

利用社群特性於社區網路影響力最大化之研究

Efficient Influence Maximization in Social Network
Via Community Characteristics

研 究 生：張書華 Student：Su-Hua Chang

指導教授：李素瑛 Advisor：Suh-Ying Lee

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

Aug 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年八月

i

利用社群特性於

社群網路影響力最大化之研究

研究生: 張書華 指導教授:李素瑛

國立交通大學

資訊科學與工程研究所

碩士論文

摘要

 近幾年來，因為很多大型社群網站的興起，在社群網路中影響力最大化問題已經引

起了很多關注。 影響力最大化問題是在社群網路中找尋一群節點，使得影響力的散播

最大化。雖然近幾年已有很多研究在解決影響力最大化的問題，但是用以模擬社群網路

的模型不能真實反映現實、網路情境，且效率不佳。然而因為大規模社群網路不斷的增

加，效率和實際可行性已經是重要的課題。在此篇論文中，我們使用熱流模模擬切實際

的網路，並在此模型下提出兩種解決影響力最大化的演算法。我們利用社群結構來避免

影響力重疊，再從所找出來的社群結構中找出最具有影響力的關鍵性節點。藉由社群結

構的特性可以大量的減少需要考慮的節點數目。我們使用合成和真實的資料實驗的結果

顯示我們所提出的演算法在效能上有很大的改善。

ii

Efficient Influence Maximization in

Social Network via Community Characteristics	 	

Student: Su-Hua Chang Advisor: Suh-Yin Lee

Institute of Computer Science and Engineering

College of Computer Science

National Chiao-Tung University

Abstract

 In recent years, considerable concern has arisen over the influence maximization in social

network, due to the surge of social network web sites. Influence maximization is the problem

of finding a small subset of nodes in a social network that could maximize the spread of

influence. Although many recent studies are focused on influence maximization, these works

in general are not realistic nor efficient. Nevertheless, with the increasing number of

large-scale social networks, efficiency and practicability requirement for influence

maximization have become more critical. In this thesis, we propose two novel algorithms,

CDH-Kcut and CDH-Shrink, to solve the influence maximization problem in the realistic

model, i.e., heat diffusion model. Our algorithms use the community structure, which could

significantly decrease the number of candidates of influential nodes, to avoid information

overlapping and to find the influential nodes according to the community structure. The

experimental results on synthetic and real datasets show our algorithm significantly

outperforms in efficiency.

iii

Acknowledge	

 I greatly appreciate the kind guidance of my advisor, Prof. Suh-Yin Lee. Without her

graceful encouragement, I cannot complete my thesis.

 Besides, thanks are extended to all my friends and all the members in the information

system laboratory for suggestion and instruction, especially Mr. Yi –Cheng Chen.

 Finally, I would like to express my appreciation to my parents for their supports and

consideration. This thesis is dedicated to them.

iv

Table of Contents

Abstract (Chinese) ... i

Abstract (English) ... ii

Acknowledge ... iii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... viii

Chapter 1 Introduction .. 1

Chapter 2 Background .. 4

2.1 Diffusion of Innovation .. 4

2.2 Diffusion Model ... 4

2.2.1 Linear Threshold Model (LTM) .. 4

2.2.2 Independent Cascading Model (ICM) ... 5

2.2.3 Heat Diffusion Models (HDMs) .. 5

2.3 Influence maximization problem .. 8

2.4 Community Detection Algorithm ... 9

2.4.1 Kcut Algorithm .. 9

2.4.2 SHRINK Algorithm ... 12

2.5 Seeds Selection Algorithm ... 15

Chapter 3 Community Degree Heuristic (CDH) .. 18

3.1 Overview of System Architecture .. 18

3.2 CDH-Kcut ... 25

3.3 CDH-Shrink .. 29

3.4 Time Complexity of Approximation Algorithms ... 34

v

Chapter 4 Experiments ... 36

4.1 Synthetic Networks .. 37

4.2 Zachary’s Karate Network .. 44

4.3 A Collaboration Network .. 46

4.4 Facebook Network .. 52

Chapter 5 Conclusions .. 58

Bibliography ... 59

vi

List of Figures

Fig. 1.1: An example of a social network diagram.. ... 1

Fig. 2.1: An undirected network ... 7

Fig. 2.2: The curve with heat diffusion model ... 8

Fig. 2.3: An example network for Kcut .. 11

Fig. 2.4: Eigenvectors of Laplacian matrix of Fig 2.3 .. 12

Fig. 2.5: Example of Kcut .. 12

Fig. 2.6: An example network for SHRINK algorithm .. 13

Fig. 2.6: Illustration of the procedure of SHRINK ... 14

Fig. 3.1: Framework of CDH ... 19

Fig. 3.2: The distribution of heat.. .. 20

Fig. 3.3: The distribution of heat. ... 20

Fig. 3.4: Comparison with three seeds in different community size .. 21

Fig. 3.4: An example of Fundamental node ... 22

Fig. 3.5: An example of fundamental node………………………………………………….. 22

Fig. 3.6: An example of the concept of CDH ... 23

Fig. 3.7: An example of finding fundamental nodes in CDH-Kcut .. 26

Fig. 3.8: Flowchart of selection phase .. 26

Fig. 3.9: Illustration of community size reduction. .. 26

Fig. 3.10: An example of “cover”... 26

Fig. 3.11: An example of how to computing purity. ... 26

Fig. 4.1: 5 Seeds selected by CDH-Kcut with low activationthreshold in 1000Smp. 39

Fig. 4.2: Seeds selected by CDH-Kcut with high activation threshold in 1000Smp. 39

Fig. 4.3: Zachary’s karate network.. ... 45

Fig. 4.4: Influence spread of different algorithms on NETHep. ... 46

Fig. 4.5: Influence spread with different activation threshold on NETHep.10 seeds. 47

vii

Fig. 4.6: Influence spread with different activation threshold on NETHep. 30 seeds 48

Fig. 4.7: Influence spread with different flow duration on NETHep.10 seeds 48

Fig. 4.8: Influence spread with different time on NETHep. 30 seeds 49

Fig. 4.9: Influence spread with different thermal conductivity on NETHep. 10 seeds 49

Fig. 4.10: Influence spread with different thermal conductivity on NETHep. 30 seeds 50

Fig. 4.11 Running time of different algorithms on the NetHep .. 51

Fig. 4.12 Influence spread of different algorithms on FB. ... 52

Fig. 4.13 influence spread with different activation threshold on FB. 10 seeds 53

Fig. 4.14 influence spread with different activation threshold on FB. 30 seeds 53

Fig. 4.15 influence spread with different time on FB. 10 seeds ... 54

Fig 4.16 influence spread with different flow duration on FB. 30 seeds 55

Fig. 4.17 influence spread with different thermal conductivity on FB. 10 seeds 56

Fig. 4.18 influence spread with different thermal conductivity on FB. 30 seeds 56

Fig. 4.19 Running time of different algorithms on FB ... 57

viii

List of Tables

Table 4.1: The parameters of the omputer-generated datasets for performance evaluation 37

Table 4.2: Influence spread with 4 different algorithms in 1000Smp. 38

Table 4.3: Influence spread with 4 different algorithms in 1000Lmaxd. 40

Table 4.4: Influence spread with 4 different algorithms in 1000Lmaxd. 41

Table 4.5: Influence spread with 4 different algorithms in 1000LM. 42

Table 4.6: Influence spread with 4 different algorithms in 5000Smp. 42

Table 4.7 Two seeds selected by different algorithm in Zachary’s karate network. 45

1

Chapter	1	

Introduction	

 In the last decade, many studies have been made in the area of social networks, in which

users are linked to each other by a binary relationship such as friendship, co-working relation,

business contact, to name a few. Fig 1.1 is an example of social network in which nodes tend

to cluster together. Due to millions of users in social networks such as blogs, there are a lot of

applications on social networks, such as viral marketing, community detection, etc.

Nowadays, many large-scale web sites, such as Facebook and Twitter, become very

popular since users can easily share everything with their friends and also bring small and

disconnected social networks together. In 2011, Facebook already has more than 600 million

active users and Twitter has about 90 million active users. Due to the flourishing of social

network websites, marketing on online social networks shows great potential to be much more

successful than traditional marketing techniques. According to eMarketer, advertisement

spending on worldwide social networking sites in 2008 reached $23.4 billion and will expect

to achieve about $23.6 billion in 2010 and $25.5 billion in 2011.

Consider the following motivating example. A company develops a software “cooler”

and wants to market it to a social network. The company has limited budget so that it can only

Fig.1.1. An example of a social network diagram. A common

property of social network is that nodes tend to cluster together.

2

give the free “cooler” to a small number of initial users. The company wishes the initial users

could influence their friends to use the product, and their friends could influence their friends’

friends. Through the word-of-mouth effect, the company makes a large number of users adopt

the “cooler”. Influence maximization problem is how to select initial users (refered to as seeds)

so that the number of users that adopt the product or innovation is maximized. That is, the

problem is how to find the influential individuals in a social network.

 In reality, more social networks become large-scale, so the issue of efficiency becomes

more and more crucial. Kempe et al. [6] also proved the influence maximization problem is

NP-hard, and [6] proposed a climbing-up greedy algorithm. However, the climbing-up greedy

algorithm is too time-consuming. If it takes long time for companies to decide which set of

individuals should be given free samples to promote their products, they may lose the

advantage due to non-timeliness. Moreover, the selected set of individuals will not be useful

since the input network may change a lot during this week. Thus, some efficient approximate

algorithms were proposed [2, 15]. Although those algorithms are efficient, they are only

appropriate for diffusion models, which are not realistic enough.

 Realistic modeling is also a very important issue for influence maximization problem.

For an example, different social networks have different kinds of information flows. Hot

social networks may transfer information faster than other social networks. The effect of time

also has to be considered. Sometimes we want to know which set of individuals could trigger

more adoptions of products after 3 days, 7 days, a week, etc. Therefore, realistic diffusion

models are necessary for making actual predictions of the future behavior of the network.

