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利用社群特性於 

社群網路影響力最大化之研究 

研究生: 張書華          指導教授:李素瑛 

國立交通大學 

資訊科學與工程研究所 

碩士論文 

摘要 

 近幾年來，因為很多大型社群網站的興起，在社群網路中影響力最大化問題已經引

起了很多關注。 影響力最大化問題是在社群網路中找尋一群節點，使得影響力的散播

最大化。雖然近幾年已有很多研究在解決影響力最大化的問題，但是用以模擬社群網路

的模型不能真實反映現實、網路情境，且效率不佳。然而因為大規模社群網路不斷的增

加，效率和實際可行性已經是重要的課題。在此篇論文中，我們使用熱流模模擬切實際

的網路，並在此模型下提出兩種解決影響力最大化的演算法。我們利用社群結構來避免

影響力重疊，再從所找出來的社群結構中找出最具有影響力的關鍵性節點。藉由社群結

構的特性可以大量的減少需要考慮的節點數目。我們使用合成和真實的資料實驗的結果

顯示我們所提出的演算法在效能上有很大的改善。   
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Abstract 

  In recent years, considerable concern has arisen over the influence maximization in social 

network, due to the surge of social network web sites. Influence maximization is the problem 

of finding a small subset of nodes in a social network that could maximize the spread of 

influence. Although many recent studies are focused on influence maximization, these works 

in general are not realistic nor efficient. Nevertheless, with the increasing number of 

large-scale social networks, efficiency and practicability requirement for influence 

maximization have become more critical. In this thesis, we propose two novel algorithms, 

CDH-Kcut and CDH-Shrink, to solve the influence maximization problem in the realistic 

model, i.e., heat diffusion model. Our algorithms use the community structure, which could 

significantly decrease the number of candidates of influential nodes, to avoid information 

overlapping and to find the influential nodes according to the community structure. The 

experimental results on synthetic and real datasets show our algorithm significantly 

outperforms in efficiency.  
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Chapter	1	

Introduction	

 In the last decade, many studies have been made in the area of social networks, in which 

users are linked to each other by a binary relationship such as friendship, co-working relation, 

business contact, to name a few. Fig 1.1 is an example of social network in which nodes tend 

to cluster together. Due to millions of users in social networks such as blogs, there are a lot of 

applications on social networks, such as viral marketing, community detection, etc.  

 

 

 

 

 

Nowadays, many large-scale web sites, such as Facebook and Twitter, become very 

popular since users can easily share everything with their friends and also bring small and 

disconnected social networks together. In 2011, Facebook already has more than 600 million 

active users and Twitter has about 90 million active users. Due to the flourishing of social 

network websites, marketing on online social networks shows great potential to be much more 

successful than traditional marketing techniques. According to eMarketer, advertisement 

spending on worldwide social networking sites in 2008 reached $23.4 billion and will expect 

to achieve about $23.6 billion in 2010 and $25.5 billion in 2011. 

Consider the following motivating example. A company develops a software “cooler” 

and wants to market it to a social network. The company has limited budget so that it can only 

Fig.1.1. An example of a social network diagram. A common 

property of social network is that nodes tend to cluster together. 
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give the free “cooler” to a small number of initial users. The company wishes the initial users 

could influence their friends to use the product, and their friends could influence their friends’ 

friends. Through the word-of-mouth effect, the company makes a large number of users adopt 

the “cooler”. Influence maximization problem is how to select initial users (refered to as seeds) 

so that the number of users that adopt the product or innovation is maximized. That is, the 

problem is how to find the influential individuals in a social network. 

   In reality, more social networks become large-scale, so the issue of efficiency becomes 

more and more crucial. Kempe et al. [6] also proved the influence maximization problem is 

NP-hard, and [6] proposed a climbing-up greedy algorithm. However, the climbing-up greedy 

algorithm is too time-consuming. If it takes long time for companies to decide which set of 

individuals should be given free samples to promote their products, they may lose the 

advantage due to non-timeliness. Moreover, the selected set of individuals will not be useful 

since the input network may change a lot during this week. Thus, some efficient approximate 

algorithms were proposed [2, 15].  Although those algorithms are efficient, they are only 

appropriate for diffusion models, which are not realistic enough. 

    Realistic modeling is also a very important issue for influence maximization problem. 

For an example, different social networks have different kinds of information flows. Hot 

social networks may transfer information faster than other social networks. The effect of time 

also has to be considered. Sometimes we want to know which set of individuals could trigger 

more adoptions of products after 3 days, 7 days, a week, etc. Therefore, realistic diffusion 

models are necessary for making actual predictions of the future behavior of the network.   

    In this thesis, we tackle the issues of time efficiency and realistic modeling of the 

influence maximization problem. We propose the novel community and degree heuristic 

(CDH) under heat diffusion model. Our CDH strategy is the unique combination of utilizing 

the community characteristics and modified degree centrality. Firstly, as shown in Fig 1.1, we 

can see that node clustering is an important characteristic of social networks. Therefore, we 
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utilize the community detection algorithm to avoid overlapping of influence spread. Secondly, 

we use the modified degree centrality to select influential individuals taking into account the 

information of community. We develop two approximate algorithms, CDH-Kcut and 

CDH-Shrink. Compared with the approximate algorithm in [5], CDH-Kcut and CDH-Shirnk 

are more efficient. Besides, both their influence spread are significantly better than classic 

degree centrality [22]. 

  The rest of this thesis is organized as follows. In chapter 2, we introduce background 

knowledge required for influence maximization problem. We survey previous works on 

selection of seeds under different diffusion models in chapter 3. In chapter 4, we will present 

the details of CDH framework and two algorithms, CDH-Kcut and CDH-Shrink. We analyze 

the time complexity of each algorithm in chapter 5. In chapter 6, the experimental results will 

be presented. Finally, we conclude the thesis and describe the future works in chapter 7. 
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Chapter	2	

Background	

2.1 Diffusion of Innovation 

Rogers [1] theorizes that diffusion is the process by which an innovation is 

communicated through certain channels over time among the members of a social system. 

Diffusion is a type of communication concerned with the spread of messages that are 

perceived as new ideas. Besides, innovations spread through society as the early adopters 

select the technology first, followed by the majority, until a technology or innovation is 

common. We use diffusion models, in generally, to simulate the diffusion of innovation. 

 

2.2	Diffusion	Model	

   In this section, we will introduce two basic and one realistic diffusion models. We model a 

social network as an undirected graph G(V,E), where V is the vertex set and 

V={v1,v2,...vn}.E={(vi,vj)| there is an edge from vi to vj} is the set of edges. Each node 

represents an individual and an edge between two nodes represents some kind of relationship 

(friends, co-authorships etc.). Each node is marked active (an adoption of an idea or 

innovation) or inactive. V and E also mean vertex set and the set of edges in rest of this thesis. 

2.2.1	Linear	Threshold	Model	(LTM)	

For an undirected graph G(V,E), we define N(v) = {u|(u,v)	∈ E} as the neighbor set of 

node v and buv as influence of active node u on its inactive neighbor v. We define A(v) as the 

set of active nodes in N(v)(A(v)⊆ ) .Besides, the activation threshold θ is defined. For a 

given node, if ∑ ∈ , node v becomes active. Intuitive meaning is that for an 
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inactive node v, if total influence exerted on u by all its active neighbors exceeds a 

pre-defined activation threshold θ, node v becomes active. In turn, it will exert influence on its 

inactive neighbors and bring some inactive neighbors become active. This process will 

continue on until no node can be activated. 

 

2.2.2	Independent	Cascading	Model	(ICM)	

 Another fundamental diffusion model is independent cascading model [24]. If a node v is 

activated at step t and it then tries to activate all its inactive neighbors with success probability 

p for each inactive neighbor u. If it is successful, then u will be active in step t+1, else v failed 

and will no longer have chance to activate u. In addition, each active node has only one 

chance to activate its neighbor u. While some other models [2, 3, 4] are proposed, they all are 

variations of the two core models, LTM and ICM, we have introduced.  

2.2.3	Heat	Diffusion	Models	(HDMs)	

    Heat diffusion is a physical phenomenon. Heat always flows from a position with high 

temperature to a position with low temperature. The phenomenon is actually similar to the 

process of people influencing others. The innovators and early adopters of a product or 

innovation act as heat sources, and have a very high amount of heat. These people start to 

influence others, and diffuse their influence to the early majority, then the late majority. 

Finally, at a certain time, the heat is diffused to the margin of this social network. In reality, 

different social networks have different information flows. Information on popular websites 

transfer information faster than other types of social networks. The time aspect needs to be 

considered when modeling social network marketing since different marketing strategies are 

required for different duration of information. It is not reasonable that only activated nodes 

could spread information to. ICM and LTM are built at a very coarse level, typically with only 
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a few global parameters, and are not useful for marketing actual predictions of the future 

behavior of the network [23]. Consequently, Ma proposed the realistic model, i.e., heat 

diffusion model [5]. It provides more parameters to simulate the conditions of real world, 

such as time and thermal conductivity. Therefore, heat diffusion model can easily simulate 

time effect in information and different types of information flow. Non-activated nodes can 

also spread information. HDMs originally has three different models, (1) diffusion on 

undirected social network, (2) diffusion on directed social network and (3) diffusion on 

directed social networks with prior knowledge of diffusion probability. In practice, most 

popular websites, such as Facebook, twitter and plurk are all undirected social networks, so he 

undirected social network are our focus.  

