b for
searching the bottom-edge points of the vehicle window (a) An image to
show the result of finding the edge points, and the red points represent the
edge points correspPoNding t0 (). .......eoerereririeeieeiienie e 72
Figure 5.8 The result of edge point extraction. (a) The original omni-image acquired
with the omni-camera. (b) The image with the bottom-edge points of the
vehicle window represented by red points..........ccccceovieienineiinieeee, 74
Figure 5.9 An example of simple linear regression, where the blue points represent the
edge points transformed into.the WCS and the black line is the result. ....76

Figure 5.10 A surround map from the tOp VIEW. ..t 78
Figure 6.1 Flowchart of nearby car detection with a moving video surveillance vehicle.
.................................................................................................................... 80

Figure 6.2 An example of block-based omni-image'— the block region is the video
surveillance vehicle roof that we ignore and the red points are the selected

Figure 6.3 A result of separating the car region from the non-car region, where the red
points are used to represent the car region and the green points to represent
the NON=CAI TEYION. ...c.eiiiiiiiiiiiieee e 83
Figure 6.4 An illustration of k-means algorithm. (a) The image of initialize the cluster
centers. (b) The image of associating every data with the nearest mean. (c)
The image of reassigning the cluster centers. (d) The result image of
K-means algorithm. ... 84
Figure 6.5 A result of region growing by the color information. (a) An image to show
the result of the region growing, and the purple points represent the
growing region. (b) The corresponding bi-level image of the image (a). ...89
Figure 6.6 A rectangular-shaped car model and the corresponding mask. (a) A blue
region of rectangular-shaped model and its representive points in the WCS.
(D) The MaSK IMAGE. .....ccoiiiiiieiieeee e 90
Figure 6.7 The result of mask in the omni-image. (a) The near mask with respect to
the video surveillance vehicle. (b) The far mask with respect to the video
SUNVEIlANCe VENICIE. ..o 92
Figure 6.8 A result of matching a detected car by a mask — the yellow region

X



represents the detected car and the blue mask represents the result of the
rectangular-shaped model transformation............ccccceeeveiciinininiieieien, 94
Figure 6.9 Flowchart of updating the car State. ..........c.ccoovriiiiiiiseee 96
Figure 6.10 The result of detecting the static nearby car with a moving video
surveillance vehicle. (a) The original omni-image. (b) The surround map
TrOM the TOP VIBW........iiii e 97
Figure 7.1 An experimental result of generating the perspective-view image. (a) An
original omni-image. (b) The perspective-view image of the right-rear
direction. (c) The perspective-view image of the rear direction. (d) The
perspective-view image of the left-rear direction. ..........cc.ccoevevvnieieennnnn. 99
Figure 7.2 A real example of car direction detection and display of corresponding
perspective-view images. (a) The case of turning to the left. (c) The case of
turning to the right. (e) The case of moving forward. (b), (d), and (f) The
perspective-view images corresponding to (a), (c), (e), respectively. .....100
Figure 7.3 The experimental result of monitoring a nearby car around a static video
surveillance vehicle. (a) The omni-image acquired with an upper camera.
(b) The omni-image acquired with a lower camera. (c) The surround map
from the top view. ‘Note that the direction of an object is 180° reversed in
the omni-image when.compared with the real situation as illustrated in (c).

.................................................................................................................. 102
Figure 7.4 An illustration of the detecting a nearby static car with a moving video
surveillance VehiCler .. e e 103

Figure 7.5 The result of a nearby static car-detection with a moving video surveillance
vehicle. (a)~ (f) The results of detecting a nearby car parked at the road
side and the generated top-view surround maps. Note that the direction of
an object is 180° reversed in the omni-image when compared with the real

situation as illustrated in (b) (d) (F). .oocooeririie s 104
Figure 7.6 An illustration of the detecting a nearby moving car with a moving video
SUNVEIllance VENICIE. ........cvv i 105

Figure 7.7 The result of a nearby moving car detection with a moving video
surveillance vehicle. (a)~ (f) The result of detecting a moving car. Note
that the direction of an object is 180° reversed in the omni-image when
compared with the real situation as illustrated in (b) (d) (f). .....cccovenneen. 105

Xi



LIST OF TABLES

Table 3.1 An example of the pano-mapping table. ..., 32
Table 3.2 An example of the r-pmappingtable. ..., 33
Table 4.1 The range of the angles of the three vehicle moving directions.............. 51

Xii



Chapter 1
Introduction

1.1 Motivation

Nowadays, because the computer technology progresses quickly, video cameras
are getting more popular and used more widely. In people’s daily life, video cameras
can be used to improve human beings’ welfare. For example, people often equip cars
with driving-assistance systems like digital driving recorders or car-backing
monitoring systems. With the assistance of cameras.in these systems, a driver is able
to observe surrounding environments-easily. Once a traffic accident occurs, he/she
can clarify the responsibilityfor the event by inspecting the video record.

Moreover, video cameras-are. also useful for developing vision-based techniques
for many applications. Through ‘image processing and other techniques, much
information can be obtained from images captured with video cameras. For example,
a license plate recognition system or a face recognition system requires the use of
video cameras to capture images for analysis of specific objects. In this study, it is
desired to design a video surveillance system using video cameras on a vehicle, called
video surveillance vehicle, for car-driving assistance and car surrounding monitoring
applications.

Most researches of vision-based techniques for the mentioned applications are
based on the use of traditional projective cameras; however, the limited field of view
(FOV) of the traditional camera is a problem. For instance, only the scene in front of a

car can be seen when a projective camera is affixed to the car to “see” forward. If we



want to monitor the entire car surrounding, four or more cameras are required. The
requirement of extra cameras to cover the entire surrounding will raise the cost and
complexity to develop a video surveillance system on the car. Therefore, we choose
omni-cameras (or simply omni-cameras) to be the imaging devices in this study. Each
device consists of two axis-aligned omni-cameras. A wider view of the environment
around the video surveillance vehicle can be covered by such a camera system.

Besides, most vision-based systems are affixed to some pre-determined places,
such as ceilings or utility poles. It is a difficult task to move a system of such a nature
entirely to another place to do surveillance works. In this study, we set up two pairs of
omni-cameras on the roof of a video surveillance vehicle. With the camera system
being carried, the vehicle can move'to any place to conduct surveillance works.
Furthermore, the cameras equipped.on the video surveillance vehicle can also be used
to develop functions for various applications.

To sum up, the goal of this study isto develop a video surveillance system on a
video surveillance vehicle for the.applications-of ‘car-driving assistance and car
surrounding monitoring. The system is composed of two pairs of two-camera
omni-imaging devices, each consisting of two vertically-aligned omni-cameras, which
are affixed to the surveillance’s roof. With the advantages of mobility of the video
surveillance vehicle and the wide FOV’s of the omni-cameras, we can develop a
mobile surveillance system to monitor car surroundings completely for the two
applications. Listed below are the more detailed desired capabilities of the proposed
system.

(1) The surrounding environment images are captured by omni-cameras, and the
captured image sequence is analyzed to decide the driving direction of the vehicle
and generate the perspective-view image of the car surrounding environment with

respect to a selected view direction.



(2) The proposed video surveillance system is able to detect any static surrounding
car parked at the nearby roadside, and displays a surround map to show its
relative position with respect to the surveillance vehicle from the top view.

(3) When the video surveillance vehicle is moving, the proposed video surveillance
system can detect a static car or a passing car in the nearby surrounding as well,
and displays a top-view surround map as mentioned above to show the relative

position of the car.

1.2 Survey of Related Studies

In this section, we conduct a survey.of related studies about video surveillance,
including designs of omni-cameras for uses on.vehicles, techniques for surrounding
vehicle detection, and the optical flow method which we use in the proposed video
surveillance system for various purposes.

In recent years, video surveillance for various applications has been widely
investigated. Christian et al. [1] proposed-a method to track concerned objects based
on the use of a video surveillance system on a vehicle. The vision-based surveillance
system can be used to monitor a parking lot or conduct traffic surveillance works [2,
3].

An omni-camera in a video surveillance system is useful for localizing objects. It
includes just a projective camera and a mirror. Onoe et al. [4] and Mituyosi et al. [5]
proposed methods to track people on video surveillance systems with omni-cameras.
Moreover, applications using different combinations of projective cameras and
mirrors to construct new types of omni-imaging systems have also been investigated.
For example, a method to obtain stereo information for mobile robot navigation with

an omni-imaging system which consists of two mirrors and one camera was proposed



by He et al. [6]. Also, Koyasu et al. [7] proposed a stereo system which consists of
two omni-cameras aligned vertically for obstacle detection and tracking.

In this study, to obtain the stereo information from omni-images, we adopt the
space-mapping method proposed by Jeng and Tsai [8] to calibrate omni-cameras
without knowing the intrinsic and extrinsic parameters of the cameras. Moreover,
because omni-images captured with omni-cameras may be processed to produce
panoramic images and estimate the relevant stereo information of surrounding objects,
many studies replace conventional projective cameras with omni-cameras. For
example, to assist a driver to observe the entire car surrounding environment,
researchers proposed techniques to generate surrounding bird’s-eye views from
omni-images, such as Ehlgen and Pajdla [9]. Gandhi and Trivedi [10] also proposed a
method to use omni-cameras to conduct detection of moving persons and vehicles on
a mobile platform. By the way, the large FOV’s of an omni-camera is a great benefit
to monitor the entire surrounding environment. Some researchers combine this
advantage and the mobility of vehicles to develop.applications [11-13].

In addition, the optical flow method is useful for analyzing the motions within
two consecutive image frames. Lucas and Kanade [14] proposed a method to compute
the displacement of the image contents between two image frames within the
neighborhood of a point. In many studies, the optical flow method is used to detect
ego-motions for analyzing the car moving direction. Kim and Suga [15] proposed a
method to detect a moving obstacle using an optical flow method for a mobile robot
with an omni-camera.

For long, the topic of vehicle detection has been widely studied. Various
techniques were proposed to detect vehicles. For instance, background subtraction is a
common technique used to extract vehicles [16, 17]. Tsai et al. [18] proposed a

method to conduct vehicle detection from static images using color and edges
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information. In this study, we propose methods to detect a static surrounding car by
ground-region subtraction and to detect a moving car by using the motion vectors and

color information of the car.

1.3 Overview of Proposed Methods

1.3.1 Terminologies

The definitions of some related terms used in this study are described as follows.

1. Omni-camera: a camera system with a traditional projective camera and a
reflective mirror which can be used to capture images of 360-degree FOV’s.

2. Omni-image: an image captured with an omni-Camera.

3. Video surveillance vehicle: a car with a pair of two-camera omni-imaging
devices equipped on the car roof as'well as two laptops for use as control units
inside the car to develop a video.surveillance system.

4. Optical flow: a method to estimate the-motions of shapes, surfaces, and edges of
concerned objects between two sequential images.

5. Motion Vector: motion vectors produced by the optical flow method to represent
the velocity and direction of a concerned object.

6. Perspective-view image: an image obtained by projecting a scene onto a flat
surface as it is seen by the human eye.

7. Surround map: an image showing the relative position of a surrounding car from

the top view.



1.3.2 Brief Descriptions of Proposed System

There are four goals in developing the proposed system as described in the

following.

1.

The system is able to analyze the car driving direction using the consecutively
acquired omni-images and display corresponding perspective-view images to the
driver.

The system is capable of recording the surrounding images during driving and let
the user see the perspective-view image in any selected view direction
constructed from these sequential images as well as inspect the sequential images
off-line.

The system is able to monitor. a static surrounding car and obtain related stereo
information of it to generate and display a top-view surround map.

The proposed system is- able:to monitor a passing car or a static car in the
surrounding environment when. the surveillance vehicle is moving, and display a

top-view surround map to show its relative position.

In order to achieve the above goals, the following are the major steps of the

system process of the proposed video surveillance system.

1.

Set up the previously-mentioned pair of two-camera omni-image devices on the
roof of the video surveillance vehicle with one on the front-right corner and the
other on the rear-left corner of the car roof.

Calibrate the omni-cameras for six outward view directions and use the
space-mapping method to generate six corresponding pano-mapping tables.
While the surveillance vehicle is moving, analyze its moving direction by the

optical flow method, transform the extracted motion vectors into the world



coordinate system (WCS), and estimate the moving directions by some pattern
recognition methods.

4. Generate a perspective-view image according to the driver’s selection of the
view direction by projecting an omni-image onto a flat surface by looking up the
pano-mapping tables.

5. Detect any static surrounding car by elimination of the ground regions in an
omni-image, extract the edge points of a detected car, use the points to compute
the stereo information of the detected car, and display the corresponding
top-view surround map including the car.

6. Detect a passing-by car or a static surrounding car by the optical flow method,
use the lengths of these motion:vectors to roughly separate ground regions and
car regions, apply region growing based on the.color information to find the
complete car shape, estimate the stereo information of the car, and generate a

top-view surround map to show the relative position of the car.

1.4 Contributions

The following is a list of the major contributions made in this study.

1. A method for obtaining the stereo information of a concerned object by the
pano-mapping method using a pair of two-camera omni-imaging devices is
proposed.

2. A method for constructing the pano-mapping tables for six outward view
directions is proposed.

3. A method for constructing tables of perspective mapping described in detail in
Chapter 3 between the omni-images and the perspective-view image to shorten

the processing time of image transformation is proposed.



4. A method for analyzing the driving directions of the video surveillance vehicle
by the optical flow method and using the direction to generate corresponding
perspective-view images is proposed.

5. A local network is constructed, which integrates a pair of two-camera
omni-directional imaging devices and two laptop computers for video
surveillance use.

6. A method for detecting a static surrounding car and computing its accurate 3D
information is proposed.

7. A method to detect a moving surrounding car or a static surrounding car by
thresholding the lengths of motion vectors and extracting the region of the car is
proposed.

8. A method for generating.rectangular-shaped models and transforming them into
the camera coordinate system to mask a detected car for computing the location
of the car is proposed.

9. A method for generating a surround map to display the relative location of a
detected car in an acquired omni-image with respect to the surveillance vehicle is

proposed.

1.5 Thesis Organization

In the remainder of this thesis, we introduce the system configuration and the
idea of the proposed method in Chapter 2. The designs of the camera system and the
method to obtain stereo information are also described. In Chapter 3, the construction
of the pano-mapping tables by the space-mapping technique and the technique of
using the pano-mapping tables for unwarping an omni-image into multiple

perspective-view images are described. In Chapter 4, the proposed methods for



computing the car moving direction and for generating the corresponding
perspective-view image are described. In Chapter 5, the proposed method for
detecting a static surrounding car is described. In Chapter 6, the proposed method for
detecting a moving surrounding car is described. In Chapter 7, experimental results
and discussions are included. Finally, conclusions and some suggestions for future

works are given in Chapter 8.