 In this thesis, we tackle the issues of time efficiency and realistic modeling of the

influence maximization problem. We propose the novel community and degree heuristic

(CDH) under heat diffusion model. Our CDH strategy is the unique combination of utilizing

the community characteristics and modified degree centrality. Firstly, as shown in Fig 1.1, we

can see that node clustering is an important characteristic of social networks. Therefore, we

3

utilize the community detection algorithm to avoid overlapping of influence spread. Secondly,

we use the modified degree centrality to select influential individuals taking into account the

information of community. We develop two approximate algorithms, CDH-Kcut and

CDH-Shrink. Compared with the approximate algorithm in [5], CDH-Kcut and CDH-Shirnk

are more efficient. Besides, both their influence spread are significantly better than classic

degree centrality [22].

 The rest of this thesis is organized as follows. In chapter 2, we introduce background

knowledge required for influence maximization problem. We survey previous works on

selection of seeds under different diffusion models in chapter 3. In chapter 4, we will present

the details of CDH framework and two algorithms, CDH-Kcut and CDH-Shrink. We analyze

the time complexity of each algorithm in chapter 5. In chapter 6, the experimental results will

be presented. Finally, we conclude the thesis and describe the future works in chapter 7.

4

Chapter	2	

Background	

2.1 Diffusion of Innovation

Rogers [1] theorizes that diffusion is the process by which an innovation is

communicated through certain channels over time among the members of a social system.

Diffusion is a type of communication concerned with the spread of messages that are

perceived as new ideas. Besides, innovations spread through society as the early adopters

select the technology first, followed by the majority, until a technology or innovation is

common. We use diffusion models, in generally, to simulate the diffusion of innovation.

2.2	Diffusion	Model	

 In this section, we will introduce two basic and one realistic diffusion models. We model a

social network as an undirected graph G(V,E), where V is the vertex set and

V={v1,v2,...vn}.E={(vi,vj)| there is an edge from vi to vj} is the set of edges. Each node

represents an individual and an edge between two nodes represents some kind of relationship

(friends, co-authorships etc.). Each node is marked active (an adoption of an idea or

innovation) or inactive. V and E also mean vertex set and the set of edges in rest of this thesis.

2.2.1	Linear	Threshold	Model	(LTM)	

For an undirected graph G(V,E), we define N(v) = {u|(u,v)	∈ E} as the neighbor set of

node v and buv as influence of active node u on its inactive neighbor v. We define A(v) as the

set of active nodes in N(v)(A(v)⊆) .Besides, the activation threshold θ is defined. For a

given node, if ∑ ∈ , node v becomes active. Intuitive meaning is that for an

5

inactive node v, if total influence exerted on u by all its active neighbors exceeds a

pre-defined activation threshold θ, node v becomes active. In turn, it will exert influence on its

inactive neighbors and bring some inactive neighbors become active. This process will

continue on until no node can be activated.

2.2.2	Independent	Cascading	Model	(ICM)	

 Another fundamental diffusion model is independent cascading model [24]. If a node v is

activated at step t and it then tries to activate all its inactive neighbors with success probability

p for each inactive neighbor u. If it is successful, then u will be active in step t+1, else v failed

and will no longer have chance to activate u. In addition, each active node has only one

chance to activate its neighbor u. While some other models [2, 3, 4] are proposed, they all are

variations of the two core models, LTM and ICM, we have introduced.

2.2.3	Heat	Diffusion	Models	(HDMs)	

 Heat diffusion is a physical phenomenon. Heat always flows from a position with high

temperature to a position with low temperature. The phenomenon is actually similar to the

process of people influencing others. The innovators and early adopters of a product or

innovation act as heat sources, and have a very high amount of heat. These people start to

influence others, and diffuse their influence to the early majority, then the late majority.

Finally, at a certain time, the heat is diffused to the margin of this social network. In reality,

different social networks have different information flows. Information on popular websites

transfer information faster than other types of social networks. The time aspect needs to be

considered when modeling social network marketing since different marketing strategies are

required for different duration of information. It is not reasonable that only activated nodes

could spread information to. ICM and LTM are built at a very coarse level, typically with only

6

a few global parameters, and are not useful for marketing actual predictions of the future

behavior of the network [23]. Consequently, Ma proposed the realistic model, i.e., heat

diffusion model [5]. It provides more parameters to simulate the conditions of real world,

such as time and thermal conductivity. Therefore, heat diffusion model can easily simulate

time effect in information and different types of information flow. Non-activated nodes can

also spread information. HDMs originally has three different models, (1) diffusion on

undirected social network, (2) diffusion on directed social network and (3) diffusion on

directed social networks with prior knowledge of diffusion probability. In practice, most

popular websites, such as Facebook, twitter and plurk are all undirected social networks, so he

undirected social network are our focus.

The value fi(t) describes the heat at node vi at time t, beginning from an initial

distribution of heat given by fi(0) at time zero. f(t) denotes the vector consisting of fi(t).

Suppose at time t, each node vi receives an amount M(i, j, t,	∆) of heat from its neighbor vj

during a period ∆ . The heat M(i, j, t,	∆) should be proportional to the time period ∆ and

the heat difference fj(t) – fi(t). Moreover, the heat flows from node vj to node vi through the

edge that connects nodes vi and vj. Based on this consideration [5], M(i, j, t,	∆) =	

)∆ , where is the thermal conductivity, i.e., the heat diffusion coefficient. As a result,

the heat difference at node vi between time time t and t + ∆ will be equal to the sum of the

heat that it receives from all its neighbors. This is formulated as Eq (2.1):

∆ 	 	

∆
 =	 	 ∑ : 	, ∈	 (2.1)

The closed form solution of Eq (1) is :

∆ 	 	

∆
 = f (2.2)

where

 =
1,																		 v 	,	v 	 ∈ 																										

								 v ,											 ,																																																	
												0																			otherwise.																																									

7

and d(v) denotes the degree of the node v,

As the limit ∆ 	 → 0, Eq 2.2 	becomes

		
f =	 f (2.3)

Solving this differential equation in Eq(2.3), we have:

f(t)=e f 0 , (2.4)

e could be extended as:

 e H
	

!
H

	

!
H ⋯.

The matrix e is called the diffusion kernel in the sense that heat diffusion process

continues infinitely many time from the initial heat diffusion. When the graph of a social

network is very large, a direct computation of e is very time-consuming. [5] adopts its

discrete approximation to compute the heat diffusion equation:

 f I 	 H 	f 0 	 (2.5)

Consider the example network in Fig 2.1 .

Fig. 2.1 An undirected network

The vector f(0) equals 7	0	0	0	0	0	0 and matrix H is

H =

	 3	
1
	

1
1
0
0
0

	

1
2
0
0
1
0
0

		

1
0
1
0
0
0
0

		

1
0
0
1
0
0
0

		

0
1
0
0
2
1
0

		

0
0
0
0
1
2
1

		

0
0
0
0
0
1
1

8

Fig 2.2 illustrates the curves of the variation of amount of heat of each node with heat

diffusion model in Fig 2.1 (X-axis indicates time and Y-axis indicates amount of heat). We

could see that only node 1 has heat at time 0. With time elapsing, the amounts of heat of other

nodes are increasing and more close. Besides, assume node 2 is non-activated, but it can still

spread information to node 5.

Fig. 2.2 the curve of amount of heat of each node

 with heat diffusion model in Fig. 2.1

 If the amount of heat of node vi exceeds the activation threshold , we think node vi

purchase a product or adopt an innovation.

2.3 Influence maximization problem

 The problem of influence maximization [21] posed by Domingos and Richardson is

stated below: if we can try to convince a subset of individuals to adopt a new product and the

goal is to trigger a large cascade of further adoptions, which set of individuals should we

target in order to achieve a maximized influence? In reality, a person’s decision to buy the

product is often strongly influenced by his friends and acquaintances. That is to say, the

influence maximization problem is how we select the most influential early adopters. Better

early adopters cause the more people to adopt the product. Online social networks provide

good opportunities to address this problem, since we can easily share information with our

friends. Influence maximization problems under the LTM, ICM and HDM are all

0

1

2

3

4

5

6

7

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

H
e
at

Time

Node1 Node2

Node3,4 Node5

Node6 Node7

9

NP-problems, as already proved in [5, 6].

2.4 Community Detection Algorithm

 A community is characterized as a subset of individuals who interact with each other

more frequently than other individuals outside the community [22]. Community discovery is

similar but not equivalent to the conventional graph partitioning problem. Both community

discovery and conventional graph partitioning problem aim to cluster vertices into groups. A

key challenge for the former, however, is that the algorithm has to decide what is the “the

best“,	or in other words, the “most natural“ partition of a network. In this thesis, we need the

“most natural” partitioning without providing any information such as the number of

partitions. Furthermore, if there is no good community structure, the network needs not be

partitioned. That is why we use the community detection algorithm rather than conventional

graph partitioning algorithm.

A quantitative measure, called modularity (Q), was proposed [7] to assess the quality of

community structures, and community discovery was formulated as an optimization problem.

Because Optimizing Q is an NP-problem, several heuristic methods have been proposed, as

surveyed in [8]. Assume M is the number of edges and N is the number of nodes. The time

complexity of most community detection algorithms are between O(NlogN) and O(N3). In this

thesis, the efficiency of algorithms are most concerned, so we select KCUT [9] and SHRINK

[10], which have low time complexity O(MlogN), as our community detection algorithms.

Besides, the two algorithms are not only efficient but also have good modularity. We will

briefly introduce the Kcut and SHRINK algorithms in the section 2.4.1 and 2.4.2.

2.4.1 Kcut Algorithm

Kcut algorithm [9] is spectral graph partitioning. There is a family of methods on

spectral graph partitioning. These methods depend on the eigenvectors of the Laplacian

10

matrix of a graph. Depending on the way a graph is partitioned, spectral methods can be

classified into two classes. The first class uses the leading eigenvector of a graph Laplacian to

bi-partition the graph. The second class of approaches computes a k-way partitioning of graph

using multiple eigenvectors. We briefly review some representative algorithms of these two

classes below.

SM algorithm [11], the representative of first class, works as follows. SM computes

,	the second smallest generalized eigenvector of Laplacian matrix. Then a linear search is

conducted on to find a partition of the graph to minimize a normalized cut criterion [11].

