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The scattering of light by a spheroidal metal particle has been newly treated by use of the technique of the multi-
pole expansion of radiation fields from the induced polarization and the associated current and magnetization,
which are now considered as radiation sources. The relation between the polarization and the incident field is most
simply obtained by using the long-wavelength approximation and a radiation-damping correction. The various
orders of electric- and magnetic-multipole coefficients of scattered fields have been separately calculated. Part
of our calculated results confirm and thus justify the well-known features that the electric-dipole term gives the
dominant contribution and that the magnitudes of multipole coefficients decrease monotonically with the increas-
ing-order number of the multipoles. Some new features concerning the accuracy and the limitation of the radia-
tion-damping correction are discussed against the depolarization factor of the spheroid. For a small sphere, the
results reduce to the famous Rayleigh scattering, as expected. Results for larger spheres are compared with those
of an exact electrodynamical calculation.

1. INTRODUCTION

Raman scattering by a molecule absorbed onto certain suit-
ably roughened metal surfaces has been known for many years
to be greatly enhanced.",2 Theories based on the electro-
magnetic local field arising from the bumpy surface are the
most tractable and widely reported. The problem of sur-
face-enhanced Raman scattering (SERS), however, is treated
almost entirely in terms of only dipolar fields.3 4 Even in the
papers5 6 that give more than the dipole term, the contribu-
tions from individual higher multipoles are not separated and
cannot be compared with those of the dipole. In 1981, Liao
et al.4 fabricated lithographically isolated metal micro-
spheroids and made an important advance in SERS studies
through characterization of the roughness by isolated spher-
oids and affirmation of the electromagnetic model for the
SERS. Since the size of the isolated spheroid was compara-
tively large (1500 A in the semimajor axis), the higher-order
multipole contributions should be relatively more pronounced.
Barber et al. 

5 have given an exact electrodynamic calculation,
showing that the overall contribution of all higher multipoles
is quite appreciable. Their method of calculation followed
from that of Asano and Yamamoto,7 which, based on the
formal scattering theory of matching boundary values at the
particle surface, neither clearly gives a separate contribution
from each multipole nor provides a deeper physical insight
owing to the complicated mathematics. The aim of this paper
is to treat the light scattering by a new approach, namely, by
using the existing technique of multipole expansions in vector
spherical harmonics and subsequently calculating the indi-
vidual-multipole contribution in an easy fashion. The main
feature of this approach, which presents direct physical insight
into the calculation, lies in the use of the simple relation be-
tween the induced polarization of the spheroid and the inci-

dent electric field under the long-wavelength approximation
and a radiation-damping correction. Although the SERS
problem can be readily computed, we focus our attention only
on the multipole expansion of an elastically scattered light
field from an Ag spheroid. The formulation of the treatment
is given in Section 2. The various results of individual mul-
tipole contributions and their dependence on the multipole-
order number and the size of spheroid are given in Section 3.
Comparisons in the cases of small and large spheres as well as
other discussions and conclusions are also presented in
Section 3.

2. FORMULATION

The scattering of light at optical frequencies by metal particles
can be handled by using the same formulism as that of light
scattering by dielectric particles.9 "10 We treat the scattering
of light through two steps: (a) An incident light polarizes the
microparticle (see Fig. 1), which in turn results in an induced
polarization P(r, t) and the associated polarization-charge
density pp (r, t) = -v P, polarization-current density Jp (r,
t) = -(P/at), and magnetization Mp(r, t) = (1/2c)(r X Jp).
These quantities are then considered radiation sources. (b)
The radiation fields arising from these radiation sources can
be found by standard procedures. This two-step treatment
was employed first by Chew et al. 11 and later by many authors
in the calculation of the SERS. 2 ,13 But we note that, in these
two-step treatments, most authors did not take into consid-
eration the radiation damping that is due to the energy loss
for the radiation from the time-varying source. In order to
have more-accurate results, we will follow Wokaun et al. 14 and
use a radiation-damping correction in our calculation.