Chapter 2
Idea of Proposed Methods and
System Design

2.1 ldea of Analyzing Surrounding
Environment and Vehicles

In order to monitor the surrounding environment of the video surveillance
vehicle, we choose omni-cameras-instead of traditional projective cameras to acquire
environment images. The ~acquired omni-images ~can be used to generate
corresponding panoramic images and so provide necessary information for security
monitoring or driving assistance. In" this -study we-affix a pair of two-camera
omni-imaging devices to the surveillance vehicle roof for this purpose as shown in
Figure 2.1. Each device includes two omni-cameras aligned coaxially and back to

back, as mentioned previously.

(b)

Figure 2.1 The video surveillance vehicle used in this study with a pair of
two-camera omni-directional devices affixed on the car roof. (a) A front view of the
video surveillance vehicle. (b) A side view of the video surveillance vehicle.
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An advantage of the mobility of the video surveillance vehicle is that we can
move the entire system to everywhere to conduct surveillance works. Besides, to get
useful views as far as possible, we decided to affix one omni-image device at the
right-front position of the surveillance vehicle roof, and the other at the left-rear. As
illustrated in Figure 2.2, if instead we affixed a device at the front (or back) middle of
the vehicle roof, a half of the acquired omni-image is useless, covering just the roof of

the vehicle.

(a) (b)
Figure 2.1 Positions of cameras affixed to the video surveillance vehicle roof and
the corresponding FOV. (a) The omni-camera is affixed at the rear-middle of the car
roof. (b) The omni-camera is affixed at the right-rear of the car roof.

Many car accidents occur because the driver ignores “blind spots” which cannot
be seen in the mirrors equipped inside and outside the car. To show the views of these
blind spots, we can use the mentioned pair of omni-imaging devices on the
surveillance vehicle roof to generate perspective-view images around the car on every
driver-specified view direction. The construction of the perspective-view image from
an omni-image conducted in this study is based on the space-mapping method
proposed by Jeng and Tsai [8].

In addition, when a driver wants to turn to the left or to the right, the blind spots

behind the surveillance vehicle are apt to be neglected. Therefore, we analyze the
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motion vectors produced by the optical flow method in consecutively acquired images.
With these motions, we can estimate the vehicle moving direction and show the
corresponding perspective-view image. During driving, we can also store images
captured with omni-cameras. As a driver recorder, the system can then display these
images in sequence, or let the user to choose a view direction and display the
corresponding perspective-view image for closer observation.

Furthermore, in order to detect a static car parked at the nearby roadside and
compute the stereo information of it, we use the color feature to separate the car
region from the ground in the acquired omni-image. In doing this, we assume that the
background is uncomplicated with almost the same color as that of an asphalt road,
and that the color of the detectedcar is different from the ground presumably.
Therefore, the car shape can.be extracted as the foreground by elimination of the
ground color.

Moreover, we also want.to obtain'the stereo information of the detected car. For
this, the corresponding points of the bottom-window edge of the car in a pair of
images captured with the upper omni-camera and the lower omni-camera are chosen.
Then, the image data of these points are used to compute the desired stereo
information. However, some points like the outlier ones might incur errors in the
computed stereo information, so they are eliminated by a linear regression method in
this study. As a result, we can compute the location of the car by using the image data
of the remaining points, and generate accordingly a surround map. An example of the
result of this process is shown in Fig. 2.3.

Finally, we use motion vectors to analyze the acquired omni-images for several
purposes. Such motion vectors are produced from consecutive omni-images directly
when concerned objects are moving in the omni-images. Specifically, the angles and

the lengths of these motion vectors are almost all equal when the vehicle is driven on
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a flat field with roughly identical texture everywhere. Accordingly, if another car is
driven aside to overtake the surveillance vehicle gradually, the angles of the motion
vectors of the car will differ from those of the motion vectors produced from the
entire environment. This characteristic so can be utilized to detect a nearby car in an
acquired omni-image.

Another feature used in this study is motion vector length. If a concerned object
is higher than the ground, the lengths of the motion vectors yielded by it will be
longer than those yielded by the ground. After roughly locating the car using this
feature, we use a third feature, the color of the monitored car, to grow the car region
in the omni-image, and compute accordingly the location of the car by the use of a
mask model of the car. Finally, a.surround map is generated to show the relative

position of the nearby car with respect.to the surveillance vehicle from the top view

for driving assistance.

(a) (b)
Figure 2.3 An example of static nearby car detection. (a) An omni-image of a static
car parked at the nearby roadside. (b) A generated surround map showing the
relative position from the top view. Note that the direction of an object is 180°
reversed in the omni-image when compared with the real situation as illustrated in

(b).
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2.2 System Configuration

In this section, we will describe the video surveillance system elaborately. The
proposed system is mainly divided into three parts. The first part is the hardware
which includes a video surveillance vehicle, a pair of two-camera omni-directional
imaging devices, and two laptop computers. The second part is the software. In this
part, we will introduce the software development environment and the accompanying
SDK and driver programs for the CCD cameras. The third part is the network.
Because we use two laptops to handle the pair of two-camera omni-directional
imaging devices, respectively, a local network is used for communication between the

two laptops.

2.2.1 Hardware configuration

The surveillance vehicle, named Delica, is' made by Mitsubishi Co. It is a 469cm
x169cmx196¢cm vehicle with a working table and a power supply. System operators
may sit inside the surveillance vehicle to operate the laptop computers and monitor
the entire surrounding environment. Moreover, a steel frame is affixed to the car roof,
on which the omni-image devices can be affixed. And four extension USB cords
crossing the video surveillance vehicle were added to receive images which are
captured with the two omni-imaging devices. Detailed descriptions of the imaging
devices will be given in Section 2.3. The entire video surveillance system is shown in
Fig. 2.4.

In order to control the entire video surveillance system, in this study we use two
laptops as control units, each handling an omni-imaging device. Both laptops are

produced by TOSHIBA Computer Inc., and their detailed specifications are listed in
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Table 2.1. To exchange commands and images between the two laptops, we use a
cross-over cable to connect then and set up a local network for between-computer
communication.

1

Affixed on Affixed on

Camera Video surveillance Camera
System A car System B
vy Q
Cross-over
. — — cable
SR V._Af,,,,‘ <
=SS —————
Local Network
Computer A Computer B

Figure2.4 Structure of the proposed surveillance system.

Table 2.1 Specifications of the laptop computers used in this study.

Tecra M11 Satellite A660
CPU Intel Core i7-620M Intel Core i5-480M
2.66/3.33GHz 2.66/2.93GHz
RAM 4G DDR3 1066MHz 2G DDR3 1066MHz
GPU nVidia NVS 2100M ATI1 HD5650
Network Gigabit LAN Fast Ethernet LAN
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2.2.2 Software configuration

We use Borland C++ Builder (BCB) V6 as a developed platform to build our
video surveillance system. The BCB is a program development tool for the operating
system of Windows; therefore, we can create a graphic user interface (GUI)
conveniently and quickly. The programming language we use is C++. It is a widely
used language. One of the laptops, the Tecra M11 computer, uses the operating
system of Windows 7, and the other, Satellite A660, uses Windows XP.

Before developing a video surveillance system, we have to install the drivers of
the ARTCAM-200SO cameras and those of the ARTCAM-200SS cameras in the
laptop computers. The camera company also. provides corresponding software
development kits (SDKs) and.some simple source codes. Accordingly, we can adjust
the parameters of each camera, such as the value of exposure or the global color gain,
through the SDK. The SDK is an object-oriented toolKit; and the camera company not
only provides the BCB version butalso the C, VB:NET, C#.NET or Delphi version to

the programmers.

2.2.3 Network Configuration

Camera Camera
System System
A B

usB
Port usB

Q // Port

Local Network
COMa COMe

Control signals & Omni-image &
Perspective-view image of COMa

Control signals

Figure 2.5 The network architecture of transmission between two laptops.
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A network configuration is needed for communication between two laptop
computers because four omni-images are acquired from the pair of two-camera
omni-directional imaging devices and each imaging device is processed by a
respective laptop. As a result, to communicate between the two laptops, we set up a
local area network to send images and control signals.

As shown in Fig. 2.5, laptop computer COMg is used to display the
perspective-view image and the acquired omni-image, therefore, laptop computer
COMg needs to receive these images from COM, through the local network.
Moreover, the control signals of the selected view direction produced by COM, are

sent to COMg for generating the corresponding perspective-view image.

2.3 Review of Adopted Camera System
and 3D Data Acquisition Process

In this section, we review the adopted camera system and the corresponding 3D
data acquisition process proposed in Yuan el at. [19]. First of all, we introduce the
detail of building the camera system. The entire system includes four lenses of model
LV0612H, two CMOS cameras of model ARTCAM-200SO, and two CMOS cameras
of model ARTCAM-200MI. Table 2.2 lists the specifications of the COMS cameras.

To build an omni-camera, the most important task is to combine a projective
CCD camera and a hyperboloidal-shaped mirror into an omni-camera. In the design
process of the omni-camera, an optics manufacturer was requested to produce
hyperboloidal-shaped mirrors. The parameters of each of the mirrors are described
here. The radius r of the hyperboloidal-shaped mirror is 4cm. The projective camera

has a focal length f of 6 mm and a sensor width Swof 2.4mm. And the axis of the
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camera is aligned with the axis of the hyperboloidal-shaped mirror. Therefore, by the
principle of similar triangles, the distance d between the optical center of the lens and

the mirror center can be computed from the following equation:

d f

—=—. 2.1
r S, @D
Also, as shown in Fig. 2.6(a), the hyperboloidal shape of the mirror in the camera

coordinate system may be described as:

2 2
R_Z_ 1 R=JX+Yl. 22)

a® b’
To get the parameters a and b of the hyperboloidal shape of the mirror, first the

elevation angle a in Figure 2.6 (a) can'be obtained from the relation between the CCS

and the ICS of an omni-camera system derived by Wu and Tsai [20] as follows.

(b® +¢®)sin - 20c

fan o = 7
(b==c%)cos S

(2.3)

Furthermore, by the simple formula.d = 2c where-the value c is the distance from the
center O shown in Fig. 2.6 to the mirror center Oy, the angles # and g can be

computed as follows:

Q:tan‘lL,
i 2C (2.4)
=2 o
P 2

In Eq. (2.3), let the omni-camera have the largest FOV, the incidence angle « be set 0,
and by using Eq. (2.4), the parameter b can be obtained by solving Eq. (2.3). Finally,

the parameter a is derived from the following equation:

c=+a*+b?. (2.5)
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Figure 2.6 (a) Relation between the world coordinates and the image coordinates (b)
Geometry between the mirror and the CMQS sensor in camera.

Each omni-camera was built ‘with-these - parameter- values, and a two-camera

omni-directional device can be constructed with two omni-cameras aligned vertically.

Table 2.2 Specifications of used COMS cameras.

ARTCAM-200SO

ARTCAM-200MI

Resolution 2.0 M pixels(1600*1200) 2.0 M pixels(1600*1200)
Dimension 33mm x 33mm x 50mm 33mm x 33mm x 50mm
CMOS sensor size 1/2” (6.4x4.8mm) 1/2” (6.4x4.8mm)
Mount C-mount C-mount
Frame per second 8 fps 5 fps
Direct show camera Yes No

After describing the way of building the cameras, we now describe the adopted

method to compute stereo information from a two-camera omni-directional imaging

device. In the omni-imaging device, relevant 3D data can be computed by two

elevation angles and an azimuth angle of a scene point P. As shown in Figure 2.7(a),

the point P projects on each hyperboloidal-shaped mirror and forms a pair of
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corresponding points in the upper image and the lower image captured with a
two-camera omni-imaging device. The elevation angles of point P on the
hyperboloidal-shaped mirrors are defined as a; and ay, respectively. Also, the center
of the upper hyperboloidal-shaped mirror is assumed to be the origin of the world
coordinates (0, 0, 0). It is desired now to compute the stereo depth data of point P in

terms of the two elevation angles a; and a,.

Upper hyperbolic mirror 1
center ¢ (0, 0,0)

A \rx] |_

b

— A d 7 haseline
g1

& X i
v c2

Lower hyperbolic mirror
center ¢ g Plx,y.z)

B
J2 Pix, v, 2)

\

(a) (b)
Figure2.7 Computation of depth using the ‘two-camera omni-directional imaging
device. (a) The ray tracing of a scene point P in the imaging device with a
hyperboloidal-shaped mirror. (b) A triangle in detail (part of (2)).

To obtain stereo depth of a scene point P(x, v, z), finding two elevation angles a;
and a, by looking up a pano-mapping table is required, and the construction of
pano-mapping table will be described in Chapter 3. As shown in Figure 2.7(b), the
distance d between the point P and the upper mirror center c; is computed by the

triangulation principle shown in Figure 2.7(a) using the equation below:

d b

. =— , (2.6)
sin(90" +¢,)  sin(e, —,)

where the parameter b is the baseline of the stereo imaging device.. The equation of
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(2.6) may be reduced to be the following equation by trigonometry:

b
sina, xCosa, —CoS e, xsina, -
1 b

= X .
Cosa, tang, —tanc,

d =cosa, x

(2.7)
d

As a result, the horizontal distance dw and the vertical distance Z may be computed as

follows:
z:dsinalztan—ale,
tan o, —tan o,
1 (2.8)
dw=dcosq, = —  xh.

tang, —tan g,

Assume that point P at world coordinates (x, y, z) is projected on a point | at
image coordinates (u, v) in the image-coordinate system (ICS). Then, we can use point
| to calculate the azimuth angle . A triangulation which is illustrated in Figure 2.8
includes an azimuth angle 4 .between the X-axisand-point I. As a result, the azimuth

angle @can be computed by the following equation:

//l _ - _1 V
=S (2.9)

u?+v? u?+v

6 =cos™*

According to the characteristic that the axis of the camera is aligned vertically
with the axis of the hyperboloidal-shaped mirror as well as the rotation-invariance
property of omni-imaging, the azimuth angle of a point in the ICS is the same as that
of the corresponding point in the WCS. We can calculate the parameters x and y by

the distance dw and the azimuth angle &in the WCS as follows:

1
X=0dwxcosfd = —xbx cos b,
tang, —tan«,

y:dwxsinH:;beSinﬁ.
tang, —tan g,

(2.10)

As a result, by the use of the pano-mapping table, each pixel in an omni-image
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can be transformed to an elevation angle and an azimuth angle. Once the azimuth
angle @ and a pair of elevation angles «; and a; are obtained, we are able to compute
the location of point P in the WCS. Therefore, a pair of matching points (one is in an
omni-image taken by the upper omni-camera, and the other is in an omni-image taken
by the lower omni-camera) is known, the stereo information of the unique point in the

WCS may be obtained.

