
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

利用架設在視訊監控車上成對的

全方位攝影裝置作週遭環境監控之研究

A Study on Surrounding Environment Monitoring by a Video

Surveillance Car with Two 2-camera Omni-imaging Devices

研 究 生：陳俊甫

指導教授：蔡文祥 教授

中 華 民 國 一 O O 年 六 月

利用架設在視訊監控車上成對的

全方位攝影裝置作週遭環境監控之研究

A Study on Surrounding Environment Monitoring by a Video

Surveillance Car with Two 2-camera Omni-imaging Devices

研 究 生：陳俊甫 Student：Chun-Fu Chen

指導教授：蔡文祥 Advisor：Wen-Hsiang Tsai

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一 OO年六月

 i

利用架設在視訊監控車上成對的

全方位攝影裝置作週遭環境監控之研究

研究生: 陳俊甫 指導教授:蔡文祥 博士

國立交通大學資訊科學與工程研究所

摘要

本研究利用架設在一視訊監控車頂上的兩組全方位攝影裝置來達到視訊監

控的功能，主要應用於監控行車視角的盲點和周遭的車輛。

在本研究中，此二全方位攝影機裝置可用以監看車輛周遭任何角度的影像畫

面。此外，本研究利用光流分析法直接套用在連續擷取的影像上，並利用影像的

移動向量分析目前車輛的行走方向，產生對應方位的透視影像(perspective-view

image)，方便駕駛觀看。另一方面，本研究亦提出一種「透視對應表」(perspective

mapping table)，可以快速地將全方位影像轉成透視影像，提供駕駛觀看行車紀錄。

同時，本研究利用全方位攝影系統所拍攝的影像，可靜態監控周遭靜止的車

輛並求得立體資訊。另利用影像處理技術取出影像中的車體區域，並偵測車窗底

緣的對應點，計算車輛位置，進而產生監控車週遭環境的俯視圖。

除了偵測靜態的車輛，本研究也提出了行駛當中的視訊監控車偵測到停止或

移動的周遭車輛的方法。另亦使用光流分析法，配合全方位攝影機所擷取到的連

續影像，利用有高度的物體會產生較大移動向量的性質，將車體給大致分割出

來，進而使用「k 均值分群法」(k-means clustering)去偵測出車體，接著透過區域

增長法去找出較完整的車體，最後再利用預先造好的車輛模型去做比對，藉以取

得周遭車輛的位置資訊，劃出車輛周遭的俯視圖，供車輛駕駛觀看。

上述方法的實驗結果皆甚良好，顯示所提視訊監控系統確實可行。

 ii

A Study on Surrounding Environment Monitoring

by a Video Surveillance Car with Two 2-camera

Omni-imaging Devices

Student: Chun-Fu Chen Advisor: Prof. Wen-Hsiang Tsai

Institute of Multimedia Engineering, College of Computer Science

National Chiao Tung University

ABSTRACT

In this study, methods are proposed for video surveillance by a video

surveillance vehicle equipped with a pair of two-camera omni-imaging devices on its

roof, with emphasis on monitoring of blind spots and nearby cars around the vehicle.

First, for generating perspective-view images to facilitate inspection of the

vehicle’s surrounding environment, a space-mapping table and an r- mapping table

are created to accelerate the related coordinate transformation process. Also, a method

for generating the perspective-view image of the surrounding area of the vehicle by

estimating the vehicle’s moving direction using optical flow analysis is proposed. For

off-line inspection of the driving history, a method of using a perspective-mapping

table proposed in this study to generate a series of perspective-view images of any

view direction decided by mouse clicking is proposed as well.

Furthermore, a method for monitoring a nearby static car around the surveillance

vehicle is proposed, which employs image processing and pattern recognition

techniques like ground region elimination, moment-preserving thresholding, region

growing, etc. to segment a car shape out of the omni-image. Also proposed is a

method for extracting the bottom-edge points of the car window and eliminating the

outlier points by simple linear regression, in order to compute the 3D data of the

 iii

detected car and generate a surround map.

In addition, a method for monitoring a nearby static or moving car from a

moving video surveillance vehicle is proposed, which may be used to segment the

nearby car region in the omni-image by the use of motion vector lengths. To further

grow a complete car shape from the segmented regions, a method for finding the

pixels of the car body by a k-means algorithm and using the pixels as seed points to

grow the entire car region by the use of color information is also proposed. With the

aid of a space-mapping table, car masks derived from a simple car model are used for

locating the position of the detected car. Finally, a top-view surround map showing

the relative position of the detected car with respect to the video surveillance vehicle

is generated.

Good experimental results are also shown, which prove the feasibility of the

proposed methods for real video surveillance applications.

 iv

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions, and

support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this

thesis, but also in every aspect of his personal growth.

Appreciation is also given to the colleagues of the Computer Vision Laboratory

in the Institute of Computer Science and Engineering at National Chiao Tung

University for their suggestions and help during his thesis study.

Finally, the author also extends his profound thanks to his dear mom and dad for

their lasting love, care, and encouragement.

 v

CONTENTS
ABSTRACT (in Chinese)…………………………………………………………….i

ABSTRACT (in English) ……………………………………………………...…….ii

ACKNOWLEDGEMENTS………………………………………………………...iv

CONTENTS……………………………………….…………………………...……..v

LIST OF FIGURES……………………………….………………...……………..viii

LIST OF TABLES……………………………….…………………………...…….xii

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Survey of Related Studies .. 3

1.3 Overview of Proposed Methods... 5

1.4 Contributions.. 7

1.5 Thesis Organization ... 8

Chapter 2 Idea of Proposed Methods and System Design 10

2.1 Idea of Analyzing Surrounding Environment and Vehicles 10

2.2 System Configuration .. 14

2.2.1 Hardware configuration ... 14

2.2.2 Software configuration... 16

2.2.3 Network Configuration .. 16

2.3 Review of Adopted Camera System and 3D Data Acquisition Process

 .. 17

2.4 System Processes ... 22

Chapter 3 Generation of Perspective-view Images Using Pano-mapping

Tables .. 26

3.1 Review of Adopted Pano-mapping Method for Omni-image

Unwarping .. 26

3.2 Construction of Pano-mapping Table .. 27

3.2.1 Landmark Learning .. 27

3.2.2 Estimation of Coefficients of Radial Stretching Function 28

3.2.3 Filling of Pano-mapping Table Entries 30

3.2.4 Creation of r- Mapping Table .. 33

3.3 Image Unwarping and Generation of Perspective-view Images 34

3.4 Construction of Perspective Mapping Table for Computation Speedup

 .. 39

 vi

Chapter 4 Car-driving Assistance by Analyzing Omni-images of Surrounding

Environment .. 41

4.1 Idea of Proposed Method ... 41

4.2 Analysis of Car Direction by Motion Vectors in Omni-images 42

4.2.1 Idea of car direction analysis by motion vectors 42

4.2.2 Car Direction Detection and Display of Corresponding

Perspective-view Images ... 43

4.2.3 Algorithm ... 53

4.3 Sequential Driving Recording for Off-line Inspection of Driving

History .. 56

4.3.1 Idea ... 56

4.3.2 Inspection of Sequential Driving Record via Perspective-view

Image ... 58

4.3.3 Algorithm ... 59

Chapter 5 Monitoring of a Nearby Static Car around a Static Video

Surveillance Vehicle ... 62

5.1 Idea of Static Car Detection in Omni-images 62

5.2 Nearby Vehicle Detection .. 63

5.2.1 Ground Region Learning ... 63

5.2.2 Object Segmentation by Moment-preserving Thresholding 65

5.2.3 Noise Elimination .. 66

5.3 Distance Estimation of a Static Car ... 69

5.3.1 Car Side Extraction and Analysis .. 69

5.3.2 Elimination of Noise by Simple Linear Regression 74

5.3.3 Calculation of Car Distance and Creation of Surround Map ... 77

Chapter 6 Monitoring of a Nearby Static or Moving Car with a Moving Video

Surveillance Vehicle ... 79

6.1 Idea of Detection of Static or Moving Car in Omni-images 79

6.2 Moving Car Detection by Motion Vectors Generated by Optical Flow

Analysis .. 81

6.2.1 Detection of Car Region by Motion Vector Lengths 81

6.2.2 Detection of Car Body by k-means Algorithm 83

6.2.3 Detection of Car Region by Color Information 86

6.3 Updating of Car State ... 89

6.3.1 Estimation of Car Location by Rectangular-shaped Models ... 89

6.3.2 Update of Car State and Generation of Surround Map 94

Chapter 7 Experimental Results and Discussions ... 98

 vii

7.1 Experimental Results ... 98

7.2 Discussions .. 106

Chapter 8 Conclusions and Suggestions for Future Works 108

8.1 Conclusions .. 108

8.2 Suggestions for Future Works .. 109

References ... 111

 viii

LIST OF FIGURES

Figure 2.1 The video surveillance vehicle used in this study with a pair of two-camera

omni-directional devices affixed on the car roof. (a) A front view of the

video surveillance vehicle. (b) A side view of the video surveillance

vehicle. ... 10

Figure 2.2 Positions of cameras affixed to the video surveillance vehicle roof and the

corresponding FOV. (a) The omni-camera is affixed at the rear-middle of

the car roof. (b) The omni-camera is affixed at the right-rear of the car roof.

.. 11

Figure 2.3 An example of static nearby car detection. (a) An omni-image of a static

car parked at the nearby roadside. (b) A generated surround map showing

the relative position from the top view. Note that the direction of an object

is 180
o
 reversed in the omni-image when compared with the real situation

as illustrated in (b). .. 13

Figure 2.4 Structure of the proposed surveillance system. .. 15

Figure 2.5 The network architecture of transmission between two laptops. 16

Figure 2.6 (a) Relation between the world coordinates and the image coordinates (b)

Geometry between the mirror and the CMOS sensor in camera. 19

Figure 2.7 Computation of depth using the two-camera omni-directional imaging

device. (a) The ray tracing of a scene point P in the imaging device with a

hyperboloidal-shaped mirror. (b) A triangle in detail (part of (a)). 20

Figure 2.8 System configuration of upper omni-camera with a hyperboloidal-shaped

mirror.. 22

Figure 2.9 Flowchart of proposed learning process. .. 23

Figure 2.10 Flowchart of the moving direction analysis. .. 24

Figure 2.11 Flowchart of vehicle detections .. 25

Figure 3.1 An interface to for user to select the landmark points. 28

Figure 3.2 Mapping between a radius distance r and elevation angle ρ. 29

Figure 3.3 Illustration of mapping between the azimuth-elevation angle pair of the

omni-image and the horizontal and vertical axes of the pano-mapping table,

respectively. ... 31

Figure 3.4 An example of generating the perspective-view image. 35

Figure 3.5 A top view configuration of generating a perspective-view image. 37

Figure 3.6 A lateral-view configuration of generating a perspective-view image. 38

Figure 3.7 A top view of segmenting an omni-image. .. 40

Figure 4.1 Illustration of selecting the detection region where the red points represent

the spots on which optical flows need be found. (a) Detection region used

 ix

in the case of turning to the right. (b) Detection region used in the case of

moving forward. (c) Detection region used in the case of turning to the left.

.. 43

Figure 4.2 The optical flow pattern and the corresponding detection region. (a) The

case of turning to the right. (b) The case of moving forward. (c) The case

of turning to the left. .. 44

Figure 4.3 An example of results of implementing the optical flow analysis method. (a)

An image frame taken at time t. (b) An image frame taken at time t + dt. (c)

The result of the motion vectors produced by the optical flow analysis

method with (a) and (b) as inputs. ... 47

Figure 4.4 Transformation of a motion vector from the ICS to the WCS. (a) An

illustration of the camera system and the motion vector. (b) The ray tracing

of a scene point P on the ground projected on the hyperboloidal-shaped

mirror.. 49

Figure 4.5 A distribution chart of the direction angle of motion vectors. 51

Figure 4.6 A graph of finite state machine proposed to determine the moving direction.

 .. 52

Figure 4.7 Structure of the communication between two laptops used in this study. .. 54

Figure 4.8 An example of results of optical flow analysis on omni-images and

corresponding perspective-view images, where the red arrowheads

represent motion vectors. (a) Optical flows of “turning to the left.” (b)

Optical flow of “moving forward.” (c) Optical flow of “turning to the

right.” (d) ~ (e) Corresponding perspective-view images of (a) ~ (c),

respectively. ... 57

Figure 4.9 The car-driving assistance by analyzing omni-images of the surrounding

environment. .. 57

Figure 4.10 An interface for inspecting the sequential driving record. 59

Figure 4.11 The result of inspecting the driving history. (a) The omni-image and the

perspective-view image obtained from transforming the omni-image

acquired with the right-front camera. (b) The omni-image and the

perspective-view image obtained from transforming the omni-image

acquired with the left-rear camera. .. 60

Figure 4.12 A flowchart of sequential driving recording for off-line inspection. 61

Figure 5.1 A flow chart of static car detection with a static video surveillance vehicle.

.. 63

Figure 5.2 The interface for ground learning. (a) An example of initializing the region

of the ground. (b) An example of selecting the ground region by a user. .. 64

Figure 5.3 Related images of noise elimination. (a) The original omni-image. (b) The

bi-level image of eliminating the ground and thresholding in the image (a).

 x

.. 67

Figure 5.4 The bi-level images of the nearby static car detection. (a) The image before

noise elimination. (b) The image after noise elimination. 67

Figure 5.5 An illustration of the region growing process  the blue region represents

the car region and the white region represents the non-car region. Once the

scan point finds the car region, the region growing process starts. 69

Figure 5.6 An illustration of detecting the edge points in bi-level image.................... 70

Figure 5.7 An example of edge-point extraction. (a) The bi-level image b for

searching the bottom-edge points of the vehicle window (a) An image to

show the result of finding the edge points, and the red points represent the

edge points corresponding to (a). ... 72

Figure 5.8 The result of edge point extraction. (a) The original omni-image acquired

with the omni-camera. (b) The image with the bottom-edge points of the

vehicle window represented by red points. .. 74

Figure 5.9 An example of simple linear regression, where the blue points represent the

edge points transformed into the WCS and the black line is the result. 76

Figure 5.10 A surround map from the top view... 78

Figure 6.1 Flowchart of nearby car detection with a moving video surveillance vehicle.

.. 80

Figure 6.2 An example of block-based omni-image  the block region is the video

surveillance vehicle roof that we ignore and the red points are the selected

points. ... 81

Figure 6.3 A result of separating the car region from the non-car region, where the red

points are used to represent the car region and the green points to represent

the non-car region. ... 83

Figure 6.4 An illustration of k-means algorithm. (a) The image of initialize the cluster

centers. (b) The image of associating every data with the nearest mean. (c)

The image of reassigning the cluster centers. (d) The result image of

k-means algorithm. .. 84

Figure 6.5 A result of region growing by the color information. (a) An image to show

the result of the region growing, and the purple points represent the

growing region. (b) The corresponding bi-level image of the image (a). ... 89

Figure 6.6 A rectangular-shaped car model and the corresponding mask. (a) A blue

region of rectangular-shaped model and its representive points in the WCS.

(b) The mask image. .. 90

Figure 6.7 The result of mask in the omni-image. (a) The near mask with respect to

the video surveillance vehicle. (b) The far mask with respect to the video

surveillance vehicle. ... 92

Figure 6.8 A result of matching a detected car by a mask  the yellow region

 xi

represents the detected car and the blue mask represents the result of the

rectangular-shaped model transformation.. 94

Figure 6.9 Flowchart of updating the car state. ... 96

Figure 6.10 The result of detecting the static nearby car with a moving video

surveillance vehicle. (a) The original omni-image. (b) The surround map

from the top view... 97

Figure 7.1 An experimental result of generating the perspective-view image. (a) An

original omni-image. (b) The perspective-view image of the right-rear

direction. (c) The perspective-view image of the rear direction. (d) The

perspective-view image of the left-rear direction. 99

Figure 7.2 A real example of car direction detection and display of corresponding

perspective-view images. (a) The case of turning to the left. (c) The case of

turning to the right. (e) The case of moving forward. (b), (d), and (f) The

perspective-view images corresponding to (a), (c), (e), respectively. 100

Figure 7.3 The experimental result of monitoring a nearby car around a static video

surveillance vehicle. (a) The omni-image acquired with an upper camera.

(b) The omni-image acquired with a lower camera. (c) The surround map

from the top view. Note that the direction of an object is 180
o
 reversed in

the omni-image when compared with the real situation as illustrated in (c).

.. 102

Figure 7.4 An illustration of the detecting a nearby static car with a moving video

surveillance vehicle. ... 103

Figure 7.5 The result of a nearby static car detection with a moving video surveillance

vehicle. (a)~ (f) The results of detecting a nearby car parked at the road

side and the generated top-view surround maps. Note that the direction of

an object is 180
o
 reversed in the omni-image when compared with the real

situation as illustrated in (b) (d) (f). ... 104

Figure 7.6 An illustration of the detecting a nearby moving car with a moving video

surveillance vehicle. ... 105

Figure 7.7 The result of a nearby moving car detection with a moving video

surveillance vehicle. (a)~ (f) The result of detecting a moving car. Note

that the direction of an object is 180
o
 reversed in the omni-image when

compared with the real situation as illustrated in (b) (d) (f). 105

 xii

LIST OF TABLES

Table 3.1 An example of the pano-mapping table. ………………………………….32

Table 3.2 An example of the r- mapping table. ……………………………………33

Table 4.1 The range of the angles of the three vehicle moving directions…………..51

 1

Chapter 1

Introduction

1.1 Motivation

Nowadays, because the computer technology progresses quickly, video cameras

are getting more popular and used more widely. In people’s daily life, video cameras

can be used to improve human beings’ welfare. For example, people often equip cars

with driving-assistance systems like digital driving recorders or car-backing

monitoring systems. With the assistance of cameras in these systems, a driver is able

to observe surrounding environments easily. Once a traffic accident occurs, he/she

can clarify the responsibility for the event by inspecting the video record.