The value fi(t) describes the heat at node vi at time t, beginning from an initial 

distribution of heat given by fi(0) at time zero. f(t) denotes the vector consisting of fi(t). 

Suppose at time t, each node vi receives an amount M(i, j, t,	∆ ) of heat from its neighbor vj 

during a period ∆ . The heat M(i, j, t,	∆ ) should be proportional to the time period ∆  and 

the heat difference fj(t) – fi(t). Moreover, the heat flows from node vj to node vi through the 

edge that connects nodes vi and vj. Based on this consideration [5], M(i, j, t,	∆ ) =	

	 )∆ , where  is the thermal conductivity, i.e., the heat diffusion coefficient. As a result, 

the heat difference at node vi between time time t and t + ∆  will be equal to the sum of the 

heat that it receives from all its neighbors. This is formulated as Eq (2.1): 

∆ 	 	

∆
 =	 	 ∑ : 	, ∈	                           (2.1) 

The closed form solution of Eq (1) is : 

∆ 	 	

∆
 = f                                   (2.2)          

where 

 = 
1,																		 v 	,	v 	 ∈ 																										

								 v ,											 ,																																																	
												0																			otherwise.																																									
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and d(v) denotes the degree of the node v, 

As the limit ∆ 	 → 0, Eq 2.2 	becomes 

		
f =	 f                                        (2.3) 

Solving this differential equation in Eq(2.3), we have: 

f(t)=e f 0 ,                                         (2.4) 

e  could be extended as: 

 e H
	

!
H

	

!
H ⋯.                              

The matrix e  is called the diffusion kernel in the sense that heat diffusion process 

continues infinitely many time from the initial heat diffusion. When the graph of a social 

network is very large, a direct computation of e  is very time-consuming. [5] adopts its 

discrete approximation to compute the heat diffusion equation: 

 f I 	 H 	f 0 	                                  (2.5) 

Consider the example network in Fig 2.1 . 

 

 

Fig. 2.1 An undirected network 

 

The vector f(0) equals 7	0	0	0	0	0	0  and matrix H is 
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Fig 2.2 illustrates the curves of the variation of amount of heat of each node with heat 

diffusion model in Fig 2.1 (X-axis indicates time and Y-axis indicates amount of heat). We 

could see that only node 1 has heat at time 0. With time elapsing, the amounts of heat of other 

nodes are increasing and more close. Besides, assume node 2 is non-activated, but it can still 

spread information to node 5. 

 

 

Fig. 2.2 the curve of amount of heat of each node  

  with heat diffusion model in Fig. 2.1 

 If the amount of heat of node vi exceeds the activation threshold , we think node vi 

purchase a product or adopt an innovation.  

2.3 Influence maximization problem 

 The problem of influence maximization [21] posed by Domingos and Richardson is 

stated below: if we can try to convince a subset of individuals to adopt a new product and the 

goal is to trigger a large cascade of further adoptions, which set of individuals should we 

target in order to achieve a maximized influence? In reality, a person’s decision to buy the 

product is often strongly influenced by his friends and acquaintances. That is to say, the 

influence maximization problem is how we select the most influential early adopters. Better 

early adopters cause the more people to adopt the product. Online social networks provide 

good opportunities to address this problem, since we can easily share information with our 

friends. Influence maximization problems under the LTM, ICM and HDM are all 
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NP-problems, as already proved in [5, 6].  

2.4 Community Detection Algorithm 

 A community is characterized as a subset of individuals who interact with each other 

more frequently than other individuals outside the community [22]. Community discovery is 

similar but not equivalent to the conventional graph partitioning problem. Both community 

discovery and conventional graph partitioning problem aim to cluster vertices into groups. A 

key challenge for the former, however, is that the algorithm has to decide what is the “the 

best“,	or in other words, the “most natural“ partition of a network. In this thesis, we need the 

“most natural” partitioning without providing any information such as the number of 

partitions. Furthermore, if there is no good community structure, the network needs not be 

partitioned. That is why we use the community detection algorithm rather than conventional 

graph partitioning algorithm. 

A quantitative measure, called modularity (Q), was proposed [7] to assess the quality of 

community structures, and community discovery was formulated as an optimization problem. 

Because Optimizing Q is an NP-problem, several heuristic methods have been proposed, as 

surveyed in [8]. Assume M is the number of edges and N is the number of nodes. The time 

complexity of most community detection algorithms are between O(NlogN) and O(N3). In this 

thesis, the efficiency of algorithms are most concerned, so we select KCUT [9] and SHRINK 

[10], which have low time complexity O(MlogN), as our community detection algorithms. 

Besides, the two algorithms are not only efficient but also have good modularity. We will 

briefly introduce the Kcut and SHRINK algorithms in the section 2.4.1 and 2.4.2. 

2.4.1 Kcut Algorithm 

Kcut algorithm [9] is spectral graph partitioning. There is a family of methods on 

spectral graph partitioning. These methods depend on the eigenvectors of the Laplacian 
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matrix of a graph. Depending on the way a graph is partitioned, spectral methods can be 

classified into two classes. The first class uses the leading eigenvector of a graph Laplacian to 

bi-partition the graph. The second class of approaches computes a k-way partitioning of graph 

using multiple eigenvectors. We briefly review some representative algorithms of these two 

classes below. 

SM algorithm [11], the representative of first class, works as follows. SM computes 

,	the second smallest generalized eigenvector of Laplacian matrix. Then a linear search is 

conducted on  to find a partition of the graph to minimize a normalized cut criterion [11]. 

To find more than two clusters, the SM algorithm can be applied recursively 

The representative of second class is NJW algorithm. NJW algorithm [12] finds a k-way 

partition of a network directly, where k is given by the user. NJW computes the k smallest 

generalized eigenvectors of Laplacian matrix and stack them in columns to form a matrix Y = 

[ ,	 	, ...,	 ]. Each row of Y is normalized to have unit length. NJW treats each row as a 

point in , and then applies standard k-means algorithm to group these points into clusters. 

Kcut is a unique combination of recursive partitioning and direct k-way method. Kcut 

will achieve the efficiency of a recursive approach, while also having the same accuracy as a 

direct k-way method. It has been empirically observed that if there are multiple communities, 

using multiple eigenvectors to directly compute a k-way partition is better than recursive 

bi-partitioning method [12]. To optimize the performance measure of modularity Q, Kcut 

algorithm uses a greedy strategy to recursively partition a network. Unlike the most 

algorithms that always seek a bi-partition, it adopts a direct k-way partitioning. In summary, 

we compute the best k-way partition with k = 2,3,…,  using the NJW algorithm, and select 

the k that gives the highest Q value. Then for each subnetwork, the algorithm is recursively 

applied. 

Given a network G and a small integer l that is the maximum number of partitions to be 

considered for each subnetwork and Q is the value of modularity , Kcut executes the steps as 
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shown in Algorithm 1: 

 

Algorithm 1: Kcut 

Input : Graph of social network G; l : the maximum number of partitions to be considered 

for each subnetwork 

Output: Г : set of clusters 

1. Initialize Г to be a single cluster with all vertices, and set Q=0. 

2. For each cluster P in Г, 

3.     Let g be a subnetwork of G containing the vertices in P; 

4.     For each integer k from 2 to l 

5.         Apply NJW to find a k-way partitioning of g, denoted by Г ; 

6.         Compute new Q value of network as =Q(Г	∪ 	Г 	\ p ); 

7.     Find the k that gives the best Q value, i.e., k* = argmaxk	 ; 

8.     If 	 ∗ > Q 

9.         accept the partition by replacing P with Г ∗, i.e., Г = Г	∪ Г ∗  \ P, 

10.         and set Q =	 ∗ ; 

11.     Advance to the next cluster in Г, if there is any; 

 

Fig 2.3 is an example network for Kcut. Assume l is 3. Fig 2.4 is the eigenvectors of 

Laplacian matrix of Fig 2.3 and stack them in columns to form a matrix [ ,	 	, ]. Apply 

NJW to find a k-way partitioning of Fig 2.3. We find k = 2 that gives the best Q value. Fig 2.5 

is the partitioning of Fig. 2.3. Then no more partitioning could gain the modularity. 

 

 

Fig. 2.3 An example network for Kcut 
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2.4.2 SHRINK Algorithm 

 SHRINK [10] is a parameter-free hierarchical network clustering algorithm by 

combining the advantages of density-based clustering and modularity optimization methods. 

It uses density-based method to quickly know which set of nodes may be the same cluster. 