To find more than two clusters, the SM algorithm can be applied recursively

The representative of second class is NJW algorithm. NJW algorithm [12] finds a k-way

partition of a network directly, where k is given by the user. NJW computes the k smallest

generalized eigenvectors of Laplacian matrix and stack them in columns to form a matrix Y =

[,	 	, ...,]. Each row of Y is normalized to have unit length. NJW treats each row as a

point in , and then applies standard k-means algorithm to group these points into clusters.

Kcut is a unique combination of recursive partitioning and direct k-way method. Kcut

will achieve the efficiency of a recursive approach, while also having the same accuracy as a

direct k-way method. It has been empirically observed that if there are multiple communities,

using multiple eigenvectors to directly compute a k-way partition is better than recursive

bi-partitioning method [12]. To optimize the performance measure of modularity Q, Kcut

algorithm uses a greedy strategy to recursively partition a network. Unlike the most

algorithms that always seek a bi-partition, it adopts a direct k-way partitioning. In summary,

we compute the best k-way partition with k = 2,3,…, using the NJW algorithm, and select

the k that gives the highest Q value. Then for each subnetwork, the algorithm is recursively

applied.

Given a network G and a small integer l that is the maximum number of partitions to be

considered for each subnetwork and Q is the value of modularity , Kcut executes the steps as

11

shown in Algorithm 1:

Algorithm 1: Kcut

Input : Graph of social network G; l : the maximum number of partitions to be considered

for each subnetwork

Output: Г : set of clusters

1. Initialize Г to be a single cluster with all vertices, and set Q=0.

2. For each cluster P in Г,

3. Let g be a subnetwork of G containing the vertices in P;

4. For each integer k from 2 to l

5. Apply NJW to find a k-way partitioning of g, denoted by Г ;

6. Compute new Q value of network as =Q(Г	∪ 	Г 	\ p);

7. Find the k that gives the best Q value, i.e., k* = argmaxk	 ;

8. If 	 ∗ > Q

9. accept the partition by replacing P with Г ∗, i.e., Г = Г	∪ Г ∗ \ P,

10. and set Q =	 ∗ ;

11. Advance to the next cluster in Г, if there is any;

Fig 2.3 is an example network for Kcut. Assume l is 3. Fig 2.4 is the eigenvectors of

Laplacian matrix of Fig 2.3 and stack them in columns to form a matrix [,	 	,]. Apply

NJW to find a k-way partitioning of Fig 2.3. We find k = 2 that gives the best Q value. Fig 2.5

is the partitioning of Fig. 2.3. Then no more partitioning could gain the modularity.

Fig. 2.3 An example network for Kcut

12

2.4.2 SHRINK Algorithm

 SHRINK [10] is a parameter-free hierarchical network clustering algorithm by

combining the advantages of density-based clustering and modularity optimization methods.

It uses density-based method to quickly know which set of nodes may be the same cluster.

Then it uses modularity optimization to decide whether results of clustering are good or not. It

not only detects hierarchical communities, but also identifies hubs and outliers. Therefore,

local connectivity structure of the network is used in SHRINK. We briefly review the details

Fig. 2.5 Two communities detected by Kcut

Fig. 2.4 Eigenvectors of Laplacian matrix of Fig 2.3 and

stack them in columns to form a matrix [,	 	,]

Node 1

Node 2

...

13

of SHRINK as follows.

 Given a weighted undirected network G = (V, E, w.). w(e) is the weight of edge e. We

formalize some notions and properties of the hierarchical structure-connected clusters. Firstly,

we define the structure similarity. The structural similarity effectively denotes the local

connectivity density of any two adjacent nodes in a weighted network. For a node u ∈ V, we

define w({ u, u }) = 1. The structure neighborhood of a node u is the set Г(u) containing u and

its adjacent nodes : Г(u) = 	 	 ∈ 	| , ∈ 	∪ 	 	 . The structural similarity between

two adjacent nodes u and v is then

 σ u,v =
∑ 	 , 	 ∙ 	 , 	∈Г ∩Г

∑ 	 , 	∈Г 	∙ ∑ 	 , 	∈Г

 . (2.6)

 Therefore, if node u and node v have more mutual and familiar friends, structure

similarity of {u, v} will be higher. The above structural similarity is extended from a cosine

similarity used in [13]. It can be replaced by other similarity definitions such as Jaccard

similarity. However, [10] shows that the cosine similarity is better. We define the dense pair.

σ u, v is the structure similarity of nodes u and v. If	σ u, v is the largest similarity

between nodes u, v and their adjacent neighbor nodes: σ u,	v = max{	σ , y | (x = u, y

∈ 	Г 	 	 	⋁ 	 	 	 , y	 ∈ 	Г 	 }, then {u, v} is called a dense pair in G.

That is to say, a dense pair {u, v} is the largest similarity edge from all edges of u and v.

As shown in Fig 2.6, {9,13} is a dense pair with structure similarity 0.8165 in the example

network since {9, 13} is the largest similarity edges from all edge of node 9 and 13.

Fig. 2.6 An example network for SHRINK algorithm

14

Fig.2.6 Illustration of the procedure and

result of the hierarchical network clustering algorithm SHRINK.

The main process can be divided into two phases that are repeated iteratively. Given a

network with N nodes, first we initialize each node with a different community label. In this

initial partition, the number of communities is the same as the number of nodes. Then, for

each node u we combine the corresponding nodes in the dense pairs of u to form a super-node.

This process is applied sequentially for all nodes. We record all different communities which

represent a partition of the network. The second phase of the algorithm is to build a

super-network. We evaluate the modularity gain of Qs for the shrinkage of the communities

found during the first phase. If the modularity gain is positive, the corresponding local

(b)

1st iteration

2nd iteration

Stop when △Qs < 0
(c)

(a)

15

community is replaced by a super-node. The above two phase are executed in turns until there

is no community with positive modularity gain. For an example in Fig 2.7(a), at 1st iteration,

we separately combine node set {9, 13}, {8, 11, 12}, {1, 4, 5} and {2, 3, 6} as four super

nodes with structure similarity 0.8165, 0.8, 0.8, and 0.8165. Then since the modularity gains

after shrinkage of communities are positive, the above four node sets are replaced by four

super nodes. At 2nd iteration, node set {{8, 11, 12}, {9, 13}, 10} and {{1, 4, 5}, {2, 3, 6}} are

separately combined as two super-nodes with 0.7303 and 0.7303. The modularity gains after

shrinkage of communities in 2nd are positive, so we replace two node set {{8, 11, 12}, {9,

13}, 10} and {{1, 4, 5}, {2, 3, 6}} by their super-nodes. Since no more shrinkage of

communities could gain the modularity gain of Qs, SHRINK stops. Then the hierarchy of

communities naturally occurs, as shown in Fig 2.7(b). Fig 2.7(c) represents final two-layers

overlapping communities. Since node 7 connects two communities, it is a hub. In addition,

node 14 is identified as an outlier which is loosely connected with the community {8, 9, 10,

11, 12, 13}.

SHRINK is not only efficient but also accurate. Besides, it can detect hubs which are

very useful information in maximal influence problem. We could see that in the same graph in

Fig 2.6 and Fig 2.3, Kcut only detect two communities, but SHRINK detect not only two

communities but also a hub, node 7. Hub is very useful for influence maximization problem.

2.5 Seeds Selection Algorithm

We discuss previous works for seeds selection in this section. Influence maximization

problem is an NP-problem. Hence, many works have been proposed to achieve approximate

solutions. In social network, we often consider the person who has the most friends as the

most influential person, since he can possibly influence most people. Therefore, the intuitive

strategy, in general, is selecting seeds based on their degree, called degree centrality.

Nevertheless, the members of large communities often have larger degree than other members

16

of smaller communities. Consequently, degree centrality easily selects seeds in the same large

community. Influence spreads of each seed in the same community tend to be overlapped. As

a result, degree centrality does not have good performance on influence spread. Distance

centrality is another common used method for influence maximization problem. It selects

seeds in the order of increasing average distance to other nodes. However, nodes in the larger

communities usually have smaller average distance. As a result, most seeds may also be

clustered. Simply stated, degree centrality and distance centrality result in the phenomenon of

clustering of seeds, which deteriorates sharply in influence spread.

 Pable A. Estevez et al. proposed set cover greedy algorithm [2] under independent

cascading model (ICM). It kept selecting node with highest “uncover degrees”. Once a node

is selected, all its neighbors as well as itself are labeled as “covered”. This procedure

continues until k seeds are selected. This algorithm is computationally fast under simpler

models, i.e., ICM. However, it has good influence spread only in high successful probability.

 The Climbing-up greedy algorithm [6] under ICM and LTM was proposed by David

kempe et al.. They also provided the first provable 1 	approximation guarantees for

influence spread. The number e is Euler’s number. Recently, since social network websites are

getting more popular, we have to pay more attention to efficiency of algorithms. In reality, at

the beginning of the innovation diffusion process, several seeds in the network spread the

information at the same time, not just one single seed. The information from his (her) social

network may come from several seeds. At each iteration of climbing-up greedy algorithm, we

select most “influential” node on the condition of considering all seeds selected before. This

procedure continues until k seeds are selected. If a node could make more nodes to be

activated, it seems to be more “influential”. For selecting the most influential node, we have

to compute each node’s influence. Due to the heavy computing load of climbing-up greedy

algorithm, it is not appropriate for large social networks. Besides, [5] proposed enhance

greedy algorithm under heat diffusion model, i.e. the climbing-up greedy algorithm specially

17

under heat diffusion model. Nevertheless, enhance greedy algorithm is also a climbing–up

greedy algorithms. Consequently, we cannot solve influence maximization problem under

heat diffusion model in acceptable time.

 Yitong Wang et al [14] proposed a potential-based node selection. It selects some inactive

nodes that might not be optimal at starting phase but could trigger more nodes in later stage of

diffusion. It can save half time of totally using Climbing-up greedy algorithm and cause more

adoptions than that in [6]. However, in practice it is still not efficient enough. Therefore, the

extremely efficient algorithm, degree discount heuristic, was presented by Wei Chen et al.

[15]. It obtains the approximate solutions in large datasets for only a few seconds. Besides, its

performance is close to [6]. However, both of [14, 15] are only under LTM or ICM, which are

not very realistic diffusion models. In addition, degree discount heuristic is only for very low

successful probability, i.e., people are extremely hard to be influenced in very low successful

probability.