Upper hyperboloidal-
« shaped mirror center
/ C1 (0, 01 0)

6

P(xy.2)
Y
%’ X
z
v
2

Figure2.8 System configuration of upper omni-camera with a hyperboloidal-shaped
mirror.

e
X

2.4 System Processes

To get stereo information from a pair of two-camera omni-imaging devices, the
omni-cameras need to be calibrated. For this purpose, the space-mapping technique is
applied, and the technique is based on the use of a pano-mapping table. The process
of constructing the table is shown by Fig. 2.9. We will introduce the process in
Chapter 3 elaborately. Moreover, the method to unwarp an omni-image into a

perspective-view image using the pano-mapping table is also described in Chapter 3.

22



The above-mentioned process is an advance preparation before developing the
system. As shown in Figure 2.10, to develop the car-driving assistance application, we
need to read the related tables at the beginning. Computer COM, used in this study is
responsible for analyzing omni-images of the surrounding environment by the optical
flow method and estimating the moving direction of the video surveillance vehicle by
the produced motion vectors. Then, the analyzed result and acquired images are sent
to another computer COMg for generating the corresponding perspective-view image.
The process will be introduced elaborately in Chapter 4. Computer COMg generates
the corresponding perspective-view images with respect to these signals. The method
of quickly generating a perspective-view image is described in Chapter 3. Moreover,
the images of the driving history in.Computer COM, are sent to Computer COMg for
off-line inspection. The images of the driving history can be sequentially displayed; in
the meantime, the user may select the view direction to inspect the corresponding

perspective-view image sequence.

( Start of Learning >

Landmark
Learning

Calculating the
Radial Stretching
Functions

: |
Corresponding
pairs of Radiuses Pano-mapping
and Elevation Table
Angles

Store of

Learning Data

( End of Learning >

Figure 2.9 Flowchart of proposed learning process.
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Figure 2.10 Flowchart of the moving.direction analysis.

Both the application of nearby static car detection with a static video surveillance
vehicle and the application of nearby static or moving car detection with a moving
video surveillance vehicle require reading table files as a preparation task as shown in
Fig. 2.11. In the application of nearby static car detection with a static video
surveillance vehicle, two omni-images are captured with a two-camera
omni-directional imaging device and the detection process is conducted. Finally, the
stereo information of the car is computed. The detailed process will be introduced in
Chapter 5. Additionally, nearby static or moving car detection with a moving video
surveillance vehicle requires two consecutively acquired images to conduct the
detection process. We need to create an image buffer to keep the previous image and
acquire a current image with the omni-camera for analyzing the omni-images of the
surrounding environment. The detection and position estimation of the static or

moving car will be described in Chapter 6. Finally, the two applications will both
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display the surround map. Both tasks are required complex processes, so we will

introduce above-mentioned processes in the remaining chapters elaborately

Gtart of Video Surveillanc§

A4 Y
Pano-mapping Sequential
Tables omni-images
| |

Detection of a moving
surrounding car

A
Detection of a
static surrounding
car

A A,
Estimating 3D Estimating 3D Data

N
Data of the car of the car W

Display Surround
Map

Figure 2.11 Flowchart of vehicle detections
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Chapter 3
Generation of Perspective-view
Images Using Pano-mapping Tables

In this chapter, we describe the details of the scheme we use to generate
perspective-view images from omni-images acquired with the omni-image devices
attached to the roof of the video surveillance vehicle used in this study. Before
describing the detail in Sections 3.2 through 3.4, we review first in Section 3.1 a
space-mapping technique [8] we adopt for use in coordinate mapping from the

omni-image to the perspective-view.image.

3.1 Review of Adopted Pano-mapping
Method for Omni-image
Unwarping

The scene appearing in an omni-image is distorted due to the light reflection on
the hyperboloidal-shaped mirror. In order to facilitate observation of the distorted
image, we want to unwarp the omni-image into a perspective-view image. The
conventional method for unwarping the omni-image requires the parameters of the
hyperboloidal-shaped mirror and the camera. However, sometimes we cannot obtain
such parameter information completely. The space-mapping technique proposed by
Jeng and Tsai [8] can solve this problem and is adopted in this study. The technique is

based on the use of a so-called pano-mapping table which records the relationship
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between the pixel in the image and the elevation and azimuth angles of the
corresponding world-space point with respect to the focal center of the mirror. The
creation of the pano-mapping table includes three major steps: (1) landmark learning;
(2) estimation of coefficients of radial stretching function; and (3) filling of the
pano-mapping table entries. We will introduce these steps in Section 3.2.

With the use of the pano-mapping table, an omni-image can be transformed into
perspective-view images. The transformation process will be introduced in Section
3.3. Besides, the process of generating perspective-view images is generally
complicated. To shorten the computation time, we divide the omni-image into
portions seen from six outward viewing directions, and create a table to record the
relationship between each of the six ‘omni-image portions and its perspective-view

image.

3.2 Construction of Pano-mapping
Table

3.2.1 Landmark Learning

The first step of creating the pano-mapping table is to establish several pairs of
world-space point and the corresponding image point in the taken omni-image. The
coordinates of the world-space points in these pairs, called landmark points, are
measured manually with respect to a selected origin in the world space. To facilitate
selecting the landmark point pairs, a user interface was provided, as shown in Fig. 3.1.
We define the focal center O. in the image coordinates (ug, Vo) as the origin in the
image coordinates system and On, as the focal point of the hyperboloidal-shaped

mirror at the world coordinates (Xo, Yo, Zo). Assume that n sets of corresponding
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points are selected, and each set include a landmark point p; at image coordinate (uj, ;)
with respect to O, as well as the corresponding world-space point P; at the coordinates
(Xi, Yi, Z;) with respect to the origin On,, where i = 0, 1, ..., n — 1. In this step, the
construction of a mapping table requires learning at least six landmark points. And the

more landmark points are selected, the more accurate the table is.

B FSetLearningPoints

omni_1 k= [0—

‘World Coordinate

%0 y[319 2308

~Image Coordinate

(uv)=( -2 , 140 )  Add @l

~ForTest

i

Figure 3.1 An interface to for user to select the landmark points.

3.2.2 Estimation of Coefficients of Radial Stretching

Function

Due to the nonlinear shape of the hyperboloidal-shaped mirror, the
radial-directional mapping must be represented as a non-linear function. As shown in
Figure 3.2, each elevation angle corresponds to a radial distance. More specifically,
each elevation angle p of a scene spot P at world coordinates (X, Y, Z) corresponds to
the radius r of the corresponding point p in the omni-image. Therefore, we want to
find out the relationship between the radius r and the elevation angle p by the use of a

non-linear function f,, called radial stretching function. In this study, f; is
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approximated by the following 5th-degree polynomial equation:
r=f(p)=a,+axp' +a,xp’+a,xp’+a,xp'+a,xp°. (3.1)

To compute the desired coefficients ap through as, the following algorithm is

performed.
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Omni-image

O
Figure 3.2 Mapping between a radius distance r-and elevation angle p.

Algorithm 3.1 Computing the coefficients of the radial stretching function for the

mirror.

Input: a set of n landmark point pairs (px, Px) selected in advance for the radial
stretching functions f;, where py is a point in an omni-image | and Py is the
corresponding point in the world space.

Output: the six coefficients a, through as of f;.

Steps.

Step 1. For each selected landmark point pairs, (P, px), including world-space point

Pk at coordinates (X, Yk, Zx) in the WCS and image point px at coordinates

(uk, Vi) in 1, compute the radius ry of px in | and the elevation angle o« of Py
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in the WCS by the following equations:

Lo=yu’+v’; po= tant 2 (3.2)

X2 +Y>
Step 2. Substitute ry and o into the equation for estimating f, described by Eq. (3.1)

to obtain n simultaneous equations as follows:

fh= fri(po):ao+a1><pol+a2><p02+ag><p03+a4><p04+a5xp05
h= fri(pl):ao+a1><p11+a2Xp12+a3><p13+a4><p14+a,5><p15 (3.3)

ro=fi(pa)=a,+ax pn—ll +a, X pn—lz +a; X pn—l3 +a, X /0n714 +a5 X pn—ls'

Step 3. Solve the equations in (3.3) to obtain the desired coefficients (ap a;, a,, as, as,

as) for f, by a numerical analysis method.

In the above process of .computing the-radial stretching function, it is assumed
that the mirror is perfect with rotational symmetry, in-the entire angle range of 0°
through 360°. However, this-is not the case in real applications; the surface of the
hyperboloidal-shaped mirror cannot be.so_perfect. To increase the accuracy of the
estimated f, and so the precision of the constructed pano-mapping table, we divided
the 360° range of azimuth angles of the mirror equally into six parts, each with 60°,
and then applied the above process to obtain six radial stretching functions f;; through
f¢ for the six parts with each f,; described by the coefficients ag; through as; with i = 1,

2,...,06.

3.2.3 Filling of Pano-mapping Table Entries

The procedure of constructing the pano-mapping table with the radial stretching
function for each of the six azimuth angle ranges is described here. The so-called

pano-mapping table is a 2-dimensional table with its horizontal and vertical axes
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specifying the azimuth angle @ and the elevation angle p, respectively. An illustration
of the mapping between the azimuth and elevation angle pair of the omni-image and
the horizontal and vertical axes of the pano-mapping table, respectively, is shown in
Fig. 3.3, and an example of the pano-mapping table is shown in Table 3.1.

Each entry Ej; with indices (i, j) in the pano-mapping table corresponds to an
azimuth-elevation angle pair (&, p;). The azimuth-elevation pair represents an infinite
set of points on a light ray with the azimuth angle & and the elevation angle p with
respect to the focal center Oy, in the WCS. We divide the range 2x of the azimuth
angles into M intervals and the range of the elevation angles between two pre-selected
limits, ps and p., into N intervals. Due to the property of rotational invariance of
omni-imaging, the azimuth angle ¢ of the scene point P in the WCS with respect to
the X-axis is identical to the azimuth-angle & of the corresponding point p in the image

with respect to the u-axis. Thai is, we have 6 = ¢.

omni-image

pano-mapping table

(a) (b)
Figure 3.3 Illustration of mapping between the azimuth-elevation angle pair of the
omni-image and the horizontal and vertical axes of the pano-mapping table,

respectively.

With the above estimated six sets of coefficients for the six radial stretching
functions, the corresponding pano-mapping table T,m can be filled with the

corresponding image coordinates by the following algorithm.
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Table 3.1 An example of the pano-mapping table.

o & s [ O
Yol (U11, V11) | (U21, V21) | (Us1, Va1) | (Ua1, Vaz) (Um1, V1)
P2 | (U12, V12) | (U2, V22) | (Us2, Va2) | (Ugz, Vao) (Um2, Vim2)
P3| (U3, Vi3) | (Uzs, V23) | (U3, Va3) | (Uas, Va3) (Um3, Vm3)
P4 | (U4, Via) | (Uzs, V2g) | (U3g, V3a) | (Ugg, Vaa) (Uma, Viva)
on | (Ui, Van) | (Uan, Van) | (Uan, Van) | (Uan, Van) (UmN, VMN)

Algorithm 3.2 Construction of the pano-mapping table.

Input: six coefficient sets of six radial stretching functions f;; through f.s for the six

parts of the azimuth angle range mentioned previously.

Output: a pano-mapping table Tpm of the dimension MxN.

Steps.

Step 1.

Step 2.

Step 3.

Divide the range 2x of the-azimuth angles into M intervals, and compute the

ith azimuth angle & by
6= Q2r/Mxi - fori=0,1, ...,M-1. (3.4)

Divide a pre-selected range [ps, pe] 0f the elevation angle into N intervals,

and compute the j-th elevation angle p; by
O =[(pe—p)IN]xj+ ps  forj=0,1,..,N-1. (3.5

Fill the entry of (&, p) with the corresponding image coordinates (uij, Vij)

computed as follows:
U =r;xcosd, v,;=r;xsing, (3.6)
where the radius rj is computed by the radial stretching function as follows:

i = fi(p) = aoi+anix o +agx o +agix o +auix o +asix oy, (3.7)

with the index i in (3.7) computed by:
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i=|6/(z13)] (3.8)

and ap through as;i being the coefficients for function f; obtained by
Algorithm 3.1 for the i-th sub-range of azimuth angles mentioned

previously.

3.2.4 Creation of r-p Mapping Table

Moreover, in this study we also construct an additional table for mapping the
value of p to the value of r, which is called the r-p mapping table. It is also generated
from the functions f,; through fs obtained previously. The table, as shown in Table
3.2, is a simpler form of the pano-mapping table, which records only the relations
between the elevation angle p and the corresponding radius r in the six parts of the
azimuth angle range. This table may be used to accelerate the computation of point
coordinate transformation for some applications, which will be described in the
subsequent chapters. The detail of the generationprocess is described as an algorithm

in the following.

Table 3.2 An example of the r-p mapping table.

Pi | (o) | (ran, 0) | (s, p3) | (Faa, pu) oo (rnw oN)
Po | (ri2, o) | (raa, ) | (rs2, p3) | (Yaz, pu) (rnz, N)
Pe | (rie, p1) | (ras, p2) | (rae, p3) | (ras, o) (rne, o)

Algorithm 3.3 Construction of an r-p mapping table.
Input: six coefficient sets of six radial stretching functions f;; through f.¢ for the six
parts of the azimuth angle range mentioned previously.

Output: an r-p mapping table T,, of dimension 6xN.
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Steps.
Step 1. Divide the pre-selected range [pos, pe] Of elevation angles into N intervals

and compute the jth elevation angle p; by

o =[(s— p)INIxj + ps forj=0,1,..,N-1. (3.9)

Step 2.  Divide the azimuth angle range from 0° through 360° into six equal parts, Py,
Py, ..., Ps.
Step 3.  Fill the entry of (P;, pg) of Table T,, with the corresponding pair (rij, o)

computed as follows:
rij = fri(o) = aOi+a1iXﬂl*'aZi><,012+asi><pj3+a4i><pj4+a5i><p5, (3.10)

where i = 1, 2, ..., 6 and ag; through as;j are the coefficients for function f

computed by Algorithm 3.1 described previously.

To utilize the table T,,,‘once the radius distance r of a point p in the omni-image
is obtained, we can determine which part P; point p belongs to according to the
azimuth angle & of p, and search the table for all values of r and find out the one, say
rij, whose corresponding pj in the table is closest to r in value. Then, g is the mapping
result we want. Moreover, the table may also be used for mapping the value of p to

that of r in a reverse way, which will be described in later chapters.

3.3 Image Unwarping and Generation
of Perspective-view Images

To generate a perspective-view image, a view plane which is perpendicular to
the ground and in front of the camera is imagined as shown in Fig. 3.4. Every pixel on

the view plane can be assigned a corresponding point in the omni-image by the use of
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the pano-mapping table. By finding this relationship, we are able to unwarp the
omni-image into perspective-view images by getting the color value of the
omni-image point to assign the value on the view plane. The generation of the
perspective-view image from the omni-image with the aid of the pano-mapping table

is described as follows.