Moreover, video cameras are also useful for developing vision-based techniques

for many applications. Through image processing and other techniques, much

information can be obtained from images captured with video cameras. For example,

a license plate recognition system or a face recognition system requires the use of

video cameras to capture images for analysis of specific objects. In this study, it is

desired to design a video surveillance system using video cameras on a vehicle, called

video surveillance vehicle, for car-driving assistance and car surrounding monitoring

applications.

Most researches of vision-based techniques for the mentioned applications are

based on the use of traditional projective cameras; however, the limited field of view

(FOV) of the traditional camera is a problem. For instance, only the scene in front of a

car can be seen when a projective camera is affixed to the car to “see” forward. If we

 2

want to monitor the entire car surrounding, four or more cameras are required. The

requirement of extra cameras to cover the entire surrounding will raise the cost and

complexity to develop a video surveillance system on the car. Therefore, we choose

omni-cameras (or simply omni-cameras) to be the imaging devices in this study. Each

device consists of two axis-aligned omni-cameras. A wider view of the environment

around the video surveillance vehicle can be covered by such a camera system.

Besides, most vision-based systems are affixed to some pre-determined places,

such as ceilings or utility poles. It is a difficult task to move a system of such a nature

entirely to another place to do surveillance works. In this study, we set up two pairs of

omni-cameras on the roof of a video surveillance vehicle. With the camera system

being carried, the vehicle can move to any place to conduct surveillance works.

Furthermore, the cameras equipped on the video surveillance vehicle can also be used

to develop functions for various applications.

To sum up, the goal of this study is to develop a video surveillance system on a

video surveillance vehicle for the applications of car-driving assistance and car

surrounding monitoring. The system is composed of two pairs of two-camera

omni-imaging devices, each consisting of two vertically-aligned omni-cameras, which

are affixed to the surveillance’s roof. With the advantages of mobility of the video

surveillance vehicle and the wide FOV’s of the omni-cameras, we can develop a

mobile surveillance system to monitor car surroundings completely for the two

applications. Listed below are the more detailed desired capabilities of the proposed

system.

(1) The surrounding environment images are captured by omni-cameras, and the

captured image sequence is analyzed to decide the driving direction of the vehicle

and generate the perspective-view image of the car surrounding environment with

respect to a selected view direction.

 3

(2) The proposed video surveillance system is able to detect any static surrounding

car parked at the nearby roadside, and displays a surround map to show its

relative position with respect to the surveillance vehicle from the top view.

(3) When the video surveillance vehicle is moving, the proposed video surveillance

system can detect a static car or a passing car in the nearby surrounding as well,

and displays a top-view surround map as mentioned above to show the relative

position of the car.

1.2 Survey of Related Studies

In this section, we conduct a survey of related studies about video surveillance,

including designs of omni-cameras for uses on vehicles, techniques for surrounding

vehicle detection, and the optical flow method which we use in the proposed video

surveillance system for various purposes.

In recent years, video surveillance for various applications has been widely

investigated. Christian et al. [1] proposed a method to track concerned objects based

on the use of a video surveillance system on a vehicle. The vision-based surveillance

system can be used to monitor a parking lot or conduct traffic surveillance works [2,

3].

An omni-camera in a video surveillance system is useful for localizing objects. It

includes just a projective camera and a mirror. Onoe et al. [4] and Mituyosi et al. [5]

proposed methods to track people on video surveillance systems with omni-cameras.

Moreover, applications using different combinations of projective cameras and

mirrors to construct new types of omni-imaging systems have also been investigated.

For example, a method to obtain stereo information for mobile robot navigation with

an omni-imaging system which consists of two mirrors and one camera was proposed

 4

by He et al. [6]. Also, Koyasu et al. [7] proposed a stereo system which consists of

two omni-cameras aligned vertically for obstacle detection and tracking.

In this study, to obtain the stereo information from omni-images, we adopt the

space-mapping method proposed by Jeng and Tsai [8] to calibrate omni-cameras

without knowing the intrinsic and extrinsic parameters of the cameras. Moreover,

because omni-images captured with omni-cameras may be processed to produce

panoramic images and estimate the relevant stereo information of surrounding objects,

many studies replace conventional projective cameras with omni-cameras. For

example, to assist a driver to observe the entire car surrounding environment,

researchers proposed techniques to generate surrounding bird’s-eye views from

omni-images, such as Ehlgen and Pajdla [9]. Gandhi and Trivedi [10] also proposed a

method to use omni-cameras to conduct detection of moving persons and vehicles on

a mobile platform. By the way, the large FOV’s of an omni-camera is a great benefit

to monitor the entire surrounding environment. Some researchers combine this

advantage and the mobility of vehicles to develop applications [11-13].

In addition, the optical flow method is useful for analyzing the motions within

two consecutive image frames. Lucas and Kanade [14] proposed a method to compute

the displacement of the image contents between two image frames within the

neighborhood of a point. In many studies, the optical flow method is used to detect

ego-motions for analyzing the car moving direction. Kim and Suga [15] proposed a

method to detect a moving obstacle using an optical flow method for a mobile robot

with an omni-camera.

For long, the topic of vehicle detection has been widely studied. Various

techniques were proposed to detect vehicles. For instance, background subtraction is a

common technique used to extract vehicles [16, 17]. Tsai et al. [18] proposed a

method to conduct vehicle detection from static images using color and edges

 5

information. In this study, we propose methods to detect a static surrounding car by

ground-region subtraction and to detect a moving car by using the motion vectors and

color information of the car.

1.3 Overview of Proposed Methods

1.3.1 Terminologies

The definitions of some related terms used in this study are described as follows.

1. Omni-camera: a camera system with a traditional projective camera and a

reflective mirror which can be used to capture images of 360-degree FOV’s.

2. Omni-image: an image captured with an omni-camera.

3. Video surveillance vehicle: a car with a pair of two-camera omni-imaging

devices equipped on the car roof as well as two laptops for use as control units

inside the car to develop a video surveillance system.

4. Optical flow: a method to estimate the motions of shapes, surfaces, and edges of

concerned objects between two sequential images.

5. Motion Vector: motion vectors produced by the optical flow method to represent

the velocity and direction of a concerned object.

6. Perspective-view image: an image obtained by projecting a scene onto a flat

surface as it is seen by the human eye.

7. Surround map: an image showing the relative position of a surrounding car from

the top view.

 6

1.3.2 Brief Descriptions of Proposed System

There are four goals in developing the proposed system as described in the

following.

1. The system is able to analyze the car driving direction using the consecutively

acquired omni-images and display corresponding perspective-view images to the

driver.

2. The system is capable of recording the surrounding images during driving and let

the user see the perspective-view image in any selected view direction

constructed from these sequential images as well as inspect the sequential images

off-line.

3. The system is able to monitor a static surrounding car and obtain related stereo

information of it to generate and display a top-view surround map.

4. The proposed system is able to monitor a passing car or a static car in the

surrounding environment when the surveillance vehicle is moving, and display a

top-view surround map to show its relative position.

In order to achieve the above goals, the following are the major steps of the

system process of the proposed video surveillance system.

1. Set up the previously-mentioned pair of two-camera omni-image devices on the

roof of the video surveillance vehicle with one on the front-right corner and the

other on the rear-left corner of the car roof.

2. Calibrate the omni-cameras for six outward view directions and use the

space-mapping method to generate six corresponding pano-mapping tables.

3. While the surveillance vehicle is moving, analyze its moving direction by the

optical flow method, transform the extracted motion vectors into the world

 7

coordinate system (WCS), and estimate the moving directions by some pattern

recognition methods.

4. Generate a perspective-view image according to the driver’s selection of the

view direction by projecting an omni-image onto a flat surface by looking up the

pano-mapping tables.

5. Detect any static surrounding car by elimination of the ground regions in an

omni-image, extract the edge points of a detected car, use the points to compute

the stereo information of the detected car, and display the corresponding

top-view surround map including the car.

6. Detect a passing-by car or a static surrounding car by the optical flow method,

use the lengths of these motion vectors to roughly separate ground regions and

car regions, apply region growing based on the color information to find the

complete car shape, estimate the stereo information of the car, and generate a

top-view surround map to show the relative position of the car.

1.4 Contributions

The following is a list of the major contributions made in this study.

1. A method for obtaining the stereo information of a concerned object by the

pano-mapping method using a pair of two-camera omni-imaging devices is

proposed.

2. A method for constructing the pano-mapping tables for six outward view

directions is proposed.

3. A method for constructing tables of perspective mapping described in detail in

Chapter 3 between the omni-images and the perspective-view image to shorten

the processing time of image transformation is proposed.

 8

4. A method for analyzing the driving directions of the video surveillance vehicle

by the optical flow method and using the direction to generate corresponding

perspective-view images is proposed.

5. A local network is constructed, which integrates a pair of two-camera

omni-directional imaging devices and two laptop computers for video

surveillance use.

6. A method for detecting a static surrounding car and computing its accurate 3D

information is proposed.

7. A method to detect a moving surrounding car or a static surrounding car by

thresholding the lengths of motion vectors and extracting the region of the car is

proposed.

8. A method for generating rectangular-shaped models and transforming them into

the camera coordinate system to mask a detected car for computing the location

of the car is proposed.

9. A method for generating a surround map to display the relative location of a

detected car in an acquired omni-image with respect to the surveillance vehicle is

proposed.

1.5 Thesis Organization

In the remainder of this thesis, we introduce the system configuration and the

idea of the proposed method in Chapter 2. The designs of the camera system and the

method to obtain stereo information are also described. In Chapter 3, the construction

of the pano-mapping tables by the space-mapping technique and the technique of

using the pano-mapping tables for unwarping an omni-image into multiple

perspective-view images are described. In Chapter 4, the proposed methods for

 9

computing the car moving direction and for generating the corresponding

perspective-view image are described. In Chapter 5, the proposed method for

detecting a static surrounding car is described. In Chapter 6, the proposed method for

detecting a moving surrounding car is described. In Chapter 7, experimental results

and discussions are included. Finally, conclusions and some suggestions for future

works are given in Chapter 8.

 10

Chapter 2

Idea of Proposed Methods and

System Design

2.1 Idea of Analyzing Surrounding

Environment and Vehicles

In order to monitor the surrounding environment of the video surveillance

vehicle, we choose omni-cameras instead of traditional projective cameras to acquire

environment images. The acquired omni-images can be used to generate

corresponding panoramic images and so provide necessary information for security

monitoring or driving assistance. In this study we affix a pair of two-camera

omni-imaging devices to the surveillance vehicle roof for this purpose as shown in

Figure 2.1. Each device includes two omni-cameras aligned coaxially and back to

back, as mentioned previously.

(a) (b)

Figure 2.1 The video surveillance vehicle used in this study with a pair of

two-camera omni-directional devices affixed on the car roof. (a) A front view of the

video surveillance vehicle. (b) A side view of the video surveillance vehicle.

 11

An advantage of the mobility of the video surveillance vehicle is that we can

move the entire system to everywhere to conduct surveillance works. Besides, to get

useful views as far as possible, we decided to affix one omni-image device at the

right-front position of the surveillance vehicle roof, and the other at the left-rear. As

illustrated in Figure 2.2, if instead we affixed a device at the front (or back) middle of

the vehicle roof, a half of the acquired omni-image is useless, covering just the roof of

the vehicle.

(a) (b)

Figure 2.1 Positions of cameras affixed to the video surveillance vehicle roof and

the corresponding FOV. (a) The omni-camera is affixed at the rear-middle of the car

roof. (b) The omni-camera is affixed at the right-rear of the car roof.

Many car accidents occur because the driver ignores “blind spots” which cannot

be seen in the mirrors equipped inside and outside the car. To show the views of these

blind spots, we can use the mentioned pair of omni-imaging devices on the

surveillance vehicle roof to generate perspective-view images around the car on every

driver-specified view direction. The construction of the perspective-view image from

an omni-image conducted in this study is based on the space-mapping method

proposed by Jeng and Tsai [8].

In addition, when a driver wants to turn to the left or to the right, the blind spots

behind the surveillance vehicle are apt to be neglected. Therefore, we analyze the

 12

motion vectors produced by the optical flow method in consecutively acquired images.

With these motions, we can estimate the vehicle moving direction and show the

corresponding perspective-view image. During driving, we can also store images

captured with omni-cameras. As a driver recorder, the system can then display these

images in sequence, or let the user to choose a view direction and display the

corresponding perspective-view image for closer observation.

Furthermore, in order to detect a static car parked at the nearby roadside and

compute the stereo information of it, we use the color feature to separate the car

region from the ground in the acquired omni-image. In doing this, we assume that the

background is uncomplicated with almost the same color as that of an asphalt road,

and that the color of the detected car is different from the ground presumably.

Therefore, the car shape can be extracted as the foreground by elimination of the

ground color.

Moreover, we also want to obtain the stereo information of the detected car. For

this, the corresponding points of the bottom-window edge of the car in a pair of

images captured with the upper omni-camera and the lower omni-camera are chosen.

Then, the image data of these points are used to compute the desired stereo

information. However, some points like the outlier ones might incur errors in the

computed stereo information, so they are eliminated by a linear regression method in

this study. As a result, we can compute the location of the car by using the image data

of the remaining points, and generate accordingly a surround map. An example of the

result of this process is shown in Fig. 2.3.

Finally, we use motion vectors to analyze the acquired omni-images for several

purposes. Such motion vectors are produced from consecutive omni-images directly

when concerned objects are moving in the omni-images. Specifically, the angles and

the lengths of these motion vectors are almost all equal when the vehicle is driven on

 13

a flat field with roughly identical texture everywhere. Accordingly, if another car is

driven aside to overtake the surveillance vehicle gradually, the angles of the motion

vectors of the car will differ from those of the motion vectors produced from the

entire environment. This characteristic so can be utilized to detect a nearby car in an

acquired omni-image.

Another feature used in this study is motion vector length. If a concerned object

is higher than the ground, the lengths of the motion vectors yielded by it will be

longer than those yielded by the ground. After roughly locating the car using this

feature, we use a third feature, the color of the monitored car, to grow the car region

in the omni-image, and compute accordingly the location of the car by the use of a

mask model of the car. Finally, a surround map is generated to show the relative

position of the nearby car with respect to the surveillance vehicle from the top view

for driving assistance.

(a) (b)

Figure 2.3 An example of static nearby car detection. (a) An omni-image of a static

car parked at the nearby roadside. (b) A generated surround map showing the

relative position from the top view. Note that the direction of an object is 180
o

reversed in the omni-image when compared with the real situation as illustrated in

(b).

 14

2.2 System Configuration

In this section, we will describe the video surveillance system elaborately. The

proposed system is mainly divided into three parts. The first part is the hardware

which includes a video surveillance vehicle, a pair of two-camera omni-directional

imaging devices, and two laptop computers. The second part is the software. In this

part, we will introduce the software development environment and the accompanying

SDK and driver programs for the CCD cameras. The third part is the network.

Because we use two laptops to handle the pair of two-camera omni-directional

imaging devices, respectively, a local network is used for communication between the

two laptops.

2.2.1 Hardware configuration

The surveillance vehicle, named Delica, is made by Mitsubishi Co. It is a 469cm

×169cm×196cm vehicle with a working table and a power supply. System operators

may sit inside the surveillance vehicle to operate the laptop computers and monitor

the entire surrounding environment. Moreover, a steel frame is affixed to the car roof,

on which the omni-image devices can be affixed. And four extension USB cords

crossing the video surveillance vehicle were added to receive images which are

captured with the two omni-imaging devices. Detailed descriptions of the imaging

devices will be given in Section 2.3. The entire video surveillance system is shown in

Fig. 2.4.

In order to control the entire video surveillance system, in this study we use two

laptops as control units, each handling an omni-imaging device. Both laptops are

produced by TOSHIBA Computer Inc., and their detailed specifications are listed in

 15

Table 2.1. To exchange commands and images between the two laptops, we use a

cross-over cable to connect then and set up a local network for between-computer

communication.

Local Network

Computer A Computer B

Cross-over

cable

Video surveillance

car
Camera

System A

Camera

System B

Affixed on Affixed on

Figure2.4 Structure of the proposed surveillance system.

Table 2.1 Specifications of the laptop computers used in this study.

 Tecra M11 Satellite A660

CPU Intel Core i7-620M

 2.66/3.33GHz

Intel Core i5-480M

2.66/2.93GHz

RAM 4G DDR3 1066MHz 2G DDR3 1066MHz

GPU nVidia NVS 2100M ATI HD5650

Network Gigabit LAN Fast Ethernet LAN

http://www.grainew.com.tw/p1-nb-detail.asp?Class1=aBKOaB31&Class2=aBSPaB31aBWWaB38aBKMaB39&PKey=aBVNaB31aBQPaB38aBIYaB39

 16

2.2.2 Software configuration

We use Borland C++ Builder (BCB) V6 as a developed platform to build our

video surveillance system. The BCB is a program development tool for the operating

system of Windows; therefore, we can create a graphic user interface (GUI)

conveniently and quickly. The programming language we use is C++. It is a widely

used language. One of the laptops, the Tecra M11 computer, uses the operating

system of Windows 7, and the other, Satellite A660, uses Windows XP.