18

Chapter 3

Community Degree Heuristic (CDH)

 In this chapter, we will describe our community degree heuristic (CDH) that quickly

detect seeds under the heat diffusion model. In section 4.1, we present the overview of the

system architecture and explain principles of CDH. In section 3.2 and 3.3, we will go into

details about our CDH-Kcut and CDH-Shrink.

3.1 Overview of System Architecture

 CDH is the unique combination of the community detection algorithm and modified

degree centrality. Suppose we have data on a social network which has N individuals. The

problem we need to solve is: given the quota number k, how to select the initial k “influential”

individuals who will be delivered a free sample product, in order to maximize the number of

cascade adoptions by which these individuals will influence their friends or individuals on

their direct contact list.

 In this thesis, we model social network marketing process by heat diffusion process.

Initially, we select k individuals as seeds for heat diffusion, denoted by the set S and the k

seeds are given a certain amount of heat h0. At time zero of the heat diffusion process, we set

fi (0) = h0 , where i ∈ 	 . As time elapses, the heat will diffuse through the whole social

network. If the amount of heat of individual i at time t is greater than or equal to an activation

threshold , this individual i will be considered as having been successfully influenced on

activated by others, and will adopt the product. We define the influence set of the set of k

individuals S, denoted as (t), to be the expected number of individuals who will adopt the

product at time t. Now the above problem could be interpreted as: finding the most influential

k-size set S to maximize the size of set (t) at time t, where (t) ={	 	|	 , 	 } .

19

This problem is NP-hard, as already proven in [5]. We select the heat diffusion model to be

our diffusion model since it can realistically simulate the real world.

The proposed CDH is composed by two phases, partition phase and selection phase. Fig.

3.1 illustrates the framework of CDH. The first phase, partition phase, detects the

communities of the network. Community is a subset of individuals who interact with each

other more frequently than other individuals outside the community. In real life, one’s

information often spread in his or her circle of friends. That is, most of someone’s influence

clearly spread in his or her community. We find the same phenomenon in heat diffusion model.

In Fig. 3.2, node 1 is a seed. The color of each node means its amount of heat. More dark blue

means larger amount of heat. Nodes circled by dotted circle are in the same community. We

Fig. 3.1 Framework of CDH

 Selection phase

Partition phase

Community Detection

Undirected

unweighted Graph

Final seeds Adjustment

Construct the potential pool.

Detect fundamental nodes

in potential pool.

20

can see that most gains of heat are in the community of node 1. In Fig 3.3, node1 and node 2

are seeds. Most gains of heat are also in the community of node 1. Nodes in the other

community gains very little amount of heat. We can conclude that if we choose nodes in the

same community as seeds, most gains of heat are in their own community. Other communities

gain little amount of heat. Therefore, information of community is a very useful tool to avoid

influence overlapping in heat diffusion model.

/

Fig. 3.2. The distribution of heat as node 1 is seed. The color of each

node means its amount of heat. More dark blue means larger amount of

heat. Nodes circled by dotted line are in the same community.

Fig. 3.3. The distribution of heat as node 1 and node 2 are seeds. The

color of each node means its amount of heat. More dark blue means

larger amount of heat. Nodes circled by dotted line are in the same

community.

21

The reason for using community detection algorithms rather than conventional graph

partitioning algorithm is that we want to detect “the best”, or in other words, the “most

natural“ partitioning of a network without providing any information such as the number of

partitions. For example, if the network is natural to be partitioned to 3 communities, we

should not force the network to be partitioned to 4 communities.

The second phase, selection phase, finds the most influential nodes based on the result

of partition phase and parameters of heat diffusion model, such as flow duration, thermal

conductivity and activation threshold. In Fig. 3.4, community 1 is a larger community than

community 2. It shows that select nodes from community 1 as seeds instead of nodes from

community 2 could trigger more individual to be activated. The degrees of each node in social

network also fit with power-law distribution [17, 18], i.e., a very large number of nodes have

very small numbers of neighbors. Hence, most large-degree nodes are in large communities.

Due to the above reasons, we only consider nodes in the large communities as seed candidates.

Fig. 3.4 Comparison with three seeds in different community size.

Community 1 is a larger community than community 2. Select the same

number of seeds from community 1 could trigger more individuals to be

activated than from community 2.

22

The candidates are put in the potential pool. Therefore, we intend to select seeds from

potential pool. Next, we detect the “fundamental node” from the potential pool.

Fundamental nodes have more potential to be seeds since it has larger degree than that of

other nodes in the same community, or it is located on the important position in the network.

The important position means connecting many communities. Fig. 3.4 and 3.5 show two

kinds of fundamental node. In Fig.3.4, node 3 is the fundamental node. It has the largest

degree among all nodes. In Fig. 3.5 node 12 is the fundamental node. It has better position

which can easily influence two node sets {1,2 , 3, 4, 5 } and {6, 7, 8, 9, 11}

1 2

4 5

3

Fig 3.4. An example of Fundamental node. Node 3 is the

fundamental node. It is has the largest degree among all nodes.

Fig. 3.5. An example of fundamental node. Node 12 is the fundamental node. It has better

position which can easily influence two node sets {1, 2, 3, 4, 5} and {6, 7, 8, 9, 11}.

1 2

4 5

3

6 7

9 1

8 12

23

How to detect the fundamental nodes is one of differences between CDH-Kcut and

CDH-Shrink algorithms. Although these nodes have good chance to become the final seeds,

they are not the best seeds in different situations (parameters) of heat diffusion model. For

example, seeds which perform well in short flow duration may not be good in long flow

duration. Therefore, adjusting the fundamental nodes to become more ideal seeds is essential.

(a) An input graph (b) Community Detection (Partition Phase)

(c) Construct potential pool (selection phase) (d) Find fundamental nodes in potential

pool (assume two fundamental nodes)

Fig. 3.6 An example of the concept of CDH

24

Fig. 3.6(a) is an example of input graph. Fig. 3.6(b) is the result of community detection

of Fig. 3.6(a). Different color means different community. After partition phase, the first step

of selection phase is constructing the potential pool. Two communities circled by red dotted

circle are potential pool since the two communities are the two largest communities among all

communities in Fig. 3.6(c). Assume two fundamental nodes are to be selected. Fig. 3.6(d)

shows two fundamental nodes in the potential pool since they have large degree. After the

step of constructing potential pool and finding fundamental nodes, we effectively narrow

down the scope of seed candidates. CDH-Kcut and CDH-Shrink are two algorithms using

different community detection algorithms and different strategies of potential pool,

fundamental nodes and adjustment. We explain details of two algorithms in next two sections.

25

3.2 CDH-Kcut

 CDH-Kcut is composed of partition phase and selection phase. The purpose of partition

phase is to detect communities. The selection phase finds the influential nodes in communities.

The strategies used by the CDH-Kcut are presented below:

 (Partition phase):

 We partition the network into communities by Kcut algorithm [9]. Every node will

belong to only one community, and overlapping community is not allowed in Kcut. We

assume the graph G is partitioned to the l communities. In most cases, l is larger than k, so in

this paper we don’t discuss the case l < k.

(Selection phase)

 After detecting communities, we have l communities. If we want to find k seeds,

firstly we construct the potential pool, PP(G). We define potential pool as :

 , , … , , (3.1)

where		 is the set of top-p degree nodes in i-th largest community SCi, i = 1,2,..,k.

Therefore, PP(G) keeps the top-p degree nodes in each community of top-k largest

communities. In most cases, p = 10% of community size is enough for selecting good seeds.

Therefore, we significantly narrow down the range of possible seeds. Then, we select the

fundamental nodes from the potential pool. Since Kcut cannot identify importance of location

of nodes in each		 , degree has been considered as the only attribute that distinguishes good

fundamental nodes from poor fundamental nodes. Thus, we select the largest degree node in

each 		 as the fundamental nodes. S ={s1,s2,….,sk} is the set of seed candidates si..

Fundamental nodes are seed candidates. Fig. 3.7 is an example of finding fundamental nodes.

Node 1 and node 7 are the largest degree nodes in respective community. Finally, we adjust

the fundamental nodes to be the final seeds. Our basic idea of adjustment is a heuristics that

tries to use an add-node a_node to replace a delete-node d_node. If the influence spread after

node replacing is larger than before replacing, we do the replacement,

26

Algorithm 1: CDH-Kcut

 Input : Graph of social network G ; number of total seeds k, Parameters p

 Output: k seeds

1. Execute the Kcut(G) ;

2. Select top-k biggest communities from the communities in Kcut(G) ;

3. foreach selected community SCi do

4. Add top-p degree nodes into set ;

5. end

6. foreach do

7. select the most degree node Si from ;

8. End

9. IM = Is(t);//Is(t): influence spread of current seed set, IM : record max influence spread

10. foreach community SCi do

11. if size(SCi) > avg(∑ size) then

12. Add SCi in LC ; //LC : the set of large communities

13. end

14. end

15. Sort LC based on community size ;

16. ci = 0 ; // ci : community index

17. di = 0; // di : index of d_node

18. foreach Ci in LC

19. ai = 2 ; //ai : index of a_node

20. while ture do

21. Select the ai-th large degree node from as a_node;

22. Select the seed candidates sk-di from S as d_node;

23. if Is(t) < IM then

24. Cancel the replacement in line 21 and line 22.

25. break ;

26. end

27. IT= Is(t);

28. ai = ai +1;

29. di = di +1;

30. End

31. ci = ci +1;

32. end

33. Output individuals in S

27

else we cancel the replacement.

As in Fig 3.3, seeds selected from large community could trigger more adoptions than

that selected from small community. As a result, we incline to select add-node in large

communities and delete-node in the small communities since we want to know whether

selecting nodes from large communities can gain more influence spread or not. If the size of a

community is larger than AvgSC = avg(∑ size), then this community is deemed as

large community. Notice that delete-nodes must be fundamental nodes. Due to the adjustment,

we can avoid influence spread from being spoiled for the effect of different value of

parameters, such as flow duration, activation threshold and thermal conductivity. We discuss

the effect of flow duration, activation threshold and thermal conductivity individually.

Comparing the difference caused by long time and short time, information will diffuse farther

in long flow duration. That is, in long flow duration the seeds would influence more

individuals than that in short low duration. Therefore, we should not select too many seeds in

one community in long flow duration. In contrast, it is appropriate selecting more seeds in one

community in short flow duration.