Then it uses modularity optimization to decide whether results of clustering are good or not. It 

not only detects hierarchical communities, but also identifies hubs and outliers. Therefore, 

local connectivity structure of the network is used in SHRINK. We briefly review the details 

Fig. 2.5 Two communities detected by Kcut 

Fig. 2.4 Eigenvectors of Laplacian matrix of Fig 2.3 and  

stack them in columns to form a matrix [ ,	 	, ] 

 

 

Node 1 

Node 2 

... 
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of SHRINK as follows. 

   Given a weighted undirected network G = (V, E, w.). w(e) is the weight of edge e. We 

formalize some notions and properties of the hierarchical structure-connected clusters. Firstly, 

we define the structure similarity. The structural similarity effectively denotes the local 

connectivity density of any two adjacent nodes in a weighted network. For a node u ∈ V, we 

define w({ u, u }) = 1. The structure neighborhood of a node u is the set Г(u) containing u and 

its adjacent nodes : Г(u) = 	 	 ∈ 	| , ∈ 	∪ 	 	 . The structural similarity between 

two adjacent nodes u and v is then 

  σ u,v  = 
∑ 	 , 	 ∙ 	 , 	∈Г ∩Г

∑ 	 , 	∈Г 	∙ ∑ 	 , 	∈Г

 .  (2.6)                

  Therefore, if node u and node v have more mutual and familiar friends, structure 

similarity of {u, v} will be higher. The above structural similarity is extended from a cosine 

similarity used in [13]. It can be replaced by other similarity definitions such as Jaccard 

similarity. However, [10] shows that the cosine similarity is better. We define the dense pair. 

σ u, v  is the structure similarity of nodes u and v. If	σ u, v  is the largest similarity 

between nodes u, v and their adjacent neighbor nodes: σ u,	v  = max{	σ , y | (x = u, y 

∈ 	Г 	 	 	⋁ 	 	 	 , y	 ∈ 	Г 	 }, then {u, v} is called a dense pair in G. 

That is to say, a dense pair {u, v} is the largest similarity edge from all edges of u and v. 

As shown in Fig 2.6, {9,13} is a dense pair with structure similarity 0.8165 in the example 

network since {9, 13} is the largest similarity edges from all edge of node 9 and 13. 

 

Fig. 2.6 An example network for SHRINK algorithm 
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Fig.2.6 Illustration of the procedure and  

result of the hierarchical network clustering algorithm SHRINK.  

 

The main process can be divided into two phases that are repeated iteratively. Given a 

network with N nodes, first we initialize each node with a different community label. In this 

initial partition, the number of communities is the same as the number of nodes. Then, for 

each node u we combine the corresponding nodes in the dense pairs of u to form a super-node. 

This process is applied sequentially for all nodes. We record all different communities which 

represent a partition of the network. The second phase of the algorithm is to build a 

super-network. We evaluate the modularity gain of Qs for the shrinkage of the communities 

found during the first phase. If the modularity gain is positive, the corresponding local 

(b) 

1st iteration

2nd iteration 

Stop when △Qs < 0 
(c) 

(a) 
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community is replaced by a super-node. The above two phase are executed in turns until there 

is no community with positive modularity gain. For an example in Fig 2.7(a), at 1st iteration, 

we separately combine node set {9, 13}, {8, 11, 12}, {1, 4, 5} and {2, 3, 6} as four super 

nodes with structure similarity 0.8165, 0.8, 0.8, and 0.8165. Then since the modularity gains 

after shrinkage of communities are positive, the above four node sets are replaced by four 

super nodes. At 2nd iteration, node set {{8, 11, 12}, {9, 13}, 10} and {{1, 4, 5}, {2, 3, 6}} are 

separately combined as two super-nodes with 0.7303 and 0.7303. The modularity gains after 

shrinkage of communities in 2nd are positive, so we replace two node set {{8, 11, 12}, {9, 

13}, 10} and {{1, 4, 5}, {2, 3, 6}} by their super-nodes. Since no more shrinkage of 

communities could gain the modularity gain of Qs, SHRINK stops. Then the hierarchy of 

communities naturally occurs, as shown in Fig 2.7(b). Fig 2.7(c) represents final two-layers 

overlapping communities. Since node 7 connects two communities, it is a hub. In addition, 

node 14 is identified as an outlier which is loosely connected with the community {8, 9, 10, 

11, 12, 13}.  

SHRINK is not only efficient but also accurate. Besides, it can detect hubs which are 

very useful information in maximal influence problem. We could see that in the same graph in 

Fig 2.6 and Fig 2.3, Kcut only detect two communities, but SHRINK detect not only two 

communities but also a hub, node 7. Hub is very useful for influence maximization problem. 

2.5 Seeds Selection Algorithm 

We discuss previous works for seeds selection in this section. Influence maximization 

problem is an NP-problem. Hence, many works have been proposed to achieve approximate 

solutions. In social network, we often consider the person who has the most friends as the 

most influential person, since he can possibly influence most people. Therefore, the intuitive 

strategy, in general, is selecting seeds based on their degree, called degree centrality. 

Nevertheless, the members of large communities often have larger degree than other members 
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of smaller communities. Consequently, degree centrality easily selects seeds in the same large 

community. Influence spreads of each seed in the same community tend to be overlapped. As 

a result, degree centrality does not have good performance on influence spread. Distance 

centrality is another common used method for influence maximization problem. It selects 

seeds in the order of increasing average distance to other nodes. However, nodes in the larger 

communities usually have smaller average distance. As a result, most seeds may also be 

clustered. Simply stated, degree centrality and distance centrality result in the phenomenon of 

clustering of seeds, which deteriorates sharply in influence spread. 

 Pable A. Estevez et al. proposed set cover greedy algorithm [2] under independent 

cascading model (ICM). It kept selecting node with highest “uncover degrees”. Once a node 

is selected, all its neighbors as well as itself are labeled as “covered”. This procedure 

continues until k seeds are selected. This algorithm is computationally fast under simpler 

models, i.e., ICM. However, it has good influence spread only in high successful probability. 

 The Climbing-up greedy algorithm [6] under ICM and LTM was proposed by David 

kempe et al.. They also provided the first provable 1 	approximation guarantees for 

influence spread. The number e is Euler’s number. Recently, since social network websites are 

getting more popular, we have to pay more attention to efficiency of algorithms. In reality, at 

the beginning of the innovation diffusion process, several seeds in the network spread the 

information at the same time, not just one single seed. The information from his (her) social 

network may come from several seeds. At each iteration of climbing-up greedy algorithm, we 

select most “influential” node on the condition of considering all seeds selected before. This 

procedure continues until k seeds are selected. If a node could make more nodes to be 

activated, it seems to be more “influential”. For selecting the most influential node, we have 

to compute each node’s influence. Due to the heavy computing load of climbing-up greedy 

algorithm, it is not appropriate for large social networks. Besides, [5] proposed enhance 

greedy algorithm under heat diffusion model, i.e. the climbing-up greedy algorithm specially 
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under heat diffusion model. Nevertheless, enhance greedy algorithm is also a climbing–up 

greedy algorithms. Consequently, we cannot solve influence maximization problem under 

heat diffusion model in acceptable time. 

   Yitong Wang et al [14] proposed a potential-based node selection. It selects some inactive 

nodes that might not be optimal at starting phase but could trigger more nodes in later stage of 

diffusion. It can save half time of totally using Climbing-up greedy algorithm and cause more 

adoptions than that in [6]. However, in practice it is still not efficient enough. Therefore, the 

extremely efficient algorithm, degree discount heuristic, was presented by Wei Chen et al. 

[15]. It obtains the approximate solutions in large datasets for only a few seconds. Besides, its 

performance is close to [6]. However, both of [14, 15] are only under LTM or ICM, which are 

not very realistic diffusion models. In addition, degree discount heuristic is only for very low 

successful probability, i.e., people are extremely hard to be influenced in very low successful 

probability.   
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Chapter 3 

Community Degree Heuristic (CDH) 

 In this chapter, we will describe our community degree heuristic (CDH) that quickly 

detect seeds under the heat diffusion model.  In section 4.1, we present the overview of the 

system architecture and explain principles of CDH. In section 3.2 and 3.3, we will go into 

details about our CDH-Kcut and CDH-Shrink. 

 

3.1 Overview of System Architecture 

 CDH is the unique combination of the community detection algorithm and modified 

degree centrality. Suppose we have data on a social network which has N individuals. The 

problem we need to solve is: given the quota number k, how to select the initial k “influential” 

individuals who will be delivered a free sample product, in order to maximize the number of 

cascade adoptions by which these individuals will influence their friends or individuals on 

their direct contact list. 

 In this thesis, we model social network marketing process by heat diffusion process. 