As usual, we assume that the radiation sources are har-
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Po = P cos 0 cos 0 + Py cos 0 sin -P, sin 0, (8)

P = -P. sin 0 + Py cos , .(9)

where Pr, Po, P,,P, Py, and P, are the spherical and the
rectangular components of the polarization vector P, re-
spectively. Note that according to Ref. 8 the fields with
harmonic time dependence (eiwt, w Fx 0) will have no mono-
pole terms, namely, aE(O, 0) = aM(0, 0) = 0.

It is tedious to find the formal relation between the polar-
ization P and the incident field Ei by the matching boundary
values.7 For conceptual clarity and mathematical simplicity,
we use the usual long-wavelength approximation with a cor-
rection of radiation damping.14 This is valid when the ratio
of spheroidal volume V to the cube of the wavelength X of
incident light is small compared with unity, which is consistent
to our case. Thus we have for the incident field and the po-
larization 14

(10)E = eOEo exp(ikho r),

Fig. 1. The coordinate system of light scattering by an isolated
prolate spheroid with semiminor axis d and semimajor axis c.

monically time varying. The Maxwell equations of D and B
within the spheroid can then be written as

v-B=0, (1)

R = E 1 
p e-

4r 1-(1- Aj+i4 2 I4 V V
- j =x, y,z,

(11)

where
m

I AXA= (m2
-1 '

v -D = 0,

V X D - ikB = V X Jp,
(A)

(2)

(3)

v XB+ikD =47rV X MP, (4)

where k = (w/c); c and c are, respectively, the speed and the
frequency of light in that medium. Note that the displace-
ment vector D equals E outside the spheroidal particle.

The electric-multipole coefficients aE(l, m) of order (1, m)
and the magnetic-multipole coefficients aM(l, m) of order (1,
m) can be determined by Eqs. (16.91) and (16.92) of Ref. 8, if
we replace p, J, and M by pp, Jp, and Mp, respectively, in
these equations. The reason is that the above equations take
exactly the same form as Eq. (16.84) of Ref. 8. Using v * P =
-pp inside the spheroid and P = 0 outside the spheroid, we
can write the coefficients in the following forms:

aE l, m) 4rk 2 (Prk2rYlm*jl(kr)aE~, - (l + 1) Jf I
+ Ylm* d2 [rl (kr)]1

kar 2

d '[rjl (kr)] _-~r jj(kr) (Po -Yim*

-0r 2 raO

+ P 1 aYlmijd3
r sin 0 4tk I

am =,m 47rk3 eJ.(kr) + 1/ a rl(kr)1l
aM(, m) [1(1 + 1)]1/2 +/2 [j

X [P I Yim* - Poa~YIM*Jd3X~[ sin 0 afe h o m*dx

with

Pr =Px sin 0 cos 1 + P, sin 0 sin 0 + Pz cos 0,

(5)

(6)

m 1 m+ (m2_1)1/ 21
I 2(m2 - 1)1/2 m - ( 2 - 1)1/21 

(12)

A = 1 M n m + ( 2-)1/2 l
=m - 12(m 2 - 1)1/2 m - (M2 - 1)1/2 - 1

(13)

in which m = cid; c, d, Ax, Ay, Az, and are the semimajor and
the semiminor axes, the depolarization-factor components15
along the X, Y, and Z axes, and the dielectric constant'6 of the
spheroid, respectively. Using Eqs. (7)-(9) and the following
identities' 7 :

S 2wr

J e-i- cos 0do = 7r(Gm,1 + 3m,-l),

e-imp sin kdO = (m, - m,-1),

(14)

(15)

e-i-Od¢= 27flm,0, (16)

OYl,m* 1 [21 + 1 (- )! 1/2ei

daO sin 6 [ 47r (+ )!J

x [(1 + 1)(-X)Plm
+ (1 - m + 1)P1+lm], (17)

aYlm= =_iMYlm*, (18)

Eq. (5) becomes

k 2 [47r (21 + 1) (1- )!11/2
aE ( nm) =l|g( -1 l+m!