It is more difficult to make individuals adopt products in high activation threshold.

Individuals need more heat to be activated in higher activation threshold, so we tend to select

more seeds in one community with high activation threshold.

Fig. 3.7 An example of finding fundamental nodes in

CDH-Kcut. Red nodes are fundamental nodes.

28

High thermal conductivity makes information diffuse more quickly. Compare with low

thermal conductivity, information of high thermal conductivity makes information diffuse

longer distance. Hence, we do not select many seeds in one community. We conclude that

differences caused by different parameters are the level of seeds clustering. In the simulation

of short flow duration, high threshold and low thermal conductivity it is better to select more

seeds in one community, i.e., higher level of seed clustering. On the other hand, long flow

duration, low threshold and high thermal conductivity social network, not many seeds in one

community is needed, i.e., lower level of seed clustering. Therefore, the adjustment in

CDH-Kcut is to test and verify whether large communities should need more seeds. Lines

between 9 and 29 in algorithm 1 show the steps in seeds adjustment.

29

3.3 CDH-Shrink

 Our proposed CDH-Shrink is also composed of two phase, partition phase and selection

phase. Besides, Shrink algorithm [10] could detect hub, i.e., a node connecting different

communities. It provides us more information about the community structure property. The

communities detected by Shrink are more precise than by Kcut. Due to above reasons, we can

select more productive fundamental nodes than in CDH-Kcut. We describe it as follows:

(Partition phase):

 We get information of community structure and hubs by Shrink algorithm.

(Selection phase):

In selection phase, we construct the potential pool and select fundamental nodes. Then adjust

fundamental nodes to find final seeds. As shown in Fig 3.8, if we totally find k seeds, we have

to select k fundamental nodes. Therefore, we have k iterations of selecting fundamental nodes.

At i-th iteration, we only select largest community SCi among all remaining communities, and

then select a fundamental node from SCi.

Fig 3.8. Flowchart of selection phase. Assume select k seeds. We have k

iterations of selecting fundamental node. Before selecting the

fundamental node of	 , the size of each community covered by the

fundamental node of	 	has to reduce the degree of fundamental node

of	 . PP(G) ={	 ,		 ,…, }. : top-p degree nodes in i-th

largest community. p: 10% of community size. i= 1~k

30

We first select top-p degree nodes from SCi, denoted as	 . p = 10% of SCi’s size is enough

to select good fundamental nodes. Before selecting the fundamental node of	 , the size of

each community covered by the fundamental node of 	 	has to reduce the degree of

fundamental node of	 . As shown in Fig. 3.9, assume that node 7 is the fundamental node

in C1. The size of C2 will be reduced to 3. Community size reduction is for reducing the

influence overlapping. Fundamental nodes should “cover” communities as much as possible

while having much influence on their communities. In Fig.3.10, node u belongs to community

C1, C2 and C3. That is, u covers C1, C2 and C3.

C3

C1
C2

u

Fig. 3.10 An example of “cover”. C1, C2 and C3 are

communities. Node u belongs to C1, C2 and C3. That is, u

covers C1, C2 and C3.

C1
C2

Fig 3.9 Illustration of community size reduction.

We select node 7 as the fundamental node in C1. The

size of C2 will be reduced to 3.

8

1

9

1

1

1

1

1

7

3

2

4

6 5

1

31

To select good fundamental nodes, we define “position_score” as:

position_score(u) = |{Ci | u ∈ Ci , u ∈ 	 	∈ set	of	communities | , (3.2)

to evaluate the importance of node’s position in network. If the node u is a nonhub, the

position_score(u) is 1. Otherwise, the position_score(u) is the number of communities which

u belongs to. We also define “hub_purity” as:

hub_purity(h) =
| |		 	∈	 	 ,			 	∈	 	 			 	∉	 |

_
, (3.3)

where FC is the set of communities which contain fundamental nodes and h is a hub. In Fig.

3.11¸ C1 and C2 are communities containing fundamental node u. C1, C2 and C3 are

communities containing node z. C2 and C4 are communities containing node v. Therefore,

purity(z) = 1/3 and purity(v) = 1/2.

We choose the “MAX priority” nodes from 	 as fundamental nodes, i = 1,2..,k.

Selecting fundamental nodes in CDH-Shrink is different from that in CDH-Kcut. Function

compare_priority shows how to compare priority of nodes. If both nodes are hub, we

compare their position_score other than their degree. We compare hub with hubsize since we

want to cover more communities. That is, we want to choose the hub which has important

positions in the network. Besides, if the node is a hub, its purity must exceed the threshold of

purity. We do not want to select low-purity fundamental nodes to reduce information

overlapping. The hub with low purity easily covers too many covered communities, and this

z

v u

C3

C1
C2 C4

Fig 3.11 An example of how to computing purity. C1, C2,

C3 and C4 are communities. Node u is the fundamental

nodes. Purity(z) = 1/3 and purity(v) = 1/2

32

hub, consequently, has the lowest priority while comparing purity. When comparing nonhub

with hub or nonhub, we compare their influence on their neighbors, i.e., degree, due to no

information about importance of location of non_hubs. After comparing top-p degree nodes

in SCi , we can find the fundamental node . The fundamental node may have a very good

position which connecting SCi with many other communities or have much influence on their

neighbors or have both. S ={s1,s2,….,sk} is the set of seed candidates si. Fundamental nodes

are seed candidates

Finally, we adjust fundamental nodes to be final seeds. Adjustment in CDH-Shrink is

also a heuristics. Try to choose an add-node to replace a delete-node. Then test whether the

influence spread after replacing is larger than that before replacing. left and seedLoad play

important roles in adjustment. left and seedLoad help us to determine add-nodes and

delete-nodes . We define “left” and “ seedLoad“ as:

 left(Ci) = the number of non-activated nodes in community Ci, (3.4)

seedLoad(Ci) =
	

| 	| 	∈	 , 	∈ |
 , (3.5)

Left(Ci) might be thought of as “the need of adding more seeds in Ci “. As left(Ci) is

increasing, the need of selecting more seeds in Ci is increasing. Implied in the seedLoad(Ci) is

whether too many seeds in Ci. When seedLoad(Ci) is small, that, perhaps, means too many

seeds in Ci..

In each iteration, we select the add-node a_node , where

a_node = u | max{∑ left | ∈ , ∈ G(V), t = position_score(u) } .

In the meanwhile, we select a delete-community d_comm, which has the smallest seedLoad

among SC, SC ={SC1,SC2,…SCk}. Then select delete-node d_node which has minimun

size(A(d_node)) among all seeds in d_comm. A(u) is a set of active nodes adjacent to node u.

We test if we should substitute add-node a_node for delete-node d_node. If the influence

spread after substitution is more than that before, we make a substitution. To quickly find a

33

productive a_node, we do not consider very low degree node. We could assume selecting low

degree nodes as seeds is not productive. Lines between 15 and 34 in CDH-Shrink show the

details of adjustment. The adjustment has r iterations to test the substitution. In most cases, r =

2k~3k is efficient to get satisfactory influence spread.

Algorithm 2: CDH-Shrink

Input : Graph of social network G ; number of total seeds k, Parameters p,

purity_threhold , adjustment time r

Output: k seeds

1. Execute the Shrink(G);

2. while |SC| < k do

3. Add the biggest community SCi into SC;

4. // select the fundamental node

5. foreach top-p degree nodes in SCi do

6. //ni : the i-th largest degree node in SCi

7. maxnode = compare(ni, maxnode);

8. end

9. Si = maxnode;

10. foreach community Ci which has max do

11. Size(Ci) = Size(Ci) – degree(max);

12. end

13. end

14. //adjustment

15. IM= Is(t); // Is(t) : influence spread of current seed set, IM : record max influence spread

16. for 1 to r do

17. select a_node = u | max{ ∑ left | ∈ , u ∈ G(V),

18. t = position_score(u)} ;

19. select _ argmin ∈

20. select _ argmin ∈ , ∈ | | ∈ , ⊆ |

Function compare_priority (node a, node b)

1. if a is hub and hub_purity(a) < purity_threshold

2. return b

3. if a is hub and b is hub then

4. return max(position_score(a), position_score (b));

5. else if a is nonhub then

6. return max(degree(a), degree(b));

7. end

34

21. delete d_node in S and add a_node into S ;

22. if Is(t) < IM then

23. Cancel the replacement between line18 to 22.

24. end

25. IM = Is(t) ;

26. end

27. Output individuals in S

3.4 Time Complexity of Approximation Algorithms

 We now consider the time complexity of CDH-Shrink, CDH-Kcut and enhance greedy

algorithm [5]. Suppose that a social network is composed of N individuals and M edges. The

time complexity of heat diffusion process is O(RM)[5], which means the number of iterations

R multiplied by the number of edges M in a social network. In most cases, R = 30 is enough

for approximating the heat diffusion process. We select k seeds. The complexity of each

algorithm is as follows:

For CDH-Kcut, l is the number of communities. Each top-k community selects top-p

degree nodes in potential pool. The partition phase in CDH-Kcut is O(MlogN). Assume

average number of nodes in a community is . Constructing the potential pool is O(kp).

Finding fundamental nodes in potential pool is O(kp). Finding large communities is O(k).

Assume we have b large communities. Sorting large communities is O(blogb). Adjustment in

CDH-Kcut is O(kRM). Therefore, the time complexity is O(MlogN + kp + kp + k + blogb+

kRM).

For CDH-Shrink, assume the number of adjustment iterations is r, and the average

community number of a node is d. The partition phase is O(MlongN). The time complexity of

community size reduction is O(d), so finding fundamental nodes in potential pool is O(k(l +

p +d)). In the adjustment, selecting add_node is O(Nd+N), selecting delete_community is

O(k), and selecting delete_node is O(k). Therefore, the time complexity of adjustment in

35

CDH-Shrink is r(Nd + N + k + k + RM). The total time complexity is O(MlogN + k(l + p +d)

+ r(Nd + N + k + k + RM)).

The time complexity of greedy algorithm in enhance greedy algorithm is O(kNCM) since

selecting a seed is O(NRM) and we have to select k seeds. In most cases, r = 2k ~3k is enough

for adjustment. We could see that in terms of time complexity, the ranking is CDH-Shrink

CDH-Kcut 	greedy algorithm in [5].