Initially, we select k individuals as seeds for heat diffusion, denoted by the set S and the k 

seeds are given a certain amount of heat h0. At time zero of the heat diffusion process, we set 

fi (0) = h0 , where i ∈ 	  . As time elapses, the heat will diffuse through the whole social 

network. If the amount of heat of individual i at time t is greater than or equal to an activation 

threshold , this individual i will be considered as having been successfully influenced on 

activated by others, and will adopt the product. We define the influence set of the set of k 

individuals S, denoted as (t), to be the expected number of individuals who will adopt the 

product at time t. Now the above problem could be interpreted as: finding the most influential 

k-size set S to maximize the size of set (t) at time t, where (t) ={	 	|	 , 	  } . 
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This problem is NP-hard, as already proven in [5]. We select the heat diffusion model to be 

our diffusion model since it can realistically simulate the real world. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed CDH is composed by two phases, partition phase and selection phase. Fig. 

3.1 illustrates the framework of CDH. The first phase, partition phase, detects the 

communities of the network. Community is a subset of individuals who interact with each 

other more frequently than other individuals outside the community. In real life, one’s 

information often spread in his or her circle of friends. That is, most of someone’s influence 

clearly spread in his or her community. We find the same phenomenon in heat diffusion model. 

In Fig. 3.2, node 1 is a seed. The color of each node means its amount of heat. More dark blue 

means larger amount of heat. Nodes circled by dotted circle are in the same community. We 

Fig. 3.1 Framework of CDH  

  Selection phase   

 

Partition phase 

Community Detection 

Undirected   

unweighted Graph 

Final seeds Adjustment 

Construct the potential pool. 

Detect fundamental nodes   

in potential pool. 
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can see that most gains of heat are in the community of node 1. In Fig 3.3, node1 and node 2 

are seeds. Most gains of heat are also in the community of node 1. Nodes in the other 

community gains very little amount of heat. We can conclude that if we choose nodes in the 

same community as seeds, most gains of heat are in their own community. Other communities 

gain little amount of heat. Therefore, information of community is a very useful tool to avoid 

influence overlapping in heat diffusion model. 

 

 

 

 

/ 

 

 

 

Fig. 3.2. The distribution of heat as node 1 is seed. The color of each 

node means its amount of heat. More dark blue means larger amount of 

heat. Nodes circled by dotted line are in the same community. 

Fig. 3.3. The distribution of heat as node 1 and node 2 are seeds. The 

color of each node means its amount of heat. More dark blue means 

larger amount of heat. Nodes circled by dotted line are in the same 

community. 
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The reason for using community detection algorithms rather than conventional graph 

partitioning algorithm is that we want to detect “the best”, or in other words, the “most 

natural“ partitioning of a network without providing any information such as the number of 

partitions. For example, if the network is natural to be partitioned to 3 communities, we 

should not force the network to be partitioned to 4 communities.  

 

 

 

 

 

 

The second phase, selection phase, finds the most influential nodes based on the result 

of partition phase and parameters of heat diffusion model, such as flow duration, thermal 

conductivity and activation threshold. In Fig. 3.4, community 1 is a larger community than 

community 2. It shows that select nodes from community 1 as seeds instead of nodes from 

community 2 could trigger more individual to be activated. The degrees of each node in social 

network also fit with power-law distribution [17, 18], i.e., a very large number of nodes have 

very small numbers of neighbors. Hence, most large-degree nodes are in large communities. 

Due to the above reasons, we only consider nodes in the large communities as seed candidates. 

Fig. 3.4 Comparison with three seeds in different community size. 

Community 1 is a larger community than community 2. Select the same 

number of seeds from community 1 could trigger more individuals to be 

activated than from community 2. 
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The candidates are put in the potential pool. Therefore, we intend to select seeds from 

potential pool. Next, we detect the “fundamental node” from the potential pool. 

Fundamental nodes have more potential to be seeds since it has larger degree than that of 

other nodes in the same community, or it is located on the important position in the network. 

The important position means connecting many communities. Fig. 3.4 and 3.5 show two 

kinds of fundamental node. In Fig.3.4, node 3 is the fundamental node. It has the largest 

degree among all nodes. In Fig. 3.5 node 12 is the fundamental node. It has better position 

which can easily influence two node sets {1,2 , 3, 4, 5 } and {6, 7, 8, 9, 11} 
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Fig 3.4. An example of Fundamental node. Node 3 is the 

fundamental node. It is has the largest degree among all nodes. 

 

Fig. 3.5. An example of fundamental node. Node 12 is the fundamental node. It has better 

position which can easily influence two node sets {1, 2, 3, 4, 5} and {6, 7, 8, 9, 11}. 
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How to detect the fundamental nodes is one of differences between CDH-Kcut and 

CDH-Shrink algorithms. Although these nodes have good chance to become the final seeds, 

they are not the best seeds in different situations (parameters) of heat diffusion model. For 

example, seeds which perform well in short flow duration may not be good in long flow 

duration. Therefore, adjusting the fundamental nodes to become more ideal seeds is essential. 

(a) An input graph (b) Community Detection (Partition Phase) 

(c) Construct potential pool (selection phase) (d) Find fundamental nodes in potential 

pool (assume two fundamental nodes) 

Fig. 3.6 An example of the concept of CDH  
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Fig. 3.6(a) is an example of input graph. Fig. 3.6(b) is the result of community detection 

of Fig. 3.6(a). Different color means different community. After partition phase, the first step 

of selection phase is constructing the potential pool. Two communities circled by red dotted 

circle are potential pool since the two communities are the two largest communities among all 

communities in Fig. 3.6(c). Assume two fundamental nodes are to be selected. Fig. 3.6(d) 

shows two fundamental nodes in the potential pool since they have large degree. After the 

step of constructing potential pool and finding fundamental nodes, we effectively narrow 

down the scope of seed candidates. CDH-Kcut and CDH-Shrink are two algorithms using 

different community detection algorithms and different strategies of potential pool, 

fundamental nodes and adjustment. We explain details of two algorithms in next two sections. 
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3.2 CDH-Kcut 

 CDH-Kcut is composed of partition phase and selection phase. The purpose of partition 

phase is to detect communities. The selection phase finds the influential nodes in communities. 

The strategies used by the CDH-Kcut are presented below:    

 (Partition phase): 

 We partition the network into communities by Kcut algorithm [9]. Every node will 

belong to only one community, and overlapping community is not allowed in Kcut. We 

assume the graph G is partitioned to the l communities. In most cases, l is larger than k, so in 

this paper we don’t discuss the case l < k. 

(Selection phase)  

 After detecting communities, we have l communities. If we want to find k seeds, 

firstly we construct the potential pool, PP(G). We define potential pool as : 

                   , , … , , (3.1) 

where		  is the set of top-p degree nodes in i-th largest community SCi, i = 1,2,..,k. 

Therefore, PP(G) keeps the top-p degree nodes in each community of top-k largest 

communities. In most cases, p = 10% of community size is enough for selecting good seeds. 

Therefore, we significantly narrow down the range of possible seeds. Then, we select the 

fundamental nodes from the potential pool. Since Kcut cannot identify importance of location 

of nodes in each		 , degree has been considered as the only attribute that distinguishes good 

fundamental nodes from poor fundamental nodes. Thus, we select the largest degree node in 

each 		  as the fundamental nodes. S ={s1,s2,….,sk} is the set of seed candidates si.. 

Fundamental nodes are seed candidates. Fig. 3.7 is an example of finding fundamental nodes. 

Node 1 and node 7 are the largest degree nodes in respective community. Finally, we adjust 

the fundamental nodes to be the final seeds. Our basic idea of adjustment is a heuristics that 

tries to use an add-node a_node to replace a delete-node d_node. If the influence spread after 

node replacing is larger than before replacing, we do the replacement,  
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Algorithm 1: CDH-Kcut 

    Input : Graph of social network G ; number of total seeds k, Parameters p  

    Output: k seeds  

1. Execute the Kcut(G) ; 

2. Select top-k biggest communities from the communities in Kcut(G) ; 

3. foreach selected community SCi do  

4.     Add top-p degree nodes into set  ; 

5. end 

6. foreach  do 

7.     select the most degree node Si from  ; 

8. End 

9. IM = Is(t);//Is(t): influence spread of current seed set, IM : record max influence spread 

10. foreach community SCi do 

11.     if size(SCi) > avg(∑ size 	 ) then 

12.         Add SCi in LC ;  //LC : the set of large communities 

13.     end 

14. end 

15. Sort LC based on community size ; 

16. ci = 0 ; // ci : community index 

17. di = 0; // di : index of d_node 

18. foreach Ci in LC  

19.     ai = 2 ; //ai : index of a_node 

20.     while ture do 

21.         Select the ai-th large degree node from  as a_node; 

22.             Select the seed candidates sk-di from S as d_node; 

23.             if Is(t) < IM then 

24.             Cancel the replacement in line 21 and line 22. 

25.             break ; 

26.         end 

27.         IT= Is(t); 

28.         ai = ai +1; 

29.         di = di +1; 

30.     End 

31.     ci = ci +1; 

32. end 

33. Output individuals in S  
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else we cancel the replacement. 

As in Fig 3.3, seeds selected from large community could trigger more adoptions than 

that selected from small community. As a result, we incline to select add-node in large 

communities and delete-node in the small communities since we want to know whether 

selecting nodes from large communities can gain more influence spread or not. If the size of a 

community is larger than AvgSC = avg(∑ size 	 ), then this community is deemed as 

large community. Notice that delete-nodes must be fundamental nodes. Due to the adjustment, 

we can avoid influence spread from being spoiled for the effect of different value of 

parameters, such as flow duration, activation threshold and thermal conductivity. We discuss 

the effect of flow duration, activation threshold and thermal conductivity individually. 