X [aEl(l, m) + aE2(1, m) + aE3(1, m)],
(19)

(7) with

z

Y

-
- ' - - S
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X (1 - 2 )/ 2 + 2Pzxamo}

1 rdc/[c2 +(d2-c 2)x2]1/2

X (30 jk 2 rj1 (kr)

0d2
+ [r lr(kr)Jj r2 d)Pim (x)dx,

aE2(1, M) =7r f .{ O[ ' m + am,-l) + *(m' l-am1)

X (1 - X2)1/2 - 2PzamO}

[p dc/[c2+(d2-c2)x2]l/2

1~d [rjl(kr)] _k r it(kr)rd

X [(-x)(l + )Pim(x)
+ (I - m + 1)PI+lm(x)]dx, (21)

aE3(l, m) = imw J' [ ( 3 mib,- )

-PyGOmi + m,-1

(j.,dc/[c 2 +(d2c2)x2]1/2 [rj (kr)]

Using the property of evenness or oddness of Pm(x) with
respect to and m, we can readily see from the above equations
that aE(l, m) = 0 if is even and that aM(l, m) = 0 if 1 is odd.
The scattered fields ESc, Bsc outside the spheroid can be ob-
tained in terms of aE(1, m) and aM(l, m) from Eq. (16.46) of
Ref. 8 by setting fj(kr) = gl(kr) = hl()(kr). The scattering
cross section is as follows:

(2s = ( 26) [ aE( M)12+ am(1,M)l21.

The scattering efficiency Qse is customarily defined as the
ratio of the scattered power to the incident power intercepted
by a given geometrical cross section. For the case of a sphere' 8

of radius a, it becomes

Qse = lim R2
j

2 Ef c Esc* sin Oddk, (27)
R>>a 71la2EO2 o o

where R denotes the radial position of the observation point.
The relation between a, and Qse in the case of a sphere is

Qse = 2ra2

1 M [ 2aE(, m)2+ aM(, m)2].
7r(ka) 2 E0

2
lFm

(28)

Now we take the special case of a small sphere (a << 1) with
the electric-dipole moment along the z direction (1 = 1, m =
0). The coefficient aE(1, 0) can be found by Eqs. (11) and (19)
to be

- r ji(kr) rdrlP _x) dx
2 E a(1- -becom

Equation (6) becomes

with

aMl(l,

[471r (21 + 1) (I-m)!]1/2
aM(l, m) -, (l + 1) (l + m)!|

X [aMl(l, m) + aM2(l, m)],

m) = -imi ef Px(iM, + bm,-i)

(22)
aE(1, 0) = - 81-)/2 k3 - a3EZ,

; e + 2 (29)

where Ez is the z component of applied field E' with ampli-
tude Eo. The scattering cross section for this case is obtained
from Eq. (26):

(23)

+ pi(m,- am

X + 2Pz(3m 0o(1- X 2 )1/2 ')
X (gdc/[c 2+(d2-c 2 )x2 ]l/2

X {jI(kr) + /2 d [rit(kr)] r2dr)Pim(x)dx,

(24)

| . (m- m,-1) Pz(bmi + bm'_1)

(fc/[C2+(d2-c2)X2]1/2

X {Ii(kr) + 1/2 - [ril(kr)] r2dr)

X [(I + 1)(-x)Pim(x)
dx

+ (i -rn + 1)Pi+,m(x)] (1 -X212 (25)

87- I= - 112 6
(3 3 e+ 21 (30)

which is, just as expected, the scattering cross section of
Rayleigh scattering of light by a small sphere. 8 19

3. NUMERICAL RESULTS AND DISCUSSIONS

We consider only a p-polarized wave incident upon a homo-
geneous prolate spheroid, since the usual treatment of the EM
model of a SERS problem assumes that only the z component
of the electric-dipole moment of the molecule is Raman ac-
tive.3 ,13 14 The propagation unit vector no and the polariza-
tion with vector o of the incident light can be written as

no = (sin 0o cos 0o, sin 0 0 sin 0o, cos 0o),

to = (cos Oo cos Oo, cos Oo sin 0o, -sin 0o),

(31)