Y
Z A On
/. X
> View plane
A,
u ,«"'lxXp 0. A7)
Xi(g, v)
Omni-image

(0}
Figure 3.4 An example of generating the perspective-view image.

Algorithm 3.4 Construction of a perspective-view image.

Input: an omni-image I, the pano-mapping table Tpyn with M x N entries, and a planar
rectangular region A, of size W x H at a distance D with respect to the mirror
center Op,.

Output: a perspective-view image Q of any size Mg x Nq.

Steps:

Step 1. Calculate the angle ¢ of each pixel qi at coordinates (k, 1) in Q according to

the following equation which is obtained from trigonometry shown in Fig.

3.5(a):
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Step 2.

Step 3.

W2 = D?+D?— 2xDxD %05, (3.11)

or equivalently,

W2

=cost(1-
¢ ( 2x D?

). (3.12)
Compute the angle g of g shown in Fig. 3.5(a) by trigonometry again:

ﬂ=(2”—2_¢). (3.13)

Compute the index i of the entry E;; in table Tpy to find the corresponding

image coordinates (ujj, vij) in | for gy in the following way.

(1) Let P;; denote the intersection point of the light ray Ry projected onto g
and the planar projection region. Ay (note that each entry Ej has a
corresponding Pij).

(2) Compute the distance d between point Pij and the border point P, shown
in Figure 3.6(b) by linear proportionality as

ey (3.14)
M

Q

because the projection region A, has a width of W, the image Q has a
width of Mq pixels, and pixel qg has an index of k in the horizontal
direction.

(3) Compute the distance between the focal center On, and the projected

point P;j; by

L=/D?+d? —2xdxDxcos 3 . (3.15)

(4) With the distance h from point Pj to the line segment O,_,P. connecting

On and Py as shown in Fig. 3.5(b) being
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h=d xsin f, (3.16)
and the azimuth angle 6, satisfying

sin 6, =%= dxsin 5 (3.17)

\jD2+d2—2xdexCOS,B ,

compute the azimuth 6, of point P;; with respectto O, P. as

m-r

6, :sin‘lﬂzsin‘l[ dxsin . (3.18)
L \/D2+d2—2xdexCOSﬁ
(5) Compute the index i of entry E;; by linear proportionality as
6
iI=—xM; (3.19)
2r
() (b)

Figure 3.5 A top view configuration of generating a perspective-view image.

Step 4. With a lateral view illustrating the imaging configuration shown in Fig. 3.6,
compute the index j of the entry E;; in table Ty in the following way:
(1) With the height of A, being H and the height of image Q being H divided

into Ng intervals, compute the height of Pj; by linear proportionality as:

H
Hy=lxy (3.20)

Q
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(2) By trigonometry, derive the elevation angle pq as:

=tan Hq 3.21
,Dq—an T . ( )

(3) Compute the index j of the E;j by proportionality again as:

j: (pq _ps)x N

3.22
(P, — ps) (3:22)

Step 5. With the indices (i, j) of the entry Ej as computed in the last two steps,
obtain image coordinates (uj;, vij) by looking up Table Tym.
Step 6. Assign the color value of the image pixel at coordinate (uj;, v;;) in image | to
the pixel gy of Q at coordinates (k, I).
Step 7. After all pixels of image Q are processed, take the final image Q as the
desired perspective-view image.
panoramic

On image Q

H

Figure 3.6 A lateral-view configuration of generating a perspective-view image.
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3.4 Construction of Perspective
Mapping Table for Computation
Speedup

In the last section, we reviewed the method proposed by Jeng and Tsai [8] to
transform an omni-image into a flat perspective-view image. However, the
transformation process takes much time to compute the involved formulas. To shorten
the computation time, a new table of six outward view directions is created.
Specifically, the 2z range of azimuth angles are divided into portions seen from the
six outward viewing directions and the interval between every two directions includes
60 degrees. See Figure 3.7 for an illustration. We denote the index of the six intervals
by k which is related to the ‘viewing direction of the perspective-view image. More
specifically, we add a shift angle @ to change the transformation range of the

omni-image, and the shift angle is.computed as follows:

% =k><%”. (3.23)

Therefore, Eq. (3.17) can be rewritten as follows:
., h )
6, =sin E+€' (3.24)

We transform the omni-image into the perspective view image Qy in the six different
viewing directions with index k, where k = 0, 1, ..., 5. Once all pixels in Q are
processed, we record the entries of all pixels in the table and denote the entries as Ty.
As a result, the new table Ty, called perspective mapping table, is created, which
contains six sets Ty through Ts of perspective mapping entries to map pixels from the
omni-image to the perspective-view image. When we want to generate a

perspective-view image, it can be generated immediately by looking up the table Tp,.
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Figure 3.7 A top view of segmenting an omni-image.
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Chapter 4

Car-driving Assistance by Analyzing
Omni-images of Surrounding
Environment

4.1 ldea of Proposed Method

While driving the video surveillance vehicle, we want to monitor the surrounding
environment for driving assistance. Owing to the wide FOV of the omni-camera and
the affixed positions of the pair of two-camera omni-directional imaging devices on
the vehicle roof, the monitored range of the camera system covers the entire car
surround. Besides, the omni-images acquired with the-omni-camera system may be
used for producing panoramic images-and estimating the relevant stereo information
of surrounding objects. In this study, we develop two applications using the camera
system for environment monitoring.

One application is to use the proposed system to provide the driver a
perspective-view image corresponding to the moving direction of the video
surveillance vehicle, which is useful for inspection of the possible bind spots around
the surveillance vehicle in order to avoid car accidents. Another application is using
the proposed system as a driving recorder which may be used to record the
surrounding environment images in the driving history, and to allow the user to see
the perspective-view image sequence in any selected view direction which is

constructed in an off-line fashion from the acquired sequential omni-images.
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4.2 Analysis of Car Direction by
Motion Vectors in Omni-images

4.2.1 ldea of car direction analysis by motion vectors

When driving the video surveillance vehicle, it is desired to analyze the motions
in the consecutively acquired omni-images to determine the vehicle moving direction,
and generate and display the corresponding perspective-view image assist the driver
to observe blind spots around the vehicle. We apply the optical flow analysis method
to implement this idea in this study. We produce motion vectors on the consecutively
acquired images and analyze these motion vectors to estimate the vehicle moving
direction. We divide the vehicle direction estimation work into six steps: (1) select the
detection region (2) compute the motion vectors; (3) transform these vectors from the
ICS to the WCS; (4) eliminate the outliers of these vectors; (5) estimate the moving
direction; and (6) display of the ‘corresponding perspective-view image. These steps
will be introduced in the following section.

In this study, we use two laptops as the control units to handle the above tasks.
More specifically, one of the laptops is responsible for analyzing the moving direction
of the video surveillance vehicle, and the analyzed result is sent to another computer
to generate the corresponding perspective-view image. To generate perspective-view
images quickly, we use the perspective mapping table introduced in Chapter 3 to

speed up the computation.
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4.2.2 Car Direction Detection and Display of

Corresponding Perspective-view Images

In this section, we describe the proposed technique to estimate the moving
direction of the video surveillance vehicle. The involved six major steps mentioned

previously are described in order subsequently.

A. Selection of the detection region for optical flow analysis
To analyze the omni-image acquired with the omni-camera system, it is required
to choose a detection region in the image and apply the optical flow analysis method
in the region to estimate the motion vectors:  The selection of the detection region is
divided into three cases, as illustrated in Fig. 4.1:
(1) when the video surveillance vehicle is turning to the right, we select the right-front
region of the omni-image as the detect region;
(2) on the contrary, when turning to the left, the left-front region is selected; and
(3) if the video surveillance vehicle is'moving forwarding, the front region will be

selected.

Detection region Detection region

Detection region

Omni-image
Omni-image

(a) (b) (©)
Figure 4.1 Illustration of selecting the detection region where the red points
represent the spots on which optical flows need be found. (a) Detection region used
in the case of turning to the right. (b) Detection region used in the case of moving
forward. (c) Detection region used in the case of turning to the left.
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The optical flow pattern is different in each different motion case, and each
pattern corresponds to a type of motion of the video surveillance vehicle (turning to
the left, turning to the right, or moving forward), as illustrated in Fig. 4.2. Therefore,
we cannot analyze the motion vectors in an unchanged detection region all the time to
estimate the vehicle moving direction; otherwise, the optical flow pattern in the case
of the left turn and the right turn might result in wrong analysis results about the
vehicle moving direction. To solve the problem, we let the detection region be
changed dynamically in accordance with the previous moving direction detection

result, as illustrated in Fig. 4.2.

Detection region Detection region Detection region

(B a <)

(a) (b) (©)
Figure 4.2 The optical flow pattern and the corresponding detection region. (a) The
case of turning to the right. (b) The case of moving forward. (c) The case of turning
to the left.

B. Estimation of motion vectors by optical flows

The optical flow analysis method may be used to estimate the motion vectors of
objects, surfaces, and edges caused by the relative motions between two consecutive
images. Assume that the light is stable and the displacements of concerned objects in
the image are small. Under such conditions, the motion vectors between two
consecutive image frames which are taken at times t and t + dt can be estimated by the
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optical flow analysis method in the following way. If the image intensity is
continuous and can be differentiated, the image intensity at time instant t is

constrained by

I(X,y,t) = I(x + dx, y + dy, t + dt), (4.1)

where the function I is the image intensity, x and y specify the location of the point in
the image, and t is the sampling time. The image constraint at I(x + dx, y + dy, t + dt)

in Equation (4.1) can be expressed as a truncated Taylor series in the following way:

ol ol ol
I(x+dx, y+dy, t+dt)=1(x, y, t)+—dx+—dy+—dt. 4.2
( y+dy )=1(x,y, 1) =%y Y+ (4.2)
From Egs. (4.1) and (4.2), it follows that:
a_I%+a_lﬂ+a_I$:0’
ox dt —oy dt . ot dt
or equivalently, that
ﬂVX +ﬂvy Ry, (4.3)
OX oy ot

where Vy = dx/dt and V, = dy/dt represent the velocity or optical flow of I(x, y, t) and

a ﬂ and % are the derivatives of point p at coordinates (x, y). Therefore, Eq.

ox’ oy

(4.3) may be rewritten as:

Ix(P)Vi + y(P)Vy = —(p) (4.4)

where Ix(p), ly(p), and li(p) are equal to ol/ox, ol/dy, and Ol/ct, respectively, all of
point p at coordinates (X, y).

However, Eq. (4.4) derived from a single point p has two unknowns V, and Vy,
and cannot be solved uniquely using the data of the single point p. This is a traditional

optical flow problem called “the aperture problem.” In order to solve this problem, the
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Lucas-Kanade method [14] is adopted. The Lucas-Kanade method divides an image
into small regions and assumes that the displacements of the image content within a
small neighborhood of the concerned point p are small and approximately constant.
Accordingly, we may set a window around point p with n pixels, p1, pz, ..., Pn Inside
the window. Then, the local image motion vector (V,, V) at p with image coordinates

(x, y) must satisfy the following equations according to Eq. (4.4):

Ix(pl)vx + Iy(pl)vy :_It(pl)!

Ix(pZ)Vx+|y(p2)Vy=_It(p2)l (4.5)
Ix(pn)vx+|y(pn)vy:_It(pn)'
Egs. (4.5) can be expressed in a matrix form:
Av =D,
where
Ix(pl) Iy(pl) —|t(p1)
A= IX(pz;) Iy(pz) : V=|:xx}’ and b= _ItEpZ) . (4.6)
L(p)  1,(p,) iy

A solution derived by the least square principle to solve the above matrix equation is:
ATAv=Ab,
or equivalently,
v=(A"A)AD. 4.7

Accordingly, we can estimate the motion vectors of consecutively acquired images
using Eq. (4.7) above. An example of the results of applying the optical flow analysis

method is shown in Fig. 4.3.
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C. Transformation of motion vectors

To estimate the moving direction of the video surveillance vehicle, we have to
analyze these motion vectors produced by the optical flow analysis method. However,
the images captured with the omni-cameras are distorted due to the light reflection on
the hyperboloidal-shaped mirrors in the omni-camera system. As a result, before
computing the direction angle of these motion vectors, the transformation of the
motion vectors from the omni-image plane to the world coordinate system as shown
in Fig. 4.4(b) is necessary. The configuration of such a transformation of the motion
vector of a real-world point on the ground is shown in Fig. 4.4(a). We divide the

transformation process into three steps as described in the following algorithm.

(©
Figure 4.3 An example of results of implementing the optical flow analysis method.
(a) An image frame taken at time t. (b) An image frame taken at time t + dt. (c) The
result of the motion vectors produced by the optical flow analysis method with (a)
and (b) as inputs.
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Algorithm 4.1 Transformation of a motion vector from the ICS to the WCS.

Input: the beginning point Ps at image coordinates (u, v) in an image frame I; and the
ending point P, at image coordinates (u’, v') in the next image frame I, both
of the motion vector V; of a real-world point P on the ground, and the r-p
mapping table T;,.

Output: the directional angle of the motion vector with respect to the X-axis in the
WCS.

Steps.

Step 1. Compute the elevation angle p; and the azimuth angle 6 of the beginning

point Ps and the ending point P, in the ICS by the following way.

1.1 Compute the azimuth.angle & of point P at image coordinates (u, v) by

r=Jul+vi— 6 _sin 'Y ~cost Y (4.8)

r r

1.2 Look up the r-p mapping table T, to obtain the elevation angle p1 with
the radius distancer.
1.3 Computeé, and p; of the ending point Pe in a similar way.
Step 2. Transform the image coordinate (u, v) of point Ps in image I; to world
coordinates (X, Y, Z) of point P by the following way.
2.1 Compute the horizontal distance dy between P and the focal center of

the mirror O, by
dw = Hmxcot(1), (4.9

where the distance between the mirror center and ground is known to
be Hp.
2.2 Compute as follows the world coordinates (X, Y, Z) of point P

according to the property of rotational invariance of omni-imaging
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which says that the azimuth angle ¢ of point P in the WCS with respect

to the X-axis is identical to the azimuth angle & of Ps in the ICS :

X =d,xcosé;
Y =d, xsing; (4.10)
Z=H,.

2.3 Transform the image coordinates (u’, v') of the ending point P, in image
lt+1 to the world coordinates (X Y Z) of point P in a similar way.

Step 3. Compute the directional angle A; of the motion vector V; with respect to the

X-axis by
) Y' -Y
A :sml[ — -
Y6 (X -X) (4.11)
=c0s™ Gk
JO=Y2 (e —X)? )

By Algorithm 4.1, we~can transform all the motion vectors produced by the
optical flow analysis method into the WCS and get all directional angles of the motion

vectors for analyzing the moving direction of the video surveillance vehicle.