Before developing a video surveillance system, we have to install the drivers of

the ARTCAM-200SO cameras and those of the ARTCAM-200SS cameras in the

laptop computers. The camera company also provides corresponding software

development kits (SDKs) and some simple source codes. Accordingly, we can adjust

the parameters of each camera, such as the value of exposure or the global color gain,

through the SDK. The SDK is an object-oriented toolkit, and the camera company not

only provides the BCB version but also the C, VB.NET, C#.NET or Delphi version to

the programmers.

2.2.3 Network Configuration

COMA
COMB

Local Network

Control signals

Control signals & Omni-image &

Perspective-view image of COMA

USB

Port USB

Port

Camera
System

A

Camera
System

B

Figure 2.5 The network architecture of transmission between two laptops.

http://www.grainew.com.tw/p1-nb-detail.asp?Class1=aBKOaB31&Class2=aBSPaB31aBWWaB38aBKMaB39&PKey=aBVNaB31aBQPaB38aBIYaB39

 17

A network configuration is needed for communication between two laptop

computers because four omni-images are acquired from the pair of two-camera

omni-directional imaging devices and each imaging device is processed by a

respective laptop. As a result, to communicate between the two laptops, we set up a

local area network to send images and control signals.

As shown in Fig. 2.5, laptop computer COMB is used to display the

perspective-view image and the acquired omni-image, therefore, laptop computer

COMB needs to receive these images from COMA through the local network.

Moreover, the control signals of the selected view direction produced by COMA are

sent to COMB for generating the corresponding perspective-view image.

2.3 Review of Adopted Camera System

and 3D Data Acquisition Process

In this section, we review the adopted camera system and the corresponding 3D

data acquisition process proposed in Yuan el at. [19]. First of all, we introduce the

detail of building the camera system. The entire system includes four lenses of model

LV0612H, two CMOS cameras of model ARTCAM-200SO, and two CMOS cameras

of model ARTCAM-200MI. Table 2.2 lists the specifications of the COMS cameras.

To build an omni-camera, the most important task is to combine a projective

CCD camera and a hyperboloidal-shaped mirror into an omni-camera. In the design

process of the omni-camera, an optics manufacturer was requested to produce

hyperboloidal-shaped mirrors. The parameters of each of the mirrors are described

here. The radius r of the hyperboloidal-shaped mirror is 4cm. The projective camera

has a focal length f of 6 mm and a sensor width Sw of 2.4mm. And the axis of the

 18

camera is aligned with the axis of the hyperboloidal-shaped mirror. Therefore, by the

principle of similar triangles, the distance d between the optical center of the lens and

the mirror center can be computed from the following equation:

w

d f

r S
 . (2.1)

Also, as shown in Fig. 2.6(a), the hyperboloidal shape of the mirror in the camera

coordinate system may be described as:

2 2

2 2

2 2
1,

R Z
R X Y

a b
     . (2.2)

To get the parameters a and b of the hyperboloidal shape of the mirror, first the

elevation angle α in Figure 2.6 (a) can be obtained from the relation between the CCS

and the ICS of an omni-camera system derived by Wu and Tsai [20] as follows.

2 2

2 2

()sin 2
tan .

()cos

b c bc

b c






 



 (2.3)

Furthermore, by the simple formula d = 2c where the value c is the distance from the

center O shown in Fig. 2.6 to the mirror center Om, the angles θ and β can be

computed as follows:

1tan ,
2

.
2

r

c



 



 

 (2.4)

In Eq. (2.3), let the omni-camera have the largest FOV, the incidence angle α be set 0,

and by using Eq. (2.4), the parameter b can be obtained by solving Eq. (2.3). Finally,

the parameter a is derived from the following equation:

 2 2c a b  . (2.5)

 19

f

b

Image plan

Oc

O

β

α

c

c

Z

X

Y

U
V

Om

P (X, Y, Z)

q (u, v)

r

d

Focal length f

Sensor width Sw

Mirror

Optical center

(a) (b)

Figure 2.6 (a) Relation between the world coordinates and the image coordinates (b)

Geometry between the mirror and the CMOS sensor in camera.

Each omni-camera was built with these parameter values, and a two-camera

omni-directional device can be constructed with two omni-cameras aligned vertically.

Table 2.2 Specifications of used COMS cameras.

 ARTCAM-200SO ARTCAM-200MI

Resolution 2.0 M pixels(1600*1200) 2.0 M pixels(1600*1200)

Dimension 33mm × 33mm × 50mm 33mm × 33mm × 50mm

CMOS sensor size 1/2” (6.4×4.8mm) 1/2” (6.4×4.8mm)

Mount C-mount C-mount

Frame per second 8 fps 5 fps

Direct show camera Yes No

After describing the way of building the cameras, we now describe the adopted

method to compute stereo information from a two-camera omni-directional imaging

device. In the omni-imaging device, relevant 3D data can be computed by two

elevation angles and an azimuth angle of a scene point P. As shown in Figure 2.7(a),

the point P projects on each hyperboloidal-shaped mirror and forms a pair of

 20

corresponding points in the upper image and the lower image captured with a

two-camera omni-imaging device. The elevation angles of point P on the

hyperboloidal-shaped mirrors are defined as α1 and α2, respectively. Also, the center

of the upper hyperboloidal-shaped mirror is assumed to be the origin of the world

coordinates (0, 0, 0). It is desired now to compute the stereo depth data of point P in

terms of the two elevation angles α1 and α2.

(a) (b)

Figure2.7 Computation of depth using the two-camera omni-directional imaging

device. (a) The ray tracing of a scene point P in the imaging device with a

hyperboloidal-shaped mirror. (b) A triangle in detail (part of (a)).

To obtain stereo depth of a scene point P(x, y, z), finding two elevation angles α1

and α2 by looking up a pano-mapping table is required, and the construction of

pano-mapping table will be described in Chapter 3. As shown in Figure 2.7(b), the

distance d between the point P and the upper mirror center c1 is computed by the

triangulation principle shown in Figure 2.7(a) using the equation below:

2 1 2sin(90) sin()

d b

  


 
, (2.6)

where the parameter b is the baseline of the stereo imaging device.. The equation of

 21

(2.6) may be reduced to be the following equation by trigonometry:

2

1 2 1 2

1 1 2

cos ,
sin cos cos sin

1
.

cos tan tan

b
d

b
d


   

  

 
  

 


 (2.7)

As a result, the horizontal distance dw and the vertical distance Z may be computed as

follows:

1
1

1 2

1

1 2

tan
sin ,

tan tan

1
cos .

tan tan

z d b

dw d b




 


 

  


  


 (2.8)

Assume that point P at world coordinates (x, y, z) is projected on a point I at

image coordinates (u, v) in the image coordinate system (ICS). Then, we can use point

I to calculate the azimuth angle . A triangulation which is illustrated in Figure 2.8

includes an azimuth angle  between the X-axis and point I. As a result, the azimuth

angle  can be computed by the following equation:

 1 1

2 2 2 2
cos sin

v

u v u v


   

 
. (2.9)

According to the characteristic that the axis of the camera is aligned vertically

with the axis of the hyperboloidal-shaped mirror as well as the rotation-invariance

property of omni-imaging, the azimuth angle of a point in the ICS is the same as that

of the corresponding point in the WCS. We can calculate the parameters x and y by

the distance dw and the azimuth angle  in the WCS as follows:

1 2

1 2

1
cos cos ,

tan tan

1
sin sin .

tan tan

x dw b

y dw b

 
 

 
 

    


    


 (2.10)

As a result, by the use of the pano-mapping table, each pixel in an omni-image

 22

can be transformed to an elevation angle and an azimuth angle. Once the azimuth

angle  and a pair of elevation angles α1 and α2 are obtained, we are able to compute

the location of point P in the WCS. Therefore, a pair of matching points (one is in an

omni-image taken by the upper omni-camera, and the other is in an omni-image taken

by the lower omni-camera) is known, the stereo information of the unique point in the

WCS may be obtained.

θ

θ
dw

f

I(u,v)

U

V

P(x,y,z)

X

Z

Y

Upper hyperboloidal-
shaped mirror center

c1 (0, 0, 0)

Figure2.8 System configuration of upper omni-camera with a hyperboloidal-shaped

mirror.

2.4 System Processes

To get stereo information from a pair of two-camera omni-imaging devices, the

omni-cameras need to be calibrated. For this purpose, the space-mapping technique is

applied, and the technique is based on the use of a pano-mapping table. The process

of constructing the table is shown by Fig. 2.9. We will introduce the process in

Chapter 3 elaborately. Moreover, the method to unwarp an omni-image into a

perspective-view image using the pano-mapping table is also described in Chapter 3.

 23

The above-mentioned process is an advance preparation before developing the

system. As shown in Figure 2.10, to develop the car-driving assistance application, we

need to read the related tables at the beginning. Computer COMA used in this study is

responsible for analyzing omni-images of the surrounding environment by the optical

flow method and estimating the moving direction of the video surveillance vehicle by

the produced motion vectors. Then, the analyzed result and acquired images are sent

to another computer COMB for generating the corresponding perspective-view image.

The process will be introduced elaborately in Chapter 4. Computer COMB generates

the corresponding perspective-view images with respect to these signals. The method

of quickly generating a perspective-view image is described in Chapter 3. Moreover,

the images of the driving history in Computer COMA are sent to Computer COMB for

off-line inspection. The images of the driving history can be sequentially displayed; in

the meantime, the user may select the view direction to inspect the corresponding

perspective-view image sequence.

Start of Learning

Landmark

Learning

Calculating the

Radial Stretching

Functions

Corresponding

pairs of Radiuses

and Elevation

Angles

Pano-mapping

Table

Store of

Learning Data

End of Learning

Figure 2.9 Flowchart of proposed learning process.

 24

Start of Video Surveillance

Pano-mapping

Table

Perspective

mapping table

Sequential

omni-

images

Load Tables

Computing motion

vectors

Analysis of the Moving

Directions

Start of Video Surveillance

Pano-mapping

Table
Sequential

omni-

images

Load Tables

Send Command and images

to Another Computer

Constructing

Correspondence

Perspective-view ImageControl Signal &

Omni-images

Display

Perspective-view

Image
Store images

Store images

Computer A with

Camera System A

Computer B with

Camera System B

Mouse

Motion

Image

Buffer

Figure 2.10 Flowchart of the moving direction analysis.

Both the application of nearby static car detection with a static video surveillance

vehicle and the application of nearby static or moving car detection with a moving

video surveillance vehicle require reading table files as a preparation task as shown in

Fig. 2.11. In the application of nearby static car detection with a static video

surveillance vehicle, two omni-images are captured with a two-camera

omni-directional imaging device and the detection process is conducted. Finally, the

stereo information of the car is computed. The detailed process will be introduced in

Chapter 5. Additionally, nearby static or moving car detection with a moving video

surveillance vehicle requires two consecutively acquired images to conduct the

detection process. We need to create an image buffer to keep the previous image and

acquire a current image with the omni-camera for analyzing the omni-images of the

surrounding environment. The detection and position estimation of the static or

moving car will be described in Chapter 6. Finally, the two applications will both

 25

display the surround map. Both tasks are required complex processes, so we will

introduce above-mentioned processes in the remaining chapters elaborately

Start of Video Surveillance

Sequential

omni-images

Pano-mapping

Tables

Detection of a

static surrounding

car

Estimating 3D

Data of the car

Load Tables

Display Surround

Map

Detection of a moving

surrounding car

Estimating 3D Data

of the car

Image

buffer

Figure 2.11 Flowchart of vehicle detections

 26

Chapter 3

Generation of Perspective-view

Images Using Pano-mapping Tables

In this chapter, we describe the details of the scheme we use to generate

perspective-view images from omni-images acquired with the omni-image devices

attached to the roof of the video surveillance vehicle used in this study. Before

describing the detail in Sections 3.2 through 3.4, we review first in Section 3.1 a

space-mapping technique [8] we adopt for use in coordinate mapping from the

omni-image to the perspective-view image.

3.1 Review of Adopted Pano-mapping

Method for Omni-image

Unwarping

The scene appearing in an omni-image is distorted due to the light reflection on

the hyperboloidal-shaped mirror. In order to facilitate observation of the distorted

image, we want to unwarp the omni-image into a perspective-view image. The

conventional method for unwarping the omni-image requires the parameters of the

hyperboloidal-shaped mirror and the camera. However, sometimes we cannot obtain

such parameter information completely. The space-mapping technique proposed by

Jeng and Tsai [8] can solve this problem and is adopted in this study. The technique is

based on the use of a so-called pano-mapping table which records the relationship

 27

between the pixel in the image and the elevation and azimuth angles of the

corresponding world-space point with respect to the focal center of the mirror. The

creation of the pano-mapping table includes three major steps: (1) landmark learning;

(2) estimation of coefficients of radial stretching function; and (3) filling of the

pano-mapping table entries. We will introduce these steps in Section 3.2.

With the use of the pano-mapping table, an omni-image can be transformed into

perspective-view images. The transformation process will be introduced in Section

3.3. Besides, the process of generating perspective-view images is generally

complicated. To shorten the computation time, we divide the omni-image into

portions seen from six outward viewing directions, and create a table to record the

relationship between each of the six omni-image portions and its perspective-view

image.

3.2 Construction of Pano-mapping

Table

3.2.1 Landmark Learning

The first step of creating the pano-mapping table is to establish several pairs of

world-space point and the corresponding image point in the taken omni-image. The

coordinates of the world-space points in these pairs, called landmark points, are

measured manually with respect to a selected origin in the world space. To facilitate

selecting the landmark point pairs, a user interface was provided, as shown in Fig. 3.1.

We define the focal center Oc in the image coordinates (u0, v0) as the origin in the

image coordinates system and Om as the focal point of the hyperboloidal-shaped

mirror at the world coordinates (X0, Y0, Z0). Assume that n sets of corresponding

 28

points are selected, and each set include a landmark point pi at image coordinate (ui, vi)

with respect to Oc as well as the corresponding world-space point Pi at the coordinates

(Xi, Yi, Zi) with respect to the origin Om, where i = 0, 1, …, n  1. In this step, the

construction of a mapping table requires learning at least six landmark points. And the

more landmark points are selected, the more accurate the table is.

Figure 3.1 An interface to for user to select the landmark points.

3.2.2 Estimation of Coefficients of Radial Stretching

Function

Due to the nonlinear shape of the hyperboloidal-shaped mirror, the

radial-directional mapping must be represented as a non-linear function. As shown in

Figure 3.2, each elevation angle corresponds to a radial distance. More specifically,

each elevation angle  of a scene spot P at world coordinates (X, Y, Z) corresponds to

the radius r of the corresponding point p in the omni-image. Therefore, we want to

find out the relationship between the radius r and the elevation angle  by the use of a

non-linear function fr, called radial stretching function. In this study, fr is

 29

approximated by the following 5th-degree polynomial equation:

 1 2 3 4 5

0 1 2 3 4 5()rr f a a a a a a                 . (3.1)

To compute the desired coefficients a0 through a5, the following algorithm is

performed.

O m

Omni-image

Ol

X

Y

P (x, y, z)
U

V

p (u, v)

Z

X

Y

Z

U

V



r

Oc(u0, v0)

Figure 3.2 Mapping between a radius distance r and elevation angle ρ.

Algorithm 3.1 Computing the coefficients of the radial stretching function for the

mirror.

Input: a set of n landmark point pairs (pk, Pk) selected in advance for the radial

stretching functions fr, where pk is a point in an omni-image I and Pk is the

corresponding point in the world space.

Output: the six coefficients ao through a5 of fr.

Steps.

Step 1. For each selected landmark point pairs, (Pk, pk), including world-space point

Pk at coordinates (Xk, Yk, Zk) in the WCS and image point pk at coordinates

(uk, vk) in I, compute the radius rk of pk in I and the elevation angle k of Pk

 30

in the WCS by the following equations:

2 2 1

2 2
; tan .k

k k k k

k k

Z
r u v

X Y
   


 (3.2)

Step 2. Substitute rk and k into the equation for estimating fr described by Eq. (3.1)

to obtain n simultaneous equations as follows:

1 2 3 4 5

0 0 0 1 0 2 0 3 0 4 0 5 0

1 2 3 4 5

1 1 0 1 1 2 1 3 1 4 1 5 1

1 2 3 4 5

1 1 0 1 1 2 1 3 1 4 1 5 1

()

()

() .

ri

ri

n ri n n n n n n

r f a a a a a a

r f a a a a a a

r f a a a a a a

     

     

           

           

           

           

 (3.3)

Step 3. Solve the equations in (3.3) to obtain the desired coefficients (a0, a1, a2, a3, a4,

a5) for fr by a numerical analysis method.

In the above process of computing the radial stretching function, it is assumed

that the mirror is perfect with rotational symmetry in the entire angle range of 0
o

through 360
o
. However, this is not the case in real applications; the surface of the

hyperboloidal-shaped mirror cannot be so perfect. To increase the accuracy of the

estimated fr and so the precision of the constructed pano-mapping table, we divided

the 360
o
 range of azimuth angles of the mirror equally into six parts, each with 60

o
,

and then applied the above process to obtain six radial stretching functions fr1 through

fr6 for the six parts with each fri described by the coefficients a0i through a5i with i = 1,

2, …, 6.