Comparing the difference caused by long time and short time, information will diffuse farther 

in long flow duration. That is, in long flow duration the seeds would influence more 

individuals than that in short low duration. Therefore, we should not select too many seeds in 

one community in long flow duration. In contrast, it is appropriate selecting more seeds in one 

community in short flow duration.  

It is more difficult to make individuals adopt products in high activation threshold. 

Individuals need more heat to be activated in higher activation threshold, so we tend to select 

more seeds in one community with high activation threshold.  

Fig. 3.7 An example of finding fundamental nodes in 

CDH-Kcut. Red nodes are fundamental nodes. 
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High thermal conductivity makes information diffuse more quickly. Compare with low 

thermal conductivity, information of high thermal conductivity makes information diffuse 

longer distance. Hence, we do not select many seeds in one community. We conclude that 

differences caused by different parameters are the level of seeds clustering. In the simulation 

of short flow duration, high threshold and low thermal conductivity it is better to select more 

seeds in one community, i.e., higher level of seed clustering. On the other hand, long flow 

duration, low threshold and high thermal conductivity social network, not many seeds in one 

community is needed, i.e., lower level of seed clustering. Therefore, the adjustment in 

CDH-Kcut is to test and verify whether large communities should need more seeds. Lines 

between 9 and 29 in algorithm 1 show the steps in seeds adjustment.  
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3.3 CDH-Shrink 

    Our proposed CDH-Shrink is also composed of two phase, partition phase and selection 

phase. Besides, Shrink algorithm [10] could detect hub, i.e., a node connecting different 

communities. It provides us more information about the community structure property. The 

communities detected by Shrink are more precise than by Kcut. Due to above reasons, we can 

select more productive fundamental nodes than in CDH-Kcut. We describe it as follows: 

(Partition phase): 

 We get information of community structure and hubs by Shrink algorithm. 

(Selection phase): 

In selection phase, we construct the potential pool and select fundamental nodes. Then adjust 

fundamental nodes to find final seeds. As shown in Fig 3.8, if we totally find k seeds, we have 

to select k fundamental nodes. Therefore, we have k iterations of selecting fundamental nodes. 

At i-th iteration, we only select largest community SCi among all remaining communities, and 

then select a fundamental node from SCi.  

 

 

 

 

 

Fig 3.8. Flowchart of selection phase. Assume select k seeds. We have k 

iterations of selecting fundamental node. Before selecting the 

fundamental node of	 , the size of each community covered by the 

fundamental node of	 	has to reduce the degree of fundamental node 

of	 . PP(G) ={	 ,		 ,…, }. : top-p degree nodes in i-th 

largest community.  p: 10% of community size. i= 1~k 
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We first select top-p degree nodes from SCi, denoted as	 . p = 10% of SCi’s size is enough 

to select good fundamental nodes. Before selecting the fundamental node of	 , the size of 

each community covered by the fundamental node of 	 	has to reduce the degree of 

fundamental node of	 . As shown in Fig. 3.9, assume that node 7 is the fundamental node 

in C1. The size of C2 will be reduced to 3. Community size reduction is for reducing the 

influence overlapping. Fundamental nodes should “cover” communities as much as possible 

while having much influence on their communities. In Fig.3.10, node u belongs to community 

C1, C2 and C3. That is, u covers C1, C2 and C3. 
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Fig. 3.10 An example of “cover”. C1, C2 and C3 are 

communities. Node u belongs to C1, C2 and C3. That is, u 

covers C1, C2 and C3. 

C1 
C2 

Fig 3.9 Illustration of community size reduction.  

We select node 7 as the fundamental node in C1. The 

size of C2 will be reduced to 3. 
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To select good fundamental nodes, we define “position_score” as: 

position_score(u) = |{Ci | u ∈ Ci , u ∈ 	 	∈ set	of	communities | ,    (3.2) 

to evaluate the importance of node’s position in network. If the node u is a nonhub, the 

position_score(u) is 1. Otherwise, the position_score(u) is the number of communities which 

u belongs to. We also define “hub_purity” as: 

hub_purity(h) = 
| |		 	∈	 	 ,			 	∈	 	 			 	∉	 |

_
,                      (3.3) 

where FC is the set of communities which contain fundamental nodes and h is a hub. In Fig. 

3.11¸ C1 and C2 are communities containing fundamental node u. C1, C2 and C3 are 

communities containing node z. C2 and C4 are communities containing node v. Therefore, 

purity(z) = 1/3 and purity(v) = 1/2. 

   

 

 

 

 

 

 

 

We choose the “MAX priority” nodes from 	  as fundamental nodes, i = 1,2..,k. 

Selecting fundamental nodes in CDH-Shrink is different from that in CDH-Kcut. Function 

compare_priority shows how to compare priority of nodes. If both nodes are hub, we 

compare their position_score other than their degree. We compare hub with hubsize since we 

want to cover more communities. That is, we want to choose the hub which has important 

positions in the network. Besides, if the node is a hub, its purity must exceed the threshold of 

purity. We do not want to select low-purity fundamental nodes to reduce information 

overlapping. The hub with low purity easily covers too many covered communities, and this 

z 

v u 

C3

C1
C2 C4

Fig 3.11 An example of how to computing purity. C1, C2, 

C3 and C4 are communities. Node u is the fundamental 

nodes. Purity(z) = 1/3 and purity(v) = 1/2 
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hub, consequently, has the lowest priority while comparing purity. When comparing nonhub 

with hub or nonhub, we compare their influence on their neighbors, i.e., degree, due to no 

information about importance of location of non_hubs. After comparing top-p degree nodes 

in SCi , we can find the fundamental node . The fundamental node may have a very good 

position which connecting SCi with many other communities or have much influence on their 

neighbors or have both. S ={s1,s2,….,sk} is the set of seed candidates si. Fundamental nodes 

are seed candidates 

Finally, we adjust fundamental nodes to be final seeds. Adjustment in CDH-Shrink is 

also a heuristics. Try to choose an add-node to replace a delete-node. Then test whether the 

influence spread after replacing is larger than that before replacing. left and seedLoad play 

important roles in adjustment. left and seedLoad help us to determine add-nodes and 

delete-nodes . We define “left” and “ seedLoad“ as: 

    left(Ci) = the number of non-activated nodes in community Ci,     (3.4) 

seedLoad(Ci) = 
	

| 	| 	∈	 , 	∈ |
 ,                              (3.5) 

Left(Ci) might be thought of as “the need of adding more seeds in Ci “. As left(Ci) is 

increasing, the need of selecting more seeds in Ci is increasing. Implied in the seedLoad(Ci) is 

whether too many seeds in Ci. When seedLoad(Ci) is small, that, perhaps, means too many 

seeds in Ci.. 

In each iteration, we select the add-node a_node , where  

 

a_node = u | max{∑ left | ∈ , ∈ G(V), t = position_score(u) } . 

 

In the meanwhile, we select a delete-community d_comm, which has the smallest seedLoad 

among SC, SC ={SC1,SC2,…SCk}. Then select delete-node d_node which has minimun 

size(A(d_node)) among all seeds in d_comm. A(u) is a set of active nodes adjacent to node u. 

We test if we should substitute add-node a_node for delete-node d_node. If the influence 

spread after substitution is more than that before, we make a substitution. To quickly find a 
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productive a_node, we do not consider very low degree node. We could assume selecting low 

degree nodes as seeds is not productive. Lines between 15 and 34 in CDH-Shrink show the 

details of adjustment. The adjustment has r iterations to test the substitution. In most cases, r = 

2k~3k is efficient to get satisfactory influence spread. 