Upper mirror base Center
C(0,0,0) dy

\ p L]

le(u?v) e I —

/
| / 15(u, v) v :V
/ Omni-image A X

o Ground P(X, Y, Hp)

() (b)
Figure 4.4 Transformation of a motion vector from the ICS to the WCS. (a) An
illustration of the camera system and the motion vector. (b) The ray tracing of a scene
point P on the ground projected on the hyperboloidal-shaped mirror.
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D. Elimination of Outlier

For analysis of the vehicle moving direction, only motion vectors with lengths be
larger than a threshold value TH need be considered. The reason is that the shake of
the omni-cameras due to rough road conditions or the shake of the car engine might
create short-length motion vector which should be considered as noise and eliminated
to increase the accuracy of the vehicle moving direction estimation result.

To eliminate the outlier of the motion vectors, each directional angle of the
remaining motion vectors is regarded as a feature and the standard deviation value is
computed accordingly, as shown in Fig. 4.5. More specifically, let the angles of these
motion vectors be denoted as A;, and let the total number of motion vectors be
denoted as n. Then, the mean value A ' of these motion vectors may be computed as
follows:

n

A. (4.11)

S|

i=1
Once the mean value is computed, we can calculate the standard deviation value S, of

the motion vector data as follows:

1 —0
S, =\/n—_1§(/\ - A, (4.12)

If the value A; of a certain motion vector lies outside the range [-Sp, + A, A +
Sy] set by the standard deviation S, we will regard it as an outlier and discard it. After
all the outliers are eliminated, we compute the mean value of the remaining data as

the desired directional angle of the moving direction of the video surveillance vehicle.
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Figure 4.5 A distribution chart of the direction angle of motion vectors.

E. Estimation of Moving Direction

The moving directions of the video surveillance vehicle may be categorized into
three classes — turning to the right, turning.to the left, and moving forward. And the
ranges of the directional angles of the three classes are determined by our
experimental experiences. They are listed in Table 4.1, which may be used to classify
the results of the directional angles derived by Eq. (4.11) into the three vehicle

moving directions.

Table 4.1 The range of the angles of the three vehicle moving directions.

State Degree
Moving forward 261° ~279°
Turn to the left 180° ~260°
Turn to the right 280° ~360°

Besides, we use the concept of finite state machine (FSM) to determine the
moving direction of the video surveillance vehicle. The finite state machine designed
for use in this study and illustrated in Fig. 4.6 is composed of six states, which can be
categorized into three classes: (1) turning to the right; (2) turn to the left; and (3)
moving forward. Specifically, the video surveillance vehicle, in one of the states, goes

through a transition to another state depending on the input which is the analysis
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result of the moving direction. If the analysis result for the next cycle is identical to

that of the current cycle in the FSM, the input to the FSM is taken to be “1”; else, to

be “0.” Also, we propose in this study a concept of giving a second chance for the

state-changing check, i.e., if the moving direction of the next cycle is analyzed to be

different from that of the current cycle, then one more check is allowed, as can be

seen in the FSM illustrated in Fig. 4.6. With this second-chance check scheme

included in the FSM, the probability of erroneous estimations of the vehicle moving

direction may be decreased. Note that we take the current state in the FSM as the

moving direction of the video surveillance vehicle in the current cycle.

the left

Turning to

Turning to
the left

Turning to
the right

Moving
Direction?

Moving
forward

Turning to
the right

Moving
forward

Q 1 Start

Figure 4.6 A graph of finite state machine proposed to determine the moving

direction.

F. Display of Corresponding Perspective-view Image

To provide the driver with the views of the blind spots around the vehicle which

are often neglected,

the system automatically generates and displays the
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corresponding perspective-view image after analyzing the moving direction of the
video surveillance vehicle. To implement these tasks, a local network is set up as
mentioned previously, which integrates two laptops for between-computer
communication and the structure is illustrated in Fig. 4.7. Computer COM, analyzes
the omni-images acquired with the right-front camera on the vehicle roof to estimate
the moving direction and sends the results to computer COMg. Computer COM;g
receives commands from the driver and starts the process of constructing
perspective-view images. To speed up generation of perspective-view images, the
program is designed to look up the perspective-mapping tables Ty, introduced in
Chapter 3 for shortening the computation time.

Also, some rules have been «designed’ in this study for constructing and
displaying the corresponding perspective-view image; as described in the following:
(1) when the analysis result of the moving direction is “turning to the right,”

construct and display the perspective-view image of the right-rear view of the

video surveillance vehicle;-or

(2) if the analysis result is “turning to the left,” then construct and display the
perspective-view image of the left-rear view of the vehicle;

(3) otherwise, decide the vehicle to be “moving forward,” and construct and display

the perspective-view image of the rear area of the vehicle.

4.2.3 Algorithm

We propose a method of analyzing the omni-images of the surrounding
environment for the purpose of providing the driver corresponding perspective-view
images to inspect the views of the blind spots. The detail is described as an algorithm

below.
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Figure 4.7 Structure of the communication-between two laptops used in this study.

Algorithm 4.2: car direction <detection” and . display of corresponding

perspective-view images.

Input: the consecutive omni-images acquired with the upper omni-cameras.

Output: the moving direction of the video surveillance vehicle and the corresponding

perspective-view image.

Steps.

Step 1. Initialize the detection region to be the front region of the omni-image, as
illustrated in Fig.4.9.

Step 2. Create an image buffer to keep the previous omni-image for optical flow
analysis.

Step 3.  Select a detection region by the previous detection result of the vehicle

moving direction by the technique described previously in Section 4.2.2.A.
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Apply the optical flow analysis technique reviewed in Section 4.2.2.B
previously on the computer COM, to produce the motion vectors in the
consecutive images.

Transform all the motion vectors into the WCS by the technique described
in Section 4.2.2.C and record all the directional angles in a buffer B for
further analysis.

Adopt the statistical method introduced in Section 4.2.2.D to estimate the
directional angle using the data stored in buffer B to increase the accuracy
of the estimated direction angle.

Get the result of the directional angle and determine the moving direction of
the video surveillance vehicle by’ the technique described in Section
4.2.2.E.

Send the result of the moving direction to another computer COMg.
Generate and display the perspective-view .image corresponding to the
determined vehicle moving direction on the computer COMg based on the
rules described in Section 4.2.2.F, and go to Step 2 to repeat the process

again.

An example of the experimental result of detecting the direction of the video

surveillance vehicle and displaying the corresponding perspective-view images is

shown in Fig 4.8. The corresponding perspective-view image can aid the driver to

inspect the views of the blind spots around the vehicle dynamically. This greatly

enhances the driving safety.
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4.3 Sequential Driving Recording for
Off-line Inspection of Driving
History

4.3.1 ldea

During driving the video surveillance vehicle, the program continuously records
the sequential omni-images of the driving history. The wide FOV of images acquired
with a pair of two-camera omni-directional devices equipped on the vehicle roof
covers the whole surround of the video surveillance vehicle. As a result, the user can
watch and understand the environment on every surrounding position of the video
surveillance vehicle. Moreover, through the technique of real-time transformation
from the omni-image into the perspective-view ‘image, the user can see

perspective-view image sequence in-any view direction.

(b)
Figure 4.8 An example of results of optical flow analysis on omni-images and
corresponding perspective-view images, where the red arrowheads represent motion
vectors. (a) Optical flows of “turning to the left.” (b) Optical flow of “moving
forward.” (c) Optical flow of “turning to the right.” (d) ~ (e) Corresponding
perspective-view images of (a) ~ (c), respectively.
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(d) (e) )
Figure 4.8 An example of results of optical flow analysis on omni-images and
corresponding perspective-view images, where the red arrowheads represent motion
vectors (continue). (a) Optical flows of “turning to the left.” (b) Optical flow of
“moving forward.” (c) Optical flow of “turning to the right.” (d) ~ (e) Corresponding

perspective-view images of (a) ~ (c), respectively.

<Start of analyzing movinED 7 Transformate motion

direction vectors to WCS
, |
Initialize the detect Eliminate the
region outlier vectors
, I
Sequential Determine moving
omni-images direction
Select detection send analysis
region result
Compute motion -
vectors by optical flow Generate and displaythe
method corresponding
\ perspective-view image

Figure 4.9 The car-driving assistance by analyzing omni-images of the surrounding
environment.
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4.3.2 Inspection of Sequential Driving Record via

Perspective-view Image

In this section, we describe the proposed techniques to record and inspect the
image sequence of the driving history. The detail of each technique is described as

follows.

A. To achieve the synchronization of recording the driving history, we let laptop
computer COMjg save the omni-image captured with camera system B and
simultaneously send a signal to trigger computer COM, for saving the
omni-image from camera system.A. Besides, in order to save the storage space
and accelerate the image transmission between the two computers, the recorded
images are stored as JPEG files and named in serial numbers for sequential
transmission. The image files of the driving history are stored in each computer
and, all image files in computer COMa will be sent to computer COMg through

the local network when the user'wants to inspect the sequential images off-line.

B. For inspecting the driving history in an off-line fashion, computer COMg needs
to load the image files and displays the down-sampled omni-images in sequence.
To generate the perspective-view image in real time, computer COMg needs to
load two perspective-mapping tables in advance, one for generating
perspective-view images for camera system A and another for camera system B.
Moreover, we develop an interface as shown in Fig. 4.10 to let the user change
the view direction of the perspective-view image by moving a mouse. Hence, the
user can use a mouse to choose any view direction conveniently to observe the

scene which he/she is concerned with.
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Figure 4.10 An interface for inspecting the sequential driving record.

4.3.3 Algorithm

The following algorithm introduces the proposed-of inspecting the sequential

driving recording for inspection in an.off-line fashion as shown in Fig. 4.12.

Algorithm 4.3 A method of inspecting the sequential driving recording of driving
history.

Input: omni-images and two pano-mapping tables Ty of the camera system A and the
camera system B.

Output: the perspective-view image and the down-sampling omni-image sequences.
Steps.

Step 1. Record the image and transfer the image files by the technique described in
Section 4.3.2.A.

Step 2. Load two perspective mapping tables for the perspective-view image
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generation process.

Step 3. Read the omni-images from a directory and generate the perspective-view
images of the selected view direction by the corresponding perspective
mapping table by the technique described in Section 4.3.2.B.

Step 4. Display the perspective-view image.

Step 5. Go to Step 3 and repeat until all the image files have been read.

In Figure 4.11, we show an example of the driving history which is sequentially
displayed as perspective images for inspection, after the user clicks on the
down-sampled omni-images. With a driving recorder functioning like this, the user is

able to observe every surrounding position of the video surveillance vehicle.

!

A

(a) (b)
Figure 4.11 The result of inspecting the driving history. (a) The omni-image and the
perspective-view image obtained from transforming the omni-image acquired with
the right-front camera. (b) The omni-image and the perspective-view image obtained
from transforming the omni-image acquired with the left-rear camera.
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Figure 4.12 A flowchart of sequential driving recording for off-line inspection.
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Chapter 5

Monitoring of a Nearby Static Car
around a Static Video Surveillance
Vehicle

5.1 Idea of Static Car Detection In
Omni-images

In this chapter, we describe-the proposed method for detecting a static nearby car
in the omni-image around a video surveillance vehicle, and that for constructing the
top-view surround map including the nearby car. Specifically, the nearby static car is
detected from the omni-image by ground elimination. Then, the 3D data of the vehicle
edge points are estimated. Finally, the relative position of the detected car with respect
to the video surveillance vehicle is computed, and the surround map from the top
view generated. The proposed method is divided into two major stages and a flow
chart of the method is shown in Fig. 5.1.

In the first stage, the process of car shape extraction consists of three major steps:
(1) ground learning; (2) determination of the threshold value by moment-preserving
thresholding proposed by Tsai [21]; and (3) noise elimination by region growing. The
second stage is the process of estimating the 3D data of the detected car and
generating the surround map. This stage includes three major steps as well: (1)
extraction of the corresponding edge point pairs; (2) estimation of the 3D data of the

point pairs; and (3) generation of the surround map. These steps of the two stages will
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be introduced in detail in the following sections.

Start detection of a v
nearby static car Erosion & Dilation
v
Acquisition of two images i
from upper camera and Extraction of
lower camera of propsed edge points
two-camera omni-
directional device L
L Elimination of outlier
point by linear
Ground regression method
learning ¢
v 3D data
acquisition
Ground elimination
v
Generation of the
Determination Of threShOId surround map
by moment-preserving
meihod

Display of

Region growing surround map

Figure 5.1 A flow chart of static car detection with a static video surveillance
vehicle.

5.2 Nearby Vehicle Detection

5.2.1 Ground Region Learning

At the beginning of group region learning, we acquire two omni-images with the

lower and upper cameras of each of the two 2-camera omni-directional devices. Then,
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we perform the following process with the images as input. The first step is
transformation of each original omni-image I, into a grayscale omni-image lq. By this
step, we learn a mean gray value of the ground region in Iy for ground elimination.
This is accomplished by selecting automatically an initial region near the tire position
of the video surveillance vehicle, because the region is probably part of the ground.
Alternatively, we also allow the user to select a region of the ground manually as
shown in Fig 5.2.

After selecting the ground region, let the total pixel number of the region be
denoted by n and the gray value of each pixel in this region by lg(u, v). The mean gray

value gm of the learned region is computed according to the following equation:

O = %ZZlg(U,V). (5.1)

A difference image f then is generated by subtracting the mean gray value gn, from the

gray value of each pixel in .

(@) (b)
Figure 5.2 The interface for ground learning. (a) An example of initializing the region
of the ground. (b) An example of selecting the ground region by a user.
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5.2.2 Object Segmentation by Moment-preserving
Thresholding

If we can separate the background and the foreground in an image, the
subsequent image analysis process will become simpler and easier. For this, we
segment the car region out from the omni-image by thresholding the difference image
f into a bi-level image by the use of a threshold value TH, with the car region labeled
by “1” and the other region by “0.” The moment-preserving thresholding method
proposed by Tsai [21] is used here to decide the threshold value TH automatically. It
is reviewed subsequently.

Given an image f with n pixels whose gray value at a pixel with coordinates (X, y)

is denoted by f(x, y), the i-th momentm; of f is defined as
mi:%zzv(x,y), i=012 3. (5.2)
X Yy

The moments also can be computed by the use of the gray-level histogram in the
following way, where n; is the total number of pixels in f with gray value z; and p; =

nj/n:
L1 _ D
m, :Han(zj)' =>p,(z)), i=0,1 2 3. (5.3)
j=0 j=0

Assume that the image resulting from thresholding only contains two gray values
Zo and zy, with z; is larger than z,. A pixel value in the image greater than the threshold
value to be found is replaced by z;; on the contrary, a value smaller than the threshold
is replaced as zy. To find the desired probability values of py and p;, Eq. (5.3) can be

solved to get the following equations:
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To obtain the threshold value TH, we need to accumulate the probability values from
the smallest gray value until the accumulated value reaches po, as described by the

following equation:

pO:%an. (5.5)

<t

Now, to conduct the thresholding work,-all pixels.in the image f are scanned and
their values are compared with the threshold value TH. If a pixel value in f is checked
to be larger than TH, the corresponding pixel-in the bi-level image b is labeled by “17;
else, it is labeled by “0.” We regard-the region labeled by “1” as a car region.
Moreover, a morphological process including erosion and dilation operations is used
to remove small noise regions and smooth the car shape. An example of the result of

moment-preserving thresholding for object segmentation is shown in Fig. 5.3.