3.2.3 Filling of Pano-mapping Table Entries

The procedure of constructing the pano-mapping table with the radial stretching

function for each of the six azimuth angle ranges is described here. The so-called

pano-mapping table is a 2-dimensional table with its horizontal and vertical axes

 31

specifying the azimuth angle  and the elevation angle , respectively. An illustration

of the mapping between the azimuth and elevation angle pair of the omni-image and

the horizontal and vertical axes of the pano-mapping table, respectively, is shown in

Fig. 3.3, and an example of the pano-mapping table is shown in Table 3.1.

Each entry Eij with indices (i, j) in the pano-mapping table corresponds to an

azimuth-elevation angle pair (i,j). The azimuth-elevation pair represents an infinite

set of points on a light ray with the azimuth angle i and the elevation angle j with

respect to the focal center Om in the WCS. We divide the range 2π of the azimuth

angles into M intervals and the range of the elevation angles between two pre-selected

limits, s and e, into N intervals. Due to the property of rotational invariance of

omni-imaging, the azimuth angle of the scene point P in the WCS with respect to

the X-axis is identical to the azimuth angle θ of the corresponding point p in the image

with respect to the u-axis. Thai is, we have  = .

(a) (b)

Figure 3.3 Illustration of mapping between the azimuth-elevation angle pair of the

omni-image and the horizontal and vertical axes of the pano-mapping table,

respectively.

With the above estimated six sets of coefficients for the six radial stretching

functions, the corresponding pano-mapping table Tpm can be filled with the

corresponding image coordinates by the following algorithm.

 32

Table 3.1 An example of the pano-mapping table.

 1 2 3 4 … M

1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uM1, vM1)

2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uM2, vM2)

 3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uM3, vM3)

 4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uM4, vM4)

 … … … … … …

 N (u1N, v1N) (u2N, v2N) (u3N, v3N) (u4N, v4N) … (uMN, vMN)

Algorithm 3.2 Construction of the pano-mapping table.

Input: six coefficient sets of six radial stretching functions fr1 through fr6 for the six

parts of the azimuth angle range mentioned previously.

Output: a pano-mapping table Tpm of the dimension M×N.

Steps.

Step 1. Divide the range 2π of the azimuth angles into M intervals, and compute the

ith azimuth angle i by

 i = (2 i for i = 0, 1, …, M  1. (3.4)

Step 2. Divide a pre-selected range s, e] of the elevation angle into N intervals,

and compute the j-th elevation angle j by

 j = [(e  s)/N]j + s for j = 0, 1, ..., N  1. (3.5)

Step 3. Fill the entry of (i, j) with the corresponding image coordinates (uij, vij)

computed as follows:

 cos , sini j j i i j j iu r v r     , (3.6)

where the radius rj is computed by the radial stretching function as follows:

 rj = fri(j) = a0i+a1ij
1
+a2ij

2
+a3ij

3
+a4ij

4
+a5ij

5
, (3.7)

with the index i in (3.7) computed by:

 33

 /(/ 3)ii      (3.8)

and a0i through a5i being the coefficients for function fri obtained by

Algorithm 3.1 for the i-th sub-range of azimuth angles mentioned

previously.

3.2.4 Creation of r-Mapping Table

Moreover, in this study we also construct an additional table for mapping the

value of  to the value of r, which is called the r- mapping table. It is also generated

from the functions fr1 through fr6 obtained previously. The table, as shown in Table

3.2, is a simpler form of the pano-mapping table, which records only the relations

between the elevation angle  and the corresponding radius r in the six parts of the

azimuth angle range. This table may be used to accelerate the computation of point

coordinate transformation for some applications, which will be described in the

subsequent chapters. The detail of the generation process is described as an algorithm

in the following.

Table 3.2 An example of the r- mapping table.

P1 (r11, 1) (r21, 2) (r31, 3) (r41, 4) … (r N1,  N)

P2 (r12, 1) (r22, 2) (r32, 3) (r42, 4) … (rN2, N)

 … … … … … …

P6 (r16, 1) (r26, 2) (r36, 3) (r46, 4) … (rN6, N)

Algorithm 3.3 Construction of an r- mapping table.

Input: six coefficient sets of six radial stretching functions fr1 through fr6 for the six

parts of the azimuth angle range mentioned previously.

Output: an r- mapping table Tr of dimension 6×N.

 34

Steps.

Step 1. Divide the pre-selected range s, e] of elevation angles into N intervals

and compute the jth elevation angle j by

 j = [(e  s)/N]j + s for j = 0, 1, ..., N  1. (3.9)

Step 2. Divide the azimuth angle range from 0
o
 through 360

o
 into six equal parts, P1,

P2, …, P6.

Step 3. Fill the entry of (Pi, j) of Table Tr with the corresponding pair (rij, j)

computed as follows:

 rij = fri(j) = a0i+a1ij
1
+a2ij

2
+a3ij

3
+a4ij

4
+a5ij

5
, (3.10)

where i = 1, 2, …, 6 and a0i through a5i are the coefficients for function fri

computed by Algorithm 3.1 described previously.

To utilize the table Tr, once the radius distance r of a point p in the omni-image

is obtained, we can determine which part Pi point p belongs to according to the

azimuth angle  of p, and search the table for all values of r and find out the one, say

rij, whose corresponding j in the table is closest to r in value. Then, j is the mapping

result we want. Moreover, the table may also be used for mapping the value of  to

that of r in a reverse way, which will be described in later chapters.

3.3 Image Unwarping and Generation

of Perspective-view Images

To generate a perspective-view image, a view plane which is perpendicular to

the ground and in front of the camera is imagined as shown in Fig. 3.4. Every pixel on

the view plane can be assigned a corresponding point in the omni-image by the use of

 35

the pano-mapping table. By finding this relationship, we are able to unwarp the

omni-image into perspective-view images by getting the color value of the

omni-image point to assign the value on the view plane. The generation of the

perspective-view image from the omni-image with the aid of the pano-mapping table

is described as follows.

O m

Omni-image

Ol

X

Y

Xp (X, Y, Z)
u

v

Xi (u, v)

View plane
Ap

W

H

Z

Figure 3.4 An example of generating the perspective-view image.

Algorithm 3.4 Construction of a perspective-view image.

Input: an omni-image I, the pano-mapping table Tpm with M × N entries, and a planar

rectangular region Ap of size W × H at a distance D with respect to the mirror

center Om.

Output: a perspective-view image Q of any size MQ × NQ.

Steps:

Step 1. Calculate the angle  of each pixel qkl at coordinates (k, l) in Q according to

the following equation which is obtained from trigonometry shown in Fig.

3.5(a):

 36

 W
2
 = D

2
+D

2－2DD cos, (3.11)

or equivalently,

2

1

2
cos (1)

2

W

D
  


. (3.12)

Step 2. Compute the angle  of q shown in Fig. 3.5(a) by trigonometry again:

(2)

2

 



 . (3.13)

Step 3. Compute the index i of the entry Eij in table Tpm to find the corresponding

image coordinates (uij, vij) in I for qkl in the following way.

(1) Let Pij denote the intersection point of the light ray Rq projected onto qkl

and the planar projection region Ap (note that each entry Eij has a

corresponding Pij).

(2) Compute the distance d between point Pij and the border point Pr shown

in Figure 3.6(b) by linear proportionality as

Q

k
d W

M
  , (3.14)

because the projection region Ap has a width of W, the image Q has a

width of MQ pixels, and pixel qkl has an index of k in the horizontal

direction.

(3) Compute the distance between the focal center Om and the projected

point Pij by

 2 2 2 cosL D d d D       . (3.15)

(4) With the distance h from point Pij to the line segment m rO P connecting

Om and Pr as shown in Fig. 3.5(b) being

 37

 h = d sin , (3.16)

and the azimuth angle q satisfying

2 2

sin
sin

2 cos
q

h d

L D d d D







 

    
, (3.17)

compute the azimuth θq of point Pij with respect to
m rO P as

 1 1

2 2

sin
sin sin [].

2 cos
q

h d

L D d d D






  
 

    
 (3.18)

(5) Compute the index i of entry Eij by linear proportionality as

2

q
i M




  . (3.19)

(a) (b)

Figure 3.5 A top view configuration of generating a perspective-view image.

Step 4. With a lateral view illustrating the imaging configuration shown in Fig. 3.6,

compute the index j of the entry Eij in table Tpm in the following way:

(1) With the height of Ap being H and the height of image Q being H divided

into NQ intervals, compute the height of Pij by linear proportionality as:

 q

Q

H
H l

N
  . (3.20)

Om

Pij



Pr D

h



q

(

b

)

d

L

Pr




Om D

W



Pij

 38

(2) By trigonometry, derive the elevation angle q as:

 1tan
q

q

H

L
   

  
 

. (3.21)

(3) Compute the index j of the Eij by proportionality again as:

()

()

q s

e s

N
j

 

 

 



. (3.22)

Step 5. With the indices (i, j) of the entry Eij as computed in the last two steps,

obtain image coordinates (uij, vij) by looking up Table Tpm.

Step 6. Assign the color value of the image pixel at coordinate (uij, vij) in image I to

the pixel qkl of Q at coordinates (k, l).

Step 7. After all pixels of image Q are processed, take the final image Q as the

desired perspective-view image.

Figure 3.6 A lateral-view configuration of generating a perspective-view image.

 39

3.4 Construction of Perspective

Mapping Table for Computation

Speedup

In the last section, we reviewed the method proposed by Jeng and Tsai [8] to

transform an omni-image into a flat perspective-view image. However, the

transformation process takes much time to compute the involved formulas. To shorten

the computation time, a new table of six outward view directions is created.

Specifically, the 2π range of azimuth angles are divided into portions seen from the

six outward viewing directions and the interval between every two directions includes

60 degrees. See Figure 3.7 for an illustration. We denote the index of the six intervals

by k which is related to the viewing direction of the perspective-view image. More

specifically, we add a shift angle θ to change the transformation range of the

omni-image, and the shift angle is computed as follows:

2

6
' k


   . (3.23)

Therefore, Eq. (3.17) can be rewritten as follows:

 1sinq

h
'

L
   . (3.24)

We transform the omni-image into the perspective view image Qk in the six different

viewing directions with index k, where k = 0, 1, …, 5. Once all pixels in Qk are

processed, we record the entries of all pixels in the table and denote the entries as Tk.

As a result, the new table Tpp, called perspective mapping table, is created, which

contains six sets T0 through T5 of perspective mapping entries to map pixels from the

omni-image to the perspective-view image. When we want to generate a

perspective-view image, it can be generated immediately by looking up the table Tpp.

 40

0

T0

T1

T2

T3

T4

T5

60120

300240

180

Figure 3.7 A top view of segmenting an omni-image.

 41

Chapter 4

Car-driving Assistance by Analyzing

Omni-images of Surrounding

Environment

4.1 Idea of Proposed Method

While driving the video surveillance vehicle, we want to monitor the surrounding

environment for driving assistance. Owing to the wide FOV of the omni-camera and

the affixed positions of the pair of two-camera omni-directional imaging devices on

the vehicle roof, the monitored range of the camera system covers the entire car

surround. Besides, the omni-images acquired with the omni-camera system may be

used for producing panoramic images and estimating the relevant stereo information

of surrounding objects. In this study, we develop two applications using the camera

system for environment monitoring.

One application is to use the proposed system to provide the driver a

perspective-view image corresponding to the moving direction of the video

surveillance vehicle, which is useful for inspection of the possible bind spots around

the surveillance vehicle in order to avoid car accidents. Another application is using

the proposed system as a driving recorder which may be used to record the

surrounding environment images in the driving history, and to allow the user to see

the perspective-view image sequence in any selected view direction which is

constructed in an off-line fashion from the acquired sequential omni-images.

 42

4.2 Analysis of Car Direction by

Motion Vectors in Omni-images

4.2.1 Idea of car direction analysis by motion vectors

When driving the video surveillance vehicle, it is desired to analyze the motions

in the consecutively acquired omni-images to determine the vehicle moving direction,

and generate and display the corresponding perspective-view image assist the driver

to observe blind spots around the vehicle. We apply the optical flow analysis method

to implement this idea in this study. We produce motion vectors on the consecutively

acquired images and analyze these motion vectors to estimate the vehicle moving

direction. We divide the vehicle direction estimation work into six steps: (1) select the

detection region (2) compute the motion vectors; (3) transform these vectors from the

ICS to the WCS; (4) eliminate the outliers of these vectors; (5) estimate the moving

direction; and (6) display of the corresponding perspective-view image. These steps

will be introduced in the following section.

In this study, we use two laptops as the control units to handle the above tasks.

More specifically, one of the laptops is responsible for analyzing the moving direction

of the video surveillance vehicle, and the analyzed result is sent to another computer

to generate the corresponding perspective-view image. To generate perspective-view

images quickly, we use the perspective mapping table introduced in Chapter 3 to

speed up the computation.

 43

4.2.2 Car Direction Detection and Display of

Corresponding Perspective-view Images

In this section, we describe the proposed technique to estimate the moving

direction of the video surveillance vehicle. The involved six major steps mentioned

previously are described in order subsequently.

A. Selection of the detection region for optical flow analysis

To analyze the omni-image acquired with the omni-camera system, it is required

to choose a detection region in the image and apply the optical flow analysis method

in the region to estimate the motion vectors. The selection of the detection region is

divided into three cases, as illustrated in Fig. 4.1:

(1) when the video surveillance vehicle is turning to the right, we select the right-front

region of the omni-image as the detect region;

(2) on the contrary, when turning to the left, the left-front region is selected; and

(3) if the video surveillance vehicle is moving forwarding, the front region will be

selected.

Detection region

Omni-image

Detection region

Omni-image

Detection region

Omni-image

(a) (b) (c)

Figure 4.1 Illustration of selecting the detection region where the red points

represent the spots on which optical flows need be found. (a) Detection region used

in the case of turning to the right. (b) Detection region used in the case of moving

forward. (c) Detection region used in the case of turning to the left.

 44

The optical flow pattern is different in each different motion case, and each

pattern corresponds to a type of motion of the video surveillance vehicle (turning to

the left, turning to the right, or moving forward), as illustrated in Fig. 4.2. Therefore,

we cannot analyze the motion vectors in an unchanged detection region all the time to

estimate the vehicle moving direction; otherwise, the optical flow pattern in the case

of the left turn and the right turn might result in wrong analysis results about the

vehicle moving direction. To solve the problem, we let the detection region be

changed dynamically in accordance with the previous moving direction detection

result, as illustrated in Fig. 4.2.

Detection region

Detection region

Detection region

(a) (b) (c)

Figure 4.2 The optical flow pattern and the corresponding detection region. (a) The

case of turning to the right. (b) The case of moving forward. (c) The case of turning

to the left.

B. Estimation of motion vectors by optical flows

The optical flow analysis method may be used to estimate the motion vectors of

objects, surfaces, and edges caused by the relative motions between two consecutive

images. Assume that the light is stable and the displacements of concerned objects in

the image are small. Under such conditions, the motion vectors between two

consecutive image frames which are taken at times t and t + dt can be estimated by the

 45

optical flow analysis method in the following way. If the image intensity is

continuous and can be differentiated, the image intensity at time instant t is

constrained by

 I(x, y, t) = I(x + dx, y + dy, t + dt), (4.1)

where the function I is the image intensity, x and y specify the location of the point in

the image, and t is the sampling time. The image constraint at I(x + dx, y + dy, t + dt)

in Equation (4.1) can be expressed as a truncated Taylor series in the following way:

 (, ,) (, ,)
I I I

I x dx y dy t dt I x y t dx dy dt
x y t

  
      

  
. (4.2)

From Eqs. (4.1) and (4.2), it follows that:

 0,
I dx I dy I dt

x dt y dt t dt

  
  

  

or equivalently, that

 0,x y

I I I
V V

x y t

  
  

  
 (4.3)

where Vx = dx/dt and Vy = dy/dt represent the velocity or optical flow of I(x, y, t) and

I

x




,

I

y




, and

I

t




 are the derivatives of point p at coordinates (x, y). Therefore, Eq.

(4.3) may be rewritten as:

 Ix(p)Vx + Iy(p)Vy = It(p) (4.4)

where Ix(p), Iy(p), and It(p) are equal to I/x, I/y, and I/t, respectively, all of

point p at coordinates (x, y).

However, Eq. (4.4) derived from a single point p has two unknowns Vx and Vy,

and cannot be solved uniquely using the data of the single point p. This is a traditional

optical flow problem called “the aperture problem.” In order to solve this problem, the

 46

Lucas-Kanade method [14] is adopted. The Lucas-Kanade method divides an image

into small regions and assumes that the displacements of the image content within a

small neighborhood of the concerned point p are small and approximately constant.

Accordingly, we may set a window around point p with n pixels, p1, p2, ..., pn inside

the window. Then, the local image motion vector (Vx, Vy) at p with image coordinates

(x, y) must satisfy the following equations according to Eq. (4.4):

1 1 1

2 2 2

() () (),

() () (),

() () ().

x x y y t

x x y y t

x n x y n y t n

I p V I p V I p

I p V I p V I p

I p V I p V I p

  

  

  

 (4.5)

Eqs. (4.5) can be expressed in a matrix form:

Av = b,

where

1 1 1

2 2 2

() () ()

() () ()
, , .