36

Chapter 4

Experiments

To measure the performance of our proposed algorithms, we conduct experiments on a

co-authorship network [26], the zachary’s karate network from Newman [25], the network of

facebook, and two synthetic networks. The goal of the experiments is to show that our

algorithms are very efficient and with satisfying influence spread.

We run the following set of algorithms under heat diffusion model.

 EGA: the original enhanced greedy algorithm [5].

 CDH-Kcut: the community and degree heuristic. Community detection algorithm used

is Kcut. .

 CDH-Shrink: the community and degree heuristic. Community detection algorithm

used is SHRINK.

 DH: As a baseline, a simple degree heuristic that selects the k nodes with the largest

degrees.

The performance metrics of the algorithms compared and the parameter setting are listed

below.

1. Influence spread (number of activated nodes)

2. Efficiency (running time)

3. Effect of different values of parameters

- t : flow duration

- θ : activation threshold

- α :thermal conductivity

37

4.1 Synthetic Networks

For synthetic datasets, we use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark

graphs [19, 20] to evaluate the performance of our algorithms. Some important parameters of

the synthetic networks are:

 N: number of nodes

 M: number of edges

 maxd: maximum degree

 mp: mixing parameter, each nodes shares a fraction mp of its edges with nodes in other

communities.

 As shown in Table 4.1, we generate five different undirected graphs : (1) 1000Smp :

the graph with 1000 nodes and small mixing parameter; (2) 1000Lmp : the graph with 1000

nodes and large mixing parameter; (3) 1000Lmaxd : the graph with 1000 nodes and large

maximum degree; (4) 1000LM : the graph with 1000 nodes and large number of degree; (5)

5000Smp : the graph with 5000 nodes and small mixing parameter. Generally, the higher the

mixing parameter of a network is, the more difficult to reveal the community structure.

Dataset N M maxd mp

1000Smp 1000 9097 100 0.1

1000Lmp 1000 9097 100 0.5

1000Lmaxd 1000 9097 200 0.1

1000LM 1000 22484 100 0.1

5000Smp 5000 47094 100 0.1

d

Table 4.1: The parameters of the omputer-generated datasets

for performance evaluation

38

Table 4.2 provides the result of different algorithms with different activation threshold,

flow duration and thermal conductivity in 1000Smp. The influence spreads of CDH-Shrink

and CDH-Kcut from θ = 0.2 to θ = 1.4 are almost the same or slightly different. Thus, we

only report θ = 0.2, θ=1.5 and θ = 2.0. We can see that CDH-Shrink and CDH-Kcut have

same influence spread in most cases and even are better than EGA with θ = 2.0. Fig. 4.1

shows 5 seed selected by CDH-Kcut with t=0.1, θ=0.1, α=0.1 in 1000Smp. Fig. 4.2 shows 5

seed selected by CDH-Kcut with t=0.1, θ=0.1, α=0.1 in 1000Smp. We could see that higher

activation threshold leads to the phenomenon of seed clustering.

 network EGA CDH-Shrink CDH-Kcut DH

t=0.1, θ=0.1, α=0.1 1000Smp 341 339 339 215

t=0.1, θ=0.2, α=0.1 1000Smp 336 332 332 215

t=0.1, θ=1.5, α=0.1 1000Smp 223 201 197 95

t=0.1, θ=2.0, α=0.1 1000Smp 133 141 166 95

t=0.2, θ=0.1, α=0.1 1000Smp 386 367 345 336

t=0.3, θ=0.1, α=0.1 1000Smp 503 482 499 472

t=0.4, θ=0.1, α=0.1 1000Smp 635 594 649 567

t=0.1, θ=0.1, α=0.2 1000Smp 386 367 345 336

t=0.1, θ=0.1, α=0.3 1000Smp 503 482 499 472

t=0.1, θ=0.1, α=0.4 1000Smp 635 594 649 567

Table 4.2: Influence spread with 4 different algorithms in 1000Smp. t

is flow duration. θ is activation threshold. α is thermal conductivity

39

Fig 4.2 5 Seeds (red nodes) selected by CDH-Kcut with t=0.1, θ=2.0,

α=0.1 in 1000Smp.

Fig 4.1 5 Seeds (red nodes) selected by CDH-Kcut with t=0.1, θ=0.1,

α=0.1 in 1000Smp.

40

Table 4.3 shows the influence spread with 4 different algorithms with different activation

threshold, flow duration and thermal conductivity in 1000Lmp. CDH-Kcut performs worse

than CDH-Shrink in 1000Lmp since SHRINK could detect more accurate community

structure than Kcut. Hence, if it is hard to get correct community structure of the graph,

CDH-Shrink will probably perform better than CDH-Kcut. Besides, accuracy of detected

community structure reflects the performance of influence spread of CDH-Shrink and

CDH-Kcut. Therefore, with increasing of mixing parameter, the performance of influence

spread of CDH-Shrink and CDH-Kcut have deteriorated.

 Table 4.4 indicates the influence spread with 4 different algorithms with different

activation threshold, flow duration and thermal conductivity in 1000Lmaxd. Nodes in

1000Lmaxd could have larger degree. That is, some nodes’ degree will be extremely larger

 network EGA CDH-Shrink CDH-Kcut DH

t=0.1, θ=0.1, α=0.1 1000Lmp 251 223 213 206

t=0.1, θ=0.2, α=0.1 1000Lmp 225 182 175 187

t=0.1, θ=1.5, α=0.1 1000Lmp 176 157 149 105

t=0.1, θ=1.6, α=0.1 1000Lmp 137 121 93 56

t=0.2, θ=0.1, α=0.1 1000Lmp 562 491 467 484

t=0.3, θ=0.1, α=0.1 1000Lmp 790 734 712 722

t=0.4, θ=0.1, α=0.1 1000Lmp 892 841 813 829

t=0.1, θ=0.1, α=0.2 1000Lmp 562 491 467 484

t=0.1, θ=0.1, α=0.3 1000Lmp 790 734 712 722

t=0.1, θ=0.1, α=0.4 1000Lmp 892 841 813 829

Table 4.3: Influence spread with 4 different algorithms in 1000Lmaxd.

t is flow duration. θ is activation threshold. α is thermal conductivity

41

than the others. Consequently, performance of influence spread of DH will be improved,

especially in high activation threshold.

Table 4.5 shows the influence spread with 4 different algorithms with different activation

threshold, flow duration and thermal conductivity in 1000LM. In 1000LM, each node has

more neighbors, so information will spread quickly. Hence, we could see that influence spread

in 1000LM is higher than that in 1000Smp, 1000Lmp and 1000Lmaxd. In most cases, the

influence spreads of CDH-Shrink and CDH-Kcut are still better than DH.

 Table 4.6 indicates that influence spread with 4 different algorithms with different

activation threshold, flow duration and thermal conductivity in 5000Smp. 5000Smp has 5000

nodes. In most cases, the influence spread of CDH-Shrink and CDH-Kcut are still better than

DH.

 network EGA CDH-Shrink CDH-Kcut DH

t=0.1, θ=0.1, α=0.1 1000Lmaxd 332 315 298 202

t=0.1, θ=0.2, α=0.1 1000Lmaxd 290 278 259 196

t=0.1, θ=1.5, α=0.1 1000Lmaxd 170 151 143 146

t=0.1, θ=1.6, α=0.1 1000Lmaxd 138 110 113 136

t=0.2, θ=0.1, α=0.1 1000Lmaxd 494 493 473 299

t=0.3, θ=0.1, α=0.1 1000Lmaxd 565 569 561 404

t=0.4, θ=0.1, α=0.1 1000Lmaxd 627 610 599 482

t=0.1, θ=0.1, α=0.2 1000Lmaxd 494 493 473 299

t=0.1, θ=0.1, α=0.3 1000Lmaxd 565 569 561 404

t=0.1, θ=0.1, α=0.4 1000Lmaxd 627 610 599 482

Table 4.4: Influence spread with 4 different algorithms in 1000Lmaxd.

t is flow duration. θ is activation threshold. α is thermal conductivity

42

 network EGA CDH-Shrink CDH-Kcut DH

t=0.1, θ=0.1, α=0.1 1000LM 663 599 599 521

t=0.1, θ=0.2, α=0.1 1000LM 506 439 437 316

t=0.1, θ=0.3, α=0.1 1000LM 430 415 402 246

t=0.1, θ=1.5, α=0.1 1000LM 226 224 218 184

t=0.2, θ=0.1, α=0.1 1000LM 923 848 838 816

t=0.3, θ=0.1, α=0.1 1000LM 991 929 936 939

t=0.4, θ=0.1, α=0.1 1000LM 1000 993 997 996

t=0.1, θ=0.1, α=0.2 1000LM 923 848 838 816

t=0.1, θ=0.1, α=0.3 1000LM 991 929 936 939

t=0.1, θ=0.1, α=0.4 1000LM 1000 993 997 996

 network EGA CDH-Shrink CDH-Kcut DH

t=0.1, θ=0.1, α=0.1 5000Smp 540 467 456 391

t=0.1, θ=0.2, α=0.1 5000Smp 438 401 376 252

t=0.1, θ=0.3, α=0.1 5000Smp 397 373 326 210

t=0.1, θ=1.5, α=0.1 5000Smp 261 235 212 169

t=0.2, θ=0.1, α=0.1 5000Smp 1258 1138 1102 843

t=0.3, θ=0.1, α=0.1 5000Smp 1284 1175 1113 877

t=0.4, θ=0.1, α=0.1 5000Smp 1451 1323 1278 952

t=0.1, θ=0.1, α=0.2 5000Smp 1258 1138 1102 843

t=0.1, θ=0.1, α=0.3 5000Smp 1284 1175 1113 877

t=0.1, θ=0.1, α=0.4 5000Smp 1451 1323 1278 952

Table 4.5: Influence spread with 4 different algorithms in 1000LM.

t is flow duration. θ is activation threshold. α is thermal conductivity

Table 4.6: Influence spread with 4 different algorithms in 5000Smp.

t is flow duration. θ is activation threshold. α is thermal conductivity

43

In summary, CDH-Shrink, in general, is more productive than CDH-Kcut. With the

increasing of activation threshold, seeds will cluster together to trigger larger influence spread.