5.2.3 Noise Elimination

After the thresholding process, the resulting regions in the bi-level image, which
are labeled by “1,” may not be the car region because the method of ground
elimination cannot eliminate the non-car region clearly all the time. For example, the
color of the drive line might be different from the ground, and so the resulting region

labeled by “1” will sometimes also include the drive line. An example is shown in Fig.
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5.4(a). However, these noise components are usually smaller than the car region. To
find the region of the detected car, we have to remove such noise components in the
bi-level image. For this, we use the region growing method to find the largest
connected component and regard it as a nearby static car. The image resulting from
removing noise from Fig. 5.4(a) is shown in Fig. 5.4(b), in which only the car region
is left. The proposed method of region growing is described in the following

algorithm.

(b)
Figure 5.3 Related images of noise elimination. (&) The original omni-image. (b) The
bi-level image of eliminating the ground and thresholding in the image (a).

(b)
Figure 5.4 The bi-level images of the nearby static car detection. (a) The image
before noise elimination. (b) The image after noise elimination.
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Algorithm 5.1 Region growing for noise elimination in the bi-level image.

Input: a bi-level image B and a threshold value TH for eliminating small regions.

Output: an image I, including regions whose sizes are larger than TH.

Steps.

Step 4.

Step 5.

Step 6.

Step 7.

Initialize an empty stack S as well as a new image I, whose size is to the
same as that of image B for use in recording the searched regions.
Divide the range 2z of the azimuth angles into N intervals and define the

i-th azimuth angle 6; as

7 _ 2% =1 2, . N-1, (5.6)
N
Scan each radial line I; through the image center in the entire range of 2
according to a pre-selected azimuth-angle interval to find objects in image
B in the following way:
if an unsearched point p labeled by “1” is found to exist on I; in image
I;, then markp as searched -and push it into stack S; else, continue
scanning the line fi:.until-all points-on 1; are processed.
Grow the region from the scanned points in stack S in the following way as
illustrated in Fig 5.5.
4.1 Pop a point p from stack S.
4.2 Search the pixels around p.
4.3 Push the neighboring pixels around p into stack S if the pixels are
labeled by “1” in image B and marked as unsearched in image I..
4.4 Go to Step 4.1 to repeat the growing process until stack S is empty.

4.5 If the region size is computed to be larger than the threshold value TH,

keep the region; else, ignore the region.
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Figure 5.5 An illustration of the region growing process — the blue region
represents the car region and the white region represents the non-car region. Once
the scan point finds the car region, the region growing process starts.

Through the region growing process described above to find the larger connected
component regions, the noise in the bi-level image B.can be removed and the resulting

region is just the detected car shape.

5.3 Distance Estimation of a Static Car

5.3.1 Car Side Extraction and Analysis

In this section, we will introduce how to extract the corresponding point pairs
from a pair of images acquired with one of the pair of two-camera omni-directional
devices. As observed from the bi-level image B resulting from thresholding a given
surveillance image, the window region of a detected car is always marked as “0” and
the body of the detected car is labeled by “1.” The bottom edge of the vehicle window
is a boundary between these two regions. Therefore, it is feasible to detect the
bottom-edge points of the vehicle window as feature points to compute the stereo
information of the detected car. Accordingly, the proposed technique of car side

extraction is divided into two stages — the first stage is to detect the edge points, and
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the second stage is to find the bottom-edge point pair of the vehicle window from the
edge points detected in Stage 1.

In the first stage, we try to detect the edge points of the car window from a pair
of images, as illustrated in Fig. 5.6. For this, we scan the points on a radial line
starting from the image center to the image boundary. In this scanning process, we
have to make sure that the point we scan is not just a noise point. Also, to accomplish
the detection of the car window, we have to collect a number of sequential points,
called a consecutive segment, in the radial line. The following algorithm describes

these major steps ;in more detail.

Figure 5.6 An illustration of detecting the edge points in bi-level image.

Algorithm 5.2 Detection of the edge points of the car window.

Input: a bi-level image B with the region of the detected car body labeled by “1” and
the other region labeled by “0.”

Output: a buffer By, collecting the car window edge points.

Steps.

Step 1. Initialize two flags Flag_1 and Flag_2 to be “false” and create an empty

buffer Bemp to collect searched points.
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Step 2. Scan the points on an unscanned radial line starting from the image center
to find the car body in the following way.
2.1 Sequential check each pixel on the scan line: if the pixel is labeled as
“1” in the bi-level image B, push the point into the buffer Biemp.
2.2 If the difference between the radial distances of the currently-detected
point pcyr and that of the last point is smaller than a threshold, then push
Peur into the buffer Bemp; otherwise, reset the buffer Beemp to be empty.
2.3 If the number of the collected point in buffer Bemp is larger than a
threshold TH;, set the flag Flag_1 true.
Step 3. Scan the points on each radial line in a similar way to find the car window
in the following way.
3.1 If the flag Flag.1 is set to be true, then. start the process of collecting
points of the car window which-is similar to the operation conducted in
Step 2.
3.2 If the number of-points in the consecutive segment reaches another
threshold value TH,, set the flag Flag_2 true.
Step 4. If the Flag_2 flag is set, take the beginning point of buffer Bemp as the car
window edge point and push it into By yp.
Step 5. Reset the two flags to false and clear the buffer Bmp, and go to Step 2 to

search the next radial line until all the radial lines are scanned.

Both the images acquired with the upper and the lower cameras are checked by
the same process described above to find the bottom-edge points of the vehicle’s
window and put them into another buffer B, gown. Consequently, we obtain two
buffers, By yp and By gown, Of the bottom-edge points, and these points are analyzed

further to complete the work of car window edge detection, as described
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subsequently.

Although we have detected the edge points as shown in Fig. 5.7 in the
upper-camera and lower-camera images, we cannot confirm that all these points are
useful. We have to find out the real point pairs of the window edge from two buffers

Bp_up and By _down. For this, three rules are established to filter noise points.

, Mer—
(a) (b)
Figure 5.7 An example of-edge-point extraction. (a) The bi-level image b for
searching the bottom-edge points of the vehicle window (a) An image to show the
result of finding the edge points, and the red points represent the edge points
corresponding to (a).

First of all, due to the property of rotational invariance of omni-imaging, there
exist two points in the upper-camera image and in the lower-camera image which
have the same azimuth angle. And such points are called a corresponding point pair.
For each azimuth angle, there exists a corresponding point pair.

Second, we assume that the difference between the radius distances of two
consecutive points of the bottom window edge in the buffer By yp Or By gown IS sShorter
than a threshold value TH;.

Finally, the number of consecutive edge points of the vehicle window is larger
than a threshold TH; on the radial line of each azimuth angle.

The details of the above-discussed scheme of collecting the bottom-edge points
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of the vehicle window are described in the following algorithm.

Algorithm 5.3 Collection of useful corresponding point pairs of the car window

edge.

Input: two buffers By y, and By, d¢own CONtaining the candidate bottom-edge points of a

car window.

Output: a buffer By for recording the real consecutive point pairs of the bottom-edge

points of the car window.

Steps.

Step 1. Initialize an empty buffer Beemp for temporarily recording the corresponding
point pairs.

Step 2. Scan each azimuth angle @ and check if there exist two points in the two
buffers By up and By down, respectively, which have the same azimuth angle.

Step 3. Check every consecutive point pair of buffer By y, or By gown about the
following two aspects until-all point pairs-are exhausted:

(1) whether the difference between the radius distances of the two
consecutive points is smaller than a threshold value TH; or not;

(2) whether the difference between the azimuth angles of the two
consecutive points is smaller than another threshold value TH; or not;
and if both aspects are checked to be true, then push the point pair into the

buffer Bremp and go to Step 3 to check another pair; else, continue.

Step4. Check if the number of point pairs in buffer Bemp is larger than a third
threshold value THs, and if so, regard the involved points as coming from
the car window edge and push all the point pairs into Be, for computing the
3D data of the car window; else, clear buffer Bemp and go to Step 2 to

continue the search.
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As a result of executing the above algorithm, with a pair of bi-level images,
where the window region of the detected car is always marked by “0” and the body of
the detected car is labeled by “1,” we are able to detect consecutive point pairs of the
bottom-edge of the vehicle window as shown in Fig 5.8. The 3D information of the

detected car can be computed from these corresponding point pairs, as described in

subsequent sections.

(a) (b)
Figure 5.8 The result of edge point extraction. (a) The original omni-image acquired
with the omni-camera. (b) The image with the bottom-edge points of the vehicle
window represented by red points.

5.3.2 Elimination of Noise by Simple Linear

Regression

After extracting the corresponding edge point pairs between the two
omni-images acquired with the upper camera and lower cameras, we want to compute
the 3D information of these points to infer the position of the nearby car. However, to
accomplish this task more precisely, it is desired to transform the points in buffer Bg,

detected by Algorithm 5.3 into the WCS and eliminate possibly the outliers of the
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point pairs. We do this by the simple linear regression method in this study. In more
detail, we divide this process of eliminating noise point pairs into two stages.

The first stage is to transform the points in buffer By into the WCS. Under the
premise that the bottom-edge points of the vehicle’s window are highly similar in
their characteristics, we can assume that the height of the points are H, and then
transform these points to the WCS accordingly. The transformation process is
introduced previously in Chapter 4, where the image coordinates (u;, v;) of a point was
transformed into the world coordinates (X;, Yi, Z;) of a point in the WCS. We use the
values of X; and Y; in the subsequent linear regression process without considering the
value Z;.

The second stage is to eliminate the outlier point pairs by the use of the simple
linear regression method, which is a least-squares estimator with a single predictor
variable. The goal is to find the equation of the straight line by Eq. (5.7) below, which

fits the given points in a minimum least-square-error (MLSE) sense.
Y-=aX +h. (5.7)

In other words, the MLSE line is taken to be the one which minimizes the sum of

squared residuals described by
Q=Y. (Y,—aX,~b), (58)
i=1

where it is assumed that n points with coordinates (X, Yi, Z;) are available for the
fitting process. To minimize the value of Q above, first set the partial derivatives of it

to be zero’s as follows:

9Q _p 9Q_y (5.9)

da ob

Then, the desired values a and b can be solved from the two equations to be as
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follows:

XY XN 1
a=—! L = b:EZYi—axEZXi. (5.10)
i=1 i=1

With the parameters a and b computed, we finally can draw a linear regression line
Lreg On the X-Y plane in the WCS, as shown in Fig. 5.9. And the distance between
each point with coordinates (X;, Yi, Zj) and the line Ly may be calculated by the

following equation according to trigonometry:

Y, —aX; —b|

|
d, =
Ja? +b?

Accordingly, the distance d; of each edge point-in buffer B, is computed by Eq. (5.11)

(5.11)

and if the distance of a certain. point-so computed is larger than a threshold value TH,
it will be regarded as an outlier and removed from buffer B.,. Finally, we compute the
3D data of the remaining corresponding point pairs in buffer Be,. The method for

doing this has been discussed previously.in Section 2.3.

y = -22.578x + 15820
760
740 \
720
700
680
Y - axis 660 ®
640 %
620
600 . . . .
650 660 670 680 690 700,
X - axis

Figure 5.9 An example of simple linear regression, where the blue points represent
the edge points transformed into the WCS and the black line is the result.
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5.3.3 Calculation of Car Distance and Creation of

Surround Map

To show the relative position of the video surveillance vehicle and the detected
car on a surround map, it is required to get the 3D position information of the detected
car. For this purpose, the 3D data of the corresponding point pairs is computed by the
3D data acquisition method described in Section 2.3. Let the height and the distance
of each point pair be denoted as H; and D;, respectively, and the total number of the
corresponding point pairs be as n. The height He,r and distance D, Of the detected car
is taken to be the mean value of all the values of H; and D; of these points,

respectively, as follows:
13 1$
He ==> H,, Dg==>'D. (5.12)
nes

In addition, from each point pair we can obtain the-azimuth angle with respect to
the X-axis. And the azimuth angle-&. of -the ‘middle point pair among these
corresponding points is selected to represent the azimuth angle &, of the detected car.
With the horizontal distance D¢, and azimuth angle G..r, the relative position of the
detected car can be described as the coordinates (Ucar, Vear) in @ top-view 2D coordinate
system created for displaying the surround map, which may be computed in the

following way:
Uc = (DcarxC0SGqr)/ratio; Ve = (DearxsinGyr)/ratio, (5.13)

where the value ratio is a scaling factor to scale the real WCS distance down into the
top-view 2D coordinate system.
Once the 3D information of the detected car is obtained, we can generate the

surround map from the top view as shown the example of Fig 5.10. A detailed
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algorithm for doing this is given in the following.

Figure 5.10 A surround map from the top view.

Algorithm 5.4 A method of generating the surround map.

Input: the position of a detected nearby car.at top-view coordinates (Uc, Vc)
computed by Egs. (5:13).

Output: a top-view surround map of the vehicle environment including the video

surveillance vehicle and the detected nearby car.

Steps.

Step 1. Initialize a background image | with all pixels colored in a gray color like
that of the asphalt road.

Step 2. Paste a graphic model of the video surveillance vehicle at the center of
image |.

Step 3. Select the front-right corner of the video surveillance vehicle model as the
origin with coordinates (0, 0) of a top-view 2D coordinate system for
displaying the desired surround map.

Step 4. Paste a graphic model of the nearby car on | at coordinates (uUc, Vc).

Step 5. Take the final I as the desired surround map.
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Chapter 6

Monitoring of a Nearby Static or
Moving Car with a Moving Video
Surveillance Venhicle

6.1 ldea of Detection of Static or
Moving Car in Omni-images

In Chapter 5, we have described the proposed method for detection and display
of a nearby car. Both the detected car and the video surveillance vehicle are assumed
to be static there. However, in this study we propose further a method to detect a
nearby moving or static car ‘while the video surveillance vehicle is being driven.
Optical flow analysis may be usedagain here to estimate the motion of an object in
consecutively acquired omni-images, and if the concerned object is higher than the
ground, its motion in the image will produce motion vectors with larger lengths. This
property may be used to segment the car from the background. Moreover, we also
analyze the color of the detected car by the k-means algorithm and use the color
information to segment out the car region in the omni-image. Finally, the position of
the detected car is estimated by a template matching method proposed in this study,
and a surround map is generated accordingly.