 

 

 

 

 

 

Algorithm 2: CDH-Shrink 

Input : Graph of social network G ; number of total seeds k, Parameters p, 

purity_threhold , adjustment time r 

Output: k seeds 

1. Execute the Shrink(G); 

2. while |SC| < k do  

3.     Add the biggest community SCi into SC; 

4.     // select the fundamental node 

5.       foreach top-p degree nodes in SCi do 

6.          //ni : the i-th largest degree node in SCi 

7.          maxnode = compare(ni, maxnode);       

8.     end 

9.     Si = maxnode; 

10.     foreach community Ci which has max do 

11.         Size(Ci) = Size(Ci) – degree(max); 

12.     end 

13. end 

14. //adjustment 

15. IM= Is(t); // Is(t) : influence spread of current seed set, IM : record max influence spread

16. for 1 to r do 

17.         select a_node =  u | max{ ∑ left | ∈ , u ∈ G(V), 

18.                       t = position_score(u)} ; 

19.         select _ argmin ∈             

20.         select _ argmin ∈ , ∈ | | ∈ , ⊆ |  

Function compare_priority (node a, node b) 

1. if a is hub and hub_purity(a) < purity_threshold 

2.     return b 

3. if a is hub and b is hub then 

4.     return max( position_score(a),  position_score ( b )); 

5. else if a is nonhub then 

6.     return max(degree(a), degree( b)); 

7. end              
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21.         delete d_node in S and add a_node into S ;  

22.         if Is(t) < IM then 

23.             Cancel the replacement between line18 to 22. 

24.         end 

25.         IM = Is(t) ; 

26. end 

27. Output individuals in S 

3.4 Time Complexity of Approximation Algorithms 

 We now consider the time complexity of CDH-Shrink, CDH-Kcut and enhance greedy 

algorithm [5]. Suppose that a social network is composed of N individuals and M edges. The 

time complexity of heat diffusion process is O(RM )[5], which means the number of iterations 

R multiplied by the number of edges M in a social network. In most cases, R = 30 is enough 

for approximating the heat diffusion process. We select k seeds. The complexity of each 

algorithm is as follows:  

For CDH-Kcut, l is the number of communities. Each top-k community selects top-p 

degree nodes in potential pool. The partition phase in CDH-Kcut is O(MlogN). Assume 

average number of nodes in a community is . Constructing the potential pool is O(kp ). 

Finding fundamental nodes in potential pool is O(kp). Finding large communities is O(k). 

Assume we have b large communities. Sorting large communities is O(blogb). Adjustment in 

CDH-Kcut is O(kRM). Therefore, the time complexity is O(MlogN + kp  + kp + k + blogb+ 

kRM).  

For CDH-Shrink, assume the number of adjustment iterations is r, and the average 

community number of a node is d. The partition phase is O(MlongN). The time complexity of 

community size reduction is O(d), so finding fundamental nodes in potential pool is O(k(l + 

p +d)). In the adjustment, selecting add_node is O(Nd+N), selecting delete_community is 

O(k), and selecting delete_node is O(k). Therefore, the time complexity of adjustment in 
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CDH-Shrink is r(Nd + N + k + k + RM). The total time complexity is O(MlogN + k(l + p +d) 

+ r(Nd + N + k + k + RM)).  

The time complexity of greedy algorithm in enhance greedy algorithm is O(kNCM) since 

selecting a seed is O(NRM) and we have to select k seeds. In most cases, r = 2k ~3k is enough 

for adjustment. We could see that in terms of time complexity, the ranking is CDH-Shrink  

CDH-Kcut 	greedy algorithm in [5].   
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Chapter 4 

Experiments 

To measure the performance of our proposed algorithms, we conduct experiments on a 

co-authorship network [26], the zachary’s karate network from Newman [25], the network of 

facebook, and two synthetic networks. The goal of the experiments is to show that our 

algorithms are very efficient and with satisfying influence spread. 

We run the following set of algorithms under heat diffusion model. 

 EGA: the original enhanced greedy algorithm [5]. 

 CDH-Kcut: the community and degree heuristic. Community detection algorithm used 

is Kcut. . 

 CDH-Shrink: the community and degree heuristic. Community detection algorithm 

used is SHRINK. 

 DH: As a baseline, a simple degree heuristic that selects the k nodes with the largest 

degrees. 

 

The performance metrics of the algorithms compared and the parameter setting are listed 

below. 

1. Influence spread (number of activated nodes) 

2. Efficiency (running time) 

3. Effect of different values of parameters 

- t : flow duration 

- θ : activation threshold 

- α :thermal conductivity 



37 
 

4.1 Synthetic Networks 

For synthetic datasets, we use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark 

graphs [19, 20] to evaluate the performance of our algorithms. Some important parameters of 

the synthetic networks are: 

 N: number of nodes 

 M: number of edges 

 maxd: maximum degree 

 mp: mixing parameter, each nodes shares a fraction mp of its edges with nodes in other 

communities. 

 As shown in Table 4.1, we generate five different undirected graphs : (1) 1000Smp : 

the graph with 1000 nodes and small mixing parameter; (2) 1000Lmp : the graph with 1000 

nodes and large mixing parameter; (3) 1000Lmaxd : the graph with 1000 nodes and large 

maximum degree; (4) 1000LM : the graph with 1000 nodes and large number of degree; (5) 

5000Smp : the graph with 5000 nodes and small mixing parameter. Generally, the higher the 

mixing parameter of a network is, the more difficult to reveal the community structure.  

 

 

 

 

 

 

 

 

 

 

 

Dataset N M maxd mp 

1000Smp 1000 9097 100 0.1 

1000Lmp 1000 9097 100 0.5 

1000Lmaxd 1000 9097 200 0.1 

1000LM 1000 22484 100 0.1 

5000Smp 5000 47094 100 0.1 

d 

Table 4.1: The parameters of the omputer-generated datasets  

for performance evaluation 
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Table 4.2 provides the result of different algorithms with different activation threshold, 

flow duration and thermal conductivity in 1000Smp. The influence spreads of CDH-Shrink 

and CDH-Kcut from θ = 0.2 to θ = 1.4 are almost the same or slightly different. Thus, we 

only report θ = 0.2, θ=1.5 and θ = 2.0. We can see that CDH-Shrink and CDH-Kcut have 

same influence spread in most cases and even are better than EGA with θ = 2.0. Fig. 4.1 

shows 5 seed selected by CDH-Kcut with t=0.1, θ=0.1, α=0.1 in 1000Smp. Fig. 4.2 shows 5 

seed selected by CDH-Kcut with t=0.1, θ=0.1, α=0.1 in 1000Smp. We could see that higher 

activation threshold leads to the phenomenon of seed clustering. 

 

 

 

 

 

 

 

 

  network EGA CDH-Shrink CDH-Kcut DH 

t=0.1, θ=0.1, α=0.1 1000Smp 341  339  339  215 

t=0.1, θ=0.2, α=0.1 1000Smp 336  332  332  215 

t=0.1, θ=1.5, α=0.1 1000Smp 223  201  197  95 

t=0.1, θ=2.0, α=0.1 1000Smp 133  141  166  95 

t=0.2, θ=0.1, α=0.1 1000Smp 386  367  345  336 

t=0.3, θ=0.1, α=0.1 1000Smp 503  482  499  472 

t=0.4, θ=0.1, α=0.1 1000Smp 635  594  649  567 

t=0.1, θ=0.1, α=0.2 1000Smp 386  367  345  336 

t=0.1, θ=0.1, α=0.3 1000Smp 503  482  499  472 

t=0.1, θ=0.1, α=0.4 1000Smp 635  594  649  567 

Table 4.2: Influence spread with 4 different algorithms in 1000Smp.  t 

is flow duration. θ is activation threshold. α is thermal conductivity 
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Fig 4.2 5 Seeds (red nodes) selected by CDH-Kcut with t=0.1, θ=2.0, 

α=0.1 in 1000Smp. 

Fig 4.1 5 Seeds (red nodes) selected by CDH-Kcut with t=0.1, θ=0.1, 

α=0.1 in 1000Smp. 
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Table 4.3 shows the influence spread with 4 different algorithms with different activation 

threshold, flow duration and thermal conductivity in 1000Lmp. CDH-Kcut performs worse 

than CDH-Shrink in 1000Lmp since SHRINK could detect more accurate community 

structure than Kcut. Hence, if it is hard to get correct community structure of the graph, 

CDH-Shrink will probably perform better than CDH-Kcut. Besides, accuracy of detected 

community structure reflects the performance of influence spread of CDH-Shrink and 

CDH-Kcut. Therefore, with increasing of mixing parameter, the performance of influence 

spread of CDH-Shrink and CDH-Kcut have deteriorated. 

 Table 4.4 indicates the influence spread with 4 different algorithms with different 

activation threshold, flow duration and thermal conductivity in 1000Lmaxd. Nodes in 

1000Lmaxd could have larger degree. That is, some nodes’ degree will be extremely larger  

 

  network EGA CDH-Shrink CDH-Kcut DH 

t=0.1, θ=0.1, α=0.1 1000Lmp 251  223  213  206 

t=0.1, θ=0.2, α=0.1 1000Lmp 225  182  175  187 

t=0.1, θ=1.5, α=0.1 1000Lmp 176  157  149  105 

t=0.1, θ=1.6, α=0.1 1000Lmp 137  121  93  56 

t=0.2, θ=0.1, α=0.1 1000Lmp 562  491  467  484 

t=0.3, θ=0.1, α=0.1 1000Lmp 790  734  712  722 

t=0.4, θ=0.1, α=0.1 1000Lmp 892  841  813  829 

t=0.1, θ=0.1, α=0.2 1000Lmp 562  491  467  484 

t=0.1, θ=0.1, α=0.3 1000Lmp 790  734  712  722 

t=0.1, θ=0.1, α=0.4 1000Lmp 892  841  813  829 

Table 4.3: Influence spread with 4 different algorithms in 1000Lmaxd.  

t is flow duration. θ is activation threshold. α is thermal conductivity 
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than the others. Consequently, performance of influence spread of DH will be improved, 

especially in high activation threshold. 