() () ()

x y t

x y x t

y

x n y n t n

I p I p I p

I p I p V I p
A v and b

V

I p I p I p

   
   

           
   

    

 (4.6)

A solution derived by the least square principle to solve the above matrix equation is:

 ,T TA Av A b

or equivalently,

 1() .T Tv A A A b (4.7)

Accordingly, we can estimate the motion vectors of consecutively acquired images

using Eq. (4.7) above. An example of the results of applying the optical flow analysis

method is shown in Fig. 4.3.

 47

C. Transformation of motion vectors

To estimate the moving direction of the video surveillance vehicle, we have to

analyze these motion vectors produced by the optical flow analysis method. However,

the images captured with the omni-cameras are distorted due to the light reflection on

the hyperboloidal-shaped mirrors in the omni-camera system. As a result, before

computing the direction angle of these motion vectors, the transformation of the

motion vectors from the omni-image plane to the world coordinate system as shown

in Fig. 4.4(b) is necessary. The configuration of such a transformation of the motion

vector of a real-world point on the ground is shown in Fig. 4.4(a). We divide the

transformation process into three steps as described in the following algorithm.

(a) (b)

(c)

Figure 4.3 An example of results of implementing the optical flow analysis method.

(a) An image frame taken at time t. (b) An image frame taken at time t + dt. (c) The

result of the motion vectors produced by the optical flow analysis method with (a)

and (b) as inputs.

 48

Algorithm 4.1 Transformation of a motion vector from the ICS to the WCS.

Input: the beginning point Ps at image coordinates (u, v) in an image frame It and the

ending point Pe at image coordinates (u′, v′) in the next image frame It+1, both

of the motion vector Vi of a real-world point P on the ground, and the r-

mapping table Tr.

Output: the directional angle of the motion vector with respect to the X-axis in the

WCS.

Steps.

Step 1. Compute the elevation angle 1 and the azimuth angle 1 of the beginning

point Ps and the ending point Pe in the ICS by the following way.

1.1 Compute the azimuth angle 1 of point Ps at image coordinates (u, v) by

 2 2 1 1

1; sin cos
v u

r u v
r r

      . (4.8)

1.2 Look up the r- mapping table Tr to obtain the elevation angle 1 with

the radius distance r.

1.3 Compute2 and 2 of the ending point Pe in a similar way.

Step 2. Transform the image coordinate (u, v) of point Ps in image It to world

coordinates (X, Y, Z) of point P by the following way.

2.1 Compute the horizontal distance dw between P and the focal center of

the mirror Om by

 dw = Hmcot(1), (4.9)

where the distance between the mirror center and ground is known to

be Hm.

2.2 Compute as follows the world coordinates (X, Y, Z) of point Ps

according to the property of rotational invariance of omni-imaging

 49

which says that the azimuth angle  of point P in the WCS with respect

to the X-axis is identical to the azimuth angle  of Ps in the ICS :

1

1

cos ;

sin ;

.

w

w

m

X d

Y d

Z H





 

 



 (4.10)

2.3 Transform the image coordinates (u′, v′) of the ending point Pe in image

It+1 to the world coordinates (X, Y, Z) of point P in a similar way.

Step 3. Compute the directional angle Ai of the motion vector Vi with respect to the

X-axis by

1

2 2

1

2 2

sin ;
() ()

 cos .
() ()

i

Y' Y
A

Y' Y X' X

X' X

Y' Y X' X





 
 
    

 
 
    

 (4.11)

By Algorithm 4.1, we can transform all the motion vectors produced by the

optical flow analysis method into the WCS and get all directional angles of the motion

vectors for analyzing the moving direction of the video surveillance vehicle.

Om

Omni-image

Ol

X

Y

Ps(X, Y, Z)

Pe(X, Y, Z)

U

V

Ie(u, v)

Is(u, v)

X

Y

Z

U

V

Z



β
d

P(X, Y, Hm)

Upper mirror base Center

 C (0, 0, 0)

f

dw

Hm

X

Y

Ground

(a) (b)

Figure 4.4 Transformation of a motion vector from the ICS to the WCS. (a) An

illustration of the camera system and the motion vector. (b) The ray tracing of a scene

point P on the ground projected on the hyperboloidal-shaped mirror.

 50

D. Elimination of Outlier

For analysis of the vehicle moving direction, only motion vectors with lengths be

larger than a threshold value TH need be considered. The reason is that the shake of

the omni-cameras due to rough road conditions or the shake of the car engine might

create short-length motion vector which should be considered as noise and eliminated

to increase the accuracy of the vehicle moving direction estimation result.

To eliminate the outlier of the motion vectors, each directional angle of the

remaining motion vectors is regarded as a feature and the standard deviation value is

computed accordingly, as shown in Fig. 4.5. More specifically, let the angles of these

motion vectors be denoted as Ai, and let the total number of motion vectors be

denoted as n. Then, the mean value A of these motion vectors may be computed as

follows:

1

1
.

n

i

i

A A
n 

  (4.11)

Once the mean value is computed, we can calculate the standard deviation value Sn of

the motion vector data as follows:

 2

1

1
() .

1

n

n i

i

S A A
n 

 

 (4.12)

If the value Ai of a certain motion vector lies outside the range [–Sn + A , A +

Sn] set by the standard deviation Sn, we will regard it as an outlier and discard it. After

all the outliers are eliminated, we compute the mean value of the remaining data as

the desired directional angle of the moving direction of the video surveillance vehicle.

 51

Figure 4.5 A distribution chart of the direction angle of motion vectors.

E. Estimation of Moving Direction

The moving directions of the video surveillance vehicle may be categorized into

three classes  turning to the right, turning to the left, and moving forward. And the

ranges of the directional angles of the three classes are determined by our

experimental experiences. They are listed in Table 4.1, which may be used to classify

the results of the directional angles derived by Eq. (4.11) into the three vehicle

moving directions.

Table 4.1 The range of the angles of the three vehicle moving directions.

State Degree

Moving forward 261°~ 279°

Turn to the left 180°~260°

Turn to the right 280°~ 360°

Besides, we use the concept of finite state machine (FSM) to determine the

moving direction of the video surveillance vehicle. The finite state machine designed

for use in this study and illustrated in Fig. 4.6 is composed of six states, which can be

categorized into three classes: (1) turning to the right; (2) turn to the left; and (3)

moving forward. Specifically, the video surveillance vehicle, in one of the states, goes

through a transition to another state depending on the input which is the analysis

 52

result of the moving direction. If the analysis result for the next cycle is identical to

that of the current cycle in the FSM, the input to the FSM is taken to be “1”; else, to

be “0.” Also, we propose in this study a concept of giving a second chance for the

state-changing check, i.e., if the moving direction of the next cycle is analyzed to be

different from that of the current cycle, then one more check is allowed, as can be

seen in the FSM illustrated in Fig. 4.6. With this second-chance check scheme

included in the FSM, the probability of erroneous estimations of the vehicle moving

direction may be decreased. Note that we take the current state in the FSM as the

moving direction of the video surveillance vehicle in the current cycle.

Moving

forward
Turning to

the right

1

1

1

0

Left

0

RightTurning to

the left

Turning to

the right

1

1

0 0

Moving

forward

10

Turning to

the left

Moving

Direction?

Start

0

Figure 4.6 A graph of finite state machine proposed to determine the moving

direction.

F. Display of Corresponding Perspective-view Image

To provide the driver with the views of the blind spots around the vehicle which

are often neglected, the system automatically generates and displays the

 53

corresponding perspective-view image after analyzing the moving direction of the

video surveillance vehicle. To implement these tasks, a local network is set up as

mentioned previously, which integrates two laptops for between-computer

communication and the structure is illustrated in Fig. 4.7. Computer COMA analyzes

the omni-images acquired with the right-front camera on the vehicle roof to estimate

the moving direction and sends the results to computer COMB. Computer COMB

receives commands from the driver and starts the process of constructing

perspective-view images. To speed up generation of perspective-view images, the

program is designed to look up the perspective-mapping tables Tpp introduced in

Chapter 3 for shortening the computation time.

Also, some rules have been designed in this study for constructing and

displaying the corresponding perspective-view image, as described in the following:

(1) when the analysis result of the moving direction is “turning to the right,”

construct and display the perspective-view image of the right-rear view of the

video surveillance vehicle; or

(2) if the analysis result is “turning to the left,” then construct and display the

perspective-view image of the left-rear view of the vehicle;

(3) otherwise, decide the vehicle to be “moving forward,” and construct and display

the perspective-view image of the rear area of the vehicle.

4.2.3 Algorithm

We propose a method of analyzing the omni-images of the surrounding

environment for the purpose of providing the driver corresponding perspective-view

images to inspect the views of the blind spots. The detail is described as an algorithm

below.

 54

Algorithm 4.2: car direction detection and display of corresponding

perspective-view images.

Input: the consecutive omni-images acquired with the upper omni-cameras.

Output: the moving direction of the video surveillance vehicle and the corresponding

perspective-view image.

Steps.

Step 1. Initialize the detection region to be the front region of the omni-image, as

illustrated in Fig.4.9.

Step 2. Create an image buffer to keep the previous omni-image for optical flow

analysis.

Step 3. Select a detection region by the previous detection result of the vehicle

moving direction by the technique described previously in Section 4.2.2.A.

Perspective-view

image generation

COMA
COMB

Analysis of

moving directions

Local Network

Control signal

Control signal & Omni-image &
Perspective-view image of COMA

Figure 4.7 Structure of the communication between two laptops used in this study.

 55

Step 4. Apply the optical flow analysis technique reviewed in Section 4.2.2.B

previously on the computer COMA to produce the motion vectors in the

consecutive images.

Step 5. Transform all the motion vectors into the WCS by the technique described

in Section 4.2.2.C and record all the directional angles in a buffer B for

further analysis.

Step 6. Adopt the statistical method introduced in Section 4.2.2.D to estimate the

directional angle using the data stored in buffer B to increase the accuracy

of the estimated direction angle.

Step 7. Get the result of the directional angle and determine the moving direction of

the video surveillance vehicle by the technique described in Section

4.2.2.E.

Step 8. Send the result of the moving direction to another computer COMB.

Step 9. Generate and display the perspective-view image corresponding to the

determined vehicle moving direction on the computer COMB based on the

rules described in Section 4.2.2.F, and go to Step 2 to repeat the process

again.

An example of the experimental result of detecting the direction of the video

surveillance vehicle and displaying the corresponding perspective-view images is

shown in Fig 4.8. The corresponding perspective-view image can aid the driver to

inspect the views of the blind spots around the vehicle dynamically. This greatly

enhances the driving safety.

 56

4.3 Sequential Driving Recording for

Off-line Inspection of Driving

History

4.3.1 Idea

During driving the video surveillance vehicle, the program continuously records

the sequential omni-images of the driving history. The wide FOV of images acquired

with a pair of two-camera omni-directional devices equipped on the vehicle roof

covers the whole surround of the video surveillance vehicle. As a result, the user can

watch and understand the environment on every surrounding position of the video

surveillance vehicle. Moreover, through the technique of real-time transformation

from the omni-image into the perspective-view image, the user can see

perspective-view image sequence in any view direction.

(a) (b) (c)

Figure 4.8 An example of results of optical flow analysis on omni-images and

corresponding perspective-view images, where the red arrowheads represent motion

vectors. (a) Optical flows of “turning to the left.” (b) Optical flow of “moving

forward.” (c) Optical flow of “turning to the right.” (d) ~ (e) Corresponding

perspective-view images of (a) ~ (c), respectively.

 57

(d) (e) (f)

Figure 4.8 An example of results of optical flow analysis on omni-images and

corresponding perspective-view images, where the red arrowheads represent motion

vectors (continue). (a) Optical flows of “turning to the left.” (b) Optical flow of

“moving forward.” (c) Optical flow of “turning to the right.” (d) ~ (e) Corresponding

perspective-view images of (a) ~ (c), respectively.

Sequential

omni-images

Compute motion

vectors by optical flow

method

Transformate motion

vectors to WCS

Eliminate the

outlier vectors

Determine moving

direction

Start of analyzing moving

direction

send analysis

result

Generate and displaythe

corresponding

perspective-view image

Initialize the detect

region

Select detection

region

Figure 4.9 The car-driving assistance by analyzing omni-images of the surrounding

environment.

 58

4.3.2 Inspection of Sequential Driving Record via

Perspective-view Image

In this section, we describe the proposed techniques to record and inspect the

image sequence of the driving history. The detail of each technique is described as

follows.

A. To achieve the synchronization of recording the driving history, we let laptop

computer COMB save the omni-image captured with camera system B and

simultaneously send a signal to trigger computer COMA for saving the

omni-image from camera system A. Besides, in order to save the storage space

and accelerate the image transmission between the two computers, the recorded

images are stored as JPEG files and named in serial numbers for sequential

transmission. The image files of the driving history are stored in each computer

and, all image files in computer COMA will be sent to computer COMB through

the local network when the user wants to inspect the sequential images off-line.

B. For inspecting the driving history in an off-line fashion, computer COMB needs

to load the image files and displays the down-sampled omni-images in sequence.

To generate the perspective-view image in real time, computer COMB needs to

load two perspective-mapping tables in advance, one for generating

perspective-view images for camera system A and another for camera system B.

Moreover, we develop an interface as shown in Fig. 4.10 to let the user change

the view direction of the perspective-view image by moving a mouse. Hence, the

user can use a mouse to choose any view direction conveniently to observe the

scene which he/she is concerned with.

 59

Perspective-view image

Front omni image

Rear omni image

Figure 4.10 An interface for inspecting the sequential driving record.

4.3.3 Algorithm

The following algorithm introduces the proposed of inspecting the sequential

driving recording for inspection in an off-line fashion as shown in Fig. 4.12.

Algorithm 4.3 A method of inspecting the sequential driving recording of driving

history.

Input: omni-images and two pano-mapping tables Tpm of the camera system A and the

camera system B.

Output: the perspective-view image and the down-sampling omni-image sequences.

Steps.

Step 1. Record the image and transfer the image files by the technique described in

Section 4.3.2.A.

Step 2. Load two perspective mapping tables for the perspective-view image

 60

generation process.

Step 3. Read the omni-images from a directory and generate the perspective-view

images of the selected view direction by the corresponding perspective

mapping table by the technique described in Section 4.3.2.B.

Step 4. Display the perspective-view image.

Step 5. Go to Step 3 and repeat until all the image files have been read.

In Figure 4.11, we show an example of the driving history which is sequentially

displayed as perspective images for inspection, after the user clicks on the

down-sampled omni-images. With a driving recorder functioning like this, the user is

able to observe every surrounding position of the video surveillance vehicle.

Perspective-view image

Front omni image

Perspective-view image

Rear omni image

(a) (b)

Figure 4.11 The result of inspecting the driving history. (a) The omni-image and the

perspective-view image obtained from transforming the omni-image acquired with

the right-front camera. (b) The omni-image and the perspective-view image obtained

from transforming the omni-image acquired with the left-rear camera.

 61

Load omni-images

in a directory

Generate corresponding

perspective-view image

Start of display

Load two

perspective

mapping tables

Mouse

motion

Display perspective-

view image

Figure 4.12 A flowchart of sequential driving recording for off-line inspection.

 62

Chapter 5

Monitoring of a Nearby Static Car

around a Static Video Surveillance

Vehicle

5.1 Idea of Static Car Detection in

Omni-images

In this chapter, we describe the proposed method for detecting a static nearby car

in the omni-image around a video surveillance vehicle, and that for constructing the

top-view surround map including the nearby car. Specifically, the nearby static car is

detected from the omni-image by ground elimination. Then, the 3D data of the vehicle

edge points are estimated. Finally, the relative position of the detected car with respect

to the video surveillance vehicle is computed, and the surround map from the top

view generated. The proposed method is divided into two major stages and a flow

chart of the method is shown in Fig. 5.1.

In the first stage, the process of car shape extraction consists of three major steps:

(1) ground learning; (2) determination of the threshold value by moment-preserving

thresholding proposed by Tsai [21]; and (3) noise elimination by region growing. The

second stage is the process of estimating the 3D data of the detected car and

generating the surround map. This stage includes three major steps as well: (1)

extraction of the corresponding edge point pairs; (2) estimation of the 3D data of the

point pairs; and (3) generation of the surround map. These steps of the two stages will

 63

be introduced in detail in the following sections.

5.2 Nearby Vehicle Detection

5.2.1 Ground Region Learning

At the beginning of group region learning, we acquire two omni-images with the

lower and upper cameras of each of the two 2-camera omni-directional devices. Then,

Start detection of a

nearby static car

Ground

learning

Ground elimination

Determination of threshold

by moment-preserving

method

Region growing

Erosion & Dilation

Extraction of

edge points

Elimination of outlier

point by linear

regression method

3D data

acquisition

Generation of the

surround map

Display of

surround map

End

Acquisition of two images

from upper camera and

lower camera of propsed

two-camera omni-

directional device

Figure 5.1 A flow chart of static car detection with a static video surveillance

vehicle.

 64

we perform the following process with the images as input. The first step is

transformation of each original omni-image Io into a grayscale omni-image Ig. By this

step, we learn a mean gray value of the ground region in Ig for ground elimination.

This is accomplished by selecting automatically an initial region near the tire position

of the video surveillance vehicle, because the region is probably part of the ground.

Alternatively, we also allow the user to select a region of the ground manually as

shown in Fig 5.2.