(32)

where 00 and ,o are spherical angles. The numerical results
of electric- and magnetic-multipole coefficients from a
spheroidal microparticle polarized by light have been calcu-
lated by using the above equations and compared for three
different particle sizes: d = 167 A and c = 500 A for an arbi-
trary choice of small size with aspect ratio 3:1, d = 263 A and
c = 993 A for an optimum choice20 in accord with the experi-
mental data of Liao et al. 4, and d = 500 A and c = 1500 A for
the formed size of that experiment. 4 These numerical results

aM2(1, m) =
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Fig. 2. The logarithmic scale normalized to aM(6, 1)1 and the linear
scale (inset) of the magnitude of electric- and magnetic-multipole
coefficients of the Ag spheroidal particle versus the mutipole-order
numbers (1, m) with d = 263 A, c = 993 A; 0o = 60°, po = 0; photon
energy, 2.55 eV.

are not so substantial in the multipole coefficients. To a large
extent, similar features have been found for Au.

In order to understand the accuracy and the limitation of
our approach, we now work on the validity of the radiation
damping from Eq. (11) and set

B =47r2 V
3 X

3

E = E + i 2.

(33)

(34)

To be specific, we consider the case of Ag in which the imagi-
nary part E2 of e is small (•0.5), whereas the real part E1 of e

decreases from -2 to -40 over the range 3.5-1.39 eV.16
Equation (11) then becomes

E 1D. 1

47r 1 - (1 - el)Aj + Be2 + i[(1- E)B - Aj(2I
(35)

Particle plasmon resonance should occur when the real part
of denominator of Eq. (35) vanishes, namely, I - (1- E)Aj
+ BE2 = 0. We discuss two cases:

m= - 0 l -I 0 1 -I 0 1

I1 I 'iL

- d.167A c.500A
- d263A, C= 993A
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Fig. 3. The logarithmic scale of the magnitude of electric- and
magnetic-multipole coefficients of the Ag spheroidal particle versus
the multipole-order numbers (1, m) for various sizes. d = 167 A, c
= 500 A; d = 263 A, c = 993 A; and d = 500 A, c = 1500 A with 00 =
600, 00 = 00; photon energy, 2.55 eV.

are plotted in Figs. 2 and 3. The plots indicate that the
electric-dipole coefficient aE(l, 0) offers the principal con-
tribution to the scattering field, and the magnitudes of other
multipole coefficients drop strikingly with increasing-order
numbers. Figure 3 also displays that each higher-order
multipole coefficients (same 1, m) becomes more important
with increasing particle volume. It gives a more pronounced
contribution to scattered fields for a large-size particle. These
results are known and are confirmed or justified by this cal-
culation. We emphasize that, for any 1, the electric-multipole
coefficients aE(l, m) are nonvanishing only for m = 0 + 1 and

that, for magnetic-multipole coefficients aM(l, m), only the
multipoles m = I1 exist, as is shown in Figs. 2 and 3. Figures
4 and 5 are the plots with different photon energies and polar
angles of incident light. There are some changes, but these

a (1-,r,

Fig. 4. The logarithmic scale of the magnitude of electric- and
magnetic-multipole coefficients of the Ag spheroidal particle versus
multipole-order numbers (1, m) with different energies 2.55 and 2.36
eV for d = 263 A, c = 993 A, 00 = 600, and o = °°.
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Fig. 5. The logarithmic scale of the magnitude of electric- and
magnetic-multipole coefficients of the Ag spheroidal particle versus
mutipole-order numbers (1, m) with different incident polar angles
So = 600 and Oo = 300 for Oo = 00, d = 263 A, and c = 993 A; photon
energy, 2.55 eV.
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Fig. 6. Comparison of the calculated scattering efficiency Qse versus
incident photon energies with the well-known Rayleigh result denoted
as Qser and with those of the exact solution of Ref. 18 denoted as Qsca,
for a sphere immersed in water with radius a = 220 A.
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Fig. 7. Comparison of the calculated scattering efficiency Qse versus
incident photon energy with those of the exact solution of Ref. 18
denoted as Qsca for a sphere immersed in water with radius a = 600
A and a = 1000 A, respectively.

Case 1: Aj >> B. Equation (35) reduces to the resonant
polarization

J res -47r i[(1 - ei)B - Ae 2] 

In this case, one may have very small B such that

(1 - E,)B << Aje 2 .