Table 4.5 shows the influence spread with 4 different algorithms with different activation 

threshold, flow duration and thermal conductivity in 1000LM. In 1000LM, each node has 

more neighbors, so information will spread quickly. Hence, we could see that influence spread 

in 1000LM is higher than that in 1000Smp, 1000Lmp and 1000Lmaxd. In most cases, the 

influence spreads of CDH-Shrink and CDH-Kcut are still better than DH.  

 Table 4.6 indicates that influence spread with 4 different algorithms with different 

activation threshold, flow duration and thermal conductivity in 5000Smp. 5000Smp has 5000 

nodes. In most cases, the influence spread of CDH-Shrink and CDH-Kcut are still better than 

DH.  

  network EGA CDH-Shrink CDH-Kcut DH 

t=0.1, θ=0.1, α=0.1 1000Lmaxd 332 315 298 202 

t=0.1, θ=0.2, α=0.1 1000Lmaxd 290 278 259 196 

t=0.1, θ=1.5, α=0.1 1000Lmaxd 170 151 143 146 

t=0.1, θ=1.6, α=0.1 1000Lmaxd 138 110 113 136 

t=0.2, θ=0.1, α=0.1 1000Lmaxd 494 493 473 299 

t=0.3, θ=0.1, α=0.1 1000Lmaxd 565 569 561 404 

t=0.4, θ=0.1, α=0.1 1000Lmaxd 627 610 599 482 

t=0.1, θ=0.1, α=0.2 1000Lmaxd 494 493 473 299 

t=0.1, θ=0.1, α=0.3 1000Lmaxd 565 569 561 404 

t=0.1, θ=0.1, α=0.4 1000Lmaxd 627 610 599 482 

Table 4.4: Influence spread with 4 different algorithms in 1000Lmaxd.  

t is flow duration. θ is activation threshold. α is thermal conductivity 
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  network EGA CDH-Shrink CDH-Kcut DH 

t=0.1, θ=0.1, α=0.1 1000LM 663 599 599 521 

t=0.1, θ=0.2, α=0.1 1000LM 506 439 437 316 

t=0.1, θ=0.3, α=0.1 1000LM 430 415 402 246 

t=0.1, θ=1.5, α=0.1 1000LM 226 224 218 184 

t=0.2, θ=0.1, α=0.1 1000LM 923 848 838 816 

t=0.3, θ=0.1, α=0.1 1000LM 991 929 936 939 

t=0.4, θ=0.1, α=0.1 1000LM 1000 993 997 996 

t=0.1, θ=0.1, α=0.2 1000LM 923 848 838 816 

t=0.1, θ=0.1, α=0.3 1000LM 991 929 936 939 

t=0.1, θ=0.1, α=0.4 1000LM 1000 993 997 996 

  network EGA CDH-Shrink CDH-Kcut DH 

t=0.1, θ=0.1, α=0.1 5000Smp 540 467 456 391 

t=0.1, θ=0.2, α=0.1 5000Smp 438 401 376 252 

t=0.1, θ=0.3, α=0.1 5000Smp 397 373 326 210 

t=0.1, θ=1.5, α=0.1 5000Smp 261 235 212 169 

t=0.2, θ=0.1, α=0.1 5000Smp 1258 1138 1102 843 

t=0.3, θ=0.1, α=0.1 5000Smp 1284 1175 1113 877 

t=0.4, θ=0.1, α=0.1 5000Smp 1451 1323 1278 952 

t=0.1, θ=0.1, α=0.2 5000Smp 1258 1138 1102 843 

t=0.1, θ=0.1, α=0.3 5000Smp 1284 1175 1113 877 

t=0.1, θ=0.1, α=0.4 5000Smp 1451 1323 1278 952 

Table 4.5: Influence spread with 4 different algorithms in 1000LM.   

t is flow duration. θ is activation threshold. α is thermal conductivity 

Table 4.6: Influence spread with 4 different algorithms in 5000Smp.   

t is flow duration. θ is activation threshold. α is thermal conductivity 
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In summary, CDH-Shrink, in general, is more productive than CDH-Kcut. With the 

increasing of activation threshold, seeds will cluster together to trigger larger influence spread. 

Figure 6.1 and Fig 6.2 indicate the seed clustering phenomenon in high activation threshold, 

where red nodes are seeds. 
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4.2	Zachary’s Karate Network 

Zachary’s karate network [25] consists of 34 nodes and 78 edges. Nodes present the 

members of a karate club in the United States, who were observed during a period of three 

years. Edges connect individuals who were observed to interact outside the activities of the 

club. Since Zachary’s karate network is a very small network, we only demonstrate the 

influence spread of different algorithms. 

    As shown in Fig 4.3, node 0 and 33 are two fundamental nodes if we select two seeds in 

total. In most cases, the two selected seeds are 0 and 33, so Table 4.7 only lists 5 settings of 

parameters and the seeds selected by different algorithms in Zachary’s karate network. The 

number in the parentheses is the selected seeds. CDH-Shrink and CDH-Kcut could select 

seeds according to different value of parameters, DH could not. Consequently, CDH-Shrink 

and CDH-Kcut get the same influence spread as EGA in most cases. Furthermore, in some 

cases like t = 0.4, θ =0 .6, α = 0.1, CDH strategy gets better influence spread. We could see 

that the two seeds with t = 0.1, θ = 0.2 and α = 0.1 are 32 and 33. That is, high activation 

threshold easily cause the phenomenon of seed clustering. High thermal conductivity does not 

cause the phenomenon of seed clustering. Therefore, two seed with t = 0.1, θ = 0.2 and α = 

0.2 are the same seed with t = 0.1, θ = 0.1 and α = 0.1.   
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 EGA CDH-Shrink CDH-Kcut DH 

t=0.1, θ=0.1, α=0.1 31(0, 33) 31(0,33) 31(0,33) 31(0,33) 

t=0.1, θ=0.2, α=0.1 12(32, 33) 12(32, 33) 12(32, 33) 6(0,33) 

t=0.1, θ=0.3, α=0.1 12(32, 33) 12(32, 33) 12(32, 33) 6(0,33) 

t=0.1, θ=0.2, α=0.2 31(0, 33)  31(0, 33)  31(0, 33)  31(0, 33)  

t=0.4, θ=0.6, α=0.1 8(4,7) 12(32,33) 12(32, 33) 6(0,33) 

Fig 4.3 Zachary’s karate network. If we select 2 seeds in this network. 

Node 0 and 33 are fundamental nodes in CDH-Kcut and CDH-Shrink. 

Table 4.7 Two seeds selected by different algorithm in Zachary’s 

karate network. t is time. θ is threshold. α is thermal conductivity 
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4.3 A Collaboration Network 

We extract a large real-life academic collaboration network from the e-print. Each node 

in the network represents an author. If an author i co-authored a paper with author j, the graph 

contains an undirected edge from i to j. If the paper is co-authored by k authors this generates 

a completely connected (sub)graph on k nodes. The coauthor network is the “High Energy 

Physics - Phenomenology collaboration network”, denoted as NETHep, with papers in the 

period from January 1993 to April 2003 (124 months), which contains N=12008 nodes and 

M=237010 edges. The graph is available for download on the web at 

http://snap.stanford.edu/data. 

On the large real collaboration network, NETHep, we report the efficiency and influence 

spread of EGA, CDH-Shrink, CDH-Kcut and DH with different numbers of seeds and values 

of parameters. In CDH-Shrink, we set purity threshold =0.35, which can get satisfying 

influence spread. 
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Fig4.4 influence spread of different algorithms on NETHep. 

t=0.1, θ=0.1, α=0.1 
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Fig 4.4 (x-axis indicates the number of seeds and y-axis indicates influence spread) 

shows the influence spread of different algorithms with different number of seeds on NETHep. 

In most cases, EGA’s influence spread > CDH-Shrink’s influence spread > CDH-Kcut’s 

influence spread > DH’s influence spread. With the increasing number of seeds, CDH-Shrink 

and CDH-Kcut is getting better and better than DH since most seeds selected by DH are only 

in few communities. 

 

 

-` 

 

Fig 4.5 (x-axis indicates activation threshold and y-axis indicates influence spread) 

indicates the influence spread of 10 seeds with different θ from 0.1 to 0.5 with a span of 0.1. 