After selecting the ground region, let the total pixel number of the region be

denoted by n and the gray value of each pixel in this region by Ig(u, v). The mean gray

value gm of the learned region is computed according to the following equation:

 gm =
1

(,)g

u v

I u v
n
 . (5.1)

A difference image f then is generated by subtracting the mean gray value gm from the

gray value of each pixel in Io.

(a) (b)

Figure 5.2 The interface for ground learning. (a) An example of initializing the region

of the ground. (b) An example of selecting the ground region by a user.

 65

5.2.2 Object Segmentation by Moment-preserving

Thresholding

If we can separate the background and the foreground in an image, the

subsequent image analysis process will become simpler and easier. For this, we

segment the car region out from the omni-image by thresholding the difference image

f into a bi-level image by the use of a threshold value TH, with the car region labeled

by “1” and the other region by “0.” The moment-preserving thresholding method

proposed by Tsai [21] is used here to decide the threshold value TH automatically. It

is reviewed subsequently.

Given an image f with n pixels whose gray value at a pixel with coordinates (x, y)

is denoted by f(x, y), the i-th moment mi of f is defined as

1

(,), 0, 1, 2, 3i

i

x y

m f x y i
n

  . (5.2)

The moments also can be computed by the use of the gray-level histogram in the

following way, where nj is the total number of pixels in f with gray value zj and pj 

nj/n:

1 1

'

0 0

1
() () , 0, 1, 2, 3i i

i j j j j

j j

m n z p z i
n  

    . (5.3)

Assume that the image resulting from thresholding only contains two gray values

z0 and z1, with z1 is larger than z0. A pixel value in the image greater than the threshold

value to be found is replaced by z1; on the contrary, a value smaller than the threshold

is replaced as z0. To find the desired probability values of p0 and p1, Eq. (5.3) can be

solved to get the following equations:

 66

2 1 0 20 1

0 1

3 2 1 31 2

1 1

2 22 2
0 1 1 0 1 1 1 0

0 1 0

0 1 1 1

1 1
; ; ;

1 1
(4) ; (4) ;

2 2

1 1 1 11
; ; 1 .

d

d d

d

d

m m m mm m
c c c

m m m mm m c c

z c c c z c c c

p p p p
z z m zp

 
  

 

   
          

   

   

 (5.4)

To obtain the threshold value TH, we need to accumulate the probability values from

the smallest gray value until the accumulated value reaches p0, as described by the

following equation:

 0

1
.

j

j

z t

p n
n 

  (5.5)

Now, to conduct the thresholding work, all pixels in the image f are scanned and

their values are compared with the threshold value TH. If a pixel value in f is checked

to be larger than TH, the corresponding pixel in the bi-level image b is labeled by “1”;

else, it is labeled by “0.” We regard the region labeled by “1” as a car region.

Moreover, a morphological process including erosion and dilation operations is used

to remove small noise regions and smooth the car shape. An example of the result of

moment-preserving thresholding for object segmentation is shown in Fig. 5.3.

5.2.3 Noise Elimination

After the thresholding process, the resulting regions in the bi-level image, which

are labeled by “1,” may not be the car region because the method of ground

elimination cannot eliminate the non-car region clearly all the time. For example, the

color of the drive line might be different from the ground, and so the resulting region

labeled by “1” will sometimes also include the drive line. An example is shown in Fig.

 67

5.4(a). However, these noise components are usually smaller than the car region. To

find the region of the detected car, we have to remove such noise components in the

bi-level image. For this, we use the region growing method to find the largest

connected component and regard it as a nearby static car. The image resulting from

removing noise from Fig. 5.4(a) is shown in Fig. 5.4(b), in which only the car region

is left. The proposed method of region growing is described in the following

algorithm.

(a) (b)

Figure 5.3 Related images of noise elimination. (a) The original omni-image. (b) The

bi-level image of eliminating the ground and thresholding in the image (a).

(a) (b)

Figure 5.4 The bi-level images of the nearby static car detection. (a) The image

before noise elimination. (b) The image after noise elimination.

 68

Algorithm 5.1 Region growing for noise elimination in the bi-level image.

Input: a bi-level image B and a threshold value TH for eliminating small regions.

Output: an image Ir including regions whose sizes are larger than TH.

Steps.

Step 4. Initialize an empty stack S as well as a new image Ir whose size is to the

same as that of image B for use in recording the searched regions.

Step 5. Divide the range 2π of the azimuth angles into N intervals and define the

i-th azimuth angle θi as

2

, 1, 2, ..., 1i i i N
N


     . (5.6)

Step 6. Scan each radial line li through the image center in the entire range of 2

according to a pre-selected azimuth angle interval to find objects in image

B in the following way:

if an unsearched point p labeled by “1” is found to exist on li in image

Ir, then mark p as searched and push it into stack S; else, continue

scanning the line li until all points on li are processed.

Step 7. Grow the region from the scanned points in stack S in the following way as

illustrated in Fig 5.5.

4.1 Pop a point p from stack S.

4.2 Search the pixels around p.

4.3 Push the neighboring pixels around p into stack S if the pixels are

labeled by “1” in image B and marked as unsearched in image Ir.

4.4 Go to Step 4.1 to repeat the growing process until stack S is empty.

4.5 If the region size is computed to be larger than the threshold value TH,

keep the region; else, ignore the region.

 69

Scan point

1

1

1

1

1

1

1

Mirror

center

Search

region

Figure 5.5 An illustration of the region growing process  the blue region

represents the car region and the white region represents the non-car region. Once

the scan point finds the car region, the region growing process starts.

Through the region growing process described above to find the larger connected

component regions, the noise in the bi-level image B can be removed and the resulting

region is just the detected car shape.

5.3 Distance Estimation of a Static Car

5.3.1 Car Side Extraction and Analysis

In this section, we will introduce how to extract the corresponding point pairs

from a pair of images acquired with one of the pair of two-camera omni-directional

devices. As observed from the bi-level image  resulting from thresholding a given

surveillance image, the window region of a detected car is always marked as “0” and

the body of the detected car is labeled by “1.” The bottom edge of the vehicle window

is a boundary between these two regions. Therefore, it is feasible to detect the

bottom-edge points of the vehicle window as feature points to compute the stereo

information of the detected car. Accordingly, the proposed technique of car side

extraction is divided into two stages  the first stage is to detect the edge points, and

 70

the second stage is to find the bottom-edge point pair of the vehicle window from the

edge points detected in Stage 1.

In the first stage, we try to detect the edge points of the car window from a pair

of images, as illustrated in Fig. 5.6. For this, we scan the points on a radial line

starting from the image center to the image boundary. In this scanning process, we

have to make sure that the point we scan is not just a noise point. Also, to accomplish

the detection of the car window, we have to collect a number of sequential points,

called a consecutive segment, in the radial line. The following algorithm describes

these major steps ;in more detail.

Edge point

Vehicle

body

Vehicle

window

Figure 5.6 An illustration of detecting the edge points in bi-level image.

Algorithm 5.2 Detection of the edge points of the car window.

Input: a bi-level image B with the region of the detected car body labeled by “1” and

the other region labeled by “0.”

Output: a buffer Bp_up collecting the car window edge points.

Steps.

Step 1. Initialize two flags Flag_1 and Flag_2 to be “false” and create an empty

buffer Btemp to collect searched points.

 71

Step 2. Scan the points on an unscanned radial line starting from the image center

to find the car body in the following way.

2.1 Sequential check each pixel on the scan line: if the pixel is labeled as

“1” in the bi-level image B, push the point into the buffer Btemp.

2.2 If the difference between the radial distances of the currently-detected

point pcur and that of the last point is smaller than a threshold, then push

pcur into the buffer Btemp; otherwise, reset the buffer Btemp to be empty.

2.3 If the number of the collected point in buffer Btemp is larger than a

threshold TH1, set the flag Flag_1 true.

Step 3. Scan the points on each radial line in a similar way to find the car window

in the following way.

3.1 If the flag Flag_1 is set to be true, then start the process of collecting

points of the car window which is similar to the operation conducted in

Step 2.

3.2 If the number of points in the consecutive segment reaches another

threshold value TH2, set the flag Flag_2 true.

Step 4. If the Flag_2 flag is set, take the beginning point of buffer Btemp as the car

window edge point and push it into Bp_up.

Step 5. Reset the two flags to false and clear the buffer Btemp, and go to Step 2 to

search the next radial line until all the radial lines are scanned.

Both the images acquired with the upper and the lower cameras are checked by

the same process described above to find the bottom-edge points of the vehicle’s

window and put them into another buffer Bp_down. Consequently, we obtain two

buffers, Bp_up and Bp_down, of the bottom-edge points, and these points are analyzed

further to complete the work of car window edge detection, as described

 72

subsequently.

Although we have detected the edge points as shown in Fig. 5.7 in the

upper-camera and lower-camera images, we cannot confirm that all these points are

useful. We have to find out the real point pairs of the window edge from two buffers

Bp_up and Bp_down. For this, three rules are established to filter noise points.

(a) (b)

Figure 5.7 An example of edge-point extraction. (a) The bi-level image b for

searching the bottom-edge points of the vehicle window (a) An image to show the

result of finding the edge points, and the red points represent the edge points

corresponding to (a).

First of all, due to the property of rotational invariance of omni-imaging, there

exist two points in the upper-camera image and in the lower-camera image which

have the same azimuth angle. And such points are called a corresponding point pair.

For each azimuth angle, there exists a corresponding point pair.

Second, we assume that the difference between the radius distances of two

consecutive points of the bottom window edge in the buffer Bp_up or Bp_down is shorter

than a threshold value TH1.

Finally, the number of consecutive edge points of the vehicle window is larger

than a threshold TH2 on the radial line of each azimuth angle.

The details of the above-discussed scheme of collecting the bottom-edge points

 73

of the vehicle window are described in the following algorithm.

Algorithm 5.3 Collection of useful corresponding point pairs of the car window

edge.

Input: two buffers Bp_up and Bp_down containing the candidate bottom-edge points of a

car window.

Output: a buffer Bcar for recording the real consecutive point pairs of the bottom-edge

points of the car window.

Steps.

Step 1. Initialize an empty buffer Btemp for temporarily recording the corresponding

point pairs.

Step 2. Scan each azimuth angle θ and check if there exist two points in the two

buffers Bp_up and Bp_down, respectively, which have the same azimuth angle.

Step 3. Check every consecutive point pair of buffer Bp_up or Bp_down about the

following two aspects until all point pairs are exhausted:

(1) whether the difference between the radius distances of the two

consecutive points is smaller than a threshold value TH1 or not;

(2) whether the difference between the azimuth angles of the two

consecutive points is smaller than another threshold value TH2 or not;

and if both aspects are checked to be true, then push the point pair into the

buffer Btemp and go to Step 3 to check another pair; else, continue.

Step 4. Check if the number of point pairs in buffer Btemp is larger than a third

threshold value TH3, and if so, regard the involved points as coming from

the car window edge and push all the point pairs into Bcar for computing the

3D data of the car window; else, clear buffer Btemp and go to Step 2 to

continue the search.

 74

As a result of executing the above algorithm, with a pair of bi-level images,

where the window region of the detected car is always marked by “0” and the body of

the detected car is labeled by “1,” we are able to detect consecutive point pairs of the

bottom-edge of the vehicle window as shown in Fig 5.8. The 3D information of the

detected car can be computed from these corresponding point pairs, as described in

subsequent sections.

(a) (b)

Figure 5.8 The result of edge point extraction. (a) The original omni-image acquired

with the omni-camera. (b) The image with the bottom-edge points of the vehicle

window represented by red points.

5.3.2 Elimination of Noise by Simple Linear

Regression

After extracting the corresponding edge point pairs between the two

omni-images acquired with the upper camera and lower cameras, we want to compute

the 3D information of these points to infer the position of the nearby car. However, to

accomplish this task more precisely, it is desired to transform the points in buffer Bcar

detected by Algorithm 5.3 into the WCS and eliminate possibly the outliers of the

 75

point pairs. We do this by the simple linear regression method in this study. In more

detail, we divide this process of eliminating noise point pairs into two stages.

The first stage is to transform the points in buffer Bcar into the WCS. Under the

premise that the bottom-edge points of the vehicle’s window are highly similar in

their characteristics, we can assume that the height of the points are H, and then

transform these points to the WCS accordingly. The transformation process is

introduced previously in Chapter 4, where the image coordinates (ui, vi) of a point was

transformed into the world coordinates (Xi, Yi, Zi) of a point in the WCS. We use the

values of Xi and Yi in the subsequent linear regression process without considering the

value Zi.

The second stage is to eliminate the outlier point pairs by the use of the simple

linear regression method, which is a least-squares estimator with a single predictor

variable. The goal is to find the equation of the straight line by Eq. (5.7) below, which

fits the given points in a minimum least-square-error (MLSE) sense.

 Y = aX + b. (5.7)

In other words, the MLSE line is taken to be the one which minimizes the sum of

squared residuals described by

 2

1

()
n

i i

i

Q Y aX b


   , (5.8)

where it is assumed that n points with coordinates (Xi, Yi, Zi) are available for the

fitting process. To minimize the value of Q above, first set the partial derivatives of it

to be zero’s as follows:

 0, 0
Q Q

a b

 

 
  . (5.9)

Then, the desired values a and b can be solved from the two equations to be as

 76

follows:

 1 1 1

2
1 12

1 1

1 1
; .

n n n

i i i i n n
i i i

i i
n n

i i

i i

i i

n X Y X Y

a b Y a X
n n

n X X

  

 

 



   
 

 
 

  
 

 

 (5.10)

With the parameters a and b computed, we finally can draw a linear regression line

Lreg on the X-Y plane in the WCS, as shown in Fig. 5.9. And the distance between

each point with coordinates (Xi, Yi, Zi) and the line Lreg may be calculated by the

following equation according to trigonometry:

2 2

i i

i

Y aX b
d

a b

 



. (5.11)

Accordingly, the distance di of each edge point in buffer Bcar is computed by Eq. (5.11)

and if the distance of a certain point so computed is larger than a threshold value TH,

it will be regarded as an outlier and removed from buffer Bcar. Finally, we compute the

3D data of the remaining corresponding point pairs in buffer Bcar. The method for

doing this has been discussed previously in Section 2.3.

y = -22.578x + 15820

600

620

640

660

680

700

720

740

760

650 660 670 680 690 700

X - axis

Y - axis

Figure 5.9 An example of simple linear regression, where the blue points represent

the edge points transformed into the WCS and the black line is the result.

 77

5.3.3 Calculation of Car Distance and Creation of

Surround Map

To show the relative position of the video surveillance vehicle and the detected

car on a surround map, it is required to get the 3D position information of the detected

car. For this purpose, the 3D data of the corresponding point pairs is computed by the

3D data acquisition method described in Section 2.3. Let the height and the distance

of each point pair be denoted as Hi and Di, respectively, and the total number of the

corresponding point pairs be as n. The height Hcar and distance Dcar of the detected car

is taken to be the mean value of all the values of Hi and Di of these points,

respectively, as follows:

 car car

1 1

1 1
,

n n

i i

i i

H H D D
n n 

   . (5.12)

In addition, from each point pair we can obtain the azimuth angle with respect to

the X-axis. And the azimuth angle c of the middle point pair among these

corresponding points is selected to represent the azimuth angle car of the detected car.

With the horizontal distance Dcar and azimuth angle car, the relative position of the

detected car can be described as the coordinates (ucar, vcar) in a top-view 2D coordinate

system created for displaying the surround map, which may be computed in the

following way:

 uc = (Dcarcoscar)/ratio; vc = (Dcarsincar)/ratio, (5.13)

where the value ratio is a scaling factor to scale the real WCS distance down into the

top-view 2D coordinate system.

Once the 3D information of the detected car is obtained, we can generate the

surround map from the top view as shown the example of Fig 5.10. A detailed

 78

algorithm for doing this is given in the following.

c

Dcar

u

v

(0, 0)

Figure 5.10 A surround map from the top view.

Algorithm 5.4 A method of generating the surround map.

Input: the position of a detected nearby car at top-view coordinates (uc, vc)

computed by Eqs. (5.13).

Output: a top-view surround map of the vehicle environment including the video

surveillance vehicle and the detected nearby car.

Steps.

Step 1. Initialize a background image I with all pixels colored in a gray color like

that of the asphalt road.

Step 2. Paste a graphic model of the video surveillance vehicle at the center of

image I.

Step 3. Select the front-right corner of the video surveillance vehicle model as the

origin with coordinates (0, 0) of a top-view 2D coordinate system for

displaying the desired surround map.

Step 4. Paste a graphic model of the nearby car on I at coordinates (uc, vc).

Step 5. Take the final I as the desired surround map.

 79

Chapter 6

Monitoring of a Nearby Static or

Moving Car with a Moving Video

Surveillance Vehicle

6.1 Idea of Detection of Static or

Moving Car in Omni-images

In Chapter 5, we have described the proposed method for detection and display

of a nearby car. Both the detected car and the video surveillance vehicle are assumed

to be static there. However, in this study we propose further a method to detect a

nearby moving or static car while the video surveillance vehicle is being driven.

Optical flow analysis may be used again here to estimate the motion of an object in

consecutively acquired omni-images, and if the concerned object is higher than the

ground, its motion in the image will produce motion vectors with larger lengths. This

property may be used to segment the car from the background. Moreover, we also

analyze the color of the detected car by the k-means algorithm and use the color

information to segment out the car region in the omni-image. Finally, the position of

the detected car is estimated by a template matching method proposed in this study,

and a surround map is generated accordingly.