Figure 6.1 and Fig 6.2 indicate the seed clustering phenomenon in high activation threshold,

where red nodes are seeds.

44

4.2	Zachary’s Karate Network

Zachary’s karate network [25] consists of 34 nodes and 78 edges. Nodes present the

members of a karate club in the United States, who were observed during a period of three

years. Edges connect individuals who were observed to interact outside the activities of the

club. Since Zachary’s karate network is a very small network, we only demonstrate the

influence spread of different algorithms.

 As shown in Fig 4.3, node 0 and 33 are two fundamental nodes if we select two seeds in

total. In most cases, the two selected seeds are 0 and 33, so Table 4.7 only lists 5 settings of

parameters and the seeds selected by different algorithms in Zachary’s karate network. The

number in the parentheses is the selected seeds. CDH-Shrink and CDH-Kcut could select

seeds according to different value of parameters, DH could not. Consequently, CDH-Shrink

and CDH-Kcut get the same influence spread as EGA in most cases. Furthermore, in some

cases like t = 0.4, θ =0 .6, α = 0.1, CDH strategy gets better influence spread. We could see

that the two seeds with t = 0.1, θ = 0.2 and α = 0.1 are 32 and 33. That is, high activation

threshold easily cause the phenomenon of seed clustering. High thermal conductivity does not

cause the phenomenon of seed clustering. Therefore, two seed with t = 0.1, θ = 0.2 and α =

0.2 are the same seed with t = 0.1, θ = 0.1 and α = 0.1.

45

 EGA CDH-Shrink CDH-Kcut DH

t=0.1, θ=0.1, α=0.1 31(0, 33) 31(0,33) 31(0,33) 31(0,33)

t=0.1, θ=0.2, α=0.1 12(32, 33) 12(32, 33) 12(32, 33) 6(0,33)

t=0.1, θ=0.3, α=0.1 12(32, 33) 12(32, 33) 12(32, 33) 6(0,33)

t=0.1, θ=0.2, α=0.2 31(0, 33) 31(0, 33) 31(0, 33) 31(0, 33)

t=0.4, θ=0.6, α=0.1 8(4,7) 12(32,33) 12(32, 33) 6(0,33)

Fig 4.3 Zachary’s karate network. If we select 2 seeds in this network.

Node 0 and 33 are fundamental nodes in CDH-Kcut and CDH-Shrink.

Table 4.7 Two seeds selected by different algorithm in Zachary’s

karate network. t is time. θ is threshold. α is thermal conductivity

46

4.3 A Collaboration Network

We extract a large real-life academic collaboration network from the e-print. Each node

in the network represents an author. If an author i co-authored a paper with author j, the graph

contains an undirected edge from i to j. If the paper is co-authored by k authors this generates

a completely connected (sub)graph on k nodes. The coauthor network is the “High Energy

Physics - Phenomenology collaboration network”, denoted as NETHep, with papers in the

period from January 1993 to April 2003 (124 months), which contains N=12008 nodes and

M=237010 edges. The graph is available for download on the web at

http://snap.stanford.edu/data.

On the large real collaboration network, NETHep, we report the efficiency and influence

spread of EGA, CDH-Shrink, CDH-Kcut and DH with different numbers of seeds and values

of parameters. In CDH-Shrink, we set purity threshold =0.35, which can get satisfying

influence spread.

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30 35 40 45 50

EGA

CDH_shrink

CDH_KCUT

DH

Number of seeds

In
fl

ue
nc

e
sp

re
ad

Fig4.4 influence spread of different algorithms on NETHep.

t=0.1, θ=0.1, α=0.1

47

Fig 4.4 (x-axis indicates the number of seeds and y-axis indicates influence spread)

shows the influence spread of different algorithms with different number of seeds on NETHep.

In most cases, EGA’s influence spread > CDH-Shrink’s influence spread > CDH-Kcut’s

influence spread > DH’s influence spread. With the increasing number of seeds, CDH-Shrink

and CDH-Kcut is getting better and better than DH since most seeds selected by DH are only

in few communities.

-`

Fig 4.5 (x-axis indicates activation threshold and y-axis indicates influence spread)

indicates the influence spread of 10 seeds with different θ from 0.1 to 0.5 with a span of 0.1.

Fig 4.6 (x-axis indicates activation threshold and y-axis indicates influence spread) indicates

the influence spread of 30 seeds with different θ from 0.1 to 0.5 with a span of 0.1. The results

reflected in Fig 4.5 and Fig 4.6 indicate that although the total influence in the spread four

algorithms will decrease as θ increases, CDH-Shrink and CDH-Kcut still maintain great

performance. Notice that DH improves its influence spread with the increasing of θ. That

results from the effect of seed clustering in high θ. However, it is still worse than CDH-Shrink

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.2 0.3 0.4 0.5

EGA

CDH‐Shirnk

CDH‐Kcut

DH

Activation threshold

In
fl

ue
nc

e
sp

re
ad

Fig 4.5 influence spread of different algorithms with different

activation threshold on NETHep. t=0.1, α=0.1. Select 10 seeds.

48

and CDH-Kcut when selecting more seeds.

0

1000

2000

3000

4000

5000

6000

7000

8000

0.1 0.2 0.3 0.4 0.5

EGA

CDH‐Shrink

CDJ‐Kcut

DH

0

1000

2000

3000

4000

5000

6000

7000

8000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Flow duration

In
fl

ue
nc

e
sp

re
ad

Fig 4.7 influence spread of different algorithms with different flow

duration on NETHep. θ=0.1, α=0.1. Select 10 seeds

Fig 4.6 influence spread of different algorithms with different

activation threshold on NETHep. θ=0.1, α=0.1. Select 30 seeds

In
fl

ue
nc

e
sp

re
ad

Activation threshold

49

Fig 4.7 (x-axis indicates flow duration and y-axis indicates influence spread) indicates

the influence spread of 10 seeds with different t from 0.1 to 0.4 with a span of 0.1. Fig 4.8

(x-axis indicates flow duration and y-axis indicates influence spread) indicates the influence

spread of 30 seeds with different t from 0.1 to 0.4 with a span of 0.1. Fig 4.7 and Fig 4.8

(x-axis indicates time and y-axis indicates influence spread) show that our proposed

algorithms still maintain good influence spread with the increasing of t. We only report results

from t = 0.1 to t = 0.4 since too large t will lead to the situation that most nodes are influenced,

and thus we cannot easily distinguish the performance of the four algorithms.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Flow duration

In
fl

ue
nc

e
sp

re
ad

Fig. 4.8 influence spread of different algorithms with different time

on NETHep. θ=0.1, α=0.1. Select 30 seeds

50

0

1000

2000

3000

4000

5000

6000

7000

8000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Thermal conductivity

In
fl

ue
nc

e
sp

re
ad

Fig. 4.9 influence spread of different algorithms with different

thermal conductivity on NETHep. t=0.1, θ=0.1. Select 10 seeds

Fig 4.10 influence spread of different algorithms with different

thermal conductivity on NETHep. t=0.1, θ=0.1. Select 30 seeds

In
fl

ue
nc

e
sp

re
ad

Thermal conductivity

51

 Fig 4.9 (x-axis indicates thermal conductivity and y-axis indicates influence spread)

indicates the influence spread of 10 seeds with different thermal conductivity α from 0.1 to

0.4 with a span of 0.1. Fig 4.10 (x-axis indicates thermal conductivity and y-axis indicates

influence spread) indicates the influence spread of 30 seeds with different thermal

conductivity α from 0.1 to 0.4 with a span of 0.1. As shown in Fig 4.9 and Fig 4.10(x-axis

indicates thermal conductivity and y- axis indicates influence spread), CDH-Shrink and

CDH-Kcut remain good influence spread even if in different α. The reason why maximal

value of α is 0.4 is the same as that in comparing influence spread with different flow duration.

That is, we cannot easily distinguish the performance of four algorithms with too large α.

We present the efficiency of four algorithms in Fig 4.11 (10 and 50 seeds respectively,

x-axis indicates different algorithms and y-axis (logarithmic scale) indicates execution time).

Since DH only needs to select top-k degree nodes as seeds, DH is extremely efficient.

CDH-Shrink has least running time among CDH-Shrink, CDH-Kcut and EGA. We also can

see that the running time of EGA is proportional to the number of seeds. Execution time of

CDH-Shrink and CDH-Kcut are only slightly different between 10 seeds and 50 seeds. This is

because CDH-Shrink and CDH-Kcut only have to spend a little more time on adjustment

1

18

158

12745

1

20

160

68927

1

10

100

1000

10000

100000

DH CDH‐Shrink CDH‐Kcut EGA

10 seeds

50 seeds

Fig. 4.11 Running time of different algorithms on the collaboration

graph NETHep. Selecting 10 seeds and 50 seeds respectively

E
xe

cu
ti

on
 ti

m
e

(S
ec

s)

52

when the number of nodes increases.

4.4 Facebook Network

We extract one large real-life networks from Facebook. Each node in the network

represents a user. If user i is a friend of user j, the graph contains an undirected edge from i to

j. The network is denoted as FB, in the period from April 2004 to 2009 January (124 months),

which contains N =63731 nodes and M = 817090 edges.

FB is a large real network. Thus, we report not only the efficiency but also influence

spread of our algorithms with respect to different numbers of seeds and values of parameters.

We set purity threshold =0.2, which get satisfying influence spread in FB.

Fig 4.12 (x-axis indicates the number of seeds and y-axis indicates influence spread)

shows the influence spread of different algorithms with different number of seeds on FB. As

shown in Fig 4.12, in most cases EGA’s influence spread > CDH-Shrink’s influence spread >

CDH-Kcut’s influence spread > DH’s influence spread. Since EGA is too time-consuming, we

only report the influence spread from 5 seeds to 30 seeds.