Fig 4.6 (x-axis indicates activation threshold and y-axis indicates influence spread) indicates 

the influence spread of 30 seeds with different θ from 0.1 to 0.5 with a span of 0.1. The results 

reflected in Fig 4.5 and Fig 4.6 indicate that although the total influence in the spread four 

algorithms will decrease as θ increases, CDH-Shrink and CDH-Kcut still maintain great 

performance. Notice that DH improves its influence spread with the increasing of θ. That 

results from the effect of seed clustering in high θ. However, it is still worse than CDH-Shrink 
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Fig 4.5 influence spread of different algorithms with different 

activation threshold on NETHep. t=0.1, α=0.1. Select 10 seeds. 
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and CDH-Kcut when selecting more seeds. 
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Fig 4.7 influence spread of different algorithms with different flow 

duration on NETHep. θ=0.1, α=0.1. Select 10 seeds 

Fig 4.6 influence spread of different algorithms with different 

activation threshold on NETHep. θ=0.1, α=0.1. Select 30 seeds 
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Fig 4.7 (x-axis indicates flow duration and y-axis indicates influence spread) indicates 

the influence spread of 10 seeds with different t from 0.1 to 0.4 with a span of 0.1. Fig 4.8 

(x-axis indicates flow duration and y-axis indicates influence spread) indicates the influence 

spread of 30 seeds with different t from 0.1 to 0.4 with a span of 0.1. Fig 4.7 and Fig 4.8 

(x-axis indicates time and y-axis indicates influence spread) show that our proposed 

algorithms still maintain good influence spread with the increasing of t. We only report results 

from t = 0.1 to t = 0.4 since too large t will lead to the situation that most nodes are influenced, 

and thus we cannot easily distinguish the performance of the four algorithms.  
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Fig. 4.8 influence spread of different algorithms with different time 

on NETHep. θ=0.1, α=0.1. Select 30 seeds 
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Fig. 4.9 influence spread of different algorithms with different 

thermal conductivity on NETHep. t=0.1, θ=0.1. Select 10 seeds 

Fig 4.10 influence spread of different algorithms with different 

thermal conductivity on NETHep. t=0.1, θ=0.1. Select 30 seeds 
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 Fig 4.9 (x-axis indicates thermal conductivity and y-axis indicates influence spread) 

indicates the influence spread of 10 seeds with different thermal conductivity α from 0.1 to 

0.4 with a span of 0.1. Fig 4.10 (x-axis indicates thermal conductivity and y-axis indicates 

influence spread) indicates the influence spread of 30 seeds with different thermal 

conductivity α from 0.1 to 0.4 with a span of 0.1. As shown in Fig 4.9 and Fig 4.10(x-axis 

indicates thermal conductivity and y- axis indicates influence spread), CDH-Shrink and 

CDH-Kcut remain good influence spread even if in different α. The reason why maximal 

value of α is 0.4 is the same as that in comparing influence spread with different flow duration. 

That is, we cannot easily distinguish the performance of four algorithms with too large α. 

We present the efficiency of four algorithms in Fig 4.11 (10 and 50 seeds respectively, 

x-axis indicates different algorithms and y-axis ( logarithmic scale) indicates execution time). 

Since DH only needs to select top-k degree nodes as seeds, DH is extremely efficient. 

CDH-Shrink has least running time among CDH-Shrink, CDH-Kcut and EGA. We also can 

see that the running time of EGA is proportional to the number of seeds. Execution time of 

CDH-Shrink and CDH-Kcut are only slightly different between 10 seeds and 50 seeds. This is 

because CDH-Shrink and CDH-Kcut only have to spend a little more time on adjustment 
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when the number of nodes increases.  

4.4 Facebook Network 

We extract one large real-life networks from Facebook. Each node in the network 

represents a user. If user i is a friend of user j, the graph contains an undirected edge from i to 

j. The network is denoted as FB, in the period from April 2004 to 2009 January (124 months), 

which contains N =63731 nodes and M = 817090 edges. 

FB is a large real network. Thus, we report not only the efficiency but also influence 

spread of our algorithms with respect to different numbers of seeds and values of parameters. 

We set purity threshold =0.2, which get satisfying influence spread in FB. 

Fig 4.12 (x-axis indicates the number of seeds and y-axis indicates influence spread) 

shows the influence spread of different algorithms with different number of seeds on FB. As 

shown in Fig 4.12, in most cases EGA’s influence spread > CDH-Shrink’s influence spread > 

CDH-Kcut’s influence spread > DH’s influence spread. Since EGA is too time-consuming, we 

only report the influence spread from 5 seeds to 30 seeds. 
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Fig 4.13 (x-axis indicates activation threshold and y-axis indicates influence spread) 

indicates the influence spread of 10 seeds with different θ from 0.1 to 0.4 with a span of 0.1. 

Fig 4.14 (x-axis indicates activation threshold and y-axis indicates influence spread) indicates 

the influence spread of 30 seeds with different θ from 0.1 to 0.4 with a span of 0.1. As shown 

in Fig 4.13, when only select 10 seeds, EGA’s influence spread > CDH-Shrink’s influence 

spread > CDH-Kcut’s influence spread > DH’s influence spread with α = 0.2, 0.3 and 0.4. In 

Fig 4.14, we could see that the performance of DH’s influence spread is better than that in Fig 

4.13. With α = 0.3 in Fig 4.14, DH’s influence spread is even close to EGA and CDH-Shrink, 

and better than CDH-Kcut since the phenomenon of seed clustering with high activation 

threshold. Besides, CDH-Shrink’s influence spread is better than EGA with α = 0.1 and 0.3. 
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Fig 4.15 (x-axis indicates flow duration and y-axis indicates influence spread) indicates 

the influence spread of 10 seeds with different t from 0.1 to 0.4 with a span of 0.1. Fig 4.16 

(x-axis indicates flow duration and y-axis indicates influence spread) indicates the influence 

spread of 30 seeds with different t from 0.1 to 0.4 with a span of 0.1. Unlike other cases on 

NETHep or FB, in Fig 4.15 CDH-Shrink’s influence spread > CDH-Kcut’s influence spread > 

EGA’s influence spread > DH’s influence spread. However, when we select 30 seeds as shown 

in Fig 4.16, the ranking of influence spread becomes EGA > CDH-Shirnk > CDH-Kcut > DH. 

EGA still has the most influence spread in most cases. To be notices that no matter what 

values of parameters on FB, CDH-Shrink’s influence spreads are very close to EGA. 
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Fig 4.16 influence spread of different algorithms with different flow 

duration on FB. θ=0.1, α=0.1. Select 30 seeds 
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Fig 4.18 influence spread of different algorithms with different 

thermal conductivity on FB. t=0.1, θ=0.1. Select 30 seeds 
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Fig 4.17 (x-axis indicates thermal conductivity and y-axis indicates influence spread) 

indicates the influence spread of 10 seeds with different t from range 0.1 to 0.4 with a span of 

0.1. Fig 4.18 (x-axis indicates thermal conductivity and y-axis indicates influence spread) 

indicates the influence spread of 30 seeds with different α from range 0.1 to 0.4 with a span of 

0.1. We could see that CDH-Shrink still have very good influence spread with α from range 

0.1 to 0.4. 

We present the efficiency of four algorithms in Fig 4.19 (5 and 30 seeds respectively, 

x-axis indicates different algorithms and y-axis ( logarithmic scale) indicates execution time). 

CDH-Shrink has the least running time. Just like on NETHep, we can see that the running 

time of EGA is proportional to the number of seeds.  

Overall, in terms of influence spread, EGA > CDH-Shrink > CDH-Kcut > DH. In terms 

of efficiency, DH > CDH-Shrink > CDH-Kcut > EGA. One thing deserves to be mentioned, 

due to the phenomenon of seeds clustering, DH will get better performance of influence 

spread with high activation than that with low activation threshold.  

1

314

2862

158650

1

339

2898

951900

1

10

100

1000

10000

100000

1000000

DH CDH‐Shrink CDH‐Kcut EGA

5 seeds

30 seeds

Fig 4.19 Running time of different algorithms on FB. Selecting 5 seeds 

and 30 seeds respectively 

E
xe

cu
ti

on
 ti

m
e 

(S
ec

s)
 



58 
 

Chapter 5 

Conclusions 

 In this thesis, we present two algorithms CDH-Kcut and CDH-Shrink under the 

undirected heat diffusion model by combining information of community structure and 

modified degree-centrality method. The purpose of our work is to efficiently solve the 

influence maximization problem under the heat diffusion model. By contrast with linear 

threshold model and independent cascading model, the heat diffusion model is more realistic. 

The time complexity analysis shows CDH-Shrink and CDH-Kcut is more efficient than 

enhance greedy algorithm [5]. Experimental results on the real-world and synthetic datasets 

also validate that our algorithms achieve great performance in efficiency. 

    SHRINK [10] and Kcut [9] are community detection algorithms used in CDH-Shrink 

and CDH-Kcut, respectively. Both of SHRINK and Kcut are very efficient and could get 

community structures satisfactorily. Beside, SHRINK could detect hubs which are very useful 

information in maximal influence problem. When comparing CDH-Shrink with CDH-Kcut, 

CDH-Shrink, in general, utilizes hubs and better community structure to achieve better 

influence spread. Although, both algorithms are efficient with time complexity O(MlongN), 

CDH-Kcut, in practice, would cost more execution time. 

 In the future, to interpret the real world more realistically, we will extend our method to 

weighted graphs. Furthermore, an important property of any social network is evolution. 

Every social network is evolving all the time. Static community detection algorithms could 

only detect community structure without considering the evolution of social networks. It is 

interesting to utilize dynamic community structures to solve the influence maximization 

problem in the future. 
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