As a summary, we may divide the proposed method into five major steps: (1)
computing the motion vectors by optical flow analysis; (2) separating the car region

from the non-car one roughly according to the motion vector lengths; (3) segmenting
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out the car region by the color information; (4) estimating the position of the detected
car; and (5) generating a surround map. A flowchart illustrating these major steps of
the proposed method is shown in Figure 6.1. All of the above steps will be elaborately

introduced in the following sections.

Start detection of a static .| Elimination of noises by
surrounding car region growing method

Two sequential images
captured from a two-
camera omni-
directional image device

y
Determination of
car color by k-
means

Region growing by a
given car color and
ground elimination

A

Generation of
feature points

Mask detected car

i by a rectangle
Computation of model

motion vectors by
optical flow method v
Estimation
position of
Transformed motion detected car
vectors into WCS
y
Y Generation of

surrounding map

Separate car and non-
car region by threshold

Display
surround map

End

Figure 6.1 Flowchart of nearby car detection with a moving video surveillance
vehicle.
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6.2 Moving Car Detection by Motion
Vectors Generated by Optical Flow
Analysis

6.2.1 Detection of Car Region by Motion Vector

Lengths

To separate the car region from the non-car one in the consecutively acquired
omni-images, we use optical flow analysis to produce the motion vectors and detect
the car region by the motion vector. lengths. The details of this process are described

in order subsequently.

A. Block Based Processing

To monitor the surrounding environment of-the video surveillance vehicle, we
evenly select points in the omni-image to compute the motion vectors by optical flow
analysis discussed previously. For the selected points to be evenly distributed in the
omni-image, we divide the omni-image into equal-sized blocks and select the points
to be the centers of the blocks. An example of the block-based omni-image is shown

in Figure 6.2. The following process will take image block as the unit of processing.

Figure 6.2 An example of block-based omni-image — the block region is the video
surveillance vehicle roof that we ignore and the red points are the selected points.
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B. Estimation and Transformation of Motion Vectors

We want to estimate the motions of objects in the surrounding environment from
two consecutive omni-images. The process is divided into two stages: (1) estimation
of the motion vectors by optical flow analysis; and (2) transformation of the motion
vectors from the ICS into the WCS. The optical flow analysis method used in Stage 1
has been reviewed in Section 4.2.2.B. And the transformation process used in Stage 2

is identical to that described in Section 4.2.2.C.

C. Detection of Ground and Car Regions by Motion Vector Lengths

Because the driving speed of the video surveillance vehicle is not constant and
the lengths of the motion vectors.are roughly proportional to the car speed, we can use
dynamic thresholding to separate the car region from the background, as shown by the
example seen in Fig. 6.3. We use the standard deviation value of all the motion vector
lengths to set the threshold value. Assume that the length of each motion vector is
denoted as L; and the total number of motion vectors is n. Then, the mean value L
and the standard deviation value S, of the motion vector lengths are computed as

follows:

|
Il
S|

n 1 n =
L, Sn=\/n—_12(|_i—|_). (6.1)

i=1 i=1

The threshold values for detecting the car and the ground are respectively set to be as

follows:

Lear = L +Sn; (6.3)

Lground: E _Sn (64)

To record the car region, we initialize a record image I, which is of the same size
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as that of the original omni-image. The car region to be put into the mage I, is labeled
by “1”; and the other regions, by “0.” Each motion vector produced by optical flow
analysis is checked and compared with the threshold values Lcar and Lgrouna. If the
length of the motion vector is larger than Lc,r, we regard the block yielding the vector
as a region of the detected car and label it by “1” in image I; else, we label the block
by “0.” Besides, we also define the threshold value Lground @and use it in the following
way: if the length of a motion vector is smaller than Lground, €very pixel in the
corresponding region is regarded as a ground point, and pushed into a buffer B for use
in conducting a ground learning process described in the subsequent section.

In summary, we list the rules for car detection as follows:

{if length of motion vector > L'+S, then label the region as "car"; (65)

if length of motion vector. SE—Sn, then label the region as "ground."'

Figure 6.3 A result of separating the car region from the non-car region, where the
red points are used to represent the car region and the green points to represent the
non-car region.

6.2.2 Detection of Car Body by k-means Algorithm

In order to detect pixels of the car body in image I, for region growing method,

83



we divide the process into two steps: (1) use the k-means algorithm to partition a set
of feature points into three clusters (2) determine which cluster is the car body. The
steps of the k-means algorithm are illustrated in Fig. 6.4, and a detailed algorithm

implementing it is introduced as follows.

s - ey -
m | & ud
m O mE = v
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@) (b) ©)

Figure 6.4 An illustration of k-means algorithm. (a) The image of initialize the cluster
centers. (b) The image of associating every data with the nearest mean. (c) The image
of reassigning the cluster centers. (d) The resultimage of k-means algorithm.

Algorithm 6.1 Partitioning feature data into clusters.

Input: a set of feature points D; and-a total numberk of clusters.

Output: the center point C; of each cluster and a set of input feature points labeled

with cluster index.

Steps.

Step 1. Initialize k cluster centers randomly among the input data.

Step 2. Perform the following steps to the feature points until either the number of
iterations reaches a pre-selected limit or the centers of clusters become
stable (with no change in the positions of the cluster centers).

2.1 Calculate the distance between each feature point D; and each cluster
center, and label D; with the index of the closest cluster center.
2.2 Update each cluster center C; by calculating the mean value of the

feature points which are labeled as j.
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As a result, the k-means algorithm may be used to partition a set of feature points
into k clusters, with each point belonging to the nearest cluster. To use the algorithm
in this study, the RGB values of the center pixel of each block in image I, are taken as
the input feature points into the k-means algorithm, and k is taken to be 3, i.e., all
input feature data are partitioned into three clusters, in which one is the car body of a
certain color. Note that in this study, we assume that each car is of a single color.

Furthermore, the car region in image I, consists of three possible types of objects
— the body of the detected car, the windows of the car, and noise components.
Therefore, we have to find the cluster of the car body by analyzing the center of each
cluster for the region growing method, and the region growing method will be
introduced in the following section.

Moreover, the color of the car window is sometimes similar to that of the ground.
To avoid growing the ground, each cluster with its center’s gray value close to the
ground value gm should be ignored. That is, if the gray value of a cluster center is
close to the ground value gn,, we will not conduct region growing with the cluster as
the starting point, as described in Section 6.2.3.B. The computation of the value gn
will be introduced in Section 6.2.3.A. The algorithm of determining the cluster of the
car body from those yielded by the above algorithm (Algorithm 6.1) is described in

detail as follows.

Algorithm 6.2 Determination of the cluster of the car body.

Input: the center points C; of the clusters S; found by Algorithm 6.1 with RGB values
(Ri, Gj, Bi), 1 =1, 2, 3; the number N; of feature points in each cluster S;, and
the gray value gn, of the ground.

Output: a cluster S; of feature points of the car body or none.

Step.
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Step 1. Sort the numbers N; of feature points of all the clusters S;, i = 1, 2, 3, and
pick up the largest one with index j, namely, N;j, which is the number of
feature points of cluster S;.

Step 2. Compute the difference D between the gray value of the center C; of cluster

Sjand that  of the ground, gm, as follows:
D =|(Rj+G;j+B;)/3 — gn|.
Step 3. If the difference D is larger than a threshold TH, output the cluster S; with

index j as the desired car body; else, ignore the cluster Sj and go to Step 1 to

process the remaining cluster(s).

6.2.3 Detection of Car:Region'by Color Information

After finding out the feature-point cluster of the detected car body by the above
two algorithms, we are able_to detect the entire car region more completely in the
image I, produced in Section 6.2.1.C by eliminating the ground area and growing the

region of the detected car body, as described in the following.

A. Elimination of the Ground Region

To decrease the probability of false alarms and erroneous detections, we have to
learn the ground information by the use of a buffer B which collects the ground pixels
found in Section 6.2.1.C and eliminate the ground regions from the image I.. The

mean gray value g, of the ground is computed as follows:

9 ==Y (R +G,+B)/3, (6.6)

i=1
where n is the total number of pixels in the buffer B, and R;, G; and B; represent the

RGB values of the i-th pixel in B.
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To eliminate the ground region, we scan all the blocks in image I, which are

labeled by “1” and apply the following classification rule:

"if the difference value satisfies the following condition:
g, —diff <1(x,y)<g,, +diff,

then mark the block as the ground region in image I ;

else, continue,"

(6.7)

where /(x, y) is the grayscale value of the pixel in the block center at image
coordinates (x, y) and diff is a gray value threshold value. After this process of
eliminating the ground region, the detection of the car region in image I, will be more

accurate.

B. Detection of Car Region by Region.Growing within a Color Tolerance

To make the detected car.shape more complete, we want to select the points in
the region of the detected car.body and regard these points as seed points to grow the
neighboring regions within-a color tolerance. More. specifically, after we use
Algorithm 6.2 to find the feature points of a detected car body, we want use the points
further to grow the entire car region.”Each feature point in the cluster of the car body
corresponds to a pixel in the image I;, and we want to take the pixel as a seed point to
grow the neighboring points under two conditions: (1) the difference of the color
value between the seed point and the neighboring point is within a color tolerance;
and (2) the neighboring point is inside the growing range centered at the seed point. If
the color value of the neighboring point is similar to the seed point, we will regard the
neighboring point as belonging to the car region and label the block by “1” in the
image I,. The method of detecting the car region with a given color tolerance is

described in Algorithm 6.3 below.

Algorithm 6.3 Detecting the car region by filling regions within a given color
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tolerance.

Input: the record image I, the original image |, acquired with the omni-camera, and

the output data (the cluster centers) of the k-means algorithm described in

Algorithm 6.1 in Section 6.2.2.

Output: the bi-level image I, with the car region labeled by “1.”

Step.

Step 1.

Step 2.

Scan each input pixel p in I, and check whether the label of p is the same as
that of the cluster center of the car body or not. If the same, continue; else,
scan the next input pixel in 1.

Regard the pixel p as a seed point and check the following classification rule

for region growing by the color information:

"if a neighboring point-of p satisfies the following conditions:
I, (u,v)r-diff < (u',v)r<lI (u,v)r+diff,
I, (u,v)g =diff <1 (u',v)g<=<I, (uv)g+diff,
I, (u,v)b-diff <1 (u';v)b<I,(u,v)b+diff,
then label by "1"the.corresponding block as belonging to the car
region in the image 1,; else;-continue,"

(6.8)

where lo,(u, v)c with ¢ = r, g, and b denotes the currently-observed pixel’s
c-color value of the seed point located at image coordinates (u, v), lo(u’, v')c
with ¢ = r, g, and b denotes the c-color value of a neighboring pixel at
image coordinate (u’, v'), and the value diff is the color tolerance between

the currently-observed pixel and one of its neighbor.

As shown in Fig. 6.5, after the region growing process by the color information

using the above algorithm, we obtain a more accurately detected car shape from the

omni-image.
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(b)
Figure 6.5 A result of region growing by the color information. (a) An image to show the
result of the region growing, and the purple points represent the growing region. (b) The
corresponding bi-level image of the image (a).

6.3 Updating of Car State

6.3.1 Estimation of Car Location by

Rectangular-shaped Models

To estimate the location of a nearby car, we match the detected car region in the
image I, by a mask for estimation of the approximate car position. The method of the
estimating the car location includes two stages: (1) generation of the car mask by
transforming a rectangular-shaped car model from the WCS into the ICS; and (2)

detection of the car location by a template matching scheme.

Stage 1. Generation of the car mask on the image plane
To generate the car mask on the omni-image plane for matching the detected car,
we have to transform the car model in the WCS to the ICS as shown in Fig. 6.6.

Because the car shape is similar to a rectangle, we imagine a rectangular-shaped car
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model on the X-Y plane and transform the model into the image plane for matching
the detected car in order to locate the car. For this, in this study we create a series of
rectangular-shaped car models besides the video surveillance vehicle under the
premise that the detected car is driving around the video surveillance vehicle.
Moreover, in order to shorten the computation time of the matching process, we just
select sparse points on each rectangular-shaped model to represent the model instead
of transforming the whole rectangular-shaped model region for matching the detected
car.

More specifically, we divide the rectangular-shaped model into small blocks and
transform the center point of each block from the WCS into the ICS to create a car
mask. We use buffers to record the points transformed from each model in the ICS for
the further matching process. The algorithm for such a.transformation from the WCS

into the ICS is described as follows.

Camera

center
Image

center

Y

e Y,
X
U
Mask

OO O0OO0O0O0OO0OO0OO0O0OO0O0
OO0 O0OO0O0O0OO0OO0OO0OO0OO0O0
OO O0OO0O0O0OO0OO0OO0O0OO0O0
OO0 00000000 O0Oo
OO O0OO0O0O0OO0OO0OO0OO0OO0O0
OO O0OO0O0O0OO0OO0OO0OO0OO0O0
OO O0OO0O0O0OO0OO0O0OO0OO0O0
OO O0OO0OO0O0OO0OO0OO0O0OO0O0

Rectangular-
shaped car model

(a) (b)
Figure 6.6 A rectangular-shaped car model and the corresponding mask. (a) A blue
region of rectangular-shaped model and its representive points in the WCS. (b) The
mask image.

Algorithm 6.3 Coordinate transformation of a car model point from WCS to ICS.

Input: a point P of the rectangular-shaped model with world coordinates (Xi, Yi, Zj),
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the origin of the mirror center O, at coordinates (Xo, Yo, Zp), and the
pano-mapping table Tym.
Output: a point P’ at image coordinates (u;, v;) corresponding to the point P in the
WCS.
Steps.
Step 1. Compute the azimuth and elevation angles of the point P in the following
way.
1.4 Compute the horizontal distance d between the point P and the mirror

center Oy, by the following formula:

d = (X, = X)” + (%, =Yo)° . (6.9)

1.5 Calculate the azimuth-angle @ and the elevation angle p of point P as

follows:
6 =cos L0 _gipnt '_YO,
d (6.10)
z_ta -1 Zi —ZO
=3 d -

Step 2. Find the corresponding point P “at image coordinates (u;, vi) by looking up

the pano-mapping table with the azimuth angle 8 and the elevation angle p.

After conducting the above process, we transform all the points in the
rectangular-shaped car model in the real world space to the image plane and keep all
the coordinates (uj, v;) in a buffer for matching the detected car. Furthermore, we use
the center of the mask to represent the car location, and the center of the mask is

computed by:

u :1 I u.,V. lelvi, (6.11)
n 4



where (u;, v;) are the image coordinates of the i-th point in the mask and n; is the total
number of points in the mask.