As a summary, we may divide the proposed method into five major steps: (1)

computing the motion vectors by optical flow analysis; (2) separating the car region

from the non-car one roughly according to the motion vector lengths; (3) segmenting

 80

out the car region by the color information; (4) estimating the position of the detected

car; and (5) generating a surround map. A flowchart illustrating these major steps of

the proposed method is shown in Figure 6.1. All of the above steps will be elaborately

introduced in the following sections.

Start detection of a static

surrounding car

Generation of

feature points

Computation of

motion vectors by

optical flow method

Transformed motion

vectors into WCS

Separate car and non-

car region by threshold

Elimination of noises by

region growing method

Determination of

car color by k-

means

Region growing by a

given car color and

ground elimination

Mask detected car

by a rectangle

model

Estimation

position of

detected car

Generation of

surrounding map

Display

surround map

End

Two sequential images

captured from a two-

camera omni-

directional image device

Figure 6.1 Flowchart of nearby car detection with a moving video surveillance

vehicle.

 81

6.2 Moving Car Detection by Motion

Vectors Generated by Optical Flow

Analysis

6.2.1 Detection of Car Region by Motion Vector

Lengths

To separate the car region from the non-car one in the consecutively acquired

omni-images, we use optical flow analysis to produce the motion vectors and detect

the car region by the motion vector lengths. The details of this process are described

in order subsequently.

A. Block Based Processing

To monitor the surrounding environment of the video surveillance vehicle, we

evenly select points in the omni-image to compute the motion vectors by optical flow

analysis discussed previously. For the selected points to be evenly distributed in the

omni-image, we divide the omni-image into equal-sized blocks and select the points

to be the centers of the blocks. An example of the block-based omni-image is shown

in Figure 6.2. The following process will take image block as the unit of processing.

Figure 6.2 An example of block-based omni-image  the block region is the video

surveillance vehicle roof that we ignore and the red points are the selected points.

 82

B. Estimation and Transformation of Motion Vectors

We want to estimate the motions of objects in the surrounding environment from

two consecutive omni-images. The process is divided into two stages: (1) estimation

of the motion vectors by optical flow analysis; and (2) transformation of the motion

vectors from the ICS into the WCS. The optical flow analysis method used in Stage 1

has been reviewed in Section 4.2.2.B. And the transformation process used in Stage 2

is identical to that described in Section 4.2.2.C.

C. Detection of Ground and Car Regions by Motion Vector Lengths

Because the driving speed of the video surveillance vehicle is not constant and

the lengths of the motion vectors are roughly proportional to the car speed, we can use

dynamic thresholding to separate the car region from the background, as shown by the

example seen in Fig. 6.3. We use the standard deviation value of all the motion vector

lengths to set the threshold value. Assume that the length of each motion vector is

denoted as Li and the total number of motion vectors is n. Then, the mean value L

and the standard deviation value Sn of the motion vector lengths are computed as

follows:

 2

1 1

1 1
, () .

1

n n

i i

i i

L L Sn L L
n n 

  


  (6.1)

The threshold values for detecting the car and the ground are respectively set to be as

follows:

 Lcar = L + Sn; (6.3)

 Lground= L – Sn. (6.4)

To record the car region, we initialize a record image Ir which is of the same size

 83

as that of the original omni-image. The car region to be put into the mage Ir is labeled

by “1”; and the other regions, by “0.” Each motion vector produced by optical flow

analysis is checked and compared with the threshold values Lcar and Lground. If the

length of the motion vector is larger than Lcar, we regard the block yielding the vector

as a region of the detected car and label it by “1” in image Ir; else, we label the block

by “0.” Besides, we also define the threshold value Lground and use it in the following

way: if the length of a motion vector is smaller than Lground, every pixel in the

corresponding region is regarded as a ground point, and pushed into a buffer B for use

in conducting a ground learning process described in the subsequent section.

In summary, we list the rules for car detection as follows:

 , " ";

 , " ."

n

n

if length of motion vector L S then label the region as car

if length of motion vector L S then label the region as ground

  


 

. (6.5)

Figure 6.3 A result of separating the car region from the non-car region, where the

red points are used to represent the car region and the green points to represent the

non-car region.

6.2.2 Detection of Car Body by k-means Algorithm

In order to detect pixels of the car body in image Ir for region growing method,

 84

we divide the process into two steps: (1) use the k-means algorithm to partition a set

of feature points into three clusters (2) determine which cluster is the car body. The

steps of the k-means algorithm are illustrated in Fig. 6.4, and a detailed algorithm

implementing it is introduced as follows.

(a) (b) (c) (d)

Figure 6.4 An illustration of k-means algorithm. (a) The image of initialize the cluster

centers. (b) The image of associating every data with the nearest mean. (c) The image

of reassigning the cluster centers. (d) The result image of k-means algorithm.

Algorithm 6.1 Partitioning feature data into clusters.

Input: a set of feature points Di and a total number k of clusters.

Output: the center point Cj of each cluster and a set of input feature points labeled

with cluster index.

Steps.

Step 1. Initialize k cluster centers randomly among the input data.

Step 2. Perform the following steps to the feature points until either the number of

iterations reaches a pre-selected limit or the centers of clusters become

stable (with no change in the positions of the cluster centers).

2.1 Calculate the distance between each feature point Di and each cluster

center, and label Di with the index of the closest cluster center.

2.2 Update each cluster center Cj by calculating the mean value of the

feature points which are labeled as j.

 85

As a result, the k-means algorithm may be used to partition a set of feature points

into k clusters, with each point belonging to the nearest cluster. To use the algorithm

in this study, the RGB values of the center pixel of each block in image Ir are taken as

the input feature points into the k-means algorithm, and k is taken to be 3, i.e., all

input feature data are partitioned into three clusters, in which one is the car body of a

certain color. Note that in this study, we assume that each car is of a single color.

Furthermore, the car region in image Ir consists of three possible types of objects

 the body of the detected car, the windows of the car, and noise components.

Therefore, we have to find the cluster of the car body by analyzing the center of each

cluster for the region growing method, and the region growing method will be

introduced in the following section.

Moreover, the color of the car window is sometimes similar to that of the ground.

To avoid growing the ground, each cluster with its center’s gray value close to the

ground value gm should be ignored. That is, if the gray value of a cluster center is

close to the ground value gm, we will not conduct region growing with the cluster as

the starting point, as described in Section 6.2.3.B. The computation of the value gm

will be introduced in Section 6.2.3.A. The algorithm of determining the cluster of the

car body from those yielded by the above algorithm (Algorithm 6.1) is described in

detail as follows.

Algorithm 6.2 Determination of the cluster of the car body.

Input: the center points Ci of the clusters Si found by Algorithm 6.1 with RGB values

(Ri, Gi, Bi), i = 1, 2, 3; the number Ni of feature points in each cluster Si, and

the gray value gm of the ground.

Output: a cluster Sj of feature points of the car body or none.

Step.

 86

Step 1. Sort the numbers Ni of feature points of all the clusters Si, i = 1, 2, 3, and

pick up the largest one with index j, namely, Nj, which is the number of

feature points of cluster Sj.

Step 2. Compute the difference D between the gray value of the center Cj of cluster

Sj and that of the ground, gm, as follows:

 D = |(Rj+Gj+Bj)/3  gm|.

Step 3. If the difference D is larger than a threshold TH, output the cluster Sj with

index j as the desired car body; else, ignore the cluster Sj and go to Step 1 to

process the remaining cluster(s).

6.2.3 Detection of Car Region by Color Information

After finding out the feature-point cluster of the detected car body by the above

two algorithms, we are able to detect the entire car region more completely in the

image Ir produced in Section 6.2.1.C by eliminating the ground area and growing the

region of the detected car body, as described in the following.

A. Elimination of the Ground Region

To decrease the probability of false alarms and erroneous detections, we have to

learn the ground information by the use of a buffer B which collects the ground pixels

found in Section 6.2.1.C and eliminate the ground regions from the image Ir. The

mean gray value gm of the ground is computed as follows:

m

1

1
() / 3

n

i i i

i

g R G B
n 

   , (6.6)

where n is the total number of pixels in the buffer B, and Ri, Gi and Bi represent the

RGB values of the i-th pixel in B.

 87

To eliminate the ground region, we scan all the blocks in image Ir which are

labeled by “1” and apply the following classification rule:

 m m

r

"if the difference value satisfies the following condition:

, ,

then mark the block as the ground region in image ;

else, continue,"

g diff I x y g diff

I

   
 (6.7)

where I(x, y) is the grayscale value of the pixel in the block center at image

coordinates (x, y) and diff is a gray value threshold value. After this process of

eliminating the ground region, the detection of the car region in image Ir will be more

accurate.

B. Detection of Car Region by Region Growing within a Color Tolerance

To make the detected car shape more complete, we want to select the points in

the region of the detected car body and regard these points as seed points to grow the

neighboring regions within a color tolerance. More specifically, after we use

Algorithm 6.2 to find the feature points of a detected car body, we want use the points

further to grow the entire car region. Each feature point in the cluster of the car body

corresponds to a pixel in the image Ir, and we want to take the pixel as a seed point to

grow the neighboring points under two conditions: (1) the difference of the color

value between the seed point and the neighboring point is within a color tolerance;

and (2) the neighboring point is inside the growing range centered at the seed point. If

the color value of the neighboring point is similar to the seed point, we will regard the

neighboring point as belonging to the car region and label the block by “1” in the

image Ir. The method of detecting the car region with a given color tolerance is

described in Algorithm 6.3 below.

Algorithm 6.3 Detecting the car region by filling regions within a given color

 88

tolerance.

Input: the record image Ir, the original image Io acquired with the omni-camera, and

the output data (the cluster centers) of the k-means algorithm described in

Algorithm 6.1 in Section 6.2.2.

Output: the bi-level image Ir with the car region labeled by “1.”

Step.

Step 1. Scan each input pixel p in Ir and check whether the label of p is the same as

that of the cluster center of the car body or not. If the same, continue; else,

scan the next input pixel in Ir.

Step 2. Regard the pixel p as a seed point and check the following classification rule

for region growing by the color information:

 "if a neighboring point of satisfies the following conditions :

(,) - (', ') (,) ,

(,) - (', ') (,) ,

(,) - (', ') (,) ,

then label by "1"

o o o

o o o

o o o

p

I u v r diff I u v r I u v r diff

I u v g diff I u v g I u v g diff

I u v b diff I u v b I u v b diff

  

  

  

the corresponding block as belonging to the car

region in the image ; else, continue,"rI

 (6.8)

where Io(u, v)c with c = r, g, and b denotes the currently-observed pixel’s

c-color value of the seed point located at image coordinates (u, v), Io(u, v')c

with c = r, g, and b denotes the c-color value of a neighboring pixel at

image coordinate (u, v'), and the value diff is the color tolerance between

the currently-observed pixel and one of its neighbor.

As shown in Fig. 6.5, after the region growing process by the color information

using the above algorithm, we obtain a more accurately detected car shape from the

omni-image.

 89

(a) (b)

Figure 6.5 A result of region growing by the color information. (a) An image to show the

result of the region growing, and the purple points represent the growing region. (b) The

corresponding bi-level image of the image (a).

6.3 Updating of Car State

6.3.1 Estimation of Car Location by

Rectangular-shaped Models

To estimate the location of a nearby car, we match the detected car region in the

image Ir by a mask for estimation of the approximate car position. The method of the

estimating the car location includes two stages: (1) generation of the car mask by

transforming a rectangular-shaped car model from the WCS into the ICS; and (2)

detection of the car location by a template matching scheme.

Stage 1. Generation of the car mask on the image plane

To generate the car mask on the omni-image plane for matching the detected car,

we have to transform the car model in the WCS to the ICS as shown in Fig. 6.6.

Because the car shape is similar to a rectangle, we imagine a rectangular-shaped car

 90

model on the X-Y plane and transform the model into the image plane for matching

the detected car in order to locate the car. For this, in this study we create a series of

rectangular-shaped car models besides the video surveillance vehicle under the

premise that the detected car is driving around the video surveillance vehicle.

Moreover, in order to shorten the computation time of the matching process, we just

select sparse points on each rectangular-shaped model to represent the model instead

of transforming the whole rectangular-shaped model region for matching the detected

car.

More specifically, we divide the rectangular-shaped model into small blocks and

transform the center point of each block from the WCS into the ICS to create a car

mask. We use buffers to record the points transformed from each model in the ICS for

the further matching process. The algorithm for such a transformation from the WCS

into the ICS is described as follows.

X

Y

Rectangular-

shaped car model

Camera

center

U

V

Image

center

Mask

(a) (b)

Figure 6.6 A rectangular-shaped car model and the corresponding mask. (a) A blue

region of rectangular-shaped model and its representive points in the WCS. (b) The

mask image.

Algorithm 6.3 Coordinate transformation of a car model point from WCS to ICS.

Input: a point P of the rectangular-shaped model with world coordinates (Xi, Yi, Zi),

 91

the origin of the mirror center Om at coordinates (X0, Y0, Z0), and the

pano-mapping table Tpm.

Output: a point P at image coordinates (ui, vi) corresponding to the point P in the

WCS.

Steps.

Step 1. Compute the azimuth and elevation angles of the point P in the following

way.

1.4 Compute the horizontal distance d between the point P and the mirror

center Om by the following formula:

 2 2

0 0() ()i id X X Y Y    . (6.9)

1.5 Calculate the azimuth angle  and the elevation angle  of point P as

follows:

1 10 0

1 0

cos sin ,

tan .
2

i i

i

X X Y Y

d d

Z Z

d






 



 
 


 

 (6.10)

Step 2. Find the corresponding point P at image coordinates (ui, vi) by looking up

the pano-mapping table with the azimuth angle  and the elevation angle .

After conducting the above process, we transform all the points in the

rectangular-shaped car model in the real world space to the image plane and keep all

the coordinates (ui, vi) in a buffer for matching the detected car. Furthermore, we use

the center of the mask to represent the car location, and the center of the mask is

computed by:

1 1

1 1
,

i in n

c i c i

i ii i

u u v v
n n 

   , (6.11)

 92

where (ui, vi) are the image coordinates of the i-th point in the mask and ni is the total

number of points in the mask.

To conduct the matching process, we generate in advance a series of masks for

use at different positions as shown in Fig. 6.7 for accelerating the matching process.

However, the point density of each mask is not exactly the same. The points of a far

rectangular-shaped model, after being transformed from the WCS into the ICS, will

result in a high-density mask and the points in the mask may overlap each other.

Accordingly, the spacing ds between two points of the s-th rectangular-shaped model

is related to the distance between the video surveillance vehicle and the model, and

we compute the value ds as follows:

 ds = 10 + |s  (nmodel/2)|  5, (6.11)

where the nmodel is the total number of the points in the model.

(a) (b)

Figure 6.7 The result of mask in the omni-image. (a) The near mask with respect to

the video surveillance vehicle. (b) The far mask with respect to the video

surveillance vehicle.

Stage 2. Detection of the detected car location by template matching method

To locate the detected car in the omni-image, we use a template matching

method to overlap the detected car with the mask. See Fig. 6.8 for an illustration. The

 93

masks are generated in the previous stage, Stage 1, and we have to check each

overlapping ratio between the mask points of the i-th mask and the detected car shape

in the image Ir. The mask which results in the highest overlapping ratio value will be

regarded the as the most suitable one for the detected car, and the center point of the

mask at coordinates (ui, vi) is finally taken as the position of the detected car. The

algorithm of detecting the car location by template matching is described as follows:

Algorithm 6.4 Detecting the car location by template matching.

Input: the record image Ir.

Output: a center point of the mask which matches the detected car the best at

coordinates (ui, vi).

Steps.

Step 1. Initialize a counter c to record the number of overlapping pixels.

Step 2. Count the overlapping pixels between the i-th mask and the car region in the

image Ir by an AND operation.

Step 3. Calculate the corresponding overlapping ratio by dividing the counter value

c into the total number of the points in the i-th mask.

Step 4. Repeat Steps 2 and 3 until the overlapping ratios of all masks have been

computed.

Step 5. Find the i-the mask which results in the highest ratio and output the center

point of the mask at coordinate coordinates (ui, vi).

 94

Figure 6.8 A result of matching a detected car by a mask  the yellow region

represents the detected car and the blue mask represents the result of the

rectangular-shaped model transformation.

6.3.2 Update of Car State and Generation of

Surround Map

The state of the detected car recorded in a buffer B will be updated in each cycle

of the car detection process for generating the surround map. We use the state of the

currently-detected car to update the car state in buffer B and the surround map from

the top view as illustrated in Fig. 6.9. The state of the detected car is defined to

include four values: (1) the distance between the omni-camera and the detected car; (2)

the azimuth angle of the car with respect to the u-axis; (3) a time-to-live value; and (4)

a flag to confirm that the currently-detected data is not a false alarm. For smooth and

steady displaying of the detected car in the surround map, the time-to-live value is

used to avoid the case of the erroneous detection, and the confirmation flag is used to

avoid the case of false alarming. The proposed method for updating the detected car

state and generating the surround map is divided into five steps as described in the

 95

following algorithm.

Algorithm 6.4 Updating the car state for generating the surround map

Input: a state of the currently-detected car and the record buffer B.

Output: an updated surround map.

Steps.

Step 1. Decrease the time-to-live value of the cars in the buffer B by 1.

Step 2. Discard the car state in the buffer B, if the time-to-live value of the car is

equal to zero.

Step 3. Push the state of the currently-detected car into the buffer and finish the

updating process, if the buffer B is empty; else, continue.