Clearly this reduces to the famous Rayleigh scattering. Since
(1 - l) can be quite large for Ag, one may still obtain the
relation

(1 - l)B AjE2.

This can give the result that ! (Pi)resI becomes greater than the
resonant polarization without using radiation damping. This
feature is clearly manifested in the case of a sphere of radius
a = 220 A immersed in water, as is shown in Fig. 6, for which
(1 - e)B 0.047 and Aje2 = 0.061 for the resonance peak with
a photon energy of 3.25 eV.

pi - res - 1 1

Case 2: B is comparable with Aj. Equation (37), owing
to small E2, becomes

(Pj)re. = Eres 1 1-'j r s 4r i[(1 -E,)B ]'(37)

In this case, the magnitude of (P1 )res decreases with increasing
B, as is shown in Fig. 7 for the sphere of radius a = 600 A im-
mersed in water. The broadening resulting from the radiation
damping is rather striking. When the radiation-damping
term B is larger than Aj, the broadening effect would be too
large to apply the radiation-damping technique as a first-order
corrections treatment. We plotted the results of Qse in Fig.
7 for a = 1000 A to demonstrate this property.

Finally, we compare our results with those for the case of
a sphere immersed in water, which has been solved exactly by
Messinger et al. 18 using the Maxwell equations. We take c
= d = a as the sphere case, replace e by e/1.77 for the water
environment, and use various sizes to compare the scattering
efficiency Qse with the Qsca of Messinger et al. These are
shown in Fig. 6. For small size of a sphere with a = 220 A, the
scattering efficiency Qela=22oA calculated by Eq. (28) in-
cluding the radiation-damping correction has the same peak
position at 3.25 eV but differs in magnitude from that of
Rayleigh scattering denoted by Qserla=220A. This increase in
Qse at resonance corresponds to the increase in (Pj)resl. The
reason for the increase has been explained in case 1 above.
When we neglect the radiation-damping term B, we obtain
exactly the Rayleigh-scattering result. We notice that the
scattering efficiency Qscala=22oA of the exact electrodynamic
solution,' 8 when compared with the Rayleigh QserIa=220A, has
smaller magnitude and a shift of resonance peak, probably
because of phase-retardation effects. In this case, we have
Aj >> B (Aj = 0.333 >> B = 1.05 X 10-2 at 3.25 eV). The sa-
lient feature is that there is only one sharp resonance. Next
is the case of such large sphere volume that B (0.21 at 3.25 eV)
is comparable with Aj, with a = 600 A, for example, shown in
Fig. 7. The curve of scattering efficiency Qsela=600A versus
photon energies has broadened linewidth and decreased
magnitude, as mentioned before. The features in Fig. 7 are
similar to those of phase-retardation effects in an electrody-
namical calculation made by Meier and Wokaun.2 1 This is
rather in accord with their idea2 l that the consideration of
phase retardation would give the effect of radiation damping.
If we take a = 1000 A (B = 0.99 at 3.25 eV) and use Eq. (28),
there is apparently no resonant feature within the range
2.31-3.87 eV. The plot differs largely from that of the exact
electrodynamic calculation by Messinger et al. (denoted by
Qscala=iOOoA). As mentioned above, this lack of sharp reso-
nance would result from the invalidity of using such large
radiation damping as a first-order correction.5

To conclude, we have calculated with a new technique the
multipole expansion of the light scattering from a metal par-
ticle by using the long-wavelength approximation and the
radiation-damping correction. The results, apart from the
well-known dominating features of the electric-dipole term
over the other multipoles, have revealed that, for a small
spheroidal size such that (1 - el)B AjE2, the radiation-
damping correction could yield enhancement rather than
damping. For large sizes (B > Aj), the resonance peak in the
excitation profile should disappear. For small sizes of spheres

)E ' | I I ' ' I ' I ' I.._.

\I ,"/-0 SelQ220A

, , serl=220A

/ ;¾e.XscaIGa220A

a _ LE _
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our results are compared with Rayleigh scattering, and for
larger spheres other existing exact electrodynamical calcu-
lations are discussed.
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