To conduct the matching process, we generate in advance a series of masks for
use at different positions as shown in Fig. 6.7 for accelerating the matching process.
However, the point density of each mask is not exactly the same. The points of a far
rectangular-shaped model, after being transformed from the WCS into the ICS, will
result in a high-density mask and the points in the mask may overlap each other.
Accordingly, the spacing dsbetween two points of the s-th rectangular-shaped model
is related to the distance between the video surveillance vehicle and the model, and

we compute the value d as follows:
ds =10 + |5 = (Neger/2)| x 5, (6.11)

where the nmegel IS the total number of the points in.the model.

() (b)
Figure 6.7 The result of mask in the omni-image. (a) The near mask with respect to
the video surveillance vehicle. (b) The far mask with respect to the video
surveillance vehicle.

Stage 2. Detection of the detected car location by template matching method
To locate the detected car in the omni-image, we use a template matching

method to overlap the detected car with the mask. See Fig. 6.8 for an illustration. The
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masks are generated in the previous stage, Stage 1, and we have to check each
overlapping ratio between the mask points of the i-th mask and the detected car shape
in the image I.. The mask which results in the highest overlapping ratio value will be
regarded the as the most suitable one for the detected car, and the center point of the
mask at coordinates (u;, v;) is finally taken as the position of the detected car. The

algorithm of detecting the car location by template matching is described as follows:

Algorithm 6.4 Detecting the car location by template matching.

Input: the record image ;.

Output: a center point of the mask which matches the detected car the best at

coordinates (uj, vi).

Steps.

Step 1. Initialize a counter ¢-to record the number of overlapping pixels.

Step 2. Count the overlapping pixels between the i-th mask and the car region in the
image I, by an AND operation.

Step 3. Calculate the corresponding everlapping ratio by dividing the counter value
c into the total number of the points in the i-th mask.

Step 4. Repeat Steps 2 and 3 until the overlapping ratios of all masks have been
computed.

Step 5.  Find the i-the mask which results in the highest ratio and output the center

point of the mask at coordinate coordinates (ui, Vvi).
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Figure 6.8 A result of matching a detected car by a mask — the yellow region
represents the detected car and the blue mask represents the result of the
rectangular-shaped model transformation:

6.3.2 Update of Car State and Generation of

Surround Map

The state of the detected car recorded in‘a buffer B will be updated in each cycle
of the car detection process for generating the surround map. We use the state of the
currently-detected car to update the car state in buffer B and the surround map from
the top view as illustrated in Fig. 6.9. The state of the detected car is defined to
include four values: (1) the distance between the omni-camera and the detected car; (2)
the azimuth angle of the car with respect to the u-axis; (3) a time-to-live value; and (4)
a flag to confirm that the currently-detected data is not a false alarm. For smooth and
steady displaying of the detected car in the surround map, the time-to-live value is
used to avoid the case of the erroneous detection, and the confirmation flag is used to
avoid the case of false alarming. The proposed method for updating the detected car

state and generating the surround map is divided into five steps as described in the
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following algorithm.

Algorithm 6.4 Updating the car state for generating the surround map

Input: a state of the currently-detected car and the record buffer B.

Output: an updated surround map.

Steps.

Step 1.

Step 2.

Step 3.

Step 4.

Decrease the time-to-live value of the cars in the buffer B by 1.

Discard the car state in the buffer B, if the time-to-live value of the car is
equal to zero.

Push the state of the currently-detected car into the buffer and finish the
updating process, if the buffer B is empty; else, continue.

Update the car state in the buffer B.

4.1 Calculate the azimuth-angle difference Gy between the azimuth angle of
the currently-detected car and the azimuth-angle of the car state in the
buffer.

4.2 If the 6, is smaller than thirty degrees, continue; else, push the state of
the currently-detected car into the buffer.

4.3 Update the length of the car in buffer B as follows:
Lnis = pxLeur + (1 — p)xLnis, (6.12)

where Ly;s and Lgr are the length of the car in buffer B and the length
of the currently-detected car, respectively, and p is a pre-determined
weight of history data on the update data.

4.4 Update the azimuth angle of the car in buffer B as follows:

where Ly;s and Lgr are the length of the car in buffer B and the length

of the currently-detected car, respectively, and p is the weight of
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history data with respect to the updated data.
4.5 Set the confirmation flag “true” for displaying the detected car.
4.6 Reset the time-to-live value of the car state in the buffer B to three.
Step 5. Update the surround map.

5.1 Check the confirmation flag of the car state in buffer B: if the flag is set,
update the position of the detected nearby car at top-view coordinates
(U, Ve).

5.2 Compute the coordinates (uc, Vv¢) of the detected car as follows:

Uc = (Lnis xCOSAnis)/ratio; Ve = (Lnis xSin Anis)/ratio, (5.14)
where the ratio value is a scaling factor to scale down the real distance
into the surround map-for image display.

5.3 Show the surround map by the Algorithm 5.4.

Start of updating
car state

Currently-
detected car
state

Decrease the time to
live value by 1

Remove car whose
time to live value is
equal to 0

Yes

The difference of
azimuth angle < 30°?

Yes

No ¢
Push car Push car Update car
state into state into state
buffer buffer

Show
surround map

End of updating car
state

Figure 6.9 Flowchart of updating the car state.
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The experimental result shown in Fig. 6.10 is an example of the resulting
surround map after detecting a nearby static car with a moving video surveillance

vehicle. With the surround map, we can observe the surrounding environment easily.

(b)

Figure 6.10 The result of detecting the-static nearby. car with a moving video
surveillance vehicle. (a) The original omni-image. (b) The surround map from the
top view.
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Chapter 7
Experimental Results and
Discussions

7.1 Experimental Results

In this chapter, we will show some experimental results of the proposed methods
for use on a video surveillance vehicle with two 2-camera omni-imaging devices. The
experiments were mainly conducted-on an.open space area, including a parking lot
and a spacious around-campus road -with an asphalt surface in National Chiao Tung
University.

The first experiment was to generate the perspective-views image from an
omni-image acquired with one of the upper cameras affixed on the video surveillance
vehicle. With the perspective mapping table T, the perspective-view image was
generated from the omni-image in six view directions. The second experiment was to
analyze the omni-image of the surrounding environment for estimation of the moving
direction of the video surveillance vehicle in the lanes of the parking lot and to
display the corresponding perspective-view image. The third experiment was to detect
the static nearby car on the around-campus road while the video surveillance vehicle
was in a static state, and then to show the surround map from the top view by
computing the 3D information of the detected car. The final experiment was to
monitor a nearby moving or static car with the video surveillance vehicle in a moving

state, and show the relative position of the detected car in the surround map.
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A. Experimental Results of Perspective-view Image Generation

In this experiment, we acquired an omni-image from the upper omni-camera of
one of the two two-camera omni-directional imaging devices to generate the
perspective-view images for three directions by the use of the perspective mapping
table Tp,. The method of image transformation is introduced in Chapter 3, and an

experimental result is shown in Fig. 7.1.

(b) (© (d)
Figure 7.1 An experimental result of generating the perspective-view image. (a) An
original omni-image. (b) The perspective-view image of the right-rear direction. (c)
The perspective-view image of the rear direction. (d) The perspective-view image of
the left-rear direction.
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B. Experimental Results of Car Direction Detection and Display of Corresponding
Perspective-view Images

The environment for this experiment is an open space area in a parking lot in
National Chiao Tung University. We conducted the experiment of estimating the
moving direction when the video surveillance vehicle was being driven on the lanes
of the parking lot as well as generating the corresponding perspective-view images.
We conducted the experiment for three cases: (1) turning to the right; (2) turning to

the left; and (3) moving forward. Some experimental results are shown in Fig. 7.2.

(a) (b)
Figure 7.2 A real example of car direction detection and display of corresponding
perspective-view images. (a) The case of turning to the left. (c) The case of turning to
the right. (¢) The case of moving forward. (b), (d), and (f) The perspective-view
images corresponding to (a), (c), (e), respectively.
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(d)

(f)

Figure 7.2 Figure 7.2 A real example of car direction detection and display of
corresponding perspective-view images. (continued). (a) The case of turning to the
left. (c) The case of turning to the right. (e) The case of moving forward. (b), (d), and
(F) The perspective-view images corresponding to (a), (c), (e), respectively.

C. Experimental Results of Monitoring of a Nearby Car around a Static Video
Surveillance Vehicle

In the experiment for monitoring a nearby car around a static video surveillance

vehicle, the nearby car is a white vehicle produced by TOYOTA Company. The car
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was parked at the roadside and the video surveillance vehicle stopped at the car side
to perform car detection. We used the omni-camera affixed on the right-front roof of
the video surveillance vehicle to acquire the omni-images and conduct the detection
work. An experimental result, which is the finally generated surround map with the

detected nearby car seen from the top view included, is shown in Fig.7.3.

(©)
Figure 7.3 The experimental result of monitoring a nearby car around a static video
surveillance vehicle. (a) The omni-image acquired with an upper camera. (b) The
omni-image acquired with a lower camera. (¢) The surround map from the top view.
Note that the direction of an object is 180° reversed in the omni-image when
compared with the real situation as illustrated in (c).
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D. Experimental Results of Monitoring of a Nearby Static or Moving Car with a
Moving Video Surveillance Vehicle

The environment for this experiment is a straight lane segment in the
previously-mentioned around-campus road in National Chiao Tung University as
illustrated in Fig. 7.4. We divided the detection experiment into two cases. The first
case was that we drove slowly the video surveillance vehicle to pass a static nearby
car parked at the roadside. The proposed method described in Chapter 6 detected the
nearby car and estimated the car position. Finally, a top-view surround map as shown

in Fig. 7.5 was generated and displayed to the user.

Detected car

Video surveillance vehicle

Figure 7.4 An illustration of the detecting a nearby static car with a moving video
surveillance vehicle.
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(b)

(d)

(f)

Figure 7.5 The result of a nearby static car detection with a moving video surveillance
vehicle. (a)~ (f) The results of detecting a nearby car parked at the road side and the
generated top-view surround maps. Note that the direction of an object is 180° reversed
in the omni-image when compared with the real situation as illustrated in (b) (d) (f).
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Another detection case was that the detected car overtakes the video surveillance
vehicle in a road lane. More specifically, the environment for this experiment is the
same area as that for the experiment of detecting a nearby static car with a moving
video surveillance vehicle mentioned previously. The passing-by car was driven on
the right-hand side of the video surveillance vehicle and slowly overtook it as shown

in Fig. 7.6. Fig. 7.7 shows an experimental result of detecting the nearby moving car.

Video surveillance !
vehicle Detected car

Figure 7.6 An illustration of the detecting a nearby-moving car with a moving video
surveillance vehicle.

(b)

Figure 7.7 The result of a nearby moving car detection with a moving video surveillance
vehicle. (a)~ (f) The result of detecting a moving car. Note that the direction of an object
is 180° reversed in the omni-image when compared with the real situation as illustrated

in (b) (d) ().

105



© Q

(f)

Figure 7.7 The result of a nearby moving car detection with a moving video surveillance
vehicle (continue). (a)~ (f) The result of detecting a moving car. Note that the direction
of an object is 180° reversed in the omni-image when compared with the real situation as
illustrated in (b) (d) (f).

7.2 Discussions

From our experiments and the results, we can see that the goal of utilizing a pair
of two-camera omni-directional imaging devices equipped on the video surveillance
vehicle roof to perform video surveillance of nearby cars has been achieved.

However, the proposed system still has some problems. In this study, we adopt
the method of optical flow analysis to compute the motion vectors of the road surface

appearing in consecutive omni-images and estimate the moving direction of the video
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surveillance vehicle using these motion vectors. As a result, moving objects, such as
moving cars or a group of people, in the image will result in undesired motion vectors,
leading to erroneous detection results of the moving direction of the vehicle itself. A
possible solution is to add extra functions for detecting these unusual motion vectors
and ignoring them.

Moreover, to conduct the video surveillance work at the outdoor space, the sun
light is an important factor to consider. The unsuitable adjustment of the camera
parameters and the shadow produced by the sun light will affect the result of the car
detection experiments. A possible solution for this problem is to record typical climate
conditions and the corresponding suitable camera parameters and threshold values for
car shape segmentation and other image processing works. In this way, the system can
be chosen appropriate data set for each climate condition at the time of nearby—car
detection. Of course, it is always desired to have fully automatic method for car
detection for all climate conditions.

In this study, the detected car.in the experiments is a saloon car. As a result, to

increase the accuracy of detecting car position, the assumption of car height is 80 cm.
If the detected car is not a saloon car, we have to adjust the height parameter to make

the car mask match the detected region for estimating car position.
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Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

In this study, a video surveillance system utilizing a pair of two-camera
omni-directional imaging devices equipped on the video surveillance vehicle roof to
monitor the surrounding environment has been. proposed. With the advantage of
mobility of the video surveillance vehicle and the wide FOV of the omni-camera
system, several methods have been proposed for various purposes of driving condition

monitoring and nearby car detection, as summarized in the following.

(1) A method for speeding up generation of perspective-view images for vehicle
surrounding environment monitoring has been proposed, which, with the help
of a perspective mapping table, can generate perspective-view images in

realtime.

(2) A method for analyzing the omni-images of surrounding environments for
car-driving assistance has been proposed, which, by optical flow analysis,
provides the driver of the video surveillance vehicle a relevant

perspective-view image of blind spots during car turning.

(3) A method for off-line inspection of the driving history has been proposed, by

which all the sequential omni-images of the driving history can be recorded
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online and displayed off-line in the form of a perspective-view image

sequence with the viewing direction determined by mouse clicks.

(4) A method for monitoring a nearby static car around a static video surveillance

vehicle has been proposed, which eliminates the ground region in acquired
omni-images and detect the nearby car shape in the image by region growing
and morphological techniques and displays a top-view surround map with the

detected car included for inspection of its relative position.

(5) A method of monitoring of a nearby static or moving car with a moving video

surveillance vehicle has been proposed, which uses motion vectors produced
by optical flow analysis as well-as color information of segmented objects to
detect the nearby car shape, and uses a rectangular-shaped car model to match
the detected car for estimating the car position-and generating the surround

map.

The experimental results shown in"the previous chapters have revealed the

feasibility of the proposed system

8.2

Suggestions for Future Works

According to the experience obtained this study, in the following we make

suggestions of some interesting issues, which are worth further investigation in the

future.

1.

Increasing the speed of computation to achieve vehicle detection in

realtime, e.g., by parallel computing.
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Developing the capability of detecting and tracking multiple nearby
vehicles in the surrounding environment.

Developing more applications of car-driving assistance using the
omni-camera system, e.g., analysis of the driving behavior.

Adding the capability of detecting passing-by persons with a moving video
surveillance vehicle.

Enhancing the image analysis capability to detect more information of the
nearby car, e.g., the size of the vehicle.

Only using an omni-camera to compute the 3D data of the detected car.
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