0

5000

10000

15000

20000

25000

30000

35000

40000

5 10 15 20 25 30

EGA

CDH‐Shrink

CDH‐Kcut

DH

Number of seeds Fig 4.12 influence spread of different algorithms on FB.

t=0.1, θ=0.1, α=0.1

In
fl

ue
nc

e
sp

re
ad

53

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

0

5000

10000

15000

20000

25000

30000

35000

40000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Activation threshold

Fig 4.13 influence spread of different algorithms with different

activation threshold on FB. θ=0.1, α=0.1. Select 10 seeds

Fig 4.14 influence spread of different algorithms with different

activation threshold on FB. θ=0.1, α=0.1. Select 30 seeds

Activation threshold

In
fl

ue
nc

e
sp

re
ad

In

fl
ue

nc
e

sp
re

ad

54

Fig 4.13 (x-axis indicates activation threshold and y-axis indicates influence spread)

indicates the influence spread of 10 seeds with different θ from 0.1 to 0.4 with a span of 0.1.

Fig 4.14 (x-axis indicates activation threshold and y-axis indicates influence spread) indicates

the influence spread of 30 seeds with different θ from 0.1 to 0.4 with a span of 0.1. As shown

in Fig 4.13, when only select 10 seeds, EGA’s influence spread > CDH-Shrink’s influence

spread > CDH-Kcut’s influence spread > DH’s influence spread with α = 0.2, 0.3 and 0.4. In

Fig 4.14, we could see that the performance of DH’s influence spread is better than that in Fig

4.13. With α = 0.3 in Fig 4.14, DH’s influence spread is even close to EGA and CDH-Shrink,

and better than CDH-Kcut since the phenomenon of seed clustering with high activation

threshold. Besides, CDH-Shrink’s influence spread is better than EGA with α = 0.1 and 0.3.

0

5000

10000

15000

20000

25000

30000

35000

40000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Flow duration

Fig 4.15 influence spread of different algorithms with different time

on FB. θ=0.1, α=0.1. Select 10 seeds

In
fl

ue
nc

e
sp

re
ad

55

Fig 4.15 (x-axis indicates flow duration and y-axis indicates influence spread) indicates

the influence spread of 10 seeds with different t from 0.1 to 0.4 with a span of 0.1. Fig 4.16

(x-axis indicates flow duration and y-axis indicates influence spread) indicates the influence

spread of 30 seeds with different t from 0.1 to 0.4 with a span of 0.1. Unlike other cases on

NETHep or FB, in Fig 4.15 CDH-Shrink’s influence spread > CDH-Kcut’s influence spread >

EGA’s influence spread > DH’s influence spread. However, when we select 30 seeds as shown

in Fig 4.16, the ranking of influence spread becomes EGA > CDH-Shirnk > CDH-Kcut > DH.

EGA still has the most influence spread in most cases. To be notices that no matter what

values of parameters on FB, CDH-Shrink’s influence spreads are very close to EGA.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Flow duration

Fig 4.16 influence spread of different algorithms with different flow

duration on FB. θ=0.1, α=0.1. Select 30 seeds

In
fl

ue
nc

e
sp

re
ad

56

0

5000

10000

15000

20000

25000

30000

35000

40000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.1 0.2 0.3 0.4

EGA

CDH‐Shrink

CDH‐Kcut

DH

Fig. 4.17 influence spread of different algorithms with different

thermal conductivity on FB. t=0.1, θ=0.1. Select 10 seeds

Flow duration

In
fl

ue
nc

e
sp

re
ad

Fig 4.18 influence spread of different algorithms with different

thermal conductivity on FB. t=0.1, θ=0.1. Select 30 seeds

In
fl

ue
nc

e
sp

re
ad

Flow duration

57

Fig 4.17 (x-axis indicates thermal conductivity and y-axis indicates influence spread)

indicates the influence spread of 10 seeds with different t from range 0.1 to 0.4 with a span of

0.1. Fig 4.18 (x-axis indicates thermal conductivity and y-axis indicates influence spread)

indicates the influence spread of 30 seeds with different α from range 0.1 to 0.4 with a span of

0.1. We could see that CDH-Shrink still have very good influence spread with α from range

0.1 to 0.4.

We present the efficiency of four algorithms in Fig 4.19 (5 and 30 seeds respectively,

x-axis indicates different algorithms and y-axis (logarithmic scale) indicates execution time).

CDH-Shrink has the least running time. Just like on NETHep, we can see that the running

time of EGA is proportional to the number of seeds.

Overall, in terms of influence spread, EGA > CDH-Shrink > CDH-Kcut > DH. In terms

of efficiency, DH > CDH-Shrink > CDH-Kcut > EGA. One thing deserves to be mentioned,

due to the phenomenon of seeds clustering, DH will get better performance of influence

spread with high activation than that with low activation threshold.

1

314

2862

158650

1

339

2898

951900

1

10

100

1000

10000

100000

1000000

DH CDH‐Shrink CDH‐Kcut EGA

5 seeds

30 seeds

Fig 4.19 Running time of different algorithms on FB. Selecting 5 seeds

and 30 seeds respectively

E
xe

cu
ti

on
 ti

m
e

(S
ec

s)

58

Chapter 5

Conclusions

 In this thesis, we present two algorithms CDH-Kcut and CDH-Shrink under the

undirected heat diffusion model by combining information of community structure and

modified degree-centrality method. The purpose of our work is to efficiently solve the

influence maximization problem under the heat diffusion model. By contrast with linear

threshold model and independent cascading model, the heat diffusion model is more realistic.

The time complexity analysis shows CDH-Shrink and CDH-Kcut is more efficient than

enhance greedy algorithm [5]. Experimental results on the real-world and synthetic datasets

also validate that our algorithms achieve great performance in efficiency.

 SHRINK [10] and Kcut [9] are community detection algorithms used in CDH-Shrink

and CDH-Kcut, respectively. Both of SHRINK and Kcut are very efficient and could get

community structures satisfactorily. Beside, SHRINK could detect hubs which are very useful

information in maximal influence problem. When comparing CDH-Shrink with CDH-Kcut,

CDH-Shrink, in general, utilizes hubs and better community structure to achieve better

influence spread. Although, both algorithms are efficient with time complexity O(MlongN),

CDH-Kcut, in practice, would cost more execution time.

 In the future, to interpret the real world more realistically, we will extend our method to

weighted graphs. Furthermore, an important property of any social network is evolution.

Every social network is evolving all the time. Static community detection algorithms could

only detect community structure without considering the evolution of social networks. It is

interesting to utilize dynamic community structures to solve the influence maximization

problem in the future.

59

Bibliography

[1] E. M. Rogers, Diffusion of innovations (5th ed.), Free Press, New York, 2003.

[2] P. A. Estevez, P. Vera, and K. Saito, Selecting the most influential nodes in social

network, Proceedings of the International Joint Conference on Neural Networks, 2007,

pp. 2397-2402.

[3] T. Valente, Network models of the diffusion of innovations, Hampton Press, 1995.

[4] H. P. Young, The diffusion of innovations in social networks, Santa Fe Institute Working

Paper 02-04-018, 2002.

[5] H. Ma, H. Yang, M. R. Lyu, and I. King, Mining social networks using heat diffusion

processes for marketing candidates selection, Proceedings of the 17th ACM Conference

on Information and Knowledge Management, 2008, pp. 233-242..

[6] D. Kempe, J. M. Kleinberg, and É. Tardos, Maximizing the spread of influence through a

social network, Proceedings of the Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2003, pp. 137-146.

[7] L. Wan, J. Liao, and X. Zhu, Finding and evaluating community structure in social

networks, Advanced Data Mining and Applications 4th International Conference, 2008,

pp. 620-627.

[8] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, Comparing community structure

identification, Journal of Statistical Mechanics: Theory and Experiment, 2005, P09008.

[9] J. Ruan, and W. Zhang, An efficient spectral algorithm for network community discovery

and its applications to biological and social networks, Proceedings of the 7th IEEE

International Conference on Data Mining, 2007, pp. 643-648.

[10] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y. Liu, SHRINK: a structural clustering

algorithm for detecting hierarchical communities in networks, Proceedings of the 19th

ACM Conference on Information and Knowledge Management, 2010, pp. 219-228.

[11] J. Shi, and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on

60

Pattern Analysis and Machine Intelligence, vol.22, no.8, pp. 888-905 ,2000.

[12] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm,

The Neural Information Processing Systems, 2001, pp. 849-856.

[13] X, Xu, N, Yuruk, Z, Feng, and T. J. Schweiger, SCAN: a structural clustering algorithm

for networks, Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2007, pp. 824-833.

[14] Y. Wang, and X. Feng, A potential-based node selection strategy for influence

maximization in a Social Network, Advanced Data Mining and Applications, 5th

International Conference, 2009, pp. 350-361.

[15] W. Chen, Y. Wang, and S. Yang, efficient influence maximization in social networks,

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2009, pp. 199-208.

[16] P. Domingos, and M. Richardson, Mining knowledge-sharing sites for viral marketing,

Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2002, pp. 61-70.

[17] R. Albert, H. Jeong, and A. -L. Barab´asi. Diameter of the world wide web, Nature, vol.

401, pp. 130–131, 1999.

[18] A. -L. Barab´asi and R. Albert, Emergence of scaling in random networks, Science, vol.

286, pp. 509–512, 1999.

[19] A. Lancichinetti, S. Fortnato, and J. Kertesz, Detecting the overlapping and hierarchical

community structure in complex network, New journal of Physics, vol. 11, no.3, 033015,

Mar 2009,.

[20] A. Lancichinetti, S. Fortnato, and F. Radicchi, Benchmark graphs for testing community

detection algorithms, Physical Review E, vol.78, no.4, 046110 Apr 2008,.

[21] P. Domingos, and M. Richardson, Mining the network value of customers, Proceedings

of the seventh ACM SIGKDD International Conference on Knowledge Discovery and

61

Data Mining, 2002, pp. 57-66.

[22] S. Wasserman, K. Faust, Social network analysis, Cambridge University Press, 1994.

[23] P. Domingos, Mining social networks for viral marketing, IEEE Intelligent Systems,

vol.20, no. 1, pp. 80-93, Jan 2005.

[24] J. Goldenberg, B. Libai, E. Muller, Talk of Network: a complex systems look at the

underlying process of word-of-mouth, Marketing Letters vol.12, no.3, pp. 211-223, Mar

2001.

[25] W. W. Zachary, An information flow model for conflict and fission in small group.

Journal of Anthropological Research, vol.33, pp.452-473, 1997 .

[26] http://snap.stanfords.edu/data.