Step 4. Update the car state in the buffer B.

4.1 Calculate the azimuth angle difference d between the azimuth angle of

the currently-detected car and the azimuth angle of the car state in the

buffer.

4.2 If the d is smaller than thirty degrees, continue; else, push the state of

the currently-detected car into the buffer.

4.3 Update the length of the car in buffer B as follows:

 Lhis = pLcur + (1  p)Lhis, (6.12)

where Lhis and Lcur are the length of the car in buffer B and the length

of the currently-detected car, respectively, and p is a pre-determined

weight of history data on the update data.

4.4 Update the azimuth angle of the car in buffer B as follows:

 Ahis = pAcur + (1  p)Ahis. (6.13)

where Lhis and Lcur are the length of the car in buffer B and the length

of the currently-detected car, respectively, and p is the weight of

 96

history data with respect to the updated data.

4.5 Set the confirmation flag “true” for displaying the detected car.

4.6 Reset the time-to-live value of the car state in the buffer B to three.

Step 5. Update the surround map.

5.1 Check the confirmation flag of the car state in buffer B: if the flag is set,

update the position of the detected nearby car at top-view coordinates

(uc, vc).

5.2 Compute the coordinates (uc, vc) of the detected car as follows:

 uc = (Lhis cosAhis)/ratio; vc = (Lhis sin Ahis)/ratio, (5.14)

where the ratio value is a scaling factor to scale down the real distance

into the surround map for image display.

5.3 Show the surround map by the Algorithm 5.4.

Buffer is

empty ?

Push car

state into

buffer

Push car

state into

buffer

The difference of

azimuth angle < 30
o
?

Yes

No

No

Start of updating

car state

Update car

state

Decrease the time to

live value by 1

Yes

End of updating car

state

Show

surround map

Currently-

detected car

state

Remove car whose

time to live value is

equal to 0

Figure 6.9 Flowchart of updating the car state.

 97

The experimental result shown in Fig. 6.10 is an example of the resulting

surround map after detecting a nearby static car with a moving video surveillance

vehicle. With the surround map, we can observe the surrounding environment easily.

(a) (b)

Figure 6.10 The result of detecting the static nearby car with a moving video

surveillance vehicle. (a) The original omni-image. (b) The surround map from the

top view.

 98

Chapter 7

Experimental Results and

Discussions

7.1 Experimental Results

In this chapter, we will show some experimental results of the proposed methods

for use on a video surveillance vehicle with two 2-camera omni-imaging devices. The

experiments were mainly conducted on an open space area, including a parking lot

and a spacious around-campus road with an asphalt surface in National Chiao Tung

University.

The first experiment was to generate the perspective-views image from an

omni-image acquired with one of the upper cameras affixed on the video surveillance

vehicle. With the perspective mapping table Tpp, the perspective-view image was

generated from the omni-image in six view directions. The second experiment was to

analyze the omni-image of the surrounding environment for estimation of the moving

direction of the video surveillance vehicle in the lanes of the parking lot and to

display the corresponding perspective-view image. The third experiment was to detect

the static nearby car on the around-campus road while the video surveillance vehicle

was in a static state, and then to show the surround map from the top view by

computing the 3D information of the detected car. The final experiment was to

monitor a nearby moving or static car with the video surveillance vehicle in a moving

state, and show the relative position of the detected car in the surround map.

 99

A. Experimental Results of Perspective-view Image Generation

In this experiment, we acquired an omni-image from the upper omni-camera of

one of the two two-camera omni-directional imaging devices to generate the

perspective-view images for three directions by the use of the perspective mapping

table Tpp. The method of image transformation is introduced in Chapter 3, and an

experimental result is shown in Fig. 7.1.

(a)

(b) (c) (d)

Figure 7.1 An experimental result of generating the perspective-view image. (a) An

original omni-image. (b) The perspective-view image of the right-rear direction. (c)

The perspective-view image of the rear direction. (d) The perspective-view image of

the left-rear direction.

 100

B. Experimental Results of Car Direction Detection and Display of Corresponding

Perspective-view Images

The environment for this experiment is an open space area in a parking lot in

National Chiao Tung University. We conducted the experiment of estimating the

moving direction when the video surveillance vehicle was being driven on the lanes

of the parking lot as well as generating the corresponding perspective-view images.

We conducted the experiment for three cases: (1) turning to the right; (2) turning to

the left; and (3) moving forward. Some experimental results are shown in Fig. 7.2.

(a) (b)

Figure 7.2 A real example of car direction detection and display of corresponding

perspective-view images. (a) The case of turning to the left. (c) The case of turning to

the right. (e) The case of moving forward. (b), (d), and (f) The perspective-view

images corresponding to (a), (c), (e), respectively.

 101

(c) (d)

(e) (f)

Figure 7.2 Figure 7.2 A real example of car direction detection and display of

corresponding perspective-view images. (continued). (a) The case of turning to the

left. (c) The case of turning to the right. (e) The case of moving forward. (b), (d), and

(f) The perspective-view images corresponding to (a), (c), (e), respectively.

C. Experimental Results of Monitoring of a Nearby Car around a Static Video

Surveillance Vehicle

In the experiment for monitoring a nearby car around a static video surveillance

vehicle, the nearby car is a white vehicle produced by TOYOTA Company. The car

 102

was parked at the roadside and the video surveillance vehicle stopped at the car side

to perform car detection. We used the omni-camera affixed on the right-front roof of

the video surveillance vehicle to acquire the omni-images and conduct the detection

work. An experimental result, which is the finally generated surround map with the

detected nearby car seen from the top view included, is shown in Fig.7.3.

(a) (b)

(c)

Figure 7.3 The experimental result of monitoring a nearby car around a static video

surveillance vehicle. (a) The omni-image acquired with an upper camera. (b) The

omni-image acquired with a lower camera. (c) The surround map from the top view.

Note that the direction of an object is 180
o
 reversed in the omni-image when

compared with the real situation as illustrated in (c).

 103

D. Experimental Results of Monitoring of a Nearby Static or Moving Car with a

Moving Video Surveillance Vehicle

The environment for this experiment is a straight lane segment in the

previously-mentioned around-campus road in National Chiao Tung University as

illustrated in Fig. 7.4. We divided the detection experiment into two cases. The first

case was that we drove slowly the video surveillance vehicle to pass a static nearby

car parked at the roadside. The proposed method described in Chapter 6 detected the

nearby car and estimated the car position. Finally, a top-view surround map as shown

in Fig. 7.5 was generated and displayed to the user.

Detected car

Video surveillance vehicle

Figure 7.4 An illustration of the detecting a nearby static car with a moving video

surveillance vehicle.

 104

(a) (b)

(c) (d)

(e) (f)

Figure 7.5 The result of a nearby static car detection with a moving video surveillance

vehicle. (a)~ (f) The results of detecting a nearby car parked at the road side and the

generated top-view surround maps. Note that the direction of an object is 180
o
 reversed

in the omni-image when compared with the real situation as illustrated in (b) (d) (f).

 105

Another detection case was that the detected car overtakes the video surveillance

vehicle in a road lane. More specifically, the environment for this experiment is the

same area as that for the experiment of detecting a nearby static car with a moving

video surveillance vehicle mentioned previously. The passing-by car was driven on

the right-hand side of the video surveillance vehicle and slowly overtook it as shown

in Fig. 7.6. Fig. 7.7 shows an experimental result of detecting the nearby moving car.

Detected car

Video surveillance

vehicle

Figure 7.6 An illustration of the detecting a nearby moving car with a moving video

surveillance vehicle.

(a) (b)

Figure 7.7 The result of a nearby moving car detection with a moving video surveillance

vehicle. (a)~ (f) The result of detecting a moving car. Note that the direction of an object

is 180
o
 reversed in the omni-image when compared with the real situation as illustrated

in (b) (d) (f).

 106

(c) (d)

(e) (f)

Figure 7.7 The result of a nearby moving car detection with a moving video surveillance

vehicle (continue). (a)~ (f) The result of detecting a moving car. Note that the direction

of an object is 180
o
 reversed in the omni-image when compared with the real situation as

illustrated in (b) (d) (f).

7.2 Discussions

From our experiments and the results, we can see that the goal of utilizing a pair

of two-camera omni-directional imaging devices equipped on the video surveillance

vehicle roof to perform video surveillance of nearby cars has been achieved.

However, the proposed system still has some problems. In this study, we adopt

the method of optical flow analysis to compute the motion vectors of the road surface

appearing in consecutive omni-images and estimate the moving direction of the video

 107

surveillance vehicle using these motion vectors. As a result, moving objects, such as

moving cars or a group of people, in the image will result in undesired motion vectors,

leading to erroneous detection results of the moving direction of the vehicle itself. A

possible solution is to add extra functions for detecting these unusual motion vectors

and ignoring them.

Moreover, to conduct the video surveillance work at the outdoor space, the sun

light is an important factor to consider. The unsuitable adjustment of the camera

parameters and the shadow produced by the sun light will affect the result of the car

detection experiments. A possible solution for this problem is to record typical climate

conditions and the corresponding suitable camera parameters and threshold values for

car shape segmentation and other image processing works. In this way, the system can

be chosen appropriate data set for each climate condition at the time of nearby–car

detection. Of course, it is always desired to have fully automatic method for car

detection for all climate conditions.

In this study, the detected car in the experiments is a saloon car. As a result, to

increase the accuracy of detecting car position, the assumption of car height is 80 cm.

If the detected car is not a saloon car, we have to adjust the height parameter to make

the car mask match the detected region for estimating car position.

 108

Chapter 8

Conclusions and Suggestions for

Future Works

8.1 Conclusions

In this study, a video surveillance system utilizing a pair of two-camera

omni-directional imaging devices equipped on the video surveillance vehicle roof to

monitor the surrounding environment has been proposed. With the advantage of

mobility of the video surveillance vehicle and the wide FOV of the omni-camera

system, several methods have been proposed for various purposes of driving condition

monitoring and nearby car detection, as summarized in the following.

(1) A method for speeding up generation of perspective-view images for vehicle

surrounding environment monitoring has been proposed, which, with the help

of a perspective mapping table, can generate perspective-view images in

realtime.

(2) A method for analyzing the omni-images of surrounding environments for

car-driving assistance has been proposed, which, by optical flow analysis,

provides the driver of the video surveillance vehicle a relevant

perspective-view image of blind spots during car turning.

(3) A method for off-line inspection of the driving history has been proposed, by

which all the sequential omni-images of the driving history can be recorded

 109

online and displayed off-line in the form of a perspective-view image

sequence with the viewing direction determined by mouse clicks.

(4) A method for monitoring a nearby static car around a static video surveillance

vehicle has been proposed, which eliminates the ground region in acquired

omni-images and detect the nearby car shape in the image by region growing

and morphological techniques and displays a top-view surround map with the

detected car included for inspection of its relative position.

(5) A method of monitoring of a nearby static or moving car with a moving video

surveillance vehicle has been proposed, which uses motion vectors produced

by optical flow analysis as well as color information of segmented objects to

detect the nearby car shape, and uses a rectangular-shaped car model to match

the detected car for estimating the car position and generating the surround

map.

The experimental results shown in the previous chapters have revealed the

feasibility of the proposed system

8.2 Suggestions for Future Works

According to the experience obtained this study, in the following we make

suggestions of some interesting issues, which are worth further investigation in the

future.

1. Increasing the speed of computation to achieve vehicle detection in

realtime, e.g., by parallel computing.

 110

2. Developing the capability of detecting and tracking multiple nearby

vehicles in the surrounding environment.

3. Developing more applications of car-driving assistance using the

omni-camera system, e.g., analysis of the driving behavior.

4. Adding the capability of detecting passing-by persons with a moving video

surveillance vehicle.

5. Enhancing the image analysis capability to detect more information of the

nearby car, e.g., the size of the vehicle.

6. Only using an omni-camera to compute the 3D data of the detected car.

 111

References

[1] C. Micheloni, G.L. Foresti, C. Piciarelli and L. Cinque, “An autonomous vehicle for

video surveillance of indoor environments,” IEEE Transactions on Vehicular

Technology, vol. 56, no. 2, March 2007.

[2] G.L. Foresti, C. Micheloni and L. Snidaro, “Event classification for automatic

visual-based surveillance of parking lots,” Proceedings of 17th International

Conference on Pattern Recognition, vol. 3, pp. 314–317, 2004.

[3] M. Bramberger, R. P. Pflugfelder, A. Maier, B. Rinner, B. Strobl and H. Schwabach, “A

smart camera for traffic surveillance,” Proceedings of 1st Workshop on

Intelligent Solutions in Embedded Systems, pp. 153–164, Vienna, Austria, 2003.

[4] Y. Onoe, N. Yokoya, K Yamazawa, and H. Takemura, “Visual surveillance and

monitoring system using an omnidirectional video camera,” Proc. 1998 Int’l

Conf. Pattern Recog, vol. 1, pp. 588–592, Brisbane, Australia, Aug. 16-20, 1998.

[5] T. Mituyosi, Y. Yagi, and M. Yachida, “Real-time human feature acquisition and

human tracking by omnidirectional image sensor,” Proc. IEEE International

Conference on Multisensor Fusion and Integration for Intelligent Systems, pp.

258-263, Tokyo, Japan, July 30-Aug. 1, 2003.

[6] L. He, C. Luo, F. Zhu, Y. Hao, J. Ou and J. Zhou, “Depth map regeneration via

improved graph cuts using a novel omnidirectional stereo sensor,”Proceedings

of 11th IEEE International Conference on Computer Vision (ICCV2007), pp. 1-8,

Oct. 14-21, Rio de Janeiro, Brazil, 2007.

[7] H. Koyasu, J. Miura, and Y. Shirai, “Realtime omnidirectional stereo for obstacle

detection and tracking in dynamic environments,” Proceedings of 2001

 112

IEEE/RSJ Internatonal Conference on Intelligent Robots and Systems, pp. 31-36,

Maui, Hawaii, USA, Oct./Nov, 2001.

[8] S. W. Jeng and W. H. Tsai, “Using pano-mapping tables for unwarping of

omni-images into panoramic and perspective-view images,” Journal of IET

Image Processing, Vol. 1, No. 2, pp. 149-155, June 2007.

[9] T. Ehlgen and T. Pajdla, “Maneuvering aid for large vehicle using

omnidirectional cameras,” IEEE Workshop on Applications of Computer Vision,

pp. 17–17, Austin, Texas, US, Feb. 2007.

[10] T. Gandhi and M.M. Trivedi, “Motion analysis for event detection and tracking

with a mobile omni-directional camera,” ACM Multimedia Systems Journal,

Special Issue on Video Surveillance, vol. 10, no. 2, pp. 131–143, 2004.

[11] N. Murakami, A. Ito, Jeffrey D. Will , Michael Steffen, K. Inoue, K. Kita, S.

Miyaura, “Development of a teleoperation system for agricultural vehicles,”

Computers and Electronics in Agriculture, vol. 63, pp. 81-88, Aug. 2008.

[12] R. Aufrère, J. Gowdy, C. Mertz, C. Thorpe, C.C. and T.Y. Wang, “Perception for

collision avoidance and autonomous driving,” Mechatronics, Vol. 13, pp.

1149-1163 ,2003.

[13] Hughes, C., Glavin, M., Jones, E.and Denny, P. “Wide-angle camera technology

for automotive applications: a review,” IEEE Transactions on Intelligent

Transportation Systems, pp. 19–31, Mar. 2009.

[14] C. Hughes, M. Glavin1, E. Jones1 and P. Denny, “Wide-angle camera

technology for automotive applications: a review,” IEEE Transactions on

Intelligent Transportation Systems, vol. 3, no. 1, pp. 19–31, 2009.

[15] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision,” Proc. 7th nternational Joint Conference onArtificial

 113

Intelligence, Vancouver, Canada, pp. 674–679, 1981.

[16] J. Kim and Y. Suga, “An omnidirectional vision-based moving obstacle in

mobile robot,” International Journal of Control, Automation, and Systems, vol. 5,

no. 6, pp. 663-673, Dec. 2007.

[17] S. Gupte, O. Masoud, R.F. K. Martin, and N.P. Papanikolopoulos, “Detection

and classification of vehicles,” IEEE Transactions on Intelligent Transportation

Systems, vol. 3, no. 1, Mar. 2002.

[18] R. Cucchiara, M. Piccardi, and P. Mello, “Image analysis and rule-based

reasoning for a traffic monitoring system,” IEEE Transactions on Intelligent

Transportation Systems, vol. 1, no. 2, June 2000.

[19] L. W. Tsai, J. W. Hsieh and K. C. Fan, “Vehicle detection using normalized color

and edge map,” IEEE Transactions on Image Processing, vol. 16, no. 3, Mar.

2007.

[20] P. H. Yuan, K. F. Yang and W. H. Tsai, “Security monitoring around a video

surveillance car with a pair of two-camera omni-directional imaging devices,”

Proceedings of 2010 Workshop on Image Processing, Computer Graphics, and

Multimedia Technologies, International Computer Symposium, pp. 325-330,

Tainan, Taiwan, Dec. 2010.

[21] C. J. Wu, “New localization and image adjustment techniques using

omni-cameras for autonomous vehicle applications,” Ph. D. Dissertation,

Institute of Computer Science and Engineering, National Chiao Tung University,

Hsinchu, Taiwan, Republic of China, July 2009.

[22] W. H. Tsai, “Moment-preserving thresholding: a new approach,” Computer

Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 377-393, 1